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Preface

Convexity is very easy to define, to visualize and to get an intuition about. A set is
called convex if for every two points a and b in the set, the straight line interval [a, b]
is also in the set. Thus the main building block of convexity theory is a straight
line interval.

Convexity is more intuitive than, say, linear algebra. In linear algebra, the
interval is replaced by the whole straight line. We have some difficulty visualizing
a straight line because it runs unchecked in both directions.

On the other hand, the structure of convexity is richer than that of linear
algebra. It is already evident in the fact that all points on the line are alike whereas
the interval has two points, a and b, which clearly stand out.

Indeed, convexity has an immensely rich structure and numerous applica-
tions. On the other hand, almost every “convex” idea can be explained by a
two-dimensional picture. There must be some reason for that apart from the tau-
tological one that all our pictures are two-dimensional. One possible explanation is
that since the definition of a convex set involves only three points (the two points a
and b and a typical point z of the interval) and every three points lie in some plane,
whenever we invoke a convexity argument in our reasoning, it can be properly pic-
tured (moreover, since our three points a, b and z lie on the same line, we have
room for a fourth point which often plays the role of the origin). Simplicity, intu-
itive appeal and universality of applications make teaching convexity (and writing
a book on convexity) a rather gratifying experience.

About this book. This book grew out of sets of lecture notes for graduate courses
that I taught at the University of Michigan in Ann Arbor since 1994. Conse-
quently, this is a graduate textbook. The textbook covers several directions, which,

vii

Licensed to Georgia Inst of Tech. Prepared on Sun Jan 14 21:00:56 EST 2024for download from IP 188.92.139.72.



viil Preface

although not independent, provide enough material for several one-semester three-
credit courses.

One possibility is to follow discrete and combinatorial aspects of convexity:
combinatorial properties of convex sets (Chapter I) — the structure of some in-
teresting polytopes and polyhedra (the first part of Chapter II, some results of
Chapter IV and Chapter VI) — lattice points and convex bodies (Chapter VII) —
lattice points and polyhedra (Chapter VIII).

Another possibility is to follow the analytic line: basic properties of convex
sets (Chapter I) — the structure of some interesting non-polyhedral convex sets,
such as the moment cone, the cone of non-negative polynomials and the cone of
positive semidefinite matrices (Chapter IT and some results of Chapter IV) — metric
properties of convex bodies (Chapter V).

Yet another possibility is to follow infinite-dimensional and dimension-free ap-
plications of convexity: basic properties of convex sets in a vector space (Chapter
I) — separation theorems and the structure of some interesting infinite-dimensional
convex sets (Chapter III) — linear inequalities and linear programming in an ab-
stract setting (Chapter IV).

The main focus of the book is on applications of convexity rather than on study-
ing convexity for its own sake. Consequently, mathematical applications range from
analysis and probability to algebra to combinatorics to number theory. Finite- and
infinite-dimensional optimization problems, such as the Transportation Problem,
the Diet Problem, problems of optimal control, statistics and approximation are
discussed as well.

The choice of topics covered in the book is entirely subjective. It is probably
impossible to write a textbook that covers “all” convexity just as it is impossible
to write a textbook that covers all mathematics. I don’t even presume to claim to
cover all “essential” or “important” aspects of convexity, although I believe that
many of the topics discussed in the book belong to both categories.

The audience. The book is intended for graduate students in mathematics and
other fields such as operations research, electrical engineering and computer science.
That was the typical audience for the courses that I taught. This is, of course,
reflected in the selection of topics covered in the book. Also, a significant portion
of the material is suitable for undergraduates.

Prerequisites. The main prerequisite is linear algebra, especially the coordinate-
free linear algebra. Knowledge of basic linear algebra should be sufficient for un-
derstanding the main convexity results (called “Theorems”) and solving problems
which address convex properties per se.

In many places, knowledge of some basic analysis and topology is needed. In
most cases, some general understanding coupled with basic computational skills
will be sufficient. For example, when it comes to the topology of Euclidean space,
it suffices to know that a set in Euclidean space is compact if and only if it is closed
and bounded and that a linear functional attains its maximum and minimum on
such a set. Whenever the book says “Lebesgue integral” or “Borel set”, it does so
for the sake of brevity and means, roughly, “the integral makes sense” and “the

Licensed to Georgia Inst of Tech. Prepared on Sun Jan 14 21:00:56 EST 2024for download from IP 188.92.139.72.



Preface ix

set is nice and behaves predictably”. For the most part, the only properties of
the integral that the book uses are linearity (the integral of a linear combination
of two functions is the linear combination of the integrals of the functions) and
monotonicity (the integral of a non-negative function is non-negative). The relative
abundance of integrals in a textbook on convexity is explained by the fact that the
most natural way to define a linear functional is by using an integral of some sort. A
few exercises openly require some additional skills (knowledge of functional analysis
or representation theory).

When it comes to applications (often called “Propositions”), the reader is ex-
pected to have some knowledge in the general area which concerns the application.

Style. The numbering in each chapter is consecutive: for example, Theorem 2.1
is followed by Definition 2.2 which is followed by Theorem 2.3. When a reference
is made to another chapter, a roman numeral is included: for example, if Theorem
2.1 of Chapter I is referenced in Chapter III, it will be referred to as Theorem
1.2.1. Definitions, theorems and other numbered objects in the text (except figures)
are usually followed by a set of problems (exercises). For example, Problem 5
following Definition 2.6 in Chapter II will be referred to as Problem 5 of Section
2.6 from within Chapter II and as Problem 5 of Section I1.2.6 from everywhere else
in the book. Figures are numbered consecutively throughout the book. There is a
certain difference between “Theorems” and “Propositions”. Theorems state some
general and fundamental convex properties or, in some cases, are called “Theorems”
historically. Propositions describe properties of particular convex sets or refer to
an application.

Problems. There are three kinds of problems in the text. The problems marked
by * are deemed difficult (they may be so marked simply because the author is
unaware of an easy solution). Problems with straightforward solutions are marked
by °. Solving a problem marked by ° is essential for understanding the material and
its result may be used in the future. Some problems are not marked at all. There are
no solutions at the end of the book and there is no accompanying solution manual
(that T am aware of) , which, in my opinion, makes the book rather convenient for
use in courses where grades are given. On the other hand, many of the difficult
and some of the easy problems used later in the text are supplied with a hint to a
solution.

Acknowledgment. My greatest intellectual debt is to my teacher A.M. Vershik.
As a student, I took his courses on convexity and linear programming. Later, we
discussed various topics in convex analysis and geometry and he shared his notes
on the subject with me. We planned to write a book on convexity together and
actually started to write one (in Russian), but the project was effectively terminated
by my relocation to the United States. The overall plan, structure and scope of
the book have changed since then, although much has remained the same. All
unfortunate choices, mistakes, typos, blunders and other slips in the text are my
own. A.M. Vershik always insisted on a “dimension-free” approach to convexity,
whenever possible, which simplifies and makes transparent many fundamental facts,
and on stressing the idea of duality in the broadest sense. In particular, I learned
the algebraic approach to the Hahn-Banach Theorem (Sections II.1, III.1-3) and
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the general view of infinite-dimensional linear programming (Chapter IV) from
him. This approach makes the exposition rather simple and elegant. It makes it
possible to deduce a variety of strong duality results from a single simple theorem
(Theorem IV.7.2). My interest in quadratic convexity (Section I1.14) and other
“hidden convexity” results (Section II1.7) was inspired by him. He also encouraged
my preoccupation with lattice points (Chapter VIII) and various peculiar polytopes
(Sections I1.5-7).

On various stages of the project I received encouragement from A. Bjorner, L.
Billera, R. Pollack, V. Klee, J.E. Goodman, G. Kalai, A. Frieze, L. Lovasz, W.T.
Gowers and 1. Bardny.

I am grateful to my colleagues in the Department of Mathematics at the Univer-
sity of Michigan in Ann Arbor, especially to P. Hanlon, B.A. Taylor, J. Stembridge
and S. Fomin with whose blessings I promoted convexity within the Michigan com-
binatorics curriculum. I thank the students who took Math 669 convexity classes
in 1994-2001. Special thanks to G. Blekherman who contributed some of his in-
teresting results on the metric structure of the set of non-negative multivariate
polynomials (Problems 8 and 9 of Section V.2.4).

Since the draft of this book was posted on the web, I received very useful
and detailed comments from R. Connelly, N. Ivanov, J. Lawrence, L. Lovéasz, G.
Ziegler and A.M. Vershik. I am particularly grateful to J. Lawrence who suggested
a number of essential improvements, among them are the greater generality of
the “polarity as a valuation” theorem (Theorem IV.1.5), a simplified proof of the
Euler-Poincaré Formula (Corollary VI.3.2) and an elegant proof of Gram’s relations
(Problem 1 of Section VII1.4.4) and many mathematical, stylistic and bibliograph-
ical corrections.

I thank A. Yong for reading the whole manuscript carefully and suggesting
numerous mathematical and stylistic corrections. I thank M. Wendt for catching a
mistake and alerting me by e-mail.

I thank S. Gelfand (AMS) for insisting over a number of years that I write the
book and for believing that I was able to finish it.

I am grateful to the National Science Foundation for its support.

Ann Arbor, 2002
Alexander Barvinok
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Chapter 1

Convex Sets at Large

We define convex sets and explore some of their fundamental properties. In this
chapter, we are interested in the “global” properties of convex sets as opposed to the
“local” properties studied in the next chapter. Namely, we are interested in what
a convex set looks like as a whole, how convex sets may intersect and how they be-
have with respect to linear transformations. In contrast, in the next chapter, we will
discuss what a convex set looks like in a neighborhood of a point. The landmark
results of this chapter are classical theorems of Carathéodory, Radon and Helly
and the geometric construction of the Euler characteristic. We apply our results
to study positive multivariate polynomials, the problem of uniform (Chebyshev)
approximation and some interesting valuations on convex sets, such as the intrin-
sic volumes. Exercises address some other applications (such as the Gauss-Lucas
Theorem), discuss various ramifications of the main results (such as the Fractional
Helly Theorem or the Colored Carathéodory Theorem) and preview some of the
results of the next chapters (such as the Brickman Theorem, the Schur-Horn Theo-
rem and the Birkhoff-von Neumann Theorem). We introduce two important classes
of convex sets, polytopes and polyhedra, discussed throughout the book.

1. Convex Sets. Main Definitions, Some Interesting
Examples and Problems

First, we set the stage where the action is taking place. Much of the action, though
definitely not all, happens in Euclidean space R?.

(1.1) Euclidean space. The d-dimensional Euclidean space R¢ consists of all d-
tuples & = (&1, ... ,&) of real numbers. We call an element of R? a vector or (more
often) a point. We can add points: we say that

z=x+y for x=(&,..., &), v=(n,...,na) and z=((1,...,C),

1
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2 I. Convex Sets at Large

provided
G=¢&+mn for i=1,...,d

We can multiply a point by a real number:
if x=1(&,...,8) and « is a real number,

then
ar = (ay, ... ,a€q)

is a point from R%. We consider the scalar product in R%:

(w,y) =&m + ...+ Eana, where  x=(&,...,&) and y=(n,...,N4)-

We define the (Euclidean) norm

]l = /&t + . + &

of a point © = (&1,...,&4) and the distance between two points x and y:
dist(z,y) = ||z —y| for z,yeR%

Later in the text we will need volume. We do not define volume formally (that
would lead us too far away from the main direction of this book). Nevertheless,
we assume that the reader is familiar with elementary properties of the volume (cf.
Section 8.3). The volume of a set A C R? is denoted vol A or voly A.

Let us introduce the central concept of the book.

(1.2) Convex sets, convex combinations and convex hulls.

Let {z1,...,2,,} be a finite set of points from R%. A point

m m
x:E Q;T;, where E a;=1 and o; >0 for i=1,...,m
i=1 i=1

is called a convex combination of x1, ... ,x,,. Given two distinct points z,y € R,
the set

[:C,y]:{ozac—l—(l—oz)y: Ogagl}

of all convex combinations of x and y is called the interval with endpoints z and
y. A set A C R?is called convez, provided [z,y] C A for any two x,y € A, or in
words: a set is convex if and only if for every two points it contains the interval
that connects them. We agree that the empty set () is convex. For A C R¢, the
set of all convex combinations of points from A is called the convex hull of A and
denoted conv(A4). We will see that conv(A) is the smallest convex set containing A
(Theorem 2.1).
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1. Convex Sets 3

(1.3) Some interesting examples. Sometimes, it is very easy to see whether
the set is convex or not (see Figure 1).

convex convex non-convex

Figure 1. Two convex and one non-convex set

Sometimes, however, this is not so easy to see (cf. Problems 3, 4 and 5 below),
or a convex set may have a number of equivalent descriptions and their equivalence
may be not obvious (cf. Problems 6 and 7 below).

PROBLEMS.

We will encounter many of the harder problems later in the text.

1°. Prove that the convex hull of a set is a convex set.

2°. Let c1, ... ,cn, be vectors from R? and let f31, ... , 3,, be numbers. The set
A= {xeRd: (ciyz) < p; for i=1,... ,m}
is called a polyhedron. Prove that a polyhedron is a convex set.

3. Let v1,...,v, € R? be points. Let us fix positive numbers py, ..., p,, and
let us define a map: H : R¢ — R? by

H(z) = ﬁ Zpi eXP{<Iavi>}% where  f(z) = sz‘ eXP{<$avi>}-

a®) Prove that the image of H lies in the convex hull of vy,... , vy,.

b*) Prove that the image of H is convex and that for any ¢ > 0 and for any
y € conv (vl, e ,vm) there exists an 2 € R? such that dist (H(m), y) < e
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4 I. Convex Sets at Large

¢*) Assume that one cannot find a non-zero vector ¢ € R? and a number « such
that (c,v;) = « for i =1,... ,m. Prove that H is injective.

Remark: The map H is an example of a moment map; see Chapter 4 of [F93].

4* (The Brickman Theorem). Let g1, ¢z : R® — R be quadratic forms and let
S*=! ={xz e R™: |[|z| =1} be the unit sphere. Consider the map T : R" — R2,
T(z) = (q1(x), g2(z)). Prove that the image T(S*~') of the sphere is a convex set
in R2, provided n > 2.

Remark: We prove this in Chapter II (see Theorem 11.14.1).

5* (The Schur-Horn Theorem). For an n X n real symmetric matrix A = (o),
let diag(A4) = (@11, .. , any) be the diagonal of A, considered as a vector from R™.
Let us fix real numbers A1,...,A,. Consider the set X C R™ of all diagonals of
n X n real symmetric matrices with the eigenvalues Aq,...,\,. Prove that X is
a convex set. Furthermore, let [ = (A1,...,\,;) be the vector of eigenvalues, so
I € R™. For a permutation o of the set {1,... ,n}, let I7 = (As(1),... ,Ag(n)) be
the vector with the permuted coordinates. Prove that

X = conv (l" : 0 ranges over all n! permutations of the set {1,... ,n})

Remark: See Theorem 11.6.2.

6 (The Birkhoff - von Neumann Theorem). For a permutation o of the set

{1,...,n}, let us define the n x n permutation matrix X7 = (£7) as
L (1 () =i,
L0 i o)) £

Prove that the convex hull of all n! permutation matrices X7 is the set of all n x n
doubly stochastic matrices, that is, matrices X = (&;;), where

Z&‘j =1 forall j, Z&j =1 forall i and

i=1 j=1
f’ij > 0 for all Z,]

We consider an n X n matrix X as a point in R"”.
Remark: We prove this in Chapter II (see Theorem I1.5.2).

7. Let us fix an even number n = 2m and let us interpret R™*! as the space of
all polynomials p(7) = ap + a1 7 + ... + @, 7" of degree at most n in one variable
7. Let

K:{pER”+1: p(t) >0 for all TER}

be the set of all non-negative polynomials. Prove that K is a convex set and that K
is the set of all polynomials that are representable as sums of squares of polynomials
of degree at most m:

k
K= {Zqiz, where deg ¢q; < m}.

i=1
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1. Convex Sets 5

Remark: See Section I1.11 and, especially, Problem 3 of Section I1.11.3.

Often, we consider convex sets in a more general setting.

(1.4) Convex sets in vector spaces. We recall that a set V' with the operations
“+” (addition): V xV — V and “” (scalar multiplication): RxV — V is called
a (real) vector space provided the following eight axioms are satisfied:

(1) u+v=v+4+u foranytwo wu,ve€V;

(2) u+(w+4+w)=(u+v)+w forany three u,v,w eV,

(3) (af)v=a(fv) forany veV andany «,8€R;

(4) lv=v forany veV;

(5) (a+p)v=av+pPv forany veV andany a,8€R;

(6) a(v+u)=av+au forany a€R andany u,veV;

(7) there exists a zero vector 0 € V such that v+ 0=v foreach v €V and
(8) for each v € V there exists a vector —v € V such that v+ (—v) = 0.

We often say “points” instead of “vectors”, especially when we have no par-
ticular reason to consider 0 (which we often denote just by 0) to be significantly
different from any other point (vector) in V.

A set A C V is called convez, provided for all z,y € A the interval
[z,y] ={az+(1—-a)y: 0<a <1}

is contained in A. Again, we agree that the empty set is convex. A convexr combi-
nation of a finite set of points in V' and a convez hull conv(A) of a set A C V are
defined just as in the case of Euclidean space.

PROBLEM.

1°. Let V be the space of all continuous real-valued functions f : [0,1] — R.
Prove that the sets

B:{fev; If(r)] <1 for all Te[o,u} and

K={fev: f(r<o foral 7€)}
are convex.

(1.5) Operations with convex sets. Let V be a vector space and let A, B C V
be (convex) sets. The Minkowski sum A+ B is a subset in V' defined by

A—|—B:{x—|—y: x €A, yeB}.
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6 I. Convex Sets at Large

In particular, if B = {b} is a point, the set
A+b= {a:—i—b:a:eA}
is a translation of A. For a number « and a subset X C V, the set
aX = {ax 1T € X}

is called a scaling of X (for o > 0, the set aX is also called a dilation of X). Some
properties of convex sets are obvious, some are not so obvious, and some are quite
surprising.

PROBLEMS.

We will encounter some of the harder problems below later in the text.

1°. Prove that the intersection [, A; of convex sets is convex.

2°. Let A C V be a convex set and let T': V. — W be a linear transformation.
Prove that the image T(A) is a convex set in W.

3. Let A C R™ be a polyhedron (see Problem 2, Section 1.3) and let T : R —
R™ be a linear transformation. Prove that the image T'(A) is a polyhedron in R™.

Remark: We prove this in Section 9; see Theorem 9.2.

4. Prove that A + B is a convex set provided A and B are convex. Prove that
for a convex set A and non-negative numbers « and 5 one has (a+8)A = a A+ [A.
Show that the identity does not hold if A is not convex or if o or 3 are allowed to
be negative.

5*. For a set A C R%, let [A] : RY — R be the indicator function of A:

1 if z€ A,

A)(@) = { 0 if z¢ A

Let Ay,...,Ax be compact convex sets in R” and let 7' : R — R™ be a linear
transformation. Let B; = T'(A;) be the image of A;. Suppose that Ele a;[4;] =0
for some numbers «;. Prove that Zle a;[B;] = 0. Show that this is no longer true
if the A; are not convex.

Remark: We prove this in Section 8; see Corollary 8.2.

6. Let A C R? be a compact convex set and B = (—1/d)A. Prove that there
exists a vector b € R% such that b+ B C A.

Remark: Figure 2 illustrates the statement for d = 2. We go back to this
problem in Section 5 when we discuss Helly’s Theorem (see Problem 1 of Section
5.2 and the hint thereafter).
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2. Carathéodory’s Theorem 7

Figure 2. Example: the polygon B = (—1/2)A can be translated
inside A.

2. Properties of the Convex Hull. Carathéodory’s
Theorem

Recall from (1.2) that the convex hull conv(S) of a set S is the set of all convex
combinations of points from S. Here is our first result.

(2.1) Theorem. Let V' be a vector space and let S C V be a set. Then the convex
hull of S is a convex set and any convex set containing S also contains conv(S).
In other words, conv(S) is the smallest convex set containing S.

Proof. First, we prove that conv(S) is a convex set (cf. Problem 1, Section 1.3).
Indeed, let us choose two convex combinations v = aqui + ... + api, and v =
B1v1 + ...+ Bnu, of points from S. The interval [u,v] consists of the points yu +
(1 —~)v for 0 < < 1. Each such point yayuy + ... + Yoty + (1 —7)f1o1+... +
(1 — v)Bnvy is a convex combination of points w1, ... ,Um,v1,... , v, from S since

m n

Yo+ (1=Bi=7Y ai+(1=9)) Bi=v+(1-y) =1
i=1 i=1 i=1 i=1

Therefore, conv(S) is convex.

Now we prove that for any convex set A such that S C A, we have conv(S) C A.
Let us choose a convex combination

U=0a1U1 + ...+ apln,

of points uy, . .. , U, from S. We must prove that u € A. Without loss of generality,
we may assume that o; > 0 for ¢ = 1,... ,m. We proceed by induction on m. If
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8 I. Convex Sets at Large

m = 1, then u = u; and u € A since S C A. Suppose that m > 1. Then «,, < 1
and we may write

aq Ay —1
u=(1—am)w+ aniy,, where w= U+ ...+ ————Up_1.
1—a,, 1—a,,
Now, w is a convex combination of uq,... ,u,_1 because
m—1 m—1
o; 1 1—ay,
= 041‘ = =
‘ 1—ap, 1—a,, 4 1—ay,
i=1 =1

Therefore, by the induction hypothesis, we have w € A. Since A is convex, [w, u,,| C
A,sou € A O

PROBLEMS.

1°. Prove that conv(conv(S)) = conv(S) for any S C V.

2°. Prove that if A C B, then conv(A) C conv(B).

3°. Prove that (COHV(A) U conv(B)) C conv(A U B).

4. Let S C V be a set and let u,v € V be points such that u ¢ conv(S) and
v & conv(S). Prove that if u € conv(S U {v}) and v € conv(S U {u}), then u = v.

5 (Gauss-Lucas Theorem). Let f(z) be a non-constant polynomial in one com-
plex variable z and let 21, ... , z, be the roots of f (that is, the set of all solutions
to the equation f(z) = 0). Let us interpret a complex number z = z + iy as a
point (z,y) € R%. Prove that each root of the derivative f/(z) lies in the convex
hull conv(z1, ..., zm).

Hint: Without loss of generality we may suppose that f(z) = (z —21) -+ (2 —
zm). If w is a root of f'(2), then 377" [, ;(w — 2;) = 0, and, therefore,
S [1;2(w—2;) = 0, where Z is the complex conjugate of z. Multiply both
sides of the last identity by (w — z1) - - (w — z,) and express w as a convex combi-
nation of z1,..., zp.

Next, we introduce two important classes of convex sets.

(2.2) Definitions. The convex hull of a finite set of points in R? is called a
polytope.
Let c1,... ,cm be vectors from R? and let Bi,. .. , B, be numbers. The set

P:{xeRd:<ci,x)§ﬁi for i:l,...,m}

is called a polyhedron (see Problem 2 of Section 1.3).
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2. Carathéodory’s Theorem 9

PROBLEMS.
1. Prove that the set

A:{(fl,...,§d+1)€Rd+li £1+'~-+§d+1:1 and

& >0 for izl,...,d+1}

is a polytope in R%*t!. This polytope is called the standard d-dimensional simplex.
2. Prove that the set

I:{(ﬁl,---,ﬁd)ERd: 0<¢ <1 for i:l,...,d}

is a polytope. This polytope is called a d-dimensional cube.
3. Prove that the set

0:{(51,...,gd)eRd: |§1\+...+|§d|§1}

is a polytope. This polytope is called a (hyper)octahedron or crosspolytope.

simplex cube octahedron (crosspolytope)

Figure 3. Some 3-dimensional polytopes: simplex (tetrahedron), cube
and octahedron

4. Prove that the disc B = {(£1,&) € R?: £ + &5 < 1} is not a polytope.
5. Let V = C[0,1] be the space of all real-valued continuous functions on the
interval [0,1] and let A = {f eV:0< f(r)<lforallrelo 1]} Prove that A

is not a polytope.
The following two problems constitute the Weyl-Minkowski Theorem.
6*. Prove that a polytope P C R? is also a polyhedron.
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10 I. Convex Sets at Large

Remark: We prove this in Chapter II; see Corollary 11.4.3.
7*. Prove that a bounded polyhedron P C R? is also a polytope.
Remark: We prove this in Chapter IV; see Corollary IV.1.3.

It seems intuitively obvious that in the space of a small dimension, to represent
a given point x from the convex hull of a set A as a convex combination, we would
need to use only a few points of A, although their choice will, of course, depend on
z. For example, in the plane, to represent x as a convex combination, we need to
use only three points; see Figure 4.

Figure 4. Example: to represent u as a convex combination of a, b, c,
d and e, we need only three points, for instance b, e and d.

The general fact is known as Carathéodory’s Theorem, which was proved by
C. Carathéodory around 1907.

(2.3) Carathéodory’s Theorem. Let S C R? be a set. Then every point
x € conv(S) can be represented as a convex combination of d + 1 points from

S:

d+1

T=a1y1 + ...+ Qgy1Ya+1, where Zai =1, ;>0
i=1

andy; € S fori=1,...,d+1.

Proof. Every point x € conv(S) can be written as a convex combination
rT=01Y1 t+ ...+ pYm

of some points y1,... ,¥m € S. We can assume that o; >0 foralli=1,... ,m. If

m < d+1, we can add terms Oy, say, to get a convex combination with d+1 terms.
Suppose that m > d + 1. Let us show that we can construct a convex combination
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2. Carathéodory’s Theorem 11

with fewer terms. Let us consider a system of linear homogeneous equations in m
real variables v1,... ,Ym:

Y1+ .-+ YmYm =0 and 1 4+... 4+, =0.
The first vector equation reads as d real linear equations

Mgt et Vmlm; =00 j=1,...,d

in the coordinates 7;; of v;: y; = (i1,... ,7m4). Altogether, we have d + 1 linear
homogeneous equations in m variables v1,... ,7¥;,. Since m > d 4 1, there must
be a non-trivial solution ~1,... ,¥m. Since v1 + ...+ ¥, = 0, some y; are strictly

positive and some are strictly negative. Let
T=min{e;/yi: v >0} = iy /iy
Let o =a; — 7y fori=1,... ,m. Then a; > 0 for alli=1,... ,m and «;, = 0.
Furthermore,
o+ om=(a+...4an) -7+ Fym) =1

and

QYL+ oo+ Y = Q1YL + - F U — T(V1YL F - - -+ YmYm) = .
Therefore, we represented = as a convex combination
= oy
i#io
of m — 1 points y1, ... ,Yigs--- »Ym (¥i, omitted).
So, if x is a convex combination of m > d 4 1 points, it can be written as a

convex combination of fewer points. Iterating this procedure, we get = as a convex
combination of d + 1 (or fewer) points from S. O

PROBLEMS.

1°. Show by an example that the constant d 4+ 1 in Carathéodory’s Theorem
cannot be improved to d.

2* (I. Barany). Let S1,...,S4+1 be subsets of RY. Prove that if u € conv(S;)
for each S;, then there exist points v; € S; such that u € conv(vl, . ,vd+1).

Hint: Choose points v; € S; in such a way that the distance from u to
conv(vy,...,v4+1) is the smallest possible. Prove that if u ¢ conv(vl, o ,vdH),
the distance could have been decreased further. This result is known as the “Col-
ored Carathéodory Theorem”; see [Bar82].

3*. Let S C R? be a set and let u be a point in the interior of conv(S). Prove
that one can choose 2d points vq,... ,veq € S such that u lies in the interior of
COIIV(U17 . ,Ugd).

4. Suppose that S C R? is a set such that every two points in S can be
connected by a continuous path in S or a union of at most d such sets. Prove that
every point u € conv(S) is a convex combination of some d points of S.

Here is a useful corollary relating convexity and topology.
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12 I. Convex Sets at Large

(2.4) Corollary. If S C R is a compact set, then conv(S) is a compact set.

Proof. Let A C R%! be the standard d-dimensional simplex; see Problem 1 of
Section 2.2:

d+1
A:{(al,...,ad+1): Zaizl and a; >0 for i:l,...,d+1}.

i=1

Then A is compact and so is the direct product
St A = {(ul,... JUGL1; Oy - e ,adH) o ow; €8 and (a1,...,0441) € A}.

Let us consider the map ® : S x A — RY,
D(up,. .oy Ug41; Q1o Qd41) = QUL F+ o oo+ Qg1 UG

Theorem 2.3 implies that the image of ® is conv(S). Since ® is continuous, the
image of ® is compact, which completes the proof. O

PROBLEMS.
1. Give an example of a closed set in R? whose convex hull is not closed.

2. Prove that the convex hull of an open set in R? is open.

3. An Application: Positive Polynomials

In this section, we demonstrate a somewhat unexpected application of Cara-
théodory’s Theorem (Theorem 2.3). We will use Carathéodory’s Theorem in the
space of (homogeneous) polynomials.

Let us fix positive integers k and n and let Hyy ,, be the real vector space of
all homogeneous polynomials p(x) of degree 2k in n real variables © = (&1, ... ,&,).
We choose a basis of Hay, ,, consisting of the monomials

eq =& &qm for a=(o,...,q,) where a3 +...4+a, =2k
Hence dim Hay,,,, = (n+§11§71). At this point, we are not particularly concerned
with choosing the “correct” scalar product in Hoy, ,,. Instead, we declare {e,} the

orthonormal basis of Hay, ,,, hence identifying Hoy, , = R4 with d = ("+§£_1).
We can change variables in polynomials.

(3.1) Definition. Let U : R® — R™ be an orthogonal transformation and let
p € Hay, p, be a polynomial. We define ¢ = U(p) by

q(z)=p(U'z) for z=(&,....&).

Clearly, g is a homogeneous polynomial of degree 2k in &1,...,&,.
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3. An Application: Positive Polynomials 13

PROBLEMS.
1°. Check that (U1Uz)(p) = U1 (Ua(p)).
2°. Let
p(x) = ol = (& +...+&)".

Prove that U(p) = p for any orthogonal transformation U.

It turns out that the polynomial of Problem 2, Section 3.1, up to a scalar
multiple, is the only polynomial that stays invariant under any orthogonal trans-
formation.

(3.2) Lemma. Let p € Hay, be a polynomial such that U(p) = p for every or-
thogonal transformation U. Then

k
pa) =z =v(& +...+ &) for some ~v€R.

Proof. Let us choose a point y € R? such that ||y|| = 1 and let v = p(y). Let us
consider
q(z) = p(z) —v[|**.

Thus ¢ is a homogeneous polynomial of degree 2k and ¢(Uzx) = ¢(z) for any or-
thogonal transformation U and any vector z. Moreover, ¢(y) = 0. Since for every
vector x such that ||z|| = 1 there is an orthogonal transformation U, such that
U,y = z, we have ¢q(z) = ¢(Uyy) = q(y) = 0 and hence g(z) = 0 for all # such that
lz]] = 1. Since g is a homogeneous polynomial, we have ¢(z) = 0 for all x € R™.
Therefore, p(z) = v||z||?* as claimed. a

We are going to use Theorem 2.3 to deduce the existence of an interesting

identity.
(3.3) Proposition. Let k and n be positive integers. Then there exist vectors
C1y... ,Cm € R™ such that
m
|z||** = Z(ci,@% for all z eR™
i=1

In words: the k-th power of the sum of squares of n real variables is a sum of 2k-th
powers of linear forms in the variables.

Proof. We are going to apply Carathéodory’s Theorem in the space Hay, .

Let
S {c ER": ||| = 1}

be the unit sphere in R™. For a ¢ € S*1, let

pe(z) = (¢, 2)?*  where z = (&,...,&,).
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14 I. Convex Sets at Large

Hence we have p. € Ho, . Let
K= conv(pc : ce€e S"fl)

be the convex hull of all polynomials p.. Since the sphere S*~! is compact and the
map ¢ — p. is continuous, the set {pc :CcE S”fl} is a compact subset of Hayy, .
Therefore, by Corollary 2.4, we conclude that K is compact.

Let us prove that 7||z||** € K for some v > 0. The idea is to average the
polynomials p. over all possible vectors ¢ € S"~!. To this end, let dc be the
rotation invariant probability measure on S*~! and let

(3.3.1) p(z) = /SW1 pe(x) de = /S”Hl(c, z)?* de

be the average of all polynomials p.. We observe that p € Hy ,,. Moreover, since dc
is a rotation invariant measure, we have U(p) = p for any orthogonal transformation
U of R™ and hence by Lemma 3.2, we must have

p(z) = 7||z||** for some ~€R.

We observe that v > 0. Indeed, for any x # 0, we have p.(x) > 0 for all ¢ € S*~!
except from a set of measure 0 and hence p(z) > 0.

The integral (3.3.1) can be approximated with arbitrary precision by a finite
Riemann sum:

N
1
p(z) =~ N chi (z) for some ¢; €S"
i=1

Therefore, p lies in the closure of K. Since K is closed, p € K. By Theorem 2.3, we
can write p(z) = v||z/|?* as a convex combination of some (”*gllj*l) +1 polynomials

pe, (z) = (i, x)?*. Dividing by 7, we complete the proof. O

It is not always easy to come up with a particular choice of ¢; in the identity
of Proposition 3.3.
PROBLEMS.

1. Prove Liouville’s identity:

@+E+E+EP=¢ 3 GH&’+z Y G-&)

1<i<j<4 1<i<j<4

| =

2. Prove Fleck’s identity:

@+8+8+8° =5 Y (6x5x6)'+3 S (6x6)°+5 O &

1<i<j<k<4 1<i<j<4 1<i<4

where the sums containing + signs are taken over all possible independent choices
of pluses and minuses.
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3. An Application: Positive Polynomials 15

3. Prove that one can choose m < (n+§]1§71) in Proposition 3.3.

Remark: In his solution of Waring’s problem, for all positive integers k& and n,
D. Hilbert constructed integer vectors ¢; and rational numbers ; such that

l|[** = Z%‘(Ci,x)% for all x e R™;
i=1

see, for example, Chapter 3 of [N96].

We apply Proposition 3.3 to study positive polynomials.

(3.4) Definition. Let p € Ha, be a polynomial. We say that p is positive
provided p(z) > 0 for all z # 0. Equivalently, p € Hay p is positive provided
p(z) > 0 for all x € S"~!. Similarly, a polynomial p € Hay,, is non-negative if
p(x) >0 for all z.

PROBLEM.

1°. Prove that the set of all positive polynomials is a non-empty open convex
set in Hay ,, and that the set of all non-negative polynomials is a non-empty closed
convex set in Hoy, .

We apply Proposition 3.3 to prove that a homogeneous polynomial is positive
if and only if it can be multiplied by a sufficiently high power of ||z||? to produce a
sum of even powers of linear functions. The proof below is due to B. Reznick [R95]

and [R0O].
(3.5) Proposition. Let p € Hay , be a positive polynomial. Then there ezist a
positive integer s and vectors ci,. .. ,cym € R™ such that
m
l|||% =2k p(z) = Z(ci,@% for all = eR".
i=1

Sketch of Proof. For a polynomial f € Hay p,
fl)y= Y g
a=(a1,... ,a)
let us formally define the differential operator
aa1 8an
9) = Ao L
f( ) Z 85?1 8§gn
a=(a1,... ,0p)

Let us choose a positive integer s > 2k and the corresponding identity of Proposition
3.3:

m

(3.5.1) l|2]|?¢ = Z(ci,m>28.

i=1
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16 I. Convex Sets at Large

Let us see what happens if we apply f(9) to both sides of the identity.
It is not very hard to see that

(3.5.2) f(@)((c, x>2s) _ &"f(c) e, 1.>28—2k.

(2s — 2k)
It suffices to check the identity when f is a monomial and then it is straightforward.

One can also see that

2s 22k8! 2s—2k
(353)  FO(Iel) = g0 Jel? T for some g € Hap.

The correspondence f —— ¢ defines a linear transformation
(I)s : H2k,n — HZk,n

and the crucial observation is that ®; converges to the identity operator I as s
grows. Again, it suffices to check this when f is a monomial, in which case ®,(f) =
f 4+ O(1/s) by the repeated application of the chain rule.

Since I~ = I, for all sufficiently large s the operator ®, is invertible and ®;!
converges to the identity operator I as s grows. Now we note that the set of positive
polynomials is open; see Problem 1 of Section 3.4. Therefore, for a sufficiently large
s the polynomial ¢ = ®;1(p) lies in a sufficiently small neighborhood of p = I(p)
and hence is positive. Applying ¢(9) to both sides of (3.5.1), by (3.5.2) and (3.5.3)

we get

22k 5| (25)! &

®,(q) - ||z]>~2* = e, x)25 2k
@) el = RS () )
i=1

Now ®,(q) = p and ¢(¢;) > 0 for i = 1,... ,m. Rescaling, we obtain a representa-
tion of p - [|z[|2*~2* as a sum of powers of linear forms. O
PROBLEMS.

1°. Check formulas (3.5.2) and (3.5.3).

2°. Check that ®; indeed converges to the identity operator on Hy, as s
Erows.

3. For polynomials f,g € Hap , let us define

(f,9) = f(9)g.

Note that since deg f = deg g, we get a number. Prove that (f, g) is a scalar product
in Hyp , and that

(U):Ulg)) ={f.9)
for every orthogonal transformation of R™.

4. Construct an example of a non-negative polynomial p € Hay, ,, for which the
conclusion of Proposition 3.5 does not hold true.

5. Using Proposition 3.5, deduce Polya’s Theorem:
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4. Theorems of Radon and Helly 17

Let p be a real homogeneous polynomial of degree k in n real variables z =
(&1,...,&n) and let

R? = {(51,... £ &>0 for i=1,... n}
be the non-negative orthant in R™. Suppose that
p(x) >0 forall xeRY\{0}.

Then there exists a positive integer s such that the coefficients {/\a} of the polyno-
mial
(4. 4+ &), ... &) = > A€ .. E0m

a=(a1,... ,ap)
a1 +...ta,=s+k

are non-negative.

We discuss the structure of the set of non-homogeneous non-negative univariate
polynomials in Chapter II; see Section I1.11. The results there can be translated in a
more or less straightforward way to homogeneous non-negative bivariate polynomi-
als by applying the following “homogenization trick”: if p(t) is a non-homogeneous
polynomial of degree d, let q(x,y) = y’p(x/y). Some interesting metric properties
of the set of non-negative multivariate polynomials are discussed in exercises of
Chapter V; see Problems 8 and 9 of Section V.2.4.

4. Theorems of Radon and Helly
The following very useful result was first stated in 1921 by J. Radon as a lemma.

(4.1) Radon’s Theorem. Let S C R? be a set containing at least d + 2 points.
Then there are two non-intersecting subsets R C S (“red points”) and B C S (“blue
points”) such that

conv(R) Nconv(B) # 0.

Proof. Letwy,...,v,, m > d+2, be distinct points from S. Consider the following
system of d 4+ 1 homogeneous linear equations in variables 71, ... , Ym:

Yv1+ oo+ YmVm =0 and Y1+ ...+ v, =0.
Since m > d + 2, there is a non-trivial solution to this system. Let
R:{vi:%>0} and B:{vi:%<0}.

Then RN B = 0.

Let g = Z ;- Then g > 0 and Z v; = —f3, since ¥’s sum up to zero.
27, >0 1:v; <0
Since v1v1 + . .. + VmUm = 0, we have

Z ViVi = Z (—i)vs.

17, >0 3:7y; <0
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18 I. Convex Sets at Large

Let

e
“—Z 5’ Z B v

27, >0 i:y; <0
Hence v is a convex combination of points from R and a convex combination of
points from B. In other words, v € conv(R) and v € conv(B). O
a b
d
c
c
b a

Figure 5. Example: for any set of four points in the plane, either one
of the points lies within the convex hull of the other three, or the points
can be split into two pairs whose convex hulls intersect.

PROBLEMS.

1°. Show by an example that the constant d + 2 in Radon’s Theorem cannot
be improved to d + 1.

2* (Tverberg’s Theorem). Let k > 2. Prove that for any set S of (k—1)(d+1)+1
or more points in R?, one can find k pairwise non-intersecting subsets A, ..., A; C
S such that the intersection

conv(A;) Neonv(Ag)N...Nconv(Ag)

is not empty. Show that for some sets of (kK — 1)(d + 1) points, such subsets
Aq,..., A cannot be found.

Remark: See, for example, Chapter 8 of [Mat02].

The following result (one of the most famous results in convexity) was discov-
ered by E. Helly in 1913. The proof below is due to Radon (1921).

(4.2) Helly’s Theorem. Let Aq,...,An, m>d+1, be a finite family of convex
sets in R%. Suppose that every d + 1 of the sets have a common point:

Ay N NAg,,, #0.
Then all the sets have a common point:

AiN...NA, #0.
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4. Theorems of Radon and Helly 19

Proof. The proof is by induction on m (starting with m = d + 1). Suppose that
m > d+ 1. Then, by the induction hypothesis, for every ¢ = 1,... ,m there is
a point p; in the intersection A; N...NA;—1 N A1 N...N A, (A; is missing).
Altogether, we have m > d 4+ 1 points p;, each of which belongs to all the sets,
except perhaps A;. If two of these points happened to coincide, we get a point
which belongs to all the A4;’s. Otherwise, by Radon’s Theorem (Theorem 4.1) there
are non-intersecting subsets R = {p; : ¢ € I'} and B = {p; : j € J} such that there
is a point
p € conv(R) N conv(B).

We claim that p is a common point of Aq,...,A,,. Indeed, all the points p; : 7 € I
of R belong to the sets A; : ¢ ¢ I. All the points p; : j € J of B belong to the sets
Aj :j ¢ J. Since the sets A; are convex, every point from conv(R) belongs to the

sets A; : ¢ ¢ I. Similarly, every point from conv(B) belongs to the sets A; : j ¢ J.
Therefore,

pEﬂAi and p € ﬂAj.
il j¢J

Since I NJ = (), we have
pe ﬂ A;
i=1

and the proof follows. O

PROBLEMS.
1°. Show that the theorem does not hold for non-convex sets A;.

2°. Construct an example of convex sets A4; in R?, such that every two sets
have a common point, but there is no point which would belong to all the sets A;.

3°. Give an example of an infinite family {A4; : 4 = 1,2,...} of convex sets in
R? such that every d+ 1 sets have a common point but there are no points common
to all the sets A;.

The theorem can be extended to infinite families of compact convex sets.

(4.3) Corollary. Let {A; :i € I}, |I| > d+ 1 be a (possibly infinite) family of
compact conver sets in RY such that the intersection of any d+ 1 sets is not empty:

Ay NN A,, #0.

Then the intersection of all the sets A; is not empty:

() Ai #0.

icl
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20 I. Convex Sets at Large

Proof. By Theorem 4.2, for any finite subfamily .J C I the intersection (. ; A; is
not empty. Now we use the fact that if the intersection of a family of compact sets
is empty, then the intersection of the sets from some finite subfamily is empty. O

Helly’s Theorem has numerous generalizations, extensions, ramifications, etc.
To list all of them is impossible; here are just some.

PROBLEMS.

1. Let A;,...,A,, be convex sets in R* and let k¥ < d + 1. Prove that if
every k of the sets have a common point, then for every (d — k + 1)-dimensional
subspace L in R there exists a translate L +u : « € R? which intersects every set
A i=1,...,m.

2. Let Aq,...,A,, and C be convex sets in R%. Suppose that for any d + 1

sets A;,,...,A;,,, there is a translate C'+ u : u € R? of C' which intersects all
Aiyy. .oy Aiy,, . Prove that there is a translate C' + u of C' which intersects all sets
A, A

3. In Problem 2, replace intersects by contains.
4. In Problem 2, replace intersects by is contained in.

5* (Fractional Helly’s Theorem). Prove that for any 0 < a < 1 and any d there
exists a § = B(d, @) > 0 with the following property:

Suppose that A1, ..., Ay,,, m > d+1, are convex sets in R%. Let f be the number
of (d + 1)-subfamilies 4;,,...,A;,,, that have a common point. If f > «f
then at least some 8m sets A; have a common point.

Prove that one can choose =1 — (1 — a)/(d+1),

ar1);

Remark: The bound 8 = 1 — (1 — a)/(4*1) is best possible. A weaker bound
B > a/(d+ 1) is much easier to prove; see Chapter 8 of [Mat02].

6* (“Piercing” Theorem). Prove that for every triple (p,q,d) such that p >
q > d + 1 there exists a positive integer c(p, ¢, d) such that if Ay,..., A,, C R? are
convex sets, m > p and out of every p sets A, ... ,Aip some ¢ sets have a common
point, then some set X of ¢(p, ¢, d) points in R? intersects every set A;.

Remark: This is a conjecture of H. Hadwiger and M. Debrunner, proved by N.
Alon and D. Kleitman; see [We97] and references therein.

7* (Measure of the intersection). Prove that for every d there exists a constant
v =v(d) > 0 with the following property:

Let Aq,...,A,, C R? be convex sets. Suppose that m > 2d and that the
intersection of every 2d sets A;,,...,A;,, has volume at least 1. Prove that the
intersection A; N...N A,, has volume at least ~.

Prove that one can choose v(d) = d=24" (it is conjectured that the constant

d=2% can be improved to d~*¢ for some absolute constant a > 0).

Remark: This is a result of I. Bérdny, M. Katchalski and J. Pach; see [E93]
and references therein.
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5. Applications of Helly’s Theorem in Combinatorial Geometry 21

8* (Colored Helly’s Theorem). Let Ay, ..., Ag41 be non-empty finite families
of convex sets in R%. Suppose that for each choice 4; € A;, i =1,...,d+ 1, we
have A1 N...N Agy1 # 0. Prove that for some 7 the intersection of the sets in the
family A; is non-empty.

Hint: This can be deduced from Problem 2 of Section 2.3; see also [Bar82] and
Chapter 8 of [Mat02].

5. Applications of Helly’s Theorem in Combinatorial
Geometry

In the next two sections, we discuss various applications and appearances of Helly’s
Theorem. The proofs are almost immediate once we recognize the relationship
of the problem to Helly’s Theorem but may be quite non-trivial if we miss that
connection.

(5.1) Separating points by a hyperplane. Suppose that there is a finite set R
of red points in R? and a finite set B of blue points in R?. A hyperplane H C R? is
the set described by a linear equation H = {;1: eRY: (c,z) = a}, where ¢ # 0 is
a non-zero vector and « is a number. We say that the hyperplane H C R¢ strictly
separates red and blue points if (¢,x) < a for all x € R and (¢, z) > a for all z € B.
The following result, called Kirchberger’s Theorem, was proved by P. Kirchberger
in 1903, that is, before Helly’s Theorem.

Proposition. Suppose that for any set S C R* of d+2 or fewer points there exists
a hyperplane which strictly separates the sets SN R and S N B of red, resp. blue,
points in S. Then there exists a hyperplane which strictly separates the sets R and
B.

Proof. A hyperplane H = {x eR?: (c,x) = a}, where ¢ = (v1,... ,74) € R%,
can be encoded by a point (¢, a) = (71,...,7vq, @) € R¥L. For every point r € R
we define a set A, C R4+1:

A, = {(c,a) eRM: () < a}
and for every point b € B we define a set A, C Rt

A, = {(qa) e R (¢,b) > a}.
It is clear that A and A, are convex sets in R4, Therefore, by Helly’s Theorem

the intersection
(NA)n(N4)
reR beB

is non-empty, provided for any subset S C R U B of at most d + 2 points the

intersection
ARDOLIGARD

reSNR beSNB
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22 I. Convex Sets at Large

is non-empty. Since the sets A, and A, are open, their intersection is an open set;
therefore an intersection of sets A, and A is non-empty if and only if it contains
a point (¢, ) with ¢ # 0. Hence for any subset S C RU B, the intersection

(O a)n( N »)

resSnR beSNB
is not empty if and only if there is a point (c,) € R%*! such that the hyperplane
H={zeR": (cz)=a}
strictly separates the sets BN S and RN S. This completes the proof. O

For example, if two sets of points in the plain cannot be separated by a straight
line, one of the three configurations of Figure 6 must occur.

o) o) ° ° °
° o) o o
o) ° °
1) 2) 3)

Figure 6. The three reasons points cannot be separated in the plane

PROBLEMS.

1. Prove that if a convex set is contained in the union of a finite family of
halfspaces in R? (sometimes we say covered by a finite family of halfspaces; see
Section 5.2), then it is contained in the union of some d + 1 (or fewer) halfspaces
from the family (covered by some d 4 1 subspaces).

2. Let Iy,...,I,, be parallel line segments in R?, such that for every three
1;,, 1;,, I;; there is a straight line that intersects all three. Prove that there is a
straight line that intersects all the segments I, ..., I,,.

3. Let 4; : i =1,...,m be convex sets in R? such that for every two sets A;
and A; there is a line parallel to the x-axis which intersects them both. Prove that

there is a line parallel to the z-axis which intersects all the sets A;.

(5.2) The center point. Let us fix a Borel probability measure u on R?. This
means, roughly speaking, that for any “reasonable” subset A C R? a non-negative
number p(A) is assigned which satisfies some additivity and continuity properties
and such that u(R?) = 1. We are not interested in rigorous definitions here; the
following two examples are already of interest:
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5. Applications of Helly’s Theorem in Combinatorial Geometry 23

Counting measure. Suppose that there is a finite set X C R? of | X| = n points
and p(A) =|AN X|/n is the proportion of the points in X contained in A.

Integrable density. Suppose that there is an integrable function f : R — R
such that f(z) > 0 for all z € R? and such that / f(z) dz = 1, where dz is the
Rd

Lebesgue measure. Let p(A) = / f(z) dzx for all (Borel) measurable sets A.
A

With a hyperplane H = {x s (e, z) = a} we associate two open halfspaces
Hy={zeR’: (c,z)>a} and H_={zeR?: (cz)<a}
and two closed halfspaces

Hi={zeR?: (cz)>a} and H_={zeR’: (cz)<a}.

Proposition. Let i be a Borel probability measure on R%. Then there exists a point
y € R?, called a center point, such that for any closed halfspace H, containing y
one has

_ 1
) > —.
w *)—d+1

Proof. For a closed halfspace G C R?, let E? = R?%\ G be the complementary open

halfspace. Let S be the set of all closed halfspaces G such that p(G) < 1/(d +1).
We observe that for any d + 1 halfspaces Gy, ... ,Gg41 from S one has

d+1)
d+1)

—
—_

u(élu...u5d+1)< =1 and hence E?lu...U&dH;éRd,

—

which implies that G1 N ... N Ggy1 # 0. Helly’s Theorem implies that any finite
family {G;} of halfspaces from S has a non-empty intersection. Let us choose a
finite number of halfspaces G1, ..., G, C R? such that the intersection B = G1 N
...N Gy, is bounded and hence compact. Enlarging the halfspaces by translations,
if necessary, we can ensure that Gy, ... , Gy, are from S. Thus {BNG: G € S}isa
family of compact sets such that every finite subfamily has a non-empty intersection.
Hence there is a point y which belongs to all halfspaces G € S. If H, is an open
halfspace containing y, then the complementary closed halfspace does not contain y
and hence does not belong to §. Then we must have u(Hy) > 1/(d+1). Since p is
o-additive and a closed halfspace can be represented as an intersection of countably
many nested open halfspaces, the result follows. O

The above result was first obtained in 1916 by J. Radon. The above proof
belongs to I.M. Yaglom and V.G. Boltyanskii (1956).
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24 I. Convex Sets at Large

PROBLEMS.

1. Let S € R? be a compact convex set. Prove that there is a point u € R¢
such that (—=1/d)S +u C S.

Hint: For every point @ € S consider the set A, = {u: (-1/d)z +u € S}.
Use Helly’s Theorem.

2* (“Ham Sandwich Theorem”). Let p1,...,uq be a set of Borel probability
measures on R?. Prove that there exists a hyperplane H C R such that p;(Hy) >
1/2 and p;(H_) >1/2foralli=1,...,d.

3* (Center Transversal Theorem). Let p1,... , uk, & < d, be Borel probability
measures on R?. Prove that there exists a (k — 1)-dimensional affine subspace
L C R? such that for every closed halfspace H, containing L we have j; (E) >

1/(d—k+2).
Remark: For Problems 2 and 3, see [Z97] and references therein.

4°. Prove that the theorem of Problem 3 implies both the result of Problem 2
above and the proposition of this section.

A couple of geometric problems.

5* (Krasnoselsky’s Theorem). Let X C R? be a set and let a,b € X be points.
We say that b is visible from a if [a,b] C X. Suppose that X C R? is an infinite
compact set such that for any d+ 1 points of X there is a point from which all d+1
are visible. Prove that there is a point from which all points of X are visible.

6 (Jung’s Theorem). For a compact set X C R%, let us call max, .cx ||y — 2|
the diameter of X. Prove that any compact set of diameter 2 is contained in a ball

of radius /2d/(d + 1).

For Problems 5 and 6, see [DG63].

6. An Application to Approximation

We proceed to apply Helly’s Theorem to an important problem of constructing the
best approximation of a given function by a function from the required class. We
will go back to this problem again in Section IV.13.

(6.1) Uniform approximations.

Let us fix some real-valued functions f; : T — R, ¢ = 4,... ,m, on some set
T. Given a function g : T'— R and a number € > 0, we want to construct a linear
combination

folr) =) _&fi(r), @ = (&, 6m)
=1
such that

lg(T) — fo(7)]| <€ forall 7e€T.

This is the problem of the uniform or Chebyshev approximation. Helly’s Theorem
implies that a uniform approximation exists if it exists on every reasonably small
subset of T.
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6. An Application to Approximation 25

(6.2) Proposition. Suppose that T is a finite set. Let us fix an € > 0. Suppose
that for any m + 1 points 1, ... , Tma1 from T one can construct a function fu(7)
(with © = (&1,. .. ,&m) depending on T1,... ,Tm41) such that

lg(7) — fo(T)| <€ forT=m1,...,Tms1-
Then there exists a function fz(T) such that

lg(7) = fz(7)| <e forall T€T.

Proof. For a 7 € T let us define a set A(7) C R™:

Ay ={(€ &)+ o) — o) < .

In other words, A(7) is the set of functions f, that approximate g within € at the
point 7. Now A(7) are convex sets (see Problem 1 below), and

A(’Tl) n... ﬂA(Tm+1) # (Z)

for all possible choices of m + 1 points 7y, ... ,Ty41 in T. Since T is finite, Helly’s
Theorem (Theorem 4.2) implies that the intersection of all sets A(7) : 7 € T is
non-empty. It follows then that for a point

T € m A(T)

we have |g(7) — fz(7)| < eforall 7 € T. O

PROBLEMS.

1°. Let A(7) be as in the proof of Proposition 6.2. Prove that A(r) C R™*! is
a closed convex set.

2°. Show that for m > 2 the set A(7) is not compact.

To prove a version of Proposition 6.2 for infinite sets 7', we must assume some

regularity of functions fi,..., fm.
(6.3) Proposition. Suppose there is a finite set of points o1,... ,0, in T such
that whenever fo, = &1 fi + ...+ &mfm and fz(o1) = ... = fo(0,) =0, then & =
... = &n = 0. Suppose further that for any set of m + 1 points 71,... ,Tm41 in T
one can construct a function f, (with x = (&1,...,&n) depending on 71,... ,Tmi1)
such that

lg(T) — fo(T)| <€ for T=71,... , Tnt1-

Then there exists a function fz(T) such that

lg(1) — f=(T)| <€ forall T7€T.
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26 I. Convex Sets at Large

Proof. Let A(7): 7 € T be the sets defined in the proof of Proposition 6.2. Let
A=A(o1)N...NA(oy).

First, we prove that A is compact. Indeed, by Problem 1, Section 6.2, the set A is
closed. It remains to show that A is bounded. Let us define a function

N:R™ —R, N(z)=max{|fo(c;))]: i=1,...,n}

Then N(Az) = |A|N(x) for A € R, N(z) > 0 for  # 0 and N is continuous (in
fact, N is a norm in R™). Therefore,

min{N(z): |lz[|=1}=6>0

and N(z) > 0||z].

Now, if |g(0;) — fz(0s)| < efori=1,...,n, we have |f.(0;)] < |g(o;)| + € for
i =1,...,n. Letting

R=e+max{|g(c;)|:i=1,... ,n},

we conclude that N(x) < R, and, therefore, ||z|| < R/d for any z € A. Thus A is
compact.

For 7 € T'let A(1) = A(7)NA. Then each set A(7) is compact. Applying Helly’s
Theorem as in the proof of Proposition 6.2, we conclude that every intersection of
a finite family of sets A(7) is non-empty. Therefore, every intersection A(7y) N
..M A(Tm41) is a non-empty compact convex set. Therefore, By Corollary 4.3, the

intersection of all the sets A(7) is non-empty and so is the intersection of all the
sets A(7). A point

T = (517-” ,fm) € ﬂ A(T)

TeT
gives rise to a function

fE:§1f1+~-~+£mfm7

which approximates g uniformly within the error e. U

PROBLEMS.

In the problems below, T = [0,1] and fi(7) = 7%, i = 0,... ,m (note that we
start with fo).

1°. Prove that for any m + 1 distinct points 71,72, ... , Tm41 from [0, 1] the
intersection A(71) N...N A(Tpm41) is compact.

2°. Let g(r) = €” for 7 € [0,1]. Let us choose ¢ = 0. Check that each

intersection A(71)N...NA(Tm4+1) is not empty for any choice of 71, ... , Trmy1 € [0, 1],
but m A; = 0. In other words, for every m + 1 points 7y, ... ,T,y1 there is a
7€[0,1]
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polynomial p(7) =& + &7+ ... + 7™ such that p(7) =€ for 7 =71, ..., Tt
but there is no polynomial p(7) such that e” = p(r) for all T € [0, 1].

3*. Let g : [0,1] — R be any function. Prove that for any m + 2 points
0<7 <79 <...<Tms2 <1 there is a unique polynomial p(r) =& + &7+ ... +
EmT™, such that

l9(11) = p(m)| = 9(72) = p(12)| = - .. = [9(Tm+2) — P(Tm2)]

and the signs of the differences

9(m) —p(m1),  g(m2) =p(m2), .., 9(Tmt2) — P(Tm+2)
alternate. Prove that the polynomial p gives the unique best (that is, with the
smallest €) uniform approximation to g on the set of m + 2 points 7,... , Tppo.
The error € of this approximation can be found to be € = ||, where &, ... , &, and

7 is the (necessarily unique) solution to the system of m + 2 linear equations

g(r1) —p(m1) =n, g(r2) = p(12) = =0, ,9(Tm+2) — P(Tim+2) = (‘Umﬂﬂ

in m + 2 variables (&g, ... ,&m,n)-

~ ———— - - >

o= — - — — =

o= - — — — =

Figure 7. A linear function p(7) = &y + &£17 which provides the best
uniform approximation for g at some three points 71, 72 and 72 and

satisfies p(11) — g(71) = —(p(7'2) - 9(7'2)) = p(73) — g(73)
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7. The Euler Characteristic

Helly’s Theorem tells us something special about how convex sets may intersect.
Here we introduce another powerful tool to study intersection properties of convex
sets.

(7.1) Definition. Let A C R? be a subset. The indicator function [A] of A is the
function [A] : R — R such that

[A](x):{ 1 if z€ A,

0 if z¢A.
PROBLEM.
1°. Prove that [A] - [B] = [AN B].

(7.2) Lemma (Inclusion-Exclusion Formula). Let Ay,..., A, C RY be sets.
Then

(AU U A = 1= (1= [Ag]) - (1= [Ag]) -+ (1 = [A,0])

::ﬁic_nk—l > [A;, 0. N A

k=1 1<i1<i2<...<ip <m

In particular,
[Al U Ag} = [Al] + [AQ] — [Al M AQ]

Proof. Let us choose an z € R?. Then
[A1U...UA,](z) = {

On the other hand,

1 if 2€AU...UAp,

1_MM@_{0 it ze A,

Therefore,
(1~ (A1) -+ (1~ [Anl(o) = {

Hence [AjU...UA,] =1—(1—[A1])- (1 —[A2])--- (1 — [An]). Expanding the
product, we complete the proof. O

1 if z¢ A; for all i,

0 if x € A; for some i.

PROBLEM.

1°. Researchers at a research institute speak French, Russian, and English.
Among them, 20 people speak French, 15 speak Russian, and 10 speak English.
Also, 8 people speak French and Russian, 5 people speak Russian and English and
7 speak French and English. Two people speak French, Russian and English. How
many people work at the institute?

We are going to develop a technique which can be viewed as a combinatorial
calculus of convex sets. First, we define the class of functions we will be dealing
with.
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7. The Euler Characteristic 29

(7.3) Definitions. The real vector space spanned by the functions [A], where
A C R? is a compact convex set, is called the algebra of compact convex sets and is
denoted K(R?). Thus a function f € K(R?) is a linear combination

= ailAi,
i=1

where the [A;] C R? are compact convex sets and «; € R are real numbers.

The real vector space spanned by the functions [A], where A C R? is a closed
convex set, is called the algebra of closed convex sets and is denoted C(R?). Thus a
typical function f € C(R?) is a linear combination

f=Y il
i=1

where [A;] C R? are closed convex sets and «; € R are real numbers.

We use the term “algebra” since the spaces (R?) and C(R?) are closed under
multiplication of functions; see Problem 1 below.

A linear functional v : (R?) — R, resp. v : C(R?) — R, is called a valuation.
Thus v(af + Bg) = av(f) + Br(g) for any real o and 8 and any f,g € K(R?),
resp. f,g € C(R?). More generally, we call a valuation any linear transformation
K(R4),C(R?) —s V, where V is a real vector space.

Valuations will emerge as analogues of “integrals” and “integral transforms” in
our combinatorial calculus; see Sections 8 and IV.1 for some examples.

PROBLEMS.

1°. Prove that the product fg of functions f,g € K(R?) is a function in (R?)
and that the product fg of functions f,g € C(R?) is a function in C(R?).

2°. Do the functions [A], where A C R? is a non-empty compact convex set,
form a basis of K(R%)?

Now we prove the main result of this section.

(7.4) Theorem. There exists a unique valuation x : C(RY) — R, called the Euler
characteristic, such that x([A]) = 1 for every non-empty closed convex set A C R%.

Proof. To show that y must be unique, if it exists, is easy: let

f= Zai[Ai].

Then we must have
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30 I. Convex Sets at Large

Let us prove that x exists. First, we define y on functions f € (R?).
We use induction on d. Suppose that d = 0. Then any function f € K(R?) has
the form f = «[0] for some o € R and we let x(f) = a.
Suppose that d > 0.
For a point = = (&1,...,&4), let £(x) = &4 be the last coordinate of x. For a
7 € R let us consider the hyperplane
H,={z¢€ RY:  f(z) = T}

The hyperplane H, can be identified with R4 and hence, by the induction hy-
pothesis, there exists a valuation, say x, : (H,) — R, which satisfies the required
properties. For a function f € K(R?), let f, be the restriction of f onto H,. Thus

lf f = Zai[A’iL then fT = ZO‘Z[AZ N HT]
i=1 i=1

and so f. € K(H,) and we can define x.(f;). Since A; N H, are compact convex
(possibly empty) sets, we must have

XT(fT) = Z Q.
Z—ZAiﬁHT#@
Let us consider the limit
lim X‘r—e(f‘r—e)-

e—+0

It may happen that the limit is equal to x,(f-). This happens, for example, if for
every i and small € > 0, we have A; N H, # () = A; N H,_. # 0 (see Figure 8).

a
a- €
A
b
b- ¢

Figure 8. Example: for the function f = [A], we have
lime— 40 Xa—e(fa—e) = Xa(fa) = 1 but 0 = lime—s 40 Xp—c(fo—e) #
xo(fp) = 1.
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In general, we conclude that lim._, o Xr—c(fr—¢) is the sum of a; such that
A; N H._. # 0 for all sufficiently small ¢ > 0. It follows then that

X+ (fr) — 61_1)11_1%0XT,e(fq,,e) = ze;ai, where I = {z : Clr;relgl Lz) = ’7'}.

In particular, lime_ o Xr—e(fr—c) = x+(f7) unless 7 is the minimum value of the
linear function ¢(x) on some set A;.

Therefore, for a given function f € K(RY) there are only finitely many 7’s,
where lime_ o Xr—e(fr—c) # x+(fr).- Now we define

) =D () = tim X el(fr-0).

TER

As we noted, the sum contains only finitely many non-zero summands, so it is well
defined.

If f,g € K(R?) are functions and «, 3 € R are numbers, then for every 7 € R
we have (af + Bg); = af: + Bg,. Since by the induction hypothesis x, is a
valuation and taking the limit is a linear operation, we conclude that x(af + 8g) =
ax(f) + Bx(g), so x is a valuation. Furthermore, if A C R? is a compact convex
set, then

Xr([Al7) = lim xr_c([A]r—e) =

e—+0

1 if mingeq l(x) =T,
0 otherwise.

Since A is a non-empty compact convex set, there is unique minimum value of the
linear function ¢(z) on A. Therefore, x([4]) = 1.

Now we are ready to extend x onto C(R?). Let B(p) = {z € R®: |z|| < p} be
the ball of radius p. For f € C(R%) we define

x(f) = lim f-[B(p)].

p—r+00

Clearly, x satisfies the required properties. O

Theorem 7.4 and its proof belongs to H. Hadwiger.

If A C R?is a set such that [A] € C(R?), we often write x(A) instead of x([A])
and call it the Euler characteristic of the set A. In the course of the proof of
Theorem 7.4, we established the following useful fact, which will play the central
role in our approach to the Euler-Poincaré Formula of Section VI.3.

(7.5) Lemma. Let A C R? be a set such that [A] € K(R?). For v € R let H,
be the hyperplane consisting of the points x = (&1,...,&q) with &g = 7. Then
[AN H,] € KRY) and

X(A) = T%(X(AQHT) ~ lim x(ANH,_)).

O

Another useful result allows us to express the Euler characteristic of a union of
sets in terms of the Euler characteristics of the intersections of the sets.
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32 I. Convex Sets at Large

(7.6) Corollary. Let Ay,..., A, C R be sets such that [A;] € K(R?) for all
i=1,...,m. Then [A;U...UA,] € KR?) and

ﬂAlu”.uAm):§§¢4V*1 > (A, N NA).

k=1 1<i1<i2<...<ip <m

In particular,
X(A1U Az) = x (A1) + x(A2) — x(A1 N A2).

Proof. Follows by Lemma 7.2 and Theorem 7.4. O

PROBLEMS.
1. Let Ay, Ay, A3 C R? be closed convex sets such that A;NAy # (0, AjNAs # 0,
As N Az # () and Ay U A3 U Az is a convex set. Prove that Ay N A; N A3 # (.

2. Let Aq,...,A,, C R? be closed convex sets such that A; U...U A,, is a
convex set. Suppose that the intersection of every k sets A4;,, ... , A;, is non-empty.
Prove that there are k + 1 sets 4;,,... , A whose intersection is non-empty.

3. Let

Th+1

Azﬁgww&y Er bt Eg=1, &ZObrizhnd}

be the standard simplex in R?. Let A; = {:v eA: & = O} be the i-th facet
of A. Suppose that there are compact convex sets Ki,..., Ky C R? such that
ACKU...UKgand K;NA; =0 fori=1,...,d. Prove that K;N...N Ky # .

Hint: Use induction on d and Problem 2.
4. Let Ay,...,A,, C R? be closed convex sets such that A; N...N A, # (.

Prove that x(A1U...UA,,) =1.
5. Find the Euler characteristic of the “open square”

L= {(&,6): 0<&,& <1}

and the “open cube”
Iy = {(&,62,8) 1 0<&,6,8 <1}

6. Let Aq, As, As, Ay C R? be closed convex sets such that the union A; U Ay U
A3 U Ay is convex and all pairwise intersections Ay N A, Ay N A3z, A1 N Ay, Ao N
Az, As N Ay and Az N Ay are non-empty. Prove that at least three of the four
intersections A1 N As N A3, Ay N Ay N Ay, Ay N A3N Ay and A; N A3 N Ay are non-
empty and that if all the four intersections are non-empty, then the intersection
Ay N Ay N Az N Ay is non-empty. Construct an example where exactly three of the
four intersections A1 n A2 n A3, A1 N A2 N 1447 A1 n A3 n A4 and A2 n A3 n A4 are
non-empty.

Licensed to Georgia Inst of Tech. Prepared on Sun Jan 14 21:00:56 EST 2024for download from IP 188.92.139.72.



8. Application: Convex Sets and Linear Transformations 33

8. Application: Convex Sets and Linear Transformations

As an application of the Euler characteristic, we demonstrate an interesting behav-
ior of collections of compact convex sets under linear transformations.

(8.1) Theorem. LetT : R™ — R™ be a linear transformation. Then there exists
a linear transformation T : K(R™) — K(R™) such that T([A]) = [T(A)] for any
compact convex set A C R™.

Proof. Clearly, if A C R™ is a compact convex set, then T(A) C R™ is also a
compact convex set. Let us define a function G : R® x R™ — R, where

1 i T(z) =y,
Gla,y) = { 0 if T(x)#y.

Let f € K(R™) be a function. We claim that for every y € R™ the function
) = G(z,y)f(z) belongs to the space KL(R™). Indeed, if

k
(31.1) 7= a4l

where a; € R and A; C R™ are compact convex sets, then

k
(8.1.2) gy = Zai[AmT’l(y)],

where T~1(y) is the affine subspace that is the inverse image of y. Hence x(gy) is
well defined and we define h = T(f) by the formula h(y) = x(g,). We claim that
h € K(R™). Indeed, for f asin (8.1.1), the function g, is given by (8.1.2) and

h(y) = Zai, where I={i: A;NT '(y)#0}.
iel
However, A; N T~Y(y) # 0 if and only if y € T(A4;), so
(8.1.3) h=> " o[T(A;)].
iel
Therefore, h = T(f) € K(R™) and the transformation 7 is well defined. We see
that 7T is linear since for f = ay f1 + asfo we get

gy() = @191,y (7) + a2g2, (),

where

gy(r) =Gy, 2)f(x), g1y =Gy, z)fi(z) and g2, = G(y,7)fa(z).

Since x is a linear functional (see Theorem 7.4), h(y) = a1hi(y) + asha(y), where
h=T(f), h1 =T (f1) and he = T(f2). It follows from (8.1.3) that T[A] = [T'(4)].
O

In particular, linear dependencies among the indicators of compact convex sets
are preserved by linear transformations.
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34 I. Convex Sets at Large

(8.2) Corollary. Let T : R™ — R™ be a linear transformation, let Ay, ..., Ay
be compact convex sets in R™ and let a, ... ,ap be numbers such that

Ozl[Al] + ...+ Ozk[Ak} =0.

Then
Oél[T(Al)] +...+ Olk[T(Ak)] =0.

Proof. We apply the transformation 7 to both sides of the identity ay[A1]+ ...+
Ozk[Ak] =0. O

Corollary 8.2 is trivial for invertible linear transformations 7" but becomes much
less obvious for projections; see Figure 9.

Ay

Figure 9. Four convex sets Aj, As, Az, A4 such that [A4] = [A1] +
[A2] —[A3] and their projections By, B, Bs, Bs. We observe that [Bs] =
[B1] + [B2] — [B3].

PROBLEMS.

1. Prove that the Minkowski sum of compact convex sets is a compact convex
set and that there exists a commutative and associative operation f * g, called a
conwolution, for functions f,g € K(R?) such that (o fi + aafa) xg = a1 (f1 xg) +
az(fax g) for any f1, fa, g € K(R?) and any ay,as € R and such that [A;] x[A4s] =
[A1 + Ay] for any compact convex sets Ay, Ay C RZ.
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2. Construct an example of compact non-convex sets 4; C R™ and real numbers
o; such that Z _1 a;[A;] = 0 but Z _, 0;[T(A;)] # 0 for some linear transforma-
tion 7': R® — R™.

3. Construct an example of non- compact convex sets A; C R™ and real numbers
a; such that Z _, @;[A;] = 0 but Z _, a;[T(A;)] # 0 for some linear transforma-
tion T : R — R™.

(8.3) Some interesting valuations. Intrinsic volumes. Let volg(A) be the
usual volume of a compact convex set A C R%. The function voly satisfies a number
of useful properties:

(8.3.1) The volume is (finitely) additive: If A;,..., A,, C R? are compact convex
sets and if aq,...,q; are numbers such that ay[41] + ... + am[4m] = 0, then
ag volg(Ar) + ... + am volg(An) = 0.

(8.3.2) The volume is invariant under isometries of R%, that is, orthogonal transfor-
mations and translations: voly(T(A)) = volq(A) for any isometry T : R? — R,

(8.3.3) The volume of a compact convex set A C R? with a non-empty interior is
positive.

(8.3.4) The volume in R? is homogeneous of degree d: volg(aAd) = a?voly(A) for
a > 0.

It turns out that for every k =0, ... ,d there exists a measure wy on compact
convex sets in R, which satisfies properties (8.3.1)-(8.3.3) and which is homoge-
neous of degree k: wy(aAd) = aFwy(A) for a > 0. These measures are called
intrinsic volumes. For k = d we get the usual volume and for £ = 0 we get the
Euler characteristic.

To construct the intrinsic volumes, we observe that the volume can be extended

to a valuation wy : K(R?) — R such that wy([4]) = voly(A) for any compact
convex set A. Indeed, we define

wa(f) = f(z)dz for fe€ IC(Rd),
Rd

where dx is the usual Lebesgue measure on R?. Properties of the integral imply
that wg(aq fi + asfe) = cywa(f1) + aswa(f2), so wy is a valuation.

Let L ¢ R? be a k-dimensional subspace and let P, be the orthogonal pro-
jection Py, : R? — L. Using Theorem 8.1, let us construct a linear transforma-
tion Pr, : K(R?) — K(L) and hence a valuation wy r : K(L) — R by letting
wrL(f) = wk (PL(f)) Thus, for a compact convex set A C R?, the value of
wi.([4]) is the volume of the orthogonal projection of A onto L C R

The functional wy, 1,[A] satisfies (8.3.1) and (8.3.3), it is homogeneous of degree
k, but it is not invariant under orthogonal transformations (although it is invariant
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under translations). To construct an invariant functional, we average wy  over
all k-dimensional subspaces L C R?. Let Gi(R?) be the set of all k-dimensional
subspaces L C R?. Tt is known that Gj(R%) possesses a manifold structure (it is
called the Grassmannian) and the rotationally invariant probability measure dL.
Hence, for f € K(R?) we let

wk(f) :/G (Rd)wk’L(f) dL

In other words, wy(f) is the average value of wy, 1(f) over all k-dimensional sub-
spaces L C R<.

Clearly, wy, : K(R?) — R is a valuation. For a compact convex set A C R¢ we
define wi (A) := wi([A]).

Hence wy(A) is the average volume of projections of A onto k-dimensional
subspaces in R?. The number wy(A) is called the k-th intrinsic volume of A. Tt
satisfies properties (8.3.1)—(8.3.3) and it is homogeneous of degree k: wi(ad) =
a*wy(A) for a > 0. It is convenient to agree that wy(A) = x(A) and that wq(A4) =
VOld(A).

PROBLEMS.
1. Compute the intrinsic volumes of the unit ball B = {z € R : |[z| < 1}.

2*. Let A C R? be a compact convex set with non-empty interior. Prove that
the surface area of A (perimeter, if d = 2) is equal to cqwq—1(A), where ¢4 is a
constant depending on d alone. Find c¢g.

Here is another interesting valuation.

3. Let us fix a vector ¢ € R?. For a non-empty compact convex set A C R?, let

h(4;¢) = magc(c, x)

EAS

(when A is fixed, the function h(4,¢c) : RY — R is called the support function of
A). Prove that there exists a valuation v, : K(R?) — R such that v.([A]) = h(4;c)
for every non-empty convex compact set A C R<.

Hint: If ¢ # 0, let
velf) = Y a(x(fa) = 1m x(faro)):
a€R

where f, is the restriction of f onto the hyperplane H = {x 2 {e,xz) = a}.

4*. Let K7, Ko C R? be compact convex sets such that K; U K, is convex.
Prove that (Kl U Kg) + (Kl n Kg) = Kl + Kg.

Hint: Note that [K; U K] + [K1 N Ka| = [K1] + [K3] and use Problem 3 to
conclude that h(K; U Ka;c) + h(Ky N Ka;c) = h(K7y;¢) + h(Ka;c) for any ¢ € RY.
Observe that h(A + B;c) = h(A4;¢) + h(B;c).
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9. Polyhedra and Linear Transformations

We would like to extend the results of Section 8 to certain unbounded sets, specifi-
cally to polyhedra. Recall (see Definition 2.2) that a polyhedron is a set of solutions
to a finite system of linear inequalities. The main result of this section is that the
image of a polyhedron under a linear transformation is a polyhedron. Hence the
class of polyhedra is preserved by linear transformations. We will need this result
in Section IV.8.

The proof is based on “going down one step at a time”.

(9.1) Lemma. Let P C R? be a polyhedron and let pr : RY —s R~ be the
projection pr(&1, ... ,€q) = (&1,...,€4—1). Then the image pr(P) is a polyhedron
in RA-T,

Proof. Suppose that P is defined by a system of linear inequalities for vectors
r=(£,...,&) in RE:

d
P:{x: Zaijgjgﬂi for i:l,...,m},
j=1

where a;; and 3; are real numbers.
Let us define Iy = {i: a;q >0}, I_ = {i: a;q <0} and Iy ={i: a;q = 0}.
Hence a point (£1,...,&4—1) belongs to the projection pr(P) if and only if

d—1
Zaijfj < ﬁz for i€ Io,
j=1

and there exists a number £; which satisfies the inequalities

d—1
Qia€a+ Y o€y < By forall i€l UL

j=1

The latter of these two conditions is equivalent to

d—1
£a < bi _ Z Qi & forall iely and
S e Y
5, .
§a 2 a; _j;a:igj forall e 1l_.

Such a number &, exists if and only if for no pair of numbers consisting of one of
the lower bound for £; and one of the upper bound for £; does the lower bound
exceed the upper bound. Thus £, exists if and only if

3 -1 3 -1
L e < TR “kie. forall pairs i€ I and ke l,.
e ; G p T

] —
Qg 1 Qjq Akd
j=
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38 I. Convex Sets at Large

Hence the projection pr(P) is the polyhedron in R%~! defined by the following

linear inequalities for (&1,...,&4-1):
d—1
Zaijfj <pB; forall i€l and
j=1
6 d—1 a 6 d—1 a
i ij k kj . .
- &< — — —=¢; forall pairs i€l and ke l;.
Qi ; aia T g ; aga "

If Iy is empty, then there are no inequalities of the first kind, and if _, I+ or both
are empty, then there are no inequalities of the second kind. O

PROBLEMS.

1°. Let P C R? be a polyhedron defined by m > 4 linear inequalities, and let
Q = pr(P) C R ! be its projection. Prove that Q can be defined by not more
than m?/4 linear inequalities.

2°. Let PCR", P = {x s {ag, ) < Bii=1,. .. ,m} be a polyhedron and let
T : R™ — R™ be an invertible linear transformation. Prove that Q@ = T(P) is a
polyhedron defined by Q = {x s e,y < Bii=1,... ,m}, where ¢; = (T*) 1a;
and T is the conjugate linear transformation.

Now we can prove the result in full generality.

(9.2) Theorem. Let P C R™ be a polyhedron and let T : R™ — R™ be a linear
transformation. Then T'(P) is a polyhedron in R™.

Proof. If n = m and T is invertible, the result follows by Problem 2 of Section
9.1. If kerT' = {0}, then the restriction T' : R” — im7 C R™ is an invertible
linear transformation and the result follows as above. For a general T, let us define
a transformation 7 : R — R™ @ R" = R™*" by T(z) = (T(x),x). Then
ker 7 = {0} and hence T(P) is a polyhedron in R™*". Now we observe that T'(P)
is obtained from f(P) by a series of n successive projections

R™" — R™— . — R™ via

(51,“- a£m+n) — (51,... afernfl)'—)'-' — (51,~-~ 7£m)-

Applying Lemma 9.1 m times, we conclude that T'(P) is a polyhedron. O

The procedure of obtaining the description of T'(P) from the description of P
which we employed in Lemma 9.1 and Theorem 9.2 is called the Fourier-Motzkin
Elimination.

PROBLEMS.

1. Let P C R™ be a polyhedron defined by k linear inequalities and let T :
R™ — R™ be a linear transformation. Estimate the number of linear inequalities
needed to define T'(P) using the construction of Theorem 9.2.
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Remark: This number is way too big. In practice, after performing each one-
step projection R — R4~1 it is advisable to “clean” the list of obtained inequal-
ities by removing those that can be removed without changing the image of the
projection. Still, typically the number of inequalities needed to describe the pro-
jection is substantially larger than the number of inequalities needed to describe
the original polyhedron.

2°. Prove that the Minkowski sum P; + P, of two polyhedra in Euclidean space
is a polyhedron.

We define an important subalgebra of the algebra of closed convex sets from
Definition 7.3.

(9.3) Definition. The real vector space spanned by the indicator functions [P],
where P C R? is a polyhedron, is called the algebra of polyhedra and denoted P(R?).

PROBLEMS.

1. Let T : R® — R™ be a linear transformation. Prove that there exists
a linear transformation 7 : P(R™) — P(R™) such that T[P] = [T(P)] for all
polyhedra P C R™.

Hint: Cf. Theorem 8.1.

2. Prove that there exists a commutative and associative operation f % g for
functions f,g € P(R?) such that (ayf1 + aofa) x g = a1 (f1 * g) + az(f2 x g) for
any f1, f2,g € P(R?) and such that [P;]  [Py] = [P, + P,] for any two polyhedra
Pl, P, C R

Hint: Cf. Problem 1 of Section 8.2.

10. Remarks

A general reference in convexity is [W94]. Our discussion of positive polynomi-
als in Section 3 follows [R95] and [ROO] with some simplifications. A classical
reference for Helly’s Theorem and its numerous applications is [DG63]. More re-
cent developments, including applications of topological methods, are surveyed in
[E93], [K95], [We97] and [Z97] (see also references therein). See also [Bar82] for
a nice and elementary generalization of Radon’s Theorem and Helly’s Theorem and
[Mat02] for further results in this direction. For the Euler characteristic and valu-
ations, see [K163], [Mc93a] and [MS83]. Note that our definition of the relevant
algebras (the algebra of compact convex sets, the algebra of closed convex sets and
the algebra of polyhedra) may be different from those in [Mc93a], [MS83] and
elsewhere. Often, an equivalence relation of some kind is imposed and the algebra
is factored modulo that relation. The role of algebra multiplication is played by
the convolution operation x (which we introduce in Problem 1 of Section 8.2 and
Problem 2 of Section 9.3).

Intrinsic volumes in the context of the general theory of valuations are discussed
in [KR97]. The Fourier-Motzkin elimination procedure is discussed in detail in
[Z95].
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Chapter I1

Faces and Extreme
Points

We take a closer look at convex sets. In this chapter, we are interested in local
properties of closed convex sets in Euclidean space. A finite-dimensional closed
convex set always has an interior when considered in a proper ambient space and,
therefore, has a non-trivial boundary. We explore the structure of the boundary
and define and study faces and extreme points. We look at the structure of some
particular convex sets: the Birkhoff polytope, transportation polyhedra, the mo-
ment cone, the cone of non-negative univariate polynomials and the cone of positive
semidefinite matrices. Our main tools are the Isolation Theorem in a general vector
space and the Krein-Milman Theorem in Euclidean space. Applications include the
Schur-Horn Theorem describing the set of possible diagonals of a symmetric matrix
having prescribed eigenvalues, efficient formulas for numerical integration, a char-
acterization of the polynomials that are non-negative on the interval and numerous
quadratic convexity results, such as the Brickman Theorem, which describe various
situations when the image of a quadratic map turns out to be convex. Quadratic
convexity allows us to visualize often counterintuitive results about the facial struc-
ture of the cone of positive semidefinite matrices through the existence and rigidity
properties of configurations of points in Euclidean space.

1. The Isolation Theorem

In this section, we develop one of the most useful and universal tools to explore the
structure of a convex set, both in finite and infinite dimensions. We review some
linear algebra first.

(1.1) Affine subspaces, affine hulls and linear functionals. Let V' be a vector
space and let L C V be a subspace of V. The translation A = L + u is called an

41
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42 II. Faces and Extreme Points

affine subspace of V. The dimension of A is the dimension of L. We say that A
is parallel to L. In particular, if dim A = 1, the set A is called a straight line. A
straight line can be written in the parametric form A = {u +TUv: TE ]R}, where
u,v € V are vectors and v # 0.

A linear functional is a map f: V — R such that

flau+ pv) = af(u) + Bf(v)
for all u,v € V and all o, 8 € R.

An important example of an affine subspace is an affine hyperplane.

Let f:V — R be a linear functional which is not identically 0 and let o € R
be a number. The set

H={veV: f(v)=a}, wherea€R,

is called an affine hyperplane. Often, we simply call it a hyperplane.

A linear combination
v=a1v1 + ...+ Uy, where ai+...4+ay =1,

is called an affine combination. Similarly, points vq,...,v,, € V are said to be
affinely independent if whenever

a1+ ...+ vy, =0 and a3 +...+a, =0,

we must have a; = ... = a,, = 0.

Given a set X C V, the set aff (X) of all affine combinations of points from X
is called the affine hull of X.

PROBLEMS.

1°. Prove that an affine combination of vectors from an affine subspace is a
vector from the subspace.

2°. Prove that the intersection of affine subspaces is an affine subspace.
3°. Prove that an affine hyperplane is an affine subspace.
4°. Prove that an affine subspace is a subspace if and only if it contains 0.

5°. Let A C V be an affine subspace of dimension n. Prove that the maximum
number of affinely independent points in A is n + 1.

6°. Let L C V be a subspace and let v,u € V be vectors. Prove that L +u =
L+ v if and only if u — v € L.

7°. Let X C V be a set of points in a vector space V. Prove that aff(X) is the
smallest affine subspace containing X.

(1.2) Quotients, projections and codimension. Let V be a vector space and
let L C V be a subspace. We can form the quotient space V/L as follows: the
points of V/L are the affine subspaces parallel to L. Addition in V/L is defined as
follows:

Ay + Ay = Ag
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1. The Isolation Theorem 43

provided
141:L—|—1)17 A2:L+U2, A3:L—|—’Ug and V1 + v = 3

for some vq,v9 and vs.

Scalar multiplication in V/L is defined as follows:
OéAl = A2

provided
A1 =L+wvy, As=L+wvy and vy = awv;
for some vy,vy € V. Thus L itself is the 0 of the quotient V/L.

The dimension of V/L is called the codimension of L (denoted codim L).
If A= L+ u is an affine subspace, the codimension of A is defined to be the codi-
mension of L. There is a linear transformation pr : V.— V/L, where pr(v) = L+,
called the projection.

PROBLEMS.

1°. Prove that addition and scalar multiplication in V/L are well defined (do
not depend on particular choices of v; and vy).

For addition: let L C V be a subspace. Suppose there are two vectors uq, vy
such that L+u; = L+v; = Ay and two vectors us, vo such that L+us = L+vy = As.
Let us = u1 + uo and v3 = v1 + v9. Prove that L +v3 = L + uz = As.

For scalar multiplication: let L C V be a subspace. Suppose there are two
vectors ui,v1 such that L +uy = L+ vy = A;. For a € R let v = av; and
ug = auy. Prove that L +ug = L + vy = As.

2°. Prove that the affine hyperplanes are exactly the affine subspaces of codi-
mension 1.

3°. Prove that the projection pr : V-.— V/L is indeed a linear transformation,
that its image is the whole space V/L and that its kernel is L.

4°. Let L C R? be a subspace. Prove that dim L + codim L = d.

Now, some convexity enters the picture.

(1.3) Halfspaces. Let V be a vector space and let H C V be an affine hyperplane.
Then the complement of H in V is the union of two convex sets, called open
halfspaces: V' \ H = Hy U H_. Indeed, suppose that H = {a: eRe: f(x) = a},
where f: V — R is a linear functional and o € R is a number. We let

Hy={zeR’: f(z)>a} and H_={zeR?: f(z)<al.

Of course, if we choose a different equation for H (say, —f(z) = —a), then Hy and
H_ may be interchanged. The sets Hy = HU H, and H_ = H U H_ are called
closed halfspaces. We can write

Hi={zeR?: f(z)>a} and H_={zeR?: f(z)<a}.
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hyperplane

closed halfspace open halfspace

Figure 10. A hyperplane, a closed halfspace and an open halfspace

PROBLEMS.
1°. Prove that open halfspaces and closed halfspaces are convex.

2°. Prove that an open halfspace of R? is an open subset of R? and that a
closed halfspace of R? is a closed subset of R?.

Let us describe some basic cases of the relative position of an affine hyperplane
and a (convex) set.

(1.4) Definitions. Let V be a vector space, let A C V be a set and let H C V
be an affine hyperplane. We say that H isolates A if A is contained in one of the
closed subspaces H_ or H,. We say that H strictly isolates A if A is contained in
one of the open halfspaces H_ or H,.

Let V' be a vector space, let A, B C V be sets and let H C V be a hyperplane.
We say that H separates A and B if A is contained in one closed halfspace and B is
contained in the other. We say that H strictly separates A and B if A is contained
in one open halfspace and B is contained in the other open halfspace.

PROBLEM.

1°. Prove that sets A, B C V can be separated, respectively strictly separated,
by an affine hyperplane if and only if there is a linear functional f : V — R? and
a number a € R such that f(z) < a < f(y), respectively f(z) < a < f(y), for all
x € Aand all y € B.

It turns out that in infinite-dimensional spaces there exist remarkably “shallow”
convex sets that consist of their own “boundary” alone. Such sets often demonstrate
various kinds of pathological behavior; see Problem 2 of Section 1.6, Problem 1 of
Section 2.5 and Section III1.1.4. We would like to single out a class of reasonably
“solid” convex sets, which behave much more predictably.
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(1.5) Definition. Let V be a vector space and let A C V be a convex set. The
set A is called algebraically open if the intersection of A with every straight line in
V is an open interval (possibly empty). Thus if L = {v +TUu: TE ]R} is a straight
line in V', where v,u € V, then

AﬂL:{v+Tu: 04<T<ﬁ}, where

either —00 < @ < § < 400 (the intersection is a non-empty open interval)
or @ = —00 < < 400 (the intersection is an open ray)

or —oo < o < = 400 (the intersection is an open ray)

or —0o = a < 8 = 400 (the intersection is the whole straight line)

or « > 3 (the intersection is empty).

PROBLEMS.
1°. Prove that convex open sets in R? are algebraically open.

2. Construct an example of a (non-convex) set A C R? such that for every
straight line L C R? the intersection AN L is an open subset in L but A is not open
in R2.

3. Let A C R? be a convex set. Prove that it is open if and only if it is
algebraically open.

4. Prove that if an algebraically open set is isolated by an affine hyperplane, it
is strictly isolated by the hyperplane.

5. Let V be a vector space and let A, B C V be algebraically open sets. Prove
that if A and B are separated by an affine hyperplane H, then A and B are strictly
separated by H.

6°. Prove that the intersection of finitely many algebraically open sets is alge-
braically open.

7. Let V and W be vector spaces and let T : V' — W be a linear transforma-
tion such that im(7) = W. Let A C V be an algebraically open set in V. Prove
that the image T'(A) is algebraically open in W.

8°. Let A C V be an algebraically open set and let L C V be a subspace. Prove
that AN L is algebraically open as a set in L.

We arrive at the main result of this section.

(1.6) The Isolation Theorem. Let V be a vector space, let A C V be an al-
gebraically open convex set and let u ¢ A be a point. Then there exists an affine
hyperplane H which contains u and strictly isolates A.

Proof. Without loss of generality we may assume that v = 0 is the origin.

First, we prove the result in the case of V =R?. Let S = {z € R? : ||z = 1}
be the circle of radius 1 centered at the origin. Let us project A radially into S:
v — v/||v]|]. Since A is convex, it is connected, and, therefore, the image of this
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projection is a connected arc I' of S. Furthermore, since A is algebraically open, I"
must be an open arc

= {(cosgb, sing): a<¢< ﬁ}

of the circle S. Indeed, let © € T" be a point. Then = = v/||v| for some v € A,
so we can choose a straight line L through v parallel to the tangent line to S at
x. Then the intersection L N A will be an open interval containing v, so the radial
projection of A will contain an open arc containing x.

Next, we observe that the length of I" cannot be greater then 7, because other-
wise I' would have contained two antipodal points x and —x and 0 would have been
in A, since A is convex. Now, let v be an endpoint of I (which is not in T, since T’
is open). The straight line through 0 and v is the desired hyperplane, containing 0
and strictly isolating A.

Figure 11. Constructing the isolating hyperplane when d = 2

Next, suppose that dim V' > 2. We prove that there is a straight line L such
that 0 € L and L N A = (). To prove this, let us consider any 2-dimensional plane
P containing 0. The intersection B = P N A is a convex algebraically open subset
of P (possibly empty — see Problem 8 of Section 1.5) and as we proved, there is a
line L C P such that 0 € L and LN B = (). Then L is the desired straight line.

Now, we prove the theorem. Let H C V be the maximal affine subspace such
that 0 € H and H N A = (). By maximal we mean a subspace which has these
properties and is not contained in a larger subspace with the same properties. If
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V' is finite-dimensional, we could choose H to be a subspace of the largest possible
dimension such that 0 € H and H N A = ). If V is arbitrary, the existence of such
an H is ensured by Zorn’s Lemma. We claim that H is a hyperplane. To prove
this, consider the quotient V/H and let pr : V.— V/H be the projection. If H
is not a hyperplane, then dim V/H > 2 and pr(A) is an algebraically open subset
in V/H (see Problem 7, Section 1.5). Then, as we proved, there is a straight line
L C V/H such that 0 € L and LN pr(A) = (. Then the preimage G = pr—!(L) =
{ac cpr(x) € L} is a subspace in V, such that 0 e G, GNA =0, H C G and G is
strictly larger than H. This contradiction shows that H must be a hyperplane. [

PROBLEMS.

1°. Construct an example of a non-convex open set A C R? such that 0 ¢ A
and there are no affine hyperplanes H such that 0 € H and H isolates A.

2. Let V = R be the vector space of all infinite sequences © = (£1,&2,&3,...)
of real numbers such that all but finitely many terms &; are zero. One can think
of Ry, as of the space of all univariate polynomials with real coefficients. Let
A C V \ {0} be the set of all such sequences = where the last non-zero term is
strictly positive. Prove that 0 ¢ A, that A is convex, that A is not algebraically
open and that there are no affine hyperplanes H such that 0 € H and H isolates
A.

3. Prove the following generalization of Theorem 1.6. Let V' be a vector space,
let A C V be an algebraically open convex set and let . C V be an affine subset
such that LN A = (. Then there exists an affine hyperplane H containing L which
strictly isolates A.

2. Convex Sets in Euclidean Space

In this section, we explore consequences of the Isolation Theorem for convex sets
in Euclidean space. For finite-dimensional convex sets there is no difficulty in
recognizing their interior and boundary.

(2.1) Definitions. Let A C R? be a set. A point u € A is called an interior point
of A if there exists an € > 0 such that the (open) ball B(u,€) = {z : ||z —u|| < €}
centered at u and of radius € is contained in A: B(u,e) C A. The set of all interior
points of A is called the interior of A and denoted int(A). The set of all non-interior
points of A is called the boundary of A and denoted JA.

Now we prove that if, starting from any point of a convex set, we move towards
an interior point of the set, we immediately get into the interior of the set.

(2.2) Lemma. Let A C R be a convex set and let ug € int(A) be an interior point
of A. Then, for any pointu; € A and any 0 < a < 1, the point ug = (1—a)up+auy
is an interior point of A.

Proof. Let B(ug,e) C A be a ball centered at ug and contained in A. Then
elementary geometry shows that B(ua, (1-— a)e) C A; see Figure 12. g
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Figure 12

(2.3) Corollary. Let A C R be a convex set. Then int(A) is a convez set.

Proof. Let u,v € int(A) be points and let w = au+ (1 — a)v for 0 < a < 1.
If < 1, we apply Lemma 2.2 with ug = v,u; = u and w = u, to show that
w € int(A). If a =1, then w = u € int(A4). O

We note that Lemma 2.2 and Corollary 2.3 will be generalized to an infinite-
dimensional situation in Section III.2.

PROBLEMS.
1. Let vi,...,v441 € R? be affinely independent points in R%. The polytope
A = conv(vl, ... 7vd+1) is called a d-dimensional simplex. Prove that A has a

non-empty interior.

Hint: Let u = (v1 4+ ... + vat1)/(d+ 1) € A. We claim that for a sufficiently
small € > 0 we have B(u,€) C A. Indeed, the matrix of the system of d + 1 linear
equations in d + 1 variables

Y101 F oo+ Yar1Var1 =w and 1+ .. FYge1 =1

is non-degenerate. Therefore, for each w € R?, there is a unique solution
Y1, --- 57Yd+1 and the solution depends on w continuously. If w = u, then

Y1 = .- = Yd+1 :1/(d+1) > 0.
Therefore, if w is sufficiently close to u, all the 4’s are non-negative and w € A.

2. Let A C R be a convex set such that int(A) # 0 and let H C R? be a
hyperplane isolating int(A). Prove that H isolates A.
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We want to show that if a non-empty convex set in Euclidean space has empty
interior, then we can pass to a smaller ambient space, where the set acquires an
interior. This property makes the finite-dimensional situation radically different
from the infinite-dimensional case.

Figure 13. Example: a flat convex set in R3 acquires interior in the
plane.

(2.4) Theorem. Let A C RY be a conver set. If int A = (), then there exists an
affine subspace L C R? such that A C L and dim L < d.

Proof. First, we claim there are no d + 1 affinely independent points vy, ... ,v441
in A. For if there were such points, then A = conv (vl, e ,vd+1) C A and Problem
1, Section 2.3 would imply that A contains an interior point. Let k < d + 1 be the
maximum number of affinely independent points in A and let vy,...,v; be such
points. Then, for each point v € A there is a solution to the system

71+ -+ Yeve + v =0,
M+...+tw+v=0

such that v # 0. Then v € A can be expressed as an affine combination of vy, ... , v,

k
v= Z(—%/’Y)Uk-

Therefore, A is contained in the affine subspace L that is the affine hull of vy, ... ,v.
So,dimL=k-1<d. O

(2.5) Definition. The dimension of a convex set A C R? is the dimension of
the smallest affine subspace that contains A. By convention, the dimension of the
empty set is —1.

PROBLEM.

1. Let A C R, be the set of Problem 2, Section 1.6. Prove that A does not
contain any non-empty algebraically open subset and that A is not contained in
any affine hyperplane of R.

Let us take a closer look at the boundary of a convex set.
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(2.6) Definitions. Let K C R? be a closed convex set. A (possibly empty) set
F C K is called a face of K if there exists an affine hyperplane H which isolates K
and such that F'= K N H. If F is a point, then F is called an exposed point of K.
A non-empty face F' # K is called a proper face of K.

PROBLEMS.

1°. Prove that a face is a closed convex set and that a face of a compact convex
set is a compact convex set.

2. Find the faces of the unit ball B = {z € R?: |[|z]| < 1}.

3. Describe the faces of the d-dimensional unit cube

I:{x:(ﬁl,...,gd): 0<& <1 for k:l,...,d}.

4. Describe the faces of a d-dimensional simplex A = conv (vl, ey 'UdJrl), where
v1,...,04+1 are affinely independent points in R<.

5. Let K C R% be a closed convex set. Prove that the intersection of any two
faces of K is a face of K.

6. Construct an example of a compact convex set K C R?, a face F of K and
a face G of F' such that G is not a face of K.

7. Prove that every non-empty compact convex set in R? has an exposed point.

8. Construct a compact convex set A C R? whose set of exposed points is not
compact.

9* (Straszewicz’ Theorem). Prove that every compact convex set A C R? is
the closure of the convex hull of the set of its exposed points.

Next, we prove that a boundary point lies in some face of a closed convex set.

(2.7) Theorem. Let K C R? be a convex set with a non-empty interior and let
u € OK be a point. Then there exists an affine hyperplane H, called a support
hyperplane at u, such that w € H and H isolates K.

Proof. By Corollary 2.3, int(K) is a non-empty convex open set. Therefore, int(K)
is a convex, algebraically open set such that u ¢ int(K). Therefore, by Theorem
1.6, there is an affine hyperplane H containing « and isolating int(K). Then by
Problem 2, Section 2.3, H isolates K, so H is a support hyperplane at u. U

PROBLEM.

1°. Construct an example of a closed convex set K C R? with a non-empty
interior and a point u € K such that a support hyperplane of K at u is not unique.

2°. Let B= {2z € R?: |z|| <1} be the unit ball and let u € B be a point.
Find the support hyperplane to B at w.

(2.8) Corollary. Let K C R? be a closed convex set with a non-empty interior
and let uw € OK be a point. Then there is a proper face F' of K such that u € F.
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Proof. Let H be a support hyperplane of K at u. Let F = HN K. O

Now we prove a version of the Isolation Theorem for convex sets in R?.

(2.9) Theorem. Let A C R? be a non-empty convex set and let u ¢ A be a point.
Then there is an affine hyperplane H C R such that w € H and H isolates A.

Proof. Let us choose the minimal affine subspace L C R¢ such that A C L.
Theorem 2.4 implies that A has a non-empty interior as a subset of L. If u ¢ L, we
can choose H disjoint from L. Hence we may assume that v € L. Thus, restricting
ourselves to L, we see that int(A4) # 0 (in L) and that u € L. Then, by Theorem
2.7, there is an affine hyperplane Hin L, such that u € H and H isolates A. Then
we choose any hyperplane H such that H N L = H. a

PROBLEM.

1. Let A € R? be a convex set and let L C R? be an affine subspace such that
LN A =0. Prove that there exists an affine hyperplane H such that L ¢ H and H
isolates A.

3. Extreme Points. The Krein-Milman Theorem for
Euclidean Space

Certain points on the boundary of a convex set capture a lot of information about
the set both in finite and infinite dimensions. Here is the central definition of this
chapter.

(3.1) Extreme points. Let V be a vector space and let A C V be a set. A point
a € A is called an extreme point of A provided for any two points b,c¢ € A such
that (b+ ¢)/2 = a one must have b = ¢ = a. The set of all extreme points of A is
denoted ex(A).

Here is a simple and important theorem.

(3.2) Theorem. Let V be a vector space, let A C V be a non-empty set and let
f:V — R be a linear functional.
1. Suppose that f attains its mazximum (resp. minimum) on A at a unique
point uw € A, that is, f(u) > f(v) for all v # u,v € A (resp. f(u) < f(v)
for allv #u,v € A). Then u is an extreme point of A.
2. Suppose that f attains its mazimum (minimum) « on A and suppose that
B = {z € A: f(z) = a} is the set where the mazimum (minimum) is
attained. Let u be an extreme point of B. Then u is an extreme point of A.

Proof. We will discuss the maximum case. The minimum is treated in a similar
way. Let us prove the first part. If w = (a + b)/2, then f(u) = (f(a) + f(b))/2,
where f(a) < f(u) and f(b) < f(u). Therefore, f(a) = f(b) = f(u) and we must
have a = b = u, because the maximum point is unique. For the second part,
suppose that u = (a + b)/2 for a,b € A. Then a = f(u) = (f(a) + £(b))/2 and
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f(a), f(b) < . Thus we must have f(a) = f(b) = @, s0 a,b € B. Thena=b=u
since u is an extreme point of B. O

PROBLEMS.

1°. Let K C R be a closed convex set and let ' C K be a face. Prove that if
u € F' is an extreme point of F', then u is an extreme point of K.

2. Let K C R? be a compact convex set and let u € K be a point such that
lw]l > ||v]|| for each v € K. Prove that u is an extreme point of K.

‘We now prove a finite-dimensional version of a quite general and powerful result

obtained by M.G. Krein and D.P. Milman in 1940.

(3.3) Theorem. Let K C R be a compact convex set. Then K is the convex hull
of the set of its extreme points: K = conv(ex(K)).

Proof. We proceed by induction on the dimension d. If d = 0, then K is a point
and the result follows. Suppose that d > 0. Without loss of generality we may
suppose that int(K) # 0. Otherwise, K lies in an affine subspace of a smaller
dimension (cf. Theorem 2.4) and the result follows by the induction hypothesis.
We must show that every point u € K can be represented as a convex combination
of extreme points of K. If u € 0K, then, by Corollary 2.8, there exists a face F' of
K such that u € F'; see Figure 14 a). Then F' lies in an affine subspace of a smaller
dimension, and by the induction hypothesis u € conv(ex(F)), so the result follows
since ex(F') C ex(K) (see Problem 1, Section 3.2).

u F a

a) b)

Figure 14
Suppose that u € int(K). Let us draw a straight line L through w. The
intersection L N K is an interval [a,b], where a,b € 0K and u is an interior point
of [a,b]; see Figure 14 b). As we already proved, a,b € conv(ex(K)). Since u is a
O

convex combination of a and b, the result follows.

Theorem 3.3 is also known as Minkowski’s Theorem.
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PROBLEMS.
1. Prove that the set of extreme points of a closed convex set in R? is closed.

2. Construct an example of a compact convex set K C R3 such that ex(K) is
not closed.

3. Let A C R? be a set. Prove that u is an extreme point of conv(A) if and
only if u € A and u ¢ conv (A \ {u}).

4. Construct an example of a compact convex set K C R? and a point u € K
such that u is an extreme point of K, but not an exposed point of K.

5°. Prove that an exposed point is an extreme point.

6*. Let A C R? be a closed convex set. Prove that each extreme point of A is
a limit of exposed points of A.

The following corollary underscores the importance of extreme points for opti-
mization.

(3.4) Corollary. Let K C R? be a compact convex set and let f : R? — R be a
linear functional. Then there exists an extreme point u of K such that f(u) > f(x)
forall x € K.

Proof. Clearly, f attains its maximum value, say, « on K. Let F = {:z: € K:
f(xz) = a} be the corresponding face of K. Then ex(F) # () and any u € ex(F) is
an extreme point of K; cf. Problem 1 of Section 3.2. d

Finally, a useful result whose proof resembles that of Theorem 3.3.

(3.5) Lemma. Let A C RY be a non-empty closed convex set which does not
contain straight lines. Then A has an extreme point.

Proof. We proceed by induction on d. If d = 0, the result obviously holds. Suppose
that d > 0. Without loss of generality, we may assume that A has a non-empty
interior. Otherwise, using Theorem 2.4, we reduce the dimension d. Let us choose
a point a € A and let L be any straight line passing through a. The intersection
LN A is a non-empty, closed interval (bounded or unbounded) that cannot be the
whole line L. Let b be a boundary point of that interval. Clearly b € 0K and
by Corollary 2.8 there is a proper face F' of K containing b. We observe that F'
is a closed convex set which does not contain straight lines and that dim F' < d.
Applying the induction hypothesis, we conclude that F' has an extreme point u.
Problem 1 of Section 3.2 implies then that u is an extreme point of A. O

4. Extreme Points of Polyhedra

For most of the rest of the chapter, we will be looking at the extreme points of
various closed convex sets in Euclidean space. We start with a polyhedron (see
Definition 1.2.2), the set of solutions to finitely many linear inequalities in R.
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(4.1) Definition. An extreme point of a polyhedron is called a vertez.
Let us describe the vertices of a polyhedron.

(4.2) Theorem. Let P C R? be a polyhedron
P:{xERd: (ciyx) < B; for i=1,... ,m},

where ¢; € R and B; €R fori=1,...,m.
Foru e P let
I(u) = {i: (c;,u) =B}

be the set of the inequalities that are active on u. Then u is a vertex of P if and
only if the set of vectors {c; : i € I(u)} linearly spans the vector space RY. In
particular, if u is a vertex of P, the set I(u) contains at least d indices: |I(u)| > d.

Proof. Suppose that the vectors ¢; with i € I(u) do not span R%. Then there is a
non-zero y € R% such that (y,¢;) = 0 for all i € I(u). We note that (c;,u) < 3; for
i ¢ I(u). Fore > 0let uy =u+ey and let u_ = v — ey. Then u = (uq +u_)/2,
u+ # u_ and for sufficiently small ¢ > 0 the points u_ and u4 belong to the
polyhedron P. Hence u is not an extreme point of P.

Suppose now that € P and the vectors ¢; with i € I(u) span R%. Suppose that
u = (v+w)/2 for v,w € P. Then {(¢;,v) < f; and (¢;,w) < B;. Since (¢;,u) = G;
for i € I(u), we must have (c;,v) = (¢;,w) = f; for i € I(u). Since vectors ¢; with
i € I(u) span R%, the system (c;, z) = 3;, i € I(u), of linear equations must have a
unique solution. Therefore, v = w = u and wu is an extreme point. O

Figure 15. A polyhedron P, its vertex u and the vectors ¢ and cg of
active constraints
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PROBLEM.

1°. Prove that every vertex of a polyhedron is an exposed point.

The following corollary constitutes the first part of the Weyl-Minkowski Theo-
rem.

(4.3) Corollary. A bounded polyhedron is a polytope, that is, the convex hull of
finitely many points.

Proof. By Theorem 4.2, every vertex v of a polyhedron is a solution to a system
{c;,x) = By, i € I(v), of linear equations where the vectors ¢; : i € I(v) span R<.
Every such system has at most one solution. Therefore, the number of vertices of

a polyhedron in R?, defined by a set of m inequalities, does not exceed (7:;) and

hence is finite. By Theorem 3.3, P is the convex hull of the set of its extreme points
and the result follows. O

PROBLEMS.
1. Prove that a polyhedron has finitely many faces.
2°. Prove that a face of a polyhedron is a polyhedron.
3. Prove that polytopes have finitely many faces.

4*. Let A C R? be a closed convex set. Prove that A has finitely many faces if
and only if A is a polyhedron.

The effect of “unrealistic solutions” in linear programming problems

Let P C R? be a polyhedron defined by a system of m linear inequalities.
Suppose we want to solve a linear programming problem:

Find ~ = min{c,z)
Subject to x € P,

where ¢ € R? is the given vector of the objective function and = € P is a vector
of variables. If the point u € P where the minimum is attained is unique, then
by Part 1, Theorem 3.2, v must be a vertex of P. Theorem 4.2 then implies that
at least d of the m inequality constraints are satisfied with equalities at u. This
sometimes is not at all desired.

(4.4) Example. The Diet Problem. Suppose we have n different food ingredi-
ents, the unit price of the j-th ingredient being ~;, j = 1,... ,n. We want the diet
to be balanced with respect to m given nutrients. Suppose that «;; is the content
of the i-th nutrient in the j-th ingredient. Let {; : i = 1,...,n be the quantity of
the j-th ingredient in the diet and let 3; : © = 1,... ,m be the target quantity of
the ¢-th nutrient.
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Trying to find the least expensive balanced diet, we come to a linear program-
ming problem:

Find ~ = minZ%{j

Jj=1

Subject to Zaijfj:& for i=1,...,m and
j=1
& >0 for j=1,...,n

in variables (&1,...,&,). Let P C R™ be the polyhedron of all feasible diets
x = (&,...,&,). Clearly, P lies in the affine subspace defined by the m balance
constraints Z;L=1 a;;&; = Pi. The dimension of the subspace, if it is non-empty,
is at least n — m. If the optimal diet © = (&,...,&,) is unique, it has to be a
vertex of P, so at least n —m of the coordinates &1, ... ,&, are zero. This, in turn,
means that the optimal diet would consist of at most m ingredients. For example,
if we are balancing the diet by the content of 5 nutrients, we should expect to get
a menu consisting of 5 or fewer ingredients. Such a menu can hardly be considered
realistic.

PROBLEM.

1°. One textbook on linear algebra describes the Cambridge diet. In particu-
lar, the book says: “In fact, the manufacturer of the Cambridge diet was able to
supply 31 nutrients in precise amounts using only 33 ingredients”. Prove that the
manufacturer could have supplied the same 31 nutrients in precise amounts using
only 31 or fewer ingredients.

5. The Birkhoff Polytope
In this section, we describe the vertices of an interesting polyhedron.

(5.1) Definitions. Let o be a permutation of the set {1,... ,n}. The permutation
matriz X7 is the n x n matrix X7 = (£7;) :4,j = 1,... ,n, defined as follows:

- _ 1 if o(j) =1,
Y 0 otherwise.
For example,

if o=(123), thatis, o(1)=2, o(2)=3and o(3) =1,

)
0
then X=11
0

— O O
OO =

An n x n matrix X = (5”) 21,5 =1,...,nis called doubly stochastic provided it
is non-negative and the sum of entries in every row and every column is 1:

n n
ZEU:l for j=1,...,n, Zgijzl for t=1,...,n and
=1 j=1

&; >0 for 4,5=1,...,n
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5. The Birkhoff Polytope 57

The polyhedron B,, of all n x n doubly stochastic matrices is called the Birkhoff
Polytope.

PROBLEMS.

1°. Prove that the set of integer doubly stochastic matrices is the set of per-
mutation matrices.

2°. Prove that permutation matrices X are extreme points of the Birkhoff
Polytope.

3°. Check that B,, is bounded.

The following remarkable result was established independently by G. Birkhoff
in 1946 and by J. von Neumann in 1953.

(5.2) Birkhoff - von Neumann Theorem. The vertices of the Birkhoff Polytope
B,, are exactly the n x n permutation matrices.

Proof. Because of Problem 2, Section 5.1, it suffices to prove that if X is an
extreme point of B,,, then X = X7 for some permutation . We prove this by
induction on n. The case n = 1 is obvious. Suppose that n > 1. Let us consider
the affine subspace L C R consisting of the n x n matrices X = (&i5) such that

Z&‘jzl for j=1,...,n  and Z&-jzl for i=1,...,n.
=1 j=1

We claim that dimL = (n — 1)2. Indeed, a point (an n x n matrix X) from
L is uniquely determined by an arbitrary choice of the (n — 1)? entries &;; for
1,7 =1,... ,n—1, since the remaining entries of X are found as

n—1

finzl_z&j for i:l,...,n—l,
j=1
n—1

fnjzl—Z@j for j=1,...,n—1 and
i=1

n—1

ij=1

In the space L, the polytope B, is defined by n? linear inequalities & > 0. If X is
an extreme point of B,,, by Theorem 4.2 some (n — 1)? of these inequalities must
be active on X. In other words, &; = 0 for some (n — 1)? entries of X. Clearly,
there cannot be a row containing zeros alone, and if every row contained at least
two non-zero entries, the total number of zero entries would have been at most
n(n —2) < (n —1)2. Therefore, there must be a row, say, ig with &;,; = 0 for all
but one j = jo. Now it is clear that & ;, = 1 and that all other entries in the i¢-th
row and in the jo-th column must be zero. Crossing out the ip-th row and the jp-th
column, we get an (n — 1) x (n — 1) doubly stochastic matrix, which must be an
extreme point of B,,_1, so we may apply the induction hypothesis. g
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PROBLEMS.

1. Prove that dim B,, = (n — 1)2, so B,, has an interior point in the subspace
L, constructed in the proof.

2. Find the radius of the ball in L centered at §;; = 1/n and touching the
boundary of the polytope B,,.

3. Prove that the set ' = {X € B, : &1 = 0} is a face of B,, of dimension
(n—1)?—1 and that G = {X € B, : &1 = 1} is a face of B,, of dimension (n —2)?.

4°. Draw a picture of Bs.

5°. Let U = ((;;) be an n x n real orthogonal (that is, UU* = I) or complex
unitary (that is, UU? = I) matrix. Let B;; = |¢;;|*>. Prove that B = (8;;) is a
doubly stochastic matrix.

The problem of optimizing a linear function on the polytope B, has an inter-
esting combinatorial interpretation.

(5.3) The Assignment Problem. The Assignment Problem is formulated as
follows: given an n x n matrix C' = (v;;), find a permutation o of the set {1,... ,n}
such that Z?Zl Yie(i) i maximum (or minimum). A typical interpretation of this
problem is as follows: there are n candidates to fill n positions. Let 7;; be the
“benefit” (or the “damage”) brought by the assignment of the i-th candidate to
the j-th position. We are seeking to maximize (or minimize) the total benefit
(or damage). Because of Theorem 5.2, the Assignment Problem can be posed as
a problem of finding the maximum (minimum) value of a linear function on the
polytope B,, in short, as a linear programming problem:

n
Find ~ = max Z Yii&ij
ij=1

n
Subject to Zfijzl for 7=1,...,n,

i=1
Zfijzl for i=1,...,n and
j=1

&; >0 for 4,5=1,...,n

Indeed, by Corollary 3.4 there is an optimal point (§;;) which is an extreme point
of the Birkhoff Polytope. By Theorem 5.2, such a point gives rise to a permutation
(assignment) o.

6. The Permutation Polytope and the Schur-Horn
Theorem

A certain projection of the Birkhoff Polytope is of particular interest.

(6.1) Definition. Let us fix a point z = (&1,...,&,) in R™. For a permutation o
of the set {1,...,n}, let o(x) be the vector y = (n1,... 1), where n; = ;-1
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6. The Permutation Polytope and the Schur-Horn Theorem 59

Let S,, be the symmetric group of all permutations of the set {1,... ,n}. Let us
define the permutation polytope P(x) by

P(z) =conv(c(z): o €S,).

1243 1234

1423

3142

2413

4321 4312

Figure 16. The permutation polytope P(z) for z = (1,2, 3,4)

In words: we permute the coordinates of a given vector x in all possible ways
and take the convex hull of the resulting vectors.

PROBLEMS.
1°. Prove that o(z) = X%, where X7 is the permutation matrix corresponding

to o, and that (o7)(z) = o(7(z)) for every two permutations o and 7.

2°. Let us interpret R™ as the space of n x n matrices X. Let us fix a vector
a € R™. Consider the linear transformation T’ : R —» R™ defined by T(X) = Xa.
Prove that T'(B,) = P(a), where B,, C R"’ is the Birkhoff Polytope.

3°. Prove that the permutation polytope P(a), a = (a1,...,ay), lies in the
affine hyperplane {(51, k) St =+ an}.
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4. Suppose that not all the coordinates of a are equal. Prove that dim P(a) =
n— 1.

5°. Prove that P(a) has n! vertices if and only if the coordinates aq, ... , a, of
a are distinct.

6. Draw a picture of the permutation polytope P(z) for z = (1,2, 3).

Permutation polytopes sometimes appear in quite unexpected situations. The
first part of the following result was obtained by I. Schur in 1923, the second part
by A. Horn in 1954.

(6.2) Schur-Horn Theorem. Let us fix a positive integer n and real numbers
Ayeoe A Let L= (Aq,..., \n) € R™ be a vector.

1. Let A = (wj) be an n x n real symmetric (or complex Hermitian) matriz
with the eigenvalues A1, ..., An,. Then the diagonal a = (aq1,... ,ny) lies
in the permutation polytope P(l): a € P(l) (Schur’s Theorem).

2. Let a € P(1) be a point from the permutation polytope. Then there exists an
n x n real symmetric matric A = (o) with the eigenvalues A1, ... , A, and
the diagonal a = (011, ... ,any) (Horn’s Theorem).

We will prove Schur’s Theorem only (Part 1) using Schur’s original approach.
For a proof of Part 2, see, for example, [MOT9].

Proof of Part 1. Let D = diag(\1,...,A,) be diagonal matrix. Suppose that
A = (w;) is a real symmetric n X n matrix with the eigenvalues Ay,..., A, (the
proof for complex Hermitian matrices is completely analogous). Then A = UDU?
for some orthogonal matrix U = ((;;). Hence the diagonal entries of A can be

written as
n
2
Akl = E Cki/\i-
i=1

Let B = (fi;) be the n x n matrix such that §;; = 12] Hence we may write
a = Bl, where a and [ are interpreted as n-columns of real numbers. Since U is an
orthogonal matrix, the matrix B is doubly stochastic (cf. Problem 5, Section 5.2),
that is, B is a non-negative matrix with all row and column sums equal to 1. By
the Birkhoff - von Neumann Theorem (Theorem 5.2), B can be written as a convex
combination of permutation matrices X, o € S,,. Therefore we conclude that a is
a convex combination of o(l) = X7, that is, a € P(l) by Problem 1 of Section 6.1.

O

7. The Transportation Polyhedron

In this section, we describe a family of combinatorially defined polyhedra which
includes, in particular, the Birkhoff Polytope.

Let G = (V,E) be a directed (finite) graph with the set of vertices
V ={1,...,n} and a set of edges E C V x V. Any two vertices i,j € V can
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be either connected by an edge ¢ — j or two edges ¢ — j and j — ¢ going in the
opposite directions or not connected at all. We assume that the graph has no loops
T —> 1.

Suppose further that to each vertex i a real number 5; is assigned, which can
be positive (“demand”) or negative (“supply”) or zero (“transit”). Suppose that
to every edge ¢ — j a number ¢;; is assigned so that the following conditions are
satisfied:

The balance requirement:

For every vertex i € V'

Z i — Z &ij = Bi-

j: (j—i)€EE j: (i—j)eE

No wrong way shipment:

For every edge (i — j) € E,
&j > 0.
An assignment of numbers &;; satisfying the above requirements is called a feasible
flow in G.

(7.1) Definition. Let us fix a graph G = (V, E)) with |V| = n vertices and |E| = m
edges and a vector b = (f1,...,5,). Let us think of a feasible flow (&;;) in G as

a point in R™. The set of all feasible flows x € R™ is called the transportation
polyhedron and denoted T(G, b).

PROBLEMS.

1. Prove that if the transportation polyhedron T'(G,b) is non-empty, then
Y1 Bi=0.

2°. Construct an example where Z?zl Bi = 0 but the transportation polyhe-
dron T(G, b) is empty.

3°. Construct an example of an unbounded transportation polyhedron T'(G, b).

4. Suppose that G does not contain any directed cycle i1 — io — ... — §; — 71

for I > 2. Prove that T(G,b) is a bounded polyhedron (polytope). It is called the
transportation polytope.

There is a simple combinatorial description of the vertices of T'(G, b).

(7.2) Proposition. Let # = (&; : (i — j) € E) be an extreme point of the
transportation polyhedron T(G,b). Let S C E be the set of all edges i — j where
&j > 0. Then S does not contain any cycle vi —va — ... — v —v1 : | > 2, where
the vertices vg,vg1 : k=1,... ,l—1 and v;,v1 are connected by an edge (in either
direction: v — Vg1 OT Ugy1 — Uk).
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Proof. Suppose that there is such a cycle C' consisting of edges with a strictly
positive flow. Let us choose an € > 0 and let us construct two flows y = (n;;) and
z = ((;) as follows:
&ij if (1—j)¢C and (j—i)¢C,
g =< & +e if i=wg,j=0vp or i=v,5 =0,
&j—e if i=vqp,j=v0r i=0v1,j =1

and

Cij=1 &j—¢€ if i=vp,J=vpp10r i =05 =01,

&Gj+e il i=vq,j=v0or i=v1,j =

In other words, we choose an orientation of the cycle C' (say, clockwise). To con-
struct y, we increase the flow on the edges of the cycle that go clockwise by e and
decrease the flow on the edges of the cycle that go counterclockwise by e¢. To con-
struct z, we decrease the flow on the clockwise edges by € and increase the flow on
the counterclockwise edges by ¢; see Figure 17.

Figure 17. A decomposition of a circular flow z = (y + z)/2

Then the flows y and z satisfy the balance condition. Furthermore, if ¢ > 0
is small enough, y and z are non-negative flows and hence feasible flows. Finally,
x = (y + 2)/2, which proves that z cannot be an extreme point of T(G, b). O
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(7.3) Definition. A graph without cycles is called a forest. A connected graph
without cycles is called a tree.

PROBLEMS.
1°. Prove that a forest is a union of non-intersecting trees.

2. Prove that every (finite) forest has a vertex which is incident to at most one
vertex of the forest.

(7.4) Corollary. Suppose that all demands/supplies f3;, i = 1,... ,n, are integer
numbers. Then every extreme point of the transportation polyhedron T(G,b) is an

integer flow x = (&;;).

Proof. Let z = (§;) be an extreme point. Proposition 7.2 asserts that the set
S C E with non-zero flows ;; is a forest. We claim that once we know S, we
can compute the flows &; from f1,... , 5, by using addition and subtraction only.
This, of course, would imply that all §;; are integers.

If S is a forest with at least one edge, by Problem 2, Section 7.3, there is a
vertex i such that there is only one edge with a non-zero flow incident to i. Let j
be the other end of that edge. Clearly, if this edge is i — j, we must have ; < 0
and &; = —f;. If this edge is j — 7, we must have 5; > 0 and §;; = 8; > 0. Now we
delete the vertex ¢ with all edges of GG incident to it, modify forest S accordingly,
and adjust the demand/supply vector: if we had &;; > 0, we let 8} := B; + ; and
if we had &;; > 0, we let 8} := (; — ;. Hence we get a new graph G’ with n — 1
vertices and integer demands/supplies 3}, a new forest S’ of G’ and a new feasible
flow &/, in G’ such that S’ is the set of edges where {;; are strictly positive. We
proceed as above, until there are no edges in the forest. At that moment the flow

x = (&) is determined completely. a
PROBLEMS.

1. Deduce the Birkhoff - von Neumann Theorem (Theorem 5.2) from Corollary
7.4 as follows: consider the graph G with 2n vertices 1,...,n and 1’,... ,n’ and
the edges i’ — j, where i’ =1',... ,n' and j = 1,... ,n. Let 8; = 1 be the demand
fori =1,...,n and let 8 = —1 be the supply for i’ = 1’,... ,n’. Prove that the

feasible flows &;/; are the doubly stochastic matrices and that the integral feasible
flows are the permutation matrices.

2. Let us fix positive integers m and n and let us interpret a real m x n matrix
as a point in R™"., Let a = (ay,... ,q;) and b = (B4,...,5,) be two vectors of
positive integers and let P(a,b) be the set of all non-negative m x n matrices with
the row sums a1, ... ,a,, and the column sums fy,... ,3,. Prove that P(a,b) is
a bounded polyhedron (polytope) and that every vertex of P(a,b) is an integer
matrix.

3* (M.B. Gromova). Let us interpret the space R? with d = n? as the space of
all 3-dimensional matrices (fijk) where 1 < 14,7,k < n. Let us consider the polytope
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P, C R? defined by the equations

Zfijkzl forall k=1,...,n,

i,j=1

Zgl]k:l for all j:l,...,’fl and
i,k=1

Z &Gjrk=1 forall i=1,...,n

Jik=1

and inequalities
&k >0 forall 1<4,j5k<n.

Check that P, is a polytope (it is called the polytope of 3-dimensional polysto-
chastic matrices) and that dim P = n3 — 3n + 1.

Prove that for any sequence 1 > 01 > o3... > 0, > 0 of rational numbers there
exists a positive integer b such that the numbers (b—1)/b > 01 > ... > 0, > 1/b
compose the set of values of the non-zero coordinates (not counting multiplicities)
of some vertex of P, for some n.

Remark: This result, as well as its generalizations and extensions, is found in
[G92].

The following problem can be considered as a generalization of the Assignment
Problem; see Section 5.3.

(7.5) The Transportation Problem.

Suppose that «;; are (usually non-negative) costs on the edges of the graph
G = (V,E). The problem of finding a feasible flow z € T(G,b) minimizing the
total cost Z vi;&i; is called the Transportation Problem.

i—jEE

From Theorem 3.2 (Part 1) and Proposition 7.2 we deduce that if the optimal
flow is unique, the set of edges ¢ — j where the flow is positive must form a forest
in G. Furthermore, by Corollary 3.4 we conclude that if T(G,b) is bounded and
non-empty, then there is an optimal flow with that property.

PROBLEMS.

1. Suppose that the transportation polyhedron T'(G,b) is non-empty and that
the cost +;; is strictly positive for every edge ¢ — j in E. Prove that there exists an
optimal flow in the Transportation Problem and that the set of all optimal flows is
a compact polyhedron (polytope), which is a face of the transportation polyhedron
T(G,b). Deduce that there exists an optimal solution such that the set of all edges
where the flow is positive forms a forest in G.

2. Suppose that there is an optimal solution in Problem 7.5. Prove that there
is an optimal solution such that the edges ¢ — j with &; > 0 constitute a forest.
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8. Convex Cones

We extend results of Section 3 on the structure of convex sets to convex cones. The
theory that we develop here is parallel to that of Section 3.

(8.1) Cones, conic hulls and extreme rays. Let V be a vector space. A set
K C Viscalled a coneif 0 € K and Az € K for every A > 0 and every x € K. The
cones we will be dealing with are convex. Alternatively, we can say that K C V is
a convex cone if 0 € K and if for any two points z,y € K and any two numbers
a, 3 > 0, the point z = ax + By is also in K.

Given points z1,... ,z, € V and non-negative numbers a4, ... , a.,, the point

m
Tr = E Q5
=1

is called a conic combination of the points z1,... ,Z,;,. The set co(S) of all conic
combinations of points from a set S C V is called the conic hull of the set S. The
conic hull co(z) of a non-zero point x € V is called the ray spanned by x.

Let K C V be a cone and let K1 C K be a ray. We say that K; is an extreme
ray of K if for any v € K; and any z,y € K, whenever u = (x 4+ y)/2, we must
have z,y € K;.

Let K be a cone and let z € K be a point. If K7 = co(z) is an extreme ray of
K, we say that x spans an extreme ray (of K).

PROBLEMS.

1°. Prove that co(S) is the smallest convex cone containing the set S C V,
that is, the intersection of all convex cones in V' that contain S.

2°. Let K1, Ky C V be convex cones. Prove that the intersection K1 N K5 and
the Minkowski sum K7 4+ K5 are convex cones.

3. Construct an example of two closed convex cones K;, Ko C R3 such that
K1 + K5 is not closed.

4. Prove that the closure of a convex cone in R? is a convex cone.

5. Prove that 0 is an extreme point of a convex cone K if K does not contain
a straight line and construct an example of a convex cone K C R2, such that K
contains a straight line but 0 is an extreme point of K.

6. Let S C R? be a set. Prove that every point z € co(S) is a conic combination
of some d points from S.

We need a few technical lemmas, adjusting our results from previous sections
for convex cones.

(8.2) Lemma. Let K C V be a cone and let H C V be an affine hyperplane
isolating K and such that KN H # 0. Then 0 € H.

Proof. Assume that for some (non-zero) linear functional f : V' — R and some
number o we have H = {z : f(z) = a} and that K C H_. Since 0 € K, we get
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a > 0. Suppose that & > 0 and let € K be a point such that f(z) = «. Then,
for A > 1 we have f(Az) = Aa > a and Az € K, which contradicts the assumption
that K C H_. Hence we must have o =0 and 0 € H. (]

PROBLEM.
1°. Prove that a non-empty face of a cone is a cone.
(8.3) Definition. Let K C V be a cone. A set B C K is called a base of K if

0 ¢ B and for every point u € K,u # 0, there is a unique representation u = Av
with v € B and A > 0.

Figure 18. A base B of the cone K

(8.4) Lemma. Let K be a cone with a convex base B and let u € K, u # 0, be a
non-zero point from K. Then u spans an extreme ray of K if and only if u = Av,
where A > 0 and v is an extreme point of B.

Proof. Suppose that u spans an extreme ray of K. Let v € B be a point such
that u = Av for A > 0. Suppose that v = (v; +v3)/2. Then u = (uy + uz)/2, where
u; = vy and uy = Avg. Since u spans an extreme ray, we must have u; = pju and
ug = pou for some py, o > 0. Then u; = (u1A)v and us = (ugA)v. Since B is a
base, we must have v; = v = v, so v is an extreme point of B.

Suppose that u = Av, where A > 0 and v is an extreme point of B. Let us
show that u spans an extreme ray of K. Suppose that u = (u; + u2)/2. Then
u; = A1v1; and us = Avg for some vy,v2 € B and some non-negative Ap, Ao.
Without loss of generality, we can assume that A;, A2 > 0. Then we can write
u = (/\11}1 + /\2112)/2 = B(Oq’Ul + 0421}2), where 5 = ()\1 + )\2)/2, o] = )\1/()\1 + )\2),
and ag = Aa/(A1+ A\2). Since B is a base, we must have a;v; + agve = v. We note
that aq,as > 0 and that a; + as = 1. If v # vo, it follows that v lies inside the
interval [vy, v2], which contradicts the assumption that v is an extreme point of B.
Therefore, we must have v; = vy, so u spans an extreme ray of K. O

We obtain a conic version of Theorem 3.3.
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(8.5) Corollary. Let K C R be a cone with a compact base. Then every point
u € K can be written as a conic combination

m
u:Z)\iui, N>0:di=1,...,m,
i=1

where points u; span extreme rays of K.

Proof. Let B be a base of K. Let us write w = Av, where v € B. By the
Krein-Milman Theorem (Theorem 3.3), we can express v as a convex combina-
tion of extreme points v1,...,v,, of B. Then w is a conic combination of u; =
AU, oy Upm = ApUm. By Lemma 8.4, the points u; span extreme rays of K. [

We will also need a topological fact.
(8.6) Lemma. Let K C R? be a cone with a compact base. Then K is closed.

Proof. Let B be the compact base of K and let u ¢ K be a point. Our goal is to
show that there is a neighborhood U of u such that U N K = §.

Let 6 = min{||z|| : = € B} > 0 be the minimum distance from a point = € B
to the origin. Let us choose Ao = (||u|| +1)/d and let U; be the open ball of radius
1 centered at u. Then, for any A > A\ we have ABNU; = 0.

Let X = [0, o] x B and let us consider the map ¢ : X — R ¢(\,x) = \z.
Since B is compact, so is X. The image ¢(X) is compact and hence closed in R,
Since u ¢ K, we conclude that u ¢ ¢(X). Therefore, there is a neighborhood Uz
of w such that U N ¢(X) = 0. Let U = Uy NUs. Then for any A > 0, we have
U N AB = () and the proof follows. O

We remark that the above result can be adjusted for infinite-dimensional spaces;
see Lemma II1.2.10.

PROBLEMS.
1. Let K C R? be a cone with a compact base. Prove that 0 is a face of K.
2. Construct an example of a compact set A C R? such that co(A) is not closed.

3. Prove that a closed cone in R? without straight lines has a compact base.

9. The Moment Curve and the Moment Cone

We turn our attention to non-polyhedral convex sets. In this section, we discuss
the boundary structure of an interesting non-polyhedral cone. Applications for
problems of numerical integration are discussed in Section 10 and for probability
problems in Sections II1.9.3 and IV.2.

(9.1) The moment curve. Let us consider the space R%*! with the coordinates
x = (€0,&1,...,&) (we start with the zeroth coordinate). Given real numbers
a < [, the curve

9(7)2(177—77—2,“-,Td)eRd+1 fOI' O[STSB
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is called the moment curve. Hence g(7) lies in the affine hyperplane & = 1 in R4+1.

Let f(xz) = {c,x) be a linear function, where ¢ = (v9,71,...,74). Then the
value of f on the curve g(7),

Fl9(m) = v +vaam ™ + T+ 0,
is a polynomial in 7 of degree d.

PROBLEMS.

The problems below address some interesting properties of the moment curve
and its relatives.

1. Prove that each hyperplane H C R%! such that 0 € H intersects the
moment curve g(7) in at most d points.

2. Let §; < d3 < ... < 84 be real numbers. Consider the curve in R?
h(t) = (exp{617}, exp{da7},... ,exp{dar}) for a <7 < B.

Prove that each affine hyperplane H C R? intersects h(7) in at most d points.
3. Let St = {(cos T,sinT): 0 <7< 27r} be the circle. Suppose that d = 2k

is even and let h : ST — R be the closed curve
h(r) = (cos T,8in T, cos 27,sin 27, . .. , cos kT, sin kT), 0<7<2m.

Prove that each affine hyperplane H C R? intersects the curve h(7) in at most d
points.

4. Suppose that d is odd. Prove that one cannot embed the circle S into R?
in such a way that every affine hyperplane intersects the circle in not more than d
points.

5. Consider the set “Y” in the plane (three intervals having one common point).
Prove that for any d one cannot embed Y into R? in such a way that every affine
hyperplane intersects Y in not more than d points.

Remark: A theorem of J.C. Mairhuber [M56] states that if a topological space
X can be embedded into R¢ as described above, then X must be a subset of a
circle.

Now we define the main object of this section.

(9.2) Definition. The moment cone
Mgy =co(g(r): a<7t<p)C R+

is the conic hull of the curve g(7). Sometimes we write My 1[c, 5] instead of Mgy ;.
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9. The Moment Curve and the Moment Cone 69

PROBLEMS.
1°. Prove that conv(g(7) : « < 7 < ) is a compact convex base of My [a, B].
2°. Prove that dim My =d+ 1.

(9.3) Lemma. The moment cone Mgy is closed.

Proof. Follows from Lemma 8.6 and Problem 1 of Section 9.2. |

One interesting feature of the moment cone is that every point of M441 can be
written as a conic combination of relatively few points of the moment curve. More-
over, if the point lies on the boundary, it cannot be written as a conic combination
with positive coefficients of too many points of the moment curve.

(9.4) Proposition. Let uw € O0My41 be a point on the boundary of Mgy1. Let us
write u as a conic combination of points on the curve g(7):

m
u:Z)\jg(Tj), where Aj >0 for j=1,...,m and a<m <...<T,<p.
j=1

Then m < (d + 2)/2. Furthermore, if m = (d+ 2)/2, then d is even and 11 = a,
Tm = B.

Proof. By Problem 2 of Section 9.2, int Myy1 # @, so by Theorem 2.7 there exists
an affine hyperplane H that contains u and isolates My;1. Hence by Lemma 8.2
H contains the origin, so H = {x sHe,x) = 0} for some ¢ = (v0,71,.-.,74) # 0.
We have (c,z) > 0 for v € Mgy and {(c,u) = 0. In particular, {(c, g(7)) > 0 for all
a<T1<gf. Let

p(7) = {c,9(T)) =70 + M7 + ...+t

Hence p(7) is a polynomial of degree d which is non-negative on the interval [a, J].
Furthermore, since (¢, u) =0 and A; > 0 we must have p(r;) =0for j=1,... ,m.
Suppose that 7* € (a, 8) is a root of p, which lies strictly inside the interval («, §).
Then the multiplicity of the root must be an even number, since otherwise p(7)
would change sign in a neighborhood of 7*. The only roots of multiplicity 1 can be
7" = a and 7 = . The total number of roots of p, counting multiplicities, is at
most d. If all the roots of p are strictly inside (o, 8), then 2m < d and m < d/2.
If only one endpoint of the interval [, §] is a root of p, then there are m — 1 roots
inside (o, 8) and 2(m — 1) +1 < d, so m < (d+ 1)/2. If both endpoints « and
are roots of p, then there are (m — 2) roots inside («, 3), so 2 + 2(m — 2) < d and
m < (d+ 2)/2. Thus, in any case, m < (d + 2)/2. O

It follows then that every point uw € Myyq can be written as a convex com-
bination of a small number of points on the moment curve, roughly a half of the
number one would expect for the conic hull of a general set in R?*; cf. Problem 6
of Section 8.1.
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(9.5) Corollary. Let

B (d+1)/2 if dis odd,
m_{(d+2)/2 if d is even.

Let u € Mgi1]a, 8] be a point. Then w can be represented as a conic combination
of m (or fewer) points of the curve g(7):

u = Z Azg(’rz)v
i=1

where \; >0 fori=1,... manda <71 <...<T7, <f.

Proof. If v € 0My41, the result follows by Proposition 9.4. Suppose that
u € int Mgyq[e, B]. Let ¢ > 0 be a parameter, and let us “shrink” the interval
[a, 8] — [+ t,8 —t] as t grows. Let us consider Myy1]o + ¢, 8 — t]. When
t = (8 — «a)/2, the curve g consists of a single point, so the cone My1[a+t, 5 — t]
consists of a single ray. If the point u is still in the cone, the result follows. Other-
wise, there is a value t* such that u € IMy1[a+t*, 6—t*]. Now we use Proposition
9.4. O

10. An Application: “Double Precision” Formulas for
Numerical Integration

Corollary 9.5 has a somewhat unexpected application. It implies the existence of
some efficient formulas for numerical integration.

(10.1) Proposition. Let us fix an interval [, B] and a non-negative continuous
density p(1) on [a,B]. Then, for any positive integer m, there exist m points

T, ..., T in the interval [a, 8] and m non-negative numbers Ay, ... , Ay such that

B m
| sty ar =3 xire)

for any polynomial f of degree at most 2m — 1.

B
Proof. Let d = 2m — 1. Let u = (&, ... ,&) € R where & = / T'p(T) dr
e
for i =0,...,d. Let us prove that u € My41[c, 8]. Indeed, since p is continuous, u
can be written as a limit of Riemann sums:
N
_ o Poa
U= NLHT}FOO N Z;P(Tz)g(ﬂ)v
1=
where 71,... , 7y are equally spaced points on [«, 8]. Since every Riemann sum is

in the cone Myy1]e, 8], and by Lemma 9.3 the moment cone is closed, we get that
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10. Double Precision Formulas 71

u € Mgy1. Therefore, by Corollary 9.5, we can write u as a conic combination of
m points on g(7):

U = Z)‘jg(Ti*)7
=1

where \; > 0 and a < 7f < ... < 7% < 3. Now, let f(7) = 747 + ... + 7 be a
polynomial of degree at most d. Let ¢ = (7g,... ,74) € R¥!. Then

B
f(7) = (e.g(r?)) for i=1,...,m and / F(@)p(r) dr = (e ),
«
which completes the proof. 0

Formulas for numerical integration
[—} m
[ st ar =3 xse)
@ i=1

that are exact for polynomials f of degree up to d = 2m — 1 are often called the
double precision integration formulas (for obvious reasons). The proof of Proposi-
tion 10.1 explains the term “moment cone”. The points of Myi1[a, 8] correspond
to the moments of non-negative densities p(7) on [, S]:

x = </jp(7’) dT,/ij(T) dr,... ,/dep(T) d7>.

As p varies, x ranges over the points in Myi1][e, f].

PROBLEMS.
1. Prove that one cannot find m points 7y, ... , 7.5, in the interval [0, 1] and m
real numbers Ay, ..., A, such that

/ F) dr =S M)
0 i=1

for all polynomials f of degree 2m.

2. Prove that for an interval [«, ], for every strictly positive continuous
density p(7) on [a, ] and for every positive integer m there is only one set of

*

points 71 ,..., 7 in the interval [, 3] and only one set of non-negative numbers

v Im

Al,..., Ay such that
B m
| 1@ty dr =S nis)
@ i=1

for every polynomial f of degree at most 2m — 1.
3*. A function

d
(1) =% -I-Z(aksinkr—i—/ﬁkcosk#) for 0<7<27
k=1
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is called a trigonometric polynomial of degree at most d. Let p be a non-negative
continuous function on [0, 27r] such that p(0) = p(27). Prove that there exist d + 1
points 0 < 7§ < ... < 7] < 27 and d 4 1 non-negative numbers Ay, ..., Aq such
that the formula

2 d
F@)p(r) dr =Y Nf (7))
=0

0
is exact for any trigonometric polynomial of degree at most d.
Hint: Use Problem 3 of Section 9.1.

4*. Let us fix d = 2m distinct real numbers 61, ... ,d4. A function

d
f(r) = Z oy exp{d;7}

is called an exponential polynomial with exponents d1,...,04. Let p be a non-
negative continuous density in the interval [«, 5]. Prove that there exist m points
Ty, ..., T in the interval [, 5] and m non-negative numbers A1, ... , Ay, such that

5 m
/ F)p(r) dr =3 Nf ()
« 1=1

for any exponential polynomial with exponents d1,... ,d4.

Hint: Use Problem 2 of Section 9.1.

Let us consider some small examples of double precision formulas for evaluating

/01 f(r) dr.

(10.2) Example. The formula that uses one node and is exact for polynomials of

degree at most 1 is
1
1
/O fr) dr = £(3):

PROBLEM.

1°. Prove that the formula of Example 10.2 is indeed exact on polynomials of
degree at most 1 and that this is the only such formula.

(10.3) Example. Let us find formulas that use two nodes and are exact on poly-
nomials of degree at most 2. In the xy plane, let us consider the parabola arc
{g(r) = (r,7%) : 0 <7 < 1}. Let u = (1/2,1/3). There are infinitely many
formulas

/0 F(r) dr = MA(rE) + Aaf(75)

that are exact on polynomials of degree 2. The necessary and sufficient condition
for 0 < 71 < 75 <1 is that the interval [g(77), g(75)] in the zy plane contains u; see
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11. The Cone of Non-negative Polynomials 73

Figure 19. Then A; and Ay are found from u = A1 g(75) + A2g(75). For example, if
we choose 71 = 0, then 75 = 2/3 and we get a formula

[ soar=1s0+35(3).

I+ (L 1)

(1, ©°)

Figure 19

PROBLEM.
1. Find the one-parametric family of formulas with two nodes which are exact

on polynomials of degree 2.

(10.4) Example. Here is a formula with two nodes which is exact for polynomials
of degree at most 3:

[ 000t G )

PROBLEM.

1. Prove that the above formula is indeed exact on polynomials of degree at
most 3 and that this is the only such formula which uses two nodes.

11. The Cone of Non-negative Polynomials

The cone we consider in this section is dual to the moment cone (in the sense
rigorously described later; see Section IV.2). We recall that we have considered the
set of positive multivariate polynomials in Section 1.3.

(11.1) Definition. Let us interpret the space R4+ as the space of all polynomials
in one variable 7 of degree at most d: a polynomial yg+~v17+. ..4+747¢ is represented
by the point (Yo,...,7q4). Let us fix numbers a < 8 and let K [a, 5] C R4 be
the set of all polynomials p that are non-negative on the interval [, 5]: p(7) > 0
for all 7 € [, 8]. Sometimes we write K instead of K [«, 3].
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74 II. Faces and Extreme Points

PROBLEMS.
1°. Prove that K, [, 8] is a closed convex cone in R+!,
2°. Prove that K [a, 8] has a non-empty interior.

3. Prove that p € 0K if and only if p(7) > 0 for all 7 € [«, 8] and p(79) = 0
for some 79 € [, O]

Let us describe the extreme rays of K [«, (].

(11.2) Proposition. The cone Ki[a,f] has a compact base. A polynomial
p € Ky|a,f] spans an extreme ray of K|, B] if and only if the polynomial p
is one of the following types:

for d even,
k
p(1) =0(T — @) H(T —7)? 2k+1=d,
i=1
k
p(r)=6(8—7)[[(r—7)* 2k+1=d
i=1
for d odd, where 6 >0 and 11, ... ,Tk are (not necessarily distinct) points from the

interval [a, f].

Proof. Let
B

B:{q€K+: /q(T)del}.

«

Obviously, B is a non-empty closed convex set. It is also clear that for any p € K,
p # 0, there is a unique representation p = Aq for ¢ € B and A > 0; we take

A= /jp(f) ir.

We wish to show that B is compact. Let us define a norm N : R¥*! — R by

B
Nw)= [ (o)l

Let € > 0 be the minimum value of the continuous function N on the unit sphere
St ={p: |pll =1}, where || - || is the usual Euclidean norm. Then |[|p|| < 1/e for
all p € B, so B is compact. Hence B is a compact base of K.
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Let p € K and suppose that co(p) is an extreme ray of K. If degp < d, we
can write p = (p4+p—)/2, where py = pt+e(r—a)pandp_ =p—e(t—a)p. If e > 0
is sufficiently small, then py,p_ € K[, 8] and p_ and p; are not proportional to
p, which is a contradiction. Hence deg p = d. We can factor p = qr, where ¢, 7 € K
and r is a polynomial without any root in the interval [a, §]. By continuity, we may
choose a sufficiently small € > 0 such that r_ =r —e and r = r + € are both non-
negative on [a, §]. We can write p = (p4 + p—)/2, where p; = gry and p_ = gr_.
Since co(p) is an extreme ray, v and r_ must be proportional to r and, therefore,
r must be a constant. Summarizing, p has d roots in the interval [«, 5]. Finally, the
multiplicity of every root of p which lies inside (¢, 8) must be even, since otherwise
p changes its sign in a neighborhood of the root. So the polynomials that span
extreme rays of K must have the required structure.

Figure 20. Decomposition p = (p+ + p—)/2 of a positive polynomial

It remains to prove that the polynomials having the required type indeed span
extreme rays of K. Suppose that p = (p1 + p2)/2 for some p1,ps € K. We
claim that every root 7* of p of multiplicity m must be a root of both p; and ps
of multiplicity at least m. Otherwise, for one of the polynomials p;, ¢ = 1,2, we
will have p;(7%) = ... = pz(-kfl)(T*) =0, pgk)(T*) < 0 and for the other polynomial
we will have p;(7*) = ... = pgkfl)(T*) =0, pgk)(T*) > 0 for some 0 < k < m.
Therefore, one of the polynomials p; or py would turn negative for some 7 € [, ]
in a small neighborhood of the root 7*. Since p has d roots, both p; and py must
be proportional to p.

O

Proposition 11.2 allows us to describe the structure of polynomials which are
non-negative on a given interval [«, [].
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(11.3) Corollary. Let p(7) be a polynomial such that p(t) > 0 for all T € [, B3].
If d = 2k is even, then

p(r)=(r—a)B-7)Y @@+ ()
iel jeJ

for some polynomials q;,q;. Furthermore, we can choose g;,q; is such a way that
deggi =k —1 fori eI, degq; =k for j € J and all roots of ¢;, q; are real and
belong to the interval [a, B).

If d =2k + 1 is odd, then
p(r) = (T=a)Y G (1) +(B-7) d;(7)
il jeg

for some polynomials q;,q;. Furthermore, we can choose g;,q; in such a way that
degq; =degq; =k fori e I, j € J and all roots of q;, q; are real and belong to the
interval [a, B].

Proof. Follows from Corollary 8.5 and Proposition 11.2. 0

PROBLEMS.

1*. Prove that a polynomial p(7) of degree d, which is non-negative on [«, 3],
has a unique representation

SITioa(7 = m2im)? + (T = )(B = ) [IL2) (7 = m20)* if d =2k,
S(r— )1 (r =12 + 7B =) [y (T — 72i1)? if d=2k+1,
where v, >0and a <7 <1 < ... <7151 <f.
Remark: See Chapter II, Section 10 of [KS66].

p(r) =

2. Let K [0, +00) C R4*! be the set of all polynomials p(7) of degree at most d
such that p(7) > 0 for all 7 > 0. Prove that K [0, +0o0) is a closed convex cone with
a compact base and that the polynomials that span the extreme rays of K [0, +00)
are

k k
p(r)=6]J(r—=7)® 2k<d) and p(r)=0or[[(r—m)* (2k+1<d),
i=1 i=1
where § >0and 7, > 0fori=1,... k.

Deduce that every polynomial p which is non-negative on [0, +00) can be rep-
resented in the form

m
p(r)=7Y g (r)+> ¢ (r),
icl jeJ
where ¢; and ¢; are polynomials with all roots real and non-negative.

3. Let K (—00,+00) C R4t be the set of all polynomials p(7) of degree at
most d such that p(7) > 0 for all 7 € R. Prove that K, (—o0,+00) is a closed
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convex cone with a compact base and that the polynomials that span the extreme
rays of K (—o0,+00) are

where 6 > 0.

Deduce that every polynomial p which is non-negative on (—oo,+00) can be
represented in the form
p(r)=>_ (),

i€l
where ¢; are polynomials with all real roots.

4. Let d = 2. Draw a picture of the cone of the quadratic polynomials ar? +
br +cin R? = {(a,b,c) : a,b,ce R} that are non-negative on (—oo, +00) in the
axes a,b and ¢, describe the sections of the cone by the planes a = 0, b = 0 and
¢ =0 and find a compact base of the cone.

Figure 21. The cone of non-negative polynomials ar> +br + ¢ (a
general view)

5*. Prove that every polynomial p(7) of degree 2k such that p(r) > 0 for all
7 € R admits a unique representation of the form

k k—1

p(r) =6 [[(r =) +7 [[r )2

i=1 i=1
where 6,7y >0and 7 <7{ < To <7y < ... < Tp—1 < T},_; < Tg.

In particular, every non-negative polynomial is the sum of only two squares of
polynomials.

Remark: See Chapter VI, Section 8 of [KS66].
For Problems 6-8 see Section 6.3 of [BC98] and [R00].

6* (Hilbert’s Theorem). Let p(x,y,z) be a homogeneous polynomial of degree
4 in three real variables such that p(z,y,2) > 0 for all real x,y and z. Prove that
p can be written as a sum of squares of quadratic forms in z,y and z.
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7* (T. Motzkin). Let

p(x,y, 2) = 2'y? + 22y + 20 — 322222

Prove that p(z,y,z) > 0 for all real z, y and z and yet p cannot be written as a

sum of squares of polynomials.
8* (M.-D. Choi and T.-Y. Lam). Let

p(x,y, z,w) = w* + 2%y? + y?2? + 2%2” — dayzw.

Prove that p(z,y, z,w) > 0 for all real x,y, z and w and yet p cannot be written as
a sum of squares of polynomials.

12. The Cone of Positive Semidefinite Matrices

The cone of positive semidefinite matrices studied in this section is arguably the
most important of all non-polyhedral cones whose facial structure we completely
understand. It is the central object in semidefinite programming (see Section IV.10)
and various questions regarding the moment cone and the cone of non-negative
polynomials can be reduced to positive semidefiniteness of certain matrices (see
Section IV.2).

As usual, we review some linear algebra first.

(12.1) The space of symmetric matrices. An n xn matrix A = (a;;) is called
symmetric, provided a;; = aj; fori,5 =1,... ,n. We identify the vector space Sym,,
of all nxn symmetric matrices A with the Euclidean space R?, where d = n(n+1)/2.
Let A be an n x n symmetric matrix and let U be an n x n orthogonal matrix (that
is, U = U~!). Then U'AU is a symmetric matrix. For every symmetric n x n
matrix A there is an orthogonal matrix U such that U~ AU is a diagonal matrix,
having the eigenvalues of A on the diagonal. The number of non-zero eigenvalues
is equal to the rank of A.

The scalar product of two symmetric matrices A = (a;;) and B = (b;;) is
defined as

<A,B> = Z aijbij.

4,j=1

An important formula for the scalar product is
(A, By = tr(AB) = tr(BA),

where tr is the trace, that is, the sum of all diagonal entries. In particular, it follows
that if U is an n x n orthogonal matrix, then

(U'AU, UT'BU) = (A, B),
since

(U'AU, UT'BU) = tr(U*AUU 'BU) = tr(U'ABU) = tr(AB) = (A, B)
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(we use that tr(C) = tr(U~1CU) for any invertible U). With a symmetric matrix
A = (a;;) we associate the quadratic form g4 : R — R:

n

ga(z) =Y ai;&ig;,

3,J=1

where z = (&1,...,&,) e R™. If x = (&1,...,&,), let us denote by x @ x the n x n
symmetric matrix X = (x;;) where z;; = &§;. Then one can write

ga(z) = (A, ® x).

PROBLEMS.

1°. Prove that the dimension of the space of symmetric n x n matrices is indeed
nin+1)/2.

2°. Prove that > ', a;jb;; = tr(AB), where A = (a;;) and B = (b;;) are
symmetric n X n matrices.

3°. Check that UAU is a symmetric matrix, provided U is any n X n matrix
and A is an n X n symmetric matrix.

Now we define the cone we are interested in.

(12.2) Positive semidefinite matrices. An n x n symmetric matrix A is called
positive semidefinite provided g4 (z) > 0 for all z € R™. An n x n symmetric matrix
A is called positive definite provided A is positive semidefinite and g4 (z) = 0 only
if z = 0. We denote the set of all positive semidefinite n x n symmetric matrices
by S+.

A symmetric matrix is positive semidefinite if and only if all eigenvalues of A
are non-negative and positive definite if and only if all eigenvalues are positive. In
particular, if A is a positive (semi)definite matrix and U is an orthogonal matrix,
then U1 AU is a positive (semi)definite matrix. In other words, for any orthogonal
matrix U, the linear transformation X — U~1XU of Sym,, maps the set S, onto
itself. If A is positive semidefinite, then all diagonal entries are non-negative and
a;; < agiaj; for every pair 1 <i+# j <n.

We recall that X is positive semidefinite of rank X <1 if and only if X can be
written as X = x ® x for some x € R™.

PROBLEMS.

1°. Prove that S C Sym,, is a closed convex cone which does not contain
straight lines.

2°. Prove that A is an interior point of Sy if and only if A is positive definite.

3. Prove that for every two points z,y € int Sy there exists a non-degenerate
linear transformation 7" of Sym,,, such that T'(S;) = 84 and T(z) = y. In other

words, the cone S, is homogeneous. Prove that the cone RY = {(51, 8016 2>0

nr

fori=1,... ,d} is also homogeneous.
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4. Prove that B ={A € Sy : tr(A) =1} is a compact base of S.

5. The space Sym, is identified with R®. Draw a picture of the cone of positive
semidefinite 2 x 2 matrices.

6°. Check that if A is a positive semidefinite 2 X 2 matrix, then aj1,a22 > 0
and a?, < ajags.

We arrive at the main result of this section.

(12.3) Proposition. Let A be an n x n positive semidefinite matriz. Suppose that
rank A = r. If r = n, then A is an interior point of Sy. If r < n, then A is
an interior point of a face F of Sy, where dim F = r(r + 1)/2. There is a rank-
preserving isometry identifying the face F with the cone of positive semidefinite
r X r matrices.

Proof. If rank A = n, then A is positive definite, so the result follows by Problem
2, Section 12.2.

Suppose that rank A = r < n. We will construct a hyperplane H C Sym,,
which contains A and isolates S;. Let A1,..., A, > 0 be the non-zero eigenvalues
of A. Let us find an orthogonal matrix U, such that U~'AU = D, where D =
diag()\l, R N | R 7O). Let C = diag(O, e, 0,1, 1) be the matrix whose
first r diagonal entries are 0 and the last n — r diagonal entries are 1’s, and let
Q=UCU—L

D= .x 9c=

Figure 22. The structure of matrices D and C

Then @ is a non-zero positive semidefinite matrix and
(Q,A) = (Ucu~',Uubu~t) = (C,D) = 0.

Furthermore, for any positive semidefinite n x n matrix X, the matrix Y = U~ XU
is positive semidefinite and

(Q.X)=(UCU—,UYU ™) =(C\Y) >0,
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since the diagonal entries of ¥ must be non-negative. Therefore, the hyperplane
H = {X € Sym, : (Q,X) =0} isolates S; and contains A. Let us describe the
corresponding face

F= {X €S,y (Q,X) :0}.

The map X —— Y = U~'XU is a non-degenerate linear transformation which
maps S; onto itself, maps @ onto C and A onto D. Then the face F is mapped
onto a face F’, containing D and consisting of all positive semidefinite matrices Y’
such that (Y, C) = 0:

F = {YES+: (Y,C) 20}.

Clearly, Y must have the last n — r diagonal entries equal to zero. Since Y is
positive semidefinite, all entries in the last n — r rows and last n — r columns must
be 0 (see Section 12.2). The upper left r x r submatrix of ¥ can be an arbitrary
positive semidefinite matrix.

r

positive

semidefinite

-]

Figure 23. The structure of matrix Y

Thus the face 7' may be identified with the cone of all r xr positive semidefinite
matrices (in particular, dim 7' = (r 4+ 1)r/2) and it is seen that 7’ contains D in
its interior. Since Y = X = UYU ™! is a non-degenerate linear transformation,
which maps D onto A and F’ onto F, we conclude that dim F = r(r +1)/2 and F
contains A in its interior. O

PROBLEMS.

1. Prove that the dimensions of faces F of Sy are 0,1,3,...,r(r+1)/2,....
Prove that if F is a face of S and dim F = r(r 4+ 1)/2, then there is a matrix
A € int F such that rank A = r.

2. Let &4 be the cone of n x n positive semidefinite matrices, let 7 C Si be a
face and let r be a positive integer such that dim F < r(r+1)/2 < n(n+1)/2. Prove
that there is a face ' of S; such that F is a face of 7' and dim F' = r(r 4+ 1)/2.

3. Let us choose positive integers 0 < r < n, let S; be the cone of positive
semidefinite n x n matrices and let So be the cone of positive semidefinite r x r
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matrices. Let F C &1 be a face such that dimF = r(r 4+ 1)/2. Construct an
isometry (that is, a distance-preserving map) So — F.

4. Prove that A € Sy spans an extreme ray of S, if and only if rank A = 1.

Using Proposition 12.3, we get the following nice description of the facial struc-
ture of the cone of positive semidefinite matrices S...

(12.4) Corollary. The faces of S; C Sym,, are parameterized by the subspaces of
R™. For a subspace L C R™, let

Fr, = {Y€S+: LCkerY}.

Then Fr, is a face of S¢ and dim Fr, = r(r + 1)/2, where r = codim L. As L
ranges over all subspaces of codimension r, Fr ranges over all faces of dimension
r(r+1)/2.

Proof. Given a subspace L of codimension 7, let us choose the coordinates so that
L = {(O, U | I SR P ,§n)}. Then Fp consists of the matrices Y depicted in
Figure 23. The supporting hyperplane for Fy is H = {X {C, X)) = 0}, where C
is depicted in Figure 22. If F is a face of S, then F = Fr, where L = ker A and
A is a matrix in the interior of F. O

Figure 24. The correspondence between subspaces of R™ and faces of
Sy forn =2

PROBLEM.

1. Let Ly and Ly be subspaces of R™. Prove that Fr,, is a face of Fr, if and
only if Ly C Ly.

Problem 1 asserts that the face lattice of the cone of n x n positive semidefinite
matrices is (anti)isomorphic to the lattice of all subspaces of R™.
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13. Linear Equations in Positive Semidefinite Matrices

In the next three sections we discuss various applications of the results of Section 12.
We will be dealing with systems of linear equations in matrices and it is convenient
to adopt some notation. To express that X is positive semidefinite, instead of
writing X € Sy, we write X > 0. To express that X is positive definite, we
write X > 0. Proposition 12.3 has an interesting implication: if a system of linear
equations in positive semidefinite matrices has a solution, it has a solution of a
small rank.

(13.1) Proposition. Let A C Sym,, be an affine subspace such that the intersec-
tion S; N A is non-empty and codim A < (r + 2)(r + 1)/2 for some non-negative
integer r. Then there is a matrix X € S; N A such that rank X <.

Equivalently, let us fix k symmetric n X n matrices Ay, ... , A and k real num-
bers aq, ... ,a. If there is a matriz X > 0 such that

(A, X) =a; for i=1,... k,
then there is a matriz Xog = 0 such that

(A, Xo) =y for i=1,... )k
and, additionally

V8k+1-—1
rank Xy < L%J

Proof. To see that the second statement is indeed equivalent to the first one, let
A= {XGSymn: (A, X) =a; for i=1,... ,k}

be the affine subspace of symmetric n x n matrices which satisfy the given k£ matrix
equations. Then codim A < k and k < (r+2)(r 4+ 1)/2 if and only if

r<{\/m—1J
S|l )

We prove the first statement. Let K = S N A. The set K is non-empty, closed
and does not contain straight lines (cf. Problem 1 of Section 12.2). Therefore, by
Lemma 3.5, K contains an extreme point Xj.

Suppose that rank Xy = m. Then, by Proposition 12.3, X, must be an interior
point of a face F of Sy of dimension m(m+1)/2. We observe that Xy is an interior
point of the intersection F N A. Since Xy is an extreme point, we must have
dim(F N A) = 0, which implies that codim.A > dim F, so codim A > m(m + 1)/2.
Hence m < r and the proof follows. O

Here is an immediate consequence for systems of two matrix equations:
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(13.2) Corollary. Let us fix two symmetric nxn matrices A = (a;;) and B = (b;;)
and two real numbers « and 8. The system of two quadratic equations

n n
> ai&&g=a and Y bi&& =B
i,j=1 i,5=1
has a real solution x = (&1,...,&,) if and only if the system of two linear matriz

equations

(A, X)=a and (B,X)=p
has a positive semidefinite solution X = 0.

Proof. Let z = (&1,...,&,) be a solution to the system of quadratic equations.
Let us define X = (z;;) by x;; = &&;. Then X is a positive semidefinite matrix
and (A, X) =« and (B, X) = 0.

On the other hand, suppose there is a solution X > 0 to the system of equations
(A, X) = «a and (B, X) = 5. Proposition 13.1 implies that there is a solution such
that rank X <1 (substitute k = 2 in the formula). Then X = (z,;) can be written
as x;; = §;&; for some set of numbers &1, ... ,&,. Thenz = (&,...,&,) is a solution
to the system of quadratic equations. O

The following corollary is an example of a hidden convezity result: the image
of a (possibly non-convex) set under a (possibly non-linear) map turns out to be
convex with “no obvious reason”. One (hidden) reason why this might happen is
that the image in question coincides with the image of some convex set under some
linear transformation.

(13.3) Corollary. Let q1,q2 : R® — R be quadratic forms. Consider the map
¢ R" — R?, ¢(z) = (q1(x),q2(z)). Then the image $(R™) is a convex cone in
R2.

Proof. Let A = (a;;) be the matrix of ¢; and let B = (b;;) be the matrix of gz, so

n

q(r) = Z ;&€ and  go(x) = Z bij&&;

i,j=1 t,5=1

for x = (&,...,&,). By Corollary 13.2; the image ¢(R™) can be viewed as the
image of the convex cone Sy of positive semidefinite matrices under the linear
transformation X — ({4, X), (B, X)) and hence is a convex cone. O

This result is due to L.L. Dines (1941).
PROBLEMS.

1°. Construct an example of a system of three quadratic equations

n n

Z a;;6:i&; = a, Z bi;6:& = B, Z ci;&& =y

i,7=1 i,7=1 i,5=1
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which does not have a solution (1, ... , &), but such that the corresponding system
of linear matrix equations

<A7X>:O‘7 (B, X)=8, (C,X)=yvy

has a positive semidefinite solution X > 0.
2°. Check that X = (z;;) has the form z;; = ¢, if and only if rank X <1 and
X is positive semidefinite.

3 (C-K. Li and B-S. Tam). Let Ay,..., A be n x n symmetric matrices and
let aq,...,ar be real numbers. Let

K:{Xzo; (A, X) = ay, z:lk;}

Suppose that X € K and that rank X = r. Let us decompose X = QQ?, where
Q@ is an n X r matrix of rank r. Prove that the dimension of the smallest face of
K containing X is equal to the codimension of span(Q'4:Q,...,Q"4,Q) in the
space of r X r symmetric matrices.

Remark: See Theorem 31.5.3 of [DL97].

4. Prove the following strengthening of Corollary 13.2. Let us fix two symmetric
n x n matrices A = (a;;) and B = (b;;) and three real numbers «, § and 7. The
system of two quadratic equations

n

Z a;i;&€ = a  and Z bij&i&5 = B

i,j=1 i,5=1

has a real solution z = (&1,. .. ,&,) such that Y /-, £&# < v if and only if the system
of two linear matrix equations

(A, X)=a and (B,X)=p

has a positive semidefinite solution X = 0 such that tr(X) < ~.

5. Prove the following strengthening of Corollary 13.3. Let ¢1,¢2 : R — R
be quadratic forms. Consider the map ¢ : R® — R2, ¢(x) = (q1 (), qg(:c)). Then
the image ¢(B) of the unit ball B = {z : [|z|| <1} is a compact convex set in R2,

In general, as we will see shortly, the bound of Proposition 13.1 is the best
possible. However, there is one special case where it can be sharpened.

(13.4) Proposition. Let A C Sym,, be an affine subspace such that the intersec-
tion Sy N A is non-empty and bounded. Suppose that codim A = (r 4+ 2)(r +1)/2
for some positive r > 0 and that n > r + 2. Then there is a matric X € St N A
such that rank X < r.

Equivalently, for some r > 0, let us fix k = (r + 2)(r + 1)/2 symmetric n x n
matrices Aq, ..., A where n > r+ 2 and k real numbers o, ... ,ay. If there is a
solution X > 0 to the system

(A, Xy =«a; for i=1,...k
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and the set of all such solutions is bounded, then there is a matriz Xo = 0 such that
<Ai,X0>:OZi fO?” Z:].,,k

and, additionally
rank X < r.

The proof requires some algebraic topology. Below, we explicitly state what we
need.

(13.5) Topological Fact. Let us consider the set RP"™' of all straight lines
in R™ passing through the origin. We make RP"™' a metric space by letting the
distance d(ly,1l3) between two lines be the angle between Iy and ly. Let sn-l =

{@ : ||z| = 1} be the unit sphere in R™. Then, for n > 2 there is no continuous
map ¢ : S*1 — RP" such that ¢(z) # ¢(y) for every pair of distinct points
x,y €SP

The space RP" ™! is called the projective space. It is an (n — 1)-dimensional
compact connected manifold without boundary. The fact follows from the observa-
tion that RP" ! and S”~! are not homeomorphic for n > 2 and from the Invariance
of Domain Theorem which implies that such an embedding ¢ : "' — RP"*
would have been a homeomorphism (see, for example, Chapter III, Section 6 of
[Mag0]).

PROBLEM.

1. Construct a continuous map ¢ : S* — RP* such that ¢(z) # ¢(y) for every
pair of distinct points x,y € S'. That is, S' and RP' are homeomorphic.

Proposition 13.4 will be deduced from the following special case.

(13.6) Lemma. Let r > 0 and let A C Sym, 5 be an affine subspace such that
dimA = r + 2, d.e, codimA = (r + 2)(r + 1)/2. Suppose that the intersection
ANS, is non-empty and bounded. Then there is a matrizc X € Sy N A such that
rank X <r.

Proof. Suppose that ANintSy = (). Problem 1 of Section 2.9 implies that A lies
in the support hyperplane of a proper face F of S;. By Proposition 12.3, the face
F can be identified with the cone of positive semidefinite matrices of a smaller rank
s < r+ 2. Now the result follows from Proposition 13.1

Hence we may assume that A NintS. # 0. Let B = AN S;. Then B is
an (r 4+ 2)-dimensional convex compact set. We are going to prove that for some
matrix Xy € 0B one has rank Xy < r. Let us suppose this is not so and obtain
a contradiction. For every X € OB we must have rank X < r + 2 (cf. Problem
2 of Section 12.2). Assuming that rank X > r, we conclude that we must have
rank X = r + 1 for every X € 9B. Therefore, for every X € 0B, the set ker X
is a straight line passing through the origin in R"*2. Let us construct a map
¢ : ST — RP"! as follows. We consider S"t! to be centered at a point o € int B.
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For every y € S"*1, the ray [0, y) intersects OB at a single matrix X (y) (we use the
fact that B is compact and Lemma 2.2). Let ¢(y) = ker X (y).

X(y)

Figure 25. The map ¢

Note that ¢ is a continuous map. Since r > 0, by using (13.5), we conclude
that there must be two distinct points y, z € S™*! such that ¢(x) = ¢(y). In other
words, there will be two distinct matrices Y and Z in 9B such that ker Y = ker Z.
Using Corollary 12.4, we conclude that Y and Z lie in the same face Fr of Sy,
where L C R™t! is a straight line. Hence, by Proposition 12.3 and Corollary 12.4,
the interior of Fr, consists of matrices of rank r+1. We draw the straight line (Y Z)
through Y and Z; see Figure 26.

Figure 26

Since A is an affine subspace, (YZ) C A. Since B is bounded, the line (Y'Z)
intersects OF at some point X. We must have rank X < r. Clearly, X € AN S,.
O

Now we are ready to prove Proposition 13.4.
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Proof of Proposition 13.4. By Proposition 13.1, there is a matrix Y € ANS
such that rankY < r + 1. Let us choose a linear subspace L C R™ such that
L C kerY and codim L = r + 2 and let F, be the corresponding face of Sy (see
Corollary 12.4). Hence Y € Fy, and, therefore, 71, N A # (). Since there is a rank-
preserving isometry between Fy, and the cone of positive semidefinite (r+2) x (r+2)
matrices, the proof follows by Lemma 13.6. O

PROBLEMS.

1. Show by examples that in Proposition 13.4 none of the conditions: S, N.A
is bounded, r > 0 and n > r + 2 can be dropped.

2°. Let g : R® — R be quadratic forms with matrices Ay = (aijx), k =

1,...,m, so
n
(@)= Y il for z=(&,... &)
i,j=1
Let ax: k = 1,...,m be real numbers. Suppose that the system of quadratic
equations qi(z) = ay for k = 1,...,m has a solution z € R"™. Prove that there

exists a positive semidefinite n x n matrix X such that (Ag, X) = «a for k =
1 ,m and such that rank X < 1.

3. Let A = (a;;), B = (b;;) and C = (¢;;) be n x n symmetric matrices, where
n > 3, and let «,  and y be real numbers. Suppose that the system of linear matrix
equations

P

(A X)=a, (B,X)=p and (C,X)=x

has a positive semidefinite solution X > 0. Suppose further that for some numbers
71, T2 and 73 the linear combination 71 A + 7B + 73C is (strictly) positive definite.
Prove that there exists a solution x € R™ to the system of quadratic equations

@(z)=a, @)= and g3(z)=",

where

q(r) = Z i€y, q2(x) = Z bij&&; and  g3(x) = Z ci;&i;
ij=1 ij=1 ij=1

for == (&,...,&)

are the corresponding quadratic forms.
The last problem requires some probability theory.

4. Let qx : R™ — R be quadratic forms with matrices A, and let ay be real
numbers as in Problem 2 above. Suppose that there exists a positive semidefinite
matrix X such that (A, X) = ai for k =1,... ;m. Let T be a matrix such that
TT* = X and let us consider a probability distribution of a vector y in R™ such
that E (y) =0 and E (y ® y) = I, where I is the identity matrix. Let z = Ty, so
 is a random variable. Prove that E (qx(2)) = oy, for k=1,... ,m.
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Remark: Thus the existence of a positive semidefinite solution X to a system
of linear matrix equations (Ay, X) = ap can be interpreted as the existence of
a probability measure for the vector x of variables in the corresponding system
qr(z) = ay, of quadratic equations, such that the expected value of every quadratic
form gg(x) is equal to the right-hand side «. This observation gives rise to a
method of finding an approximate solution to the system of quadratic equations:
an appropriate probability measure in R™ is constructed and a vector z is sampled
at random. This is the idea of randomized rounding; see [MR95]. We develop this
method in Sections V.5-6.

14. Applications: Quadratic Convexity Theorems

In this section, we continue our study of hidden quadratic convexity results initi-
ated by Corollary 13.3. The following result was proved by L. Brickman [Bré1].
Brickman’s original proof is sketched in Problem 6 below. We use Proposition 13.4
as our main tool.

(14.1) Theorem. Let n > 2 and let S*™* = {z € R" : ||z = 1} be the unit
sphere. Let qi,q2 : R® — R be quadratic forms and let ¢ : R* — R? be the
corresponding quadratic map, ¢(x) = (ql(x), qg(x)). Then the image ¢(S"~1) C R?
18 a convex set.

Proof. Let A = (a;;) be the matrix of ¢; and let B = (b;;) be the matrix of g2, so

n

q(z) =Y a;&& and go(x) = Y by&s for z=(&,... &)

i,7=1 i,7=1

Let B={X = 0: tr(X) = 1}. Clearly, B C Sym, is a convex set. Let us define
a linear transformation 1 : Sym, — R? by (X) = ((A,X}, <B,X>). Clearly,
1 (B) C R? is a convex set.

We claim that ¢(S"~1) = ¥(B). Indeed, if (o, ) € ¢(S* 1), then there is a
vector € R™ such that ¢;(z) = a, ¢2(x) = f and ||z|| = 1. Let us define X = (z;;)
by z;; = &&; fori,j =1,... ,n. Then X € B and ¢(X) = («, ). Conversely, let
(ar, B) € ¥(B) be a point. Then there exists an X > 0 such that

(14.1.1) (A, X)=qa, (B,X)=p8 and tr(X)=1.

We observe that the set of solutions X > 0 to the system (14.1.1) of three linear
equations is non-empty and bounded (cf. Problem 4, Section 12.2). Applying
Proposition 13.4 with » = 1, we conclude that there is a matrix Xy = 0 satisfying
(14.1.1) and such that rank Xy < 1. Such a matrix can be written in the form
Xo = (xij), xij = &€, for some vector x = (&1, ... ,&,). We have ||z|| = tr(Xo) =1,
q1(z) = a and qz(z) = 3. Hence (a, 8) € ¢(S"71). O

PROBLEMS.
1°. Show that Theorem 14.1 does not hold for n = 2.
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2. Show that for any n > 1 one can find three quadratic forms ¢, q2,q3 :
R"™ — R such that if ¢ : R® — R3 is the corresponding quadratic map = —
(q1 (z), qg(m),qg(az)), then the image ¢(S™~!) C R? is not convex.

3. Deduce Corollary 13.3 from Theorem 14.1.

4. Deduce the result of Problem 5, Section 13.3 from Theorem 14.1.

5. Let ¢1,¢2,q3 : R — R, n > 3, be quadratic forms and let ¢ : R*» — R3
be the corresponding quadratic map, ¢(z) = (q1 (), q2(x), qg(x)). Suppose that for
some numbers aq, ap and ag, the form ¢ = a1q; + asqa + asqs is (strictly) positive
definite. Prove that the image ¢(R™) is a convex cone in R3.

6. Find a different proof of Theorem 14.1 along the following lines. First, show
that it would suffice to prove Theorem 14.1 for n = 3. Next, observe that to prove
that ¢(S?) is convex, it suffices to prove that the intersection of ¢(S?) with every
straight line | C R2, [ = {(ﬁ, n):al+pPn= fy}, is connected. Now, let ¢ = aqy + (¢
and prove that ¢(S*) N1 is the image of the set {x € S? : ¢(x) = v}, which consists
of at most two connected components (circles) symmetric about the origin.

¢

Figure 27

Given an n x n complex matrix A = (a;;), the set R(A) C C in the complex

plane
n

RA) ={ Y ayGl;: 1P+ 416l =1}

ij=1

is called the numerical range of A. Results of O. Toeplitz (1918) and F. Hausdorff
(1919) establish convexity of the numerical range.

(14.2) Corollary (Toeplitz-Hausdorff Theorem). The numerical range of a
matrix is a convex set in the complex plane.
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Proof. For n =1 the numerical range is just a point a;; € C. For n > 1, the set
of n-tuples ({1, ... ,(,) of complex numbers (x = & + ing, kK = 1,... ,n, such that
|12 + ... 4+ |¢a]? = 1 can be identified with the (2n — 1)-dimensional sphere

st = {(§1,7717§277727~-~ +&ns ) kZ::lfi +;ni = 1}-

The proof now follows from Theorem 14.1 since the numerical range can be viewed
as the image of S*"~1 under a quadratic map ¢ : S**~! — R2? = C. O

A theory parallel to that of Sections 12-13 for real symmetric matrices can be
developed for complex Hermitian matrices and even for quaternionic Hermitian ma-
trices. The corresponding results in the complex case are sketched in the problems
below.

PROBLEMS.

1°. An n x n complex matrix A = (a;;) is called Hermitian provided a;; = @j;
for all 1 < 4,5 < n. Prove that all n x n Hermitian matrices form a real vector
space Her,, of dimension n? with the scalar product (A, B) = szzl aijbij. Prove
that (U*AU,U*BU) = (A, B) for any two Hermitian matrices A and B and any

unitary matrix U, where * denotes the conjugate matrix.

2. A Hermitian matrix A = (a;;) is called positive semidefinite provided
EZFI a;;Gi¢; > 0 for all n-tuples z = ((1,...,¢y) of complex numbers. Let
H C Her, be the set of all positive semidefinite Hermitian n x n matrices. Prove
that H is a closed convex n?-dimensional cone with a compact base consisting of
positive semidefinite matrices of trace 1. Draw a picture of the base of the cone for
n = 2 (it is a 3-dimensional object).

3. Let A be an n x n positive semidefinite Hermitian matrix. Suppose that
rank A = r. Prove that A is an interior point of a face F of H ., where dim F = r2.
Prove that there is a rank-preserving isometry identifying face F with the cone
of positive semidefinite r x r Hermitian matrices. Prove that the faces of H are
parameterized by complex linear subspaces L C C™:

Fr={Ae€H,;: LCkerA}.

4. Let us fix a number » > 0, a number k < 72 + 2r and a number n > r.
Let Aq,...,Ar be n x n Hermitian matrices and let «, ... ,ar be real numbers.
Suppose that there is a positive semidefinite solution X € Her,, to the system of
equations (A4;, X) = a; for i = 1,... , k. Prove that there is a positive semidefinite
solution Xy to the above system such that rank Xy < r.

5. Let us fix a number r > 1, let k = (r+1)? and let n > r+2. Let Ay,..., Ay
be n xn Hermitian matrices and let s, . .. , i be real numbers. Suppose that there
is a positive semidefinite solution X € Her,, to the system of equations (4;, X) = o
for i =1,...,k and that the set of all such solutions is bounded. Prove that there
is a positive semidefinite solution Xy to the above system such that rank Xy < r.
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6. Let A = (a;5), B = (b;j) and C = (c¢;5) be nxn complex Hermitian matrices,
where n > 3 and let ¢1, g2, ¢q3 : C" — R be the corresponding Hermitian forms:

(z) =Y GG, qz)= > ;GG and gs(2) = D ;GG
ij=1 ij=1 ij=1

for z=1((1,...,C).
Let ¢ : C* — R® be the map ¢(2) = (¢1(2), ¢2(2), ¢3(2)) and let

1 = (G GBI =1)
=1

be the unit sphere. Prove that the image qS(SQ”*l) is a convex set in R3.

Finally, let us describe the convex hull of a general quadratic image of the
sphere. The following result was obtained by Y.H. Au-Yeung and Y.T. Poon
[APT79].

(14.3) Theorem. Let us fix a number r > 1, a number k < (r 4+ 2)(r + 1)/2
and a number n > r+ 2. Let q1,...,qr : R" — R be quadratic forms and let
# : R® — R¥ be the corresponding quadratic map, ¢(v) = (q1 (x),... ,qk(a:)). Let
St ={z e R": ||z|| = 1} be the unit sphere. Then every point of conv(¢(S"~1))
can be represented as a convex combination of v (not necessarily distinct) points

from ¢(S™71).

Proof. The proof is parallel to that of Theorem 14.1. Let y = (n1,...,m%) be a
point from the convex hull of ¢(S"~!). Hence we can write y = ayd(x1) + ... +
Qm@(z,,) for some points x1,... 2, € S"~! and some non-negative o; such that
>t a; = 1. Let A; be the matrix of ¢; for i = 1,... , k and let

X = Zal(azl ®J3i),
i=1
where z ® « is the matrix (&;¢;) for = (&1,...,&,). Then X > 0 and
(14.3.1) (A;, X)=m; for i=1,...,k and tr(X)=1

Hence the set of all positive semidefinite matrices X satisfying (14.3.1) is non-empty
and bounded. Applying Proposition 13.4, we conclude that there exists a solution
Xo = 0 of (14.3.1) such that rank Xy < r. Such a matrix X, can be decomposed
as Xo = >y Bi(ui ® u;), where u; € S"7!, B; are non-negative numbers for
i=1,...,rand >|_, 8 = 1. It follows from (14.3.1) that

y=>_ Bid(u;)
=1

and the proof follows. O
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PROBLEMS.

1°. Deduce Theorem 14.1 from Theorem 14.3.

2. Let A = (aij), B = (bij); C = (Cij)7 D= (d”) and F = (eij) be n x n real
symmetric matrices. Consider the quadratic map ¢ : C* — RS, where

n n n

Gy o) <Z ai;Gij, Z biiCiGj Z ¢ijCiGjs Z G5, Z eijCiC_j)

ij=1 ij=1 ij=1 ij=1 ij=1
Let
n
s = {(G, G eCts Yl =1)
k=1

be the sphere. Prove that the image ¢(S*"~1) is a convex set in R>.

3. Let us fix a number » > 1. Let S~ C R” be the unit sphere, n > r+2. Let
us fix a Borel measure y in S*~1 such that u(S"~!) < oo and a subspace L in the
space of quadratic forms ¢ : R™ — R such that dim L < (r+1)(r+2)/2—1. Prove

that there exist 7 points x1,... ,z, € S*"! and r non-negative numbers A, ..., \,
such that
T
fdu= Z/\zf(a:,) for any f € L.
sn—1 ‘
i=1
4°. Let q1,...,qr : R® — R be quadratic forms whose matrices are diagonal.

Let ¢ : R® — R¥ be the corresponding quadratic map. Prove that ¢(S"~!) is a
convex set in R¥,

5*. Let us call a symmetric matrix A = (a;;) r-diagonal if a;; = 0 unless
i —j| < r. Let q1,...,qx : R — R be quadratic forms whose matrices are
r-diagonal matrices and let ¢ : R” — RF be the corresponding quadratic map,
¢(z) = (a(x),... ,qe(z)). Let B = {x € R" : ||z[| < 1} be the unit ball in R™.
Prove that every point from conv(¢(B)) is a convex combination of some 7 points
from ¢(B).

Hint: Cf. Problem 3 of Section I1V.10.3.

6*. In Problem 5 above, is it true that every point from conv(¢(S"™1)) is a
convex combination of some r points from ¢(S"~!) if n is sufficiently large?

7. Let q1,...,qx : C* — R be Hermitian forms whose matrices are real
and 2-diagonal. Let ¢ : C* — R* be the corresponding quadratic map and let
B = {(Q, ) G < 1} be the unit ball in C". Deduce from Problem

4 that the image ¢(B) is a convex set in R¥.

8*. Prove the following result of S. Friedland and R. Loewy [FL76|, which
is essentially equivalent to Proposition 13.4: suppose that 2 < r < n — 1. Let
L C Sym,, be a subspace in the space of symmetric matrices such that dimL >
(r—1)(2n—r+2)/2. Then L contains a non-zero matrix whose largest eigenvalue
is at least of multiplicity r.

9*. Prove the following result of F. Bohnenblust (see [FL76]), which is es-
sentially equivalent to Proposition 13.4. Suppose that » > 0 and that n > r + 2.
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94 II. Faces and Extreme Points

Let L be a subspace in the space of quadratic forms ¢ : R® — R such that
dimL < (r+2)(r+1)/2 — 1. Suppose that the following condition is satisfied:
whenever for some vectors x1,...,x, € R™ one has

r

ZCI(%) =0 forall gelL,
i=1

one must have z; = 0 for i = 1,...,r. Then L contains a positive definite form.

15. Applications: Problems of Graph Realizability

We discuss further applications of our results regarding linear equations in positive
semidefinite matrices. They allow us to visualize the rank restrictions of Proposi-
tions 13.1 and 13.4.

Once again, we review some linear algebra first.

(15.1) Some linear algebra: Gram matrices. Let v1,... ,v, be vectors in RZ.
Let us define an n x n matrix X = (x;;) by z;; = (v;,v;) (we consider the usual
scalar product in R?). Matrix X is called the Gram matriz of vectors vy, ... ,v,.
It is known that X is positive semidefinite and that rank X < d; in fact, rank X
is the dimension of span(vy, ... ,v,). Conversely, if X is a positive definite matrix
such that rank X < d, then X is the Gram matrix of some n vectors vy,...,v, in
Rdl Tij = <’Uz‘,’Uj>.

Now we state the problem.

(15.2) The graph realization problem. Suppose we are given an (undirected)
weighted graph G = (V, E;p), where V. = {v1,... ,v,} is the set of vertices, E
is the set of edges and p : E — R, is a function, which assigns to every edge
(1,7) € E a non-negative number (“length”) p;;. We say that G is d-realizable if
one can place the vertices vy, ..., v, in R? in such a way that ||v; — v;|| = p;; for
every edge (i,7) € E. We say that G is realizable if it is d-realizable for some d. The
most intuitive case is 3-realizability: some problems of robotics (“linkages”) and
computational chemistry (“molecules”) lead to problems of 3-realizability of certain
graphs; see [CH88]. Questions of d-realizability for the smallest possible d turn
out to be relevant to problems in statistics, archaeology, genetics and geography.
We will consider this problem again in Section V.6.

PROBLEMS.
Some classical problems of the field:

1* (The “cycloheptane problem”). Prove that one can place seven points
v1,...,vr in R3 in such a way that ||v; —vs|| = |Jva —v3|| = ... = |lve — v7|| = |Jv7 —
vif| = Tand |lvy —vs|| = [loz—vsll = ... = |lvs =7 = [lor —vg]| = [lv2—vr]| = \/8/3.

Remark: The constants 1 and \/8/73 are chosen in such a way that the angles
between consecutive intervals v;_1,v; and v;, v;41 are equal to arccos(—l / 3), that
is, to the angle between two intervals connecting vertices of a regular tetrahedron
with its center; see Figure 28.
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7 v " P!
v v,

Figure 28

2*. Prove that every such configuration of seven points in R? has one degree
of freedom (modulo rigid motions).

Remark: Apparently, it is very difficult to prove that, modulo rigid motions,
there are exactly two connected components in the configuration space.

3* (The “cyclohexane problem”). Prove that one can place six points vy, ... , vg
in R? in such a way that |Jv; — va]| = |lva —v3| = ... = |lvs — vg|| = |Jvg —v1]| = 1
and [jv1 — vsl| = [Jvz —vaf| = ... = [Joa — v = [Jor — vs]| = [Jvz — vl = \/8/3.

4*. Prove that there are two such configurations of six points, one of which has
one degree of freedom (modulo rigid motions) and the other is rigid.

5*. Consider the X set of all configurations of five points vy, ... ,vs in R? such
that [[v1 — val = [lvz — vsl| = |lvs — vall = [[va — vs| = [lvs — v1]| = 1. Thus
X can be viewed as a subset of (R2)5 = R'9. We observe that if € X and g
is an orientation-preserving isometry of R?, then g(z) € X. Let Y be the factor
space of X modulo all orientation-preserving isometries of R2. Prove that Y is a
2-dimensional manifold homeomorphic to the sphere with four handles.

An easy problem.

6°. Prove that if a weighted graph with n vertices is realizable, it is (n — 1)-
realizable.

Let us relate the problem of graph realizability to linear equations in positive
semidefinite matrices.
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96 II. Faces and Extreme Points

(15.3) A straightforward reformulation. Let v1,... v, be a realization of the
graph in R and let X = (z;;), z;; = (v;,v;) be the Gram matrix of vy,...,v,.
Then X > 0 and for any edge e = (4, j) of G, we have

pi; = llvi = v511? = (vi,vi) = 2(vi, v5) + (vj,v5) = Tii — 235 + 55

Hence we conclude that the problem of realizability of G is equivalent to the fol-
lowing problem:
Is there an n x n matrix X = (x;;) such that X > 0 and
@i — 25 + Tj5 = Py
for every edge (i,7) € E?

The problem of d-realizability is equivalent to the above problem with one

additional constraint:
rank X <d.

It turns out that if d is large enough, realizability is equivalent to d-realizability.
(15.4) Proposition. Suppose that the number k of edges of G satisfies the in-
equality k < (d+2)(d+ 1)/2. Then G is d-realizable if and only if it is realizable.
In particular, if k <9, the graph is realizable if and only if it is 3-realizable.
Proof. By Proposition 13.1, if the system of linear matrix equations

Tii — 2.731']‘ + x5 = p?j : (Z,j) cFk
has a positive semidefinite solution X = (z;;), it has a positive semidefinite solution
Xy, such that additionally, rank Xy < d. O

PROBLEMS.

1. Let G be the complete graph with d+ 2 vertices (and (d+2)(d+1)/2 edges)
such that the length of every edge (v;,v;) is 1. Prove that G is realizable but not
d-realizable.

Figure 29. The complete graph with five vertices. If every edge is to
have the unit length, the graph is 4-realizable but not 3-realizable.
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2. Suppose that G is a cycle v — vy — ... — v, — v; With some weights on the
edges. Prove that G is realizable if and only if it is 2-realizable.

3*. Suppose that G has n vertices vy, ... ,v, and 2n edges: (v1,v2), (va,v3),. ..,
('Unfl,’l)n),(’Un,’Ul) and (Ul,Ug),(UQ,U4),... ) ('Unfg,’l}n),(’Unfl,'l)l)7('l)n7’l)2) with

some weights on the edges. Is it true that if G is realizable, it is 4-realizable?

4* (M. Bakonyi and C.R. Johnson). A graph G = (V,E) is called chordal
provided for any cycle v; — vy — ... — v —v1, where k > 4, there is a chord v; —v;,
where 1 < i < j < k. A subset K C V is called a clique if every two vertices
from K are connected by an edge. Prove that G is chordal if and only if it has the
following property:

for any choice of weights on the edges, the graph is realizable provided every
clique is realizable.

Remark: See Section 31.4 of [DL97].

5. Suppose that we want to place six points vy, ... ,vs in R¢ with prescribed
distances [[vy — val|, [lvz — s, [[vs — vall, flva — vs]], |lvs — ve|l and [ve — v1]| and
prescribed angles between the pairs of opposite edges: (v1,v2) and (v4,vs), (ve, v3)
and (vs,ve) and (vs, v4) and (ve,vy); see Figure 30.

V1

a=
NS}

v
prescribed length 4 \_/

prescribed angle

Figure 30

Prove that if such a placement exists for some d, it exists for d = 3.

Problem 1 of Section 15.4 shows that the bounds of Proposition 15.4 (and
hence the bounds of Proposition 13.1) are the best possible. It turns out, however,
that the graph of Problem 1 is the only graph with (d 4+ 2)(d + 1)/2 edges which
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98 II. Faces and Extreme Points

is realizable, but not d-realizable. To see that, we need to refine our reduction
of the realizability question to systems of linear equations in positive semidefinite
matrices.

(15.5) The economical reformulation. Let vy,...,v, be a realization of the
graph G = (V, E) with n vertices in R, We can always assume that v,, = 0. Let
X = (z;;) be the (n — 1) x (n — 1) Gram matrix of the vectors vi,... ,v,—1. Then
X » 0 and we have the following affine constraints:

xy = p2, if (i,n) is an edge and
(15.5.1)

Ty — 2% + x5 = pfj if (i,7) is an edge and 1 <i,j <n — 1.

Hence we conclude that the problem of realizability of G is equivalent to the fol-
lowing problem:

is there an (n — 1) X (n — 1) matrix X = (x;;) such that X > 0 and X satisfies
(15.5.1)7

The problem of d-realizability is equivalent to the above problem with one
additional constraint:
rank X < d.

(15.6) Proposition. Suppose that G has k = (d+2)(d+1)/2 edges and that G is
not a union of a complete graph with d+ 2 vertices and 0 or more isolated vertices.
Then G 1is d-realizable if and only if it is realizable.

Proof. Since G is d-realizable if and only if its connected components are realizable,
without loss of generality we may assume that G is connected. Since G is not a
complete graph, we must have n > d + 3, and so n —1 > d + 2. Now we use
Proposition 13.4. We claim that the set of positive semidefinite solutions X to
the system 15.5.1 is bounded. Indeed, since G is connected, each vertex v; can be
connected to v, by a path. Since v, is fixed at 0, the length of ||v;|| = /xy is
bounded by the length of the path. In particular, \/x;; is bounded by the sum of
all p;;. Therefore, the set of feasible matrices X > 0 is bounded (cf. Section 12.2).
Hence the proof follows by Proposition 13.4. O

PROBLEMS.

1. Let G be a graph with n > d+ 2 vertices consisting of a complete graph with
d + 2 vertices and n — d — 2 isolated vertices. Let us assign length 1 to every edge.
Prove that G is realizable, but not d-realizable. Letting n = d + 2, deduce that the
condition n > d + 2 in Proposition 13.4 cannot be dropped. Letting n > d + 2,
deduce that the condition of boundedness in Proposition 13.4 cannot be dropped
either.

2. Given a graph G = (V, E) with |V| = n vertices and k = |E| edges and
a number d, let us consider the following rigidity map ¢ : R"* — RF. A point
x from R™ = R? x ... x R? is interpreted as an n-tuple of d vectors (vq,... ,v,)
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and ¢(z) is the k-tuple of squared distances ||v; — vj||?, where (i, j) runs over all
edges of G. Let S*! be the unit sphere in R"®. Prove that if n > d + 3 and
k < (d+2)(d+1)/2, then the image ¢(S"¥~!) is a convex set in R*.

3. In Problem 5 of Section 15.4, suppose we want to place vy,... ,vg so that
additionally we have Z?:l |lvil|> = 1. Prove that such a placement exists if and
only if it exists for d = 3.

16. Closed Convex Sets

We conclude the chapter by discussing some general structural properties of closed
convex sets in RZ.

Let us define a ray as a set R of points of the type
R = {v+7'u: 7'20},

where v and u are given points in R? and u # 0. We say that R emanates from
v in the direction of u. In Section 8, we define rays as emanating from the origin
only. Our current extended definition should not lead to confusion since the starting
point of any ray under consideration will be clear from the context.

We show that if a closed convex set contains a ray, the ray “replicates” itself
all over the set. Our proof works equally well for infinite-dimensional spaces.

(16.1) Lemma. Let A C R? be a closed convex set which contains a ray. Then
there exists a closed convex cone K C R?, called the recession cone of A, such that
for every point a € A, the union of all rays that emanate from a and are contained
in A is the translation a + K.

Proof. Without loss of generality, we assume that 0 € A. First, we prove that the
union K of all rays that emanate from 0 and are contained in A, if non-empty, is a
closed convex cone in R%. Indeed, suppose that R; and Ry are two rays emanating
from 0 and contained in A. Let us choose a point x € R; and a point y € Rs.
Hence 7o € Ry C A and 7y € Ry C A for all 7 > 0. Let z = axz + Sy for some
a,B > 0. If z=0, then obviously z € K. If 2 # 0, then let y = a+ 8 > 0 and
for any 7 > 0 we have that 72 = a(72) + B(1y) = (ay V) (yrz) + (By Y (y7y) is a
convex combination of points from A. Hence 7z € A and the ray emanating from
the origin in the direction of z is contained in A. Hence K is a convex cone (we did
not use yet that A is closed).

Let us prove that K is closed, or, equivalently, that the complement R\ K is
open. Let u € R?\ K be a point. The ray in the direction of u is not contained
in A and hence there is a point w = 7u for some 7 > 0 such that w ¢ A. Since A
is closed, there is a neighborhood W of w such that W N A = (). Then no point x
in the neighborhood U = 771W of u belongs to the cone K. Thus we have proven
that K is a closed convex cone.

Now we show that if for some a € A the ray emanating from a in some direction
u is contained in A, then for any point b € A, the ray emanating from b in the same
direction wu is also contained in A. As before, without loss of generality, we may
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100 II. Faces and Extreme Points

assume that ¢ = 0. Hence 7u € A for all 7 > 0. Let us choose a 7 > 0 and an
0 <e< 1. Then (e '7)u € A and since A is convex, the point

(I—eb+Tu=(1—€b+e(e'Tu)

is contained in A. Since A is closed, we conclude that b+ T7u € A, which completes
the proof. O

Figure 31. A set A and its recession cone K

If the set A C R? does not contain rays, we say that its recession cone is {0}.

PROBLEMS.

1°. Let A C R? be a closed convex set which contains a straight line. Prove
that there exists a subspace L C R such that for every point a € A, the union of
all straight lines passing through a and contained in A is the affine subspace a+ L.

2°. Let A € R? be a closed convex set and let @ € A be a point. Let us define
the set K of feasible directions from a by K = {u € R?: a+eu € A for some
€ > O}. Prove that K is a convex cone. Does K have to be closed?

3°. Let
P:{wERd: (ci,z) < B for i=1,...,m}

be a polyhedron.
Prove that the recession cone K of P is defined by

K={zeR%: (¢,2)<0, i=1,...,m}.
{ (i) }

Assuming that 0 € A, prove the union of all straight lines that pass through 0 and
are contained in A, if non-empty, is the subspace

L:{xeRd: (c;,x) =0, i=1,...,m}.
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4. Construct an example of a convex (but not closed) set A C R? and two
points a,b € A such that A contains a ray emanating from a in some direction u
but does not contain the ray emanating from b in the same direction wu.

5. Let P C R? be a polyhedron, P = {z: (¢;,z) < B;,i =1,... ,m} for some
vectors ¢; and numbers ;. Let v € P be a point and let I = {i : {a;,v) = S;} be
the set of inequalities active on v. Prove that the cone K of feasible directions from
v (see Problem 2) is defined by K = {u: (a;,u) <0 fori € I'}.

6. Let A C R? be a closed convex set which does not contain rays. Prove that
A is compact.

Now we prove that straight lines can be “factored out” from a closed convex
set in Euclidean space.

(16.2) Lemma. Let A C R? be a closed convex set containing straight lines. Then
there exists a subspace L C R? such that for the orthogonal projection A’ of A onto
the orthogonal complement L of L we have:

1. A’ is a closed convex set which does not contain straight lines;
2. A=A+ L.

Proof. Let us define L as the subspace of R? such that for every point a € A,
the union of all straight lines passing through a and contained in A is a + L; see
Problem 1 of Section 16.1. Let pr : R* — L1 be the orthogonal projection onto
L* so that A’ = pr(A). Thus for every € A’ we have pr~'(z) =2+ L C A.

L

A pr
0

S o - - - - - - - - "--"—-"=-"=-"=-"=-"=-"=-"=-"=-"=-—"=-—"=-—=-=-"= = = 7
’ s
s s
s s
’ s
s s
s s
s ’
s , s
7/
// A s
’ s
7 s

Figure 32
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Clearly, A’ is a convex set and A = A’ + L. Moreover, A’ does not contain
straight lines for if [ C A’ is a straight line, then | + L C A is an affine subspace
whose dimension is greater than that of L, which contradicts the definition of L.
Finally, A’ is closed, for if {x,} is a sequence in A’ converging to a point x, then
for any u € L, y, = x, + u is a sequence of points in A converging to x + u. Since
A is closed, we have z +u € A and hence z € A'. O

Last, a useful lemma.

(16.3) Lemma. Let A C R? be a closed convex set which does not contain straight
lines. Then every point x € A can be written in the form x = y + z, where y is a
convex combination of extreme points of A and z is a point from the recession cone

K of A.

Proof. We proceed by induction on d. The result is clear for d = 1. Suppose that
d > 1. Without loss of generality we may assume that A has a non-empty interior
(otherwise, we reduce the dimension by considering A in its affine hull). Let us
choose a straight line L passing through x. The intersection LN A is either a closed
ray a+7u, 7 > 0, with the endpoint a € JA or a closed interval [a, b] with a,b € 0A
(possibly with a = b).

a F

Figure 33

In the first case, let us choose a proper face F' of A containing a (see Corollary
2.8). Hence dim F' < d and by the induction hypothesis we can write a = y + 2/,
where y is a convex combination of extreme points of F' and 2’ is in the recession
cone of F. Since x = a + Tu, we get © = y + (2/ + 7u). Now we observe that
y is a convex combination of extreme points of A (Problem 1 of Section 3.2) and
2z = 2’ + Tu is in the recession cone of A.

In the second case, we choose proper faces F' containing a and G containing b.
As above, we can write a = 3’ + 2/, where y’ is a convex combination of extreme
points of I’ and 2z’ is in the recession cone of A and b = vy + 2", where 3" is a
convex combination of extreme points of G and z” is in the recession cone of A.
Since x is a convex combination of a and b, the proof follows. O
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17. Remarks

Our general reference for convexity in Euclidean space is [W94]. The Isolation
Theorem (Theorem 1.6) is an algebraic form of the Hahn-Banach Theorem; see
[Bou87] and [Ru91]. The author learned the proof of Theorem 1.6 from A.M.
Vershik. Although topology seems to be completely “evicted” from our proof, it
is present under cover. Indeed, if we declare a subset A of a vector space V' open
if it is a union of convex algebraically open sets, we make V a topological vec-
tor space with the convenient property that every linear functional f : V — R
is continuous. Algebraically open and closed sets were used earlier by V. Klee
[K163] to define the Euler characteristic in the abstract setting of a real vector
space. The Birkhoff Polytope, the permutation polytopes, transportation polyhe-
dra and many related polytopes (polyhedra) are discussed in detail in [YKK84]
and [BS96]. The polytope of polystochastic matrices, also called the multiindex
transportation polytope (see Problem 3 of Section 7.4) is one possible generaliza-
tion of the Birkhoff Polytope. A.M. Vershik proposed a different generalization: one
can think of the Birkhoff polytope as the convex hull of the matrices representing
the action of the symmetric group S, in R™ by permutations of the coordinates.
Similarly, for any representation of the symmetric group (and any finite group for
that matter), one can define a polytope that is the convex hull of the operators of
the representation; see [Barv92]. For the Diet Problem, the Assignment Problem
and the Transportation Problem (also called Min-Cost Problem), see [PS98]. For
the Schur-Horn Theorem and many related topics consult [MO79]. The moment
cone and the cone of univariate non-negative polynomials are thoroughly treated
in [KS66]. The facial structure of the cone of positive semidefinite matrices is
described, for example, in [DL97]. Our presentation of quadratic convexity re-
sults is based on some original papers: [Br61], [AP79], [Da71], [Ve84]|, [FL76],
[Barv95], [Barv01] and [DL97]. The approach to “hidden convexity” based on
supplanting the image of a (non-convex) set under a (non-linear) map by the image
of a convex set under a linear map was demonstrated first in [Li66] and in the
context of quadratic convexity in [Da71]. The problem of graph realizability is
also known as the Euclidean matrix completion problem; see [DL97] for references
and results. For problems of distance geometry related to graph realizability and
their applications see [CH88] and [H95].

Licensed to Georgia Inst of Tech. Prepared on Sun Jan 14 21:00:56 EST 2024for download from IP 188.92.139.72.



Licensed to Georgia Inst of Tech. Prepared on Sun Jan 14 21:00:56 EST 2024for download from IP 188.92.139.72.



http://dx.doi.org/10.1090/gsm/054/03

Chapter III1

Convex Sets in
Topological Vector
Spaces

We extend our methods to study convex sets in topological vector spaces. We
prove the Krein-Milman Theorem for locally convex topological vector spaces and
explore the extreme points of some convex sets which can be considered as infinite-
dimensional extensions of familiar Euclidean objects. In particular, we consider
an L*-analogue of a polyhedron and a “simplex” of probability measures. Ap-
plications include problems of optimal control and probability and some “hidden
convexity” results based on Lyapunov’s Theorem. Our approach is geometric and,
whenever possible, we stress similarities between finite- and infinite-dimensional sit-
uations. Exercises address some of the peculiar features of the infinite dimension:
existence of dense hyperplanes, discontinuous linear functionals and disjoint convex
sets that cannot be separated by a hyperplane.

1. Separation Theorems in Euclidean Space and Beyond

In this section, while being mostly in the Euclidean setting, we develop some general
techniques that also work in infinite-dimensional situations. We prove separation
theorems in R% and discuss how they can be extended to general vector spaces.
Later in this chapter, separation theorems will become our main tool to handle
infinite-dimensional convex sets.

Let V be a vector space. Recall (see Definition II.1.4) that sets A, B C V are
separated by a hyperplane H if A and B belong to different closed halfspaces H
and H_. Equivalently, the sets A and B are separated by a hyperplane if there

105
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106 III. Convex Sets in Topological Vector Spaces

exists a non-zero linear functional f : V' — R and a number « such that f(z) < «
for each z € A and f(x) > « for each © € B. Sets A, B C V are strictly separated
by a hyperplane H if A and B belong to different open halfspaces H, and H_.
Equivalently, the sets A and B are strictly separated by a hyperplane if there exists
a non-zero linear functional f : V' — R and a number « such that f(z) < « for
all z € A and f(z) > « for all z € B.

a)
b)

Figure 34. Example: a) A and B separated by H, b) A and B strictly
separated by H

(1.1) Definition. Let V be a vector space and let A, B C V be sets. We define
the set A— B CV by

A-B={z-y: z€ A, ye B}.

PROBLEM.

1°. Prove that if sets A and B are convex, then A — B is convex as well.

Our first result is a corollary of Theorem I1.2.9.

(1.2) Theorem. Let A and B be non-empty convez sets in R? such that ANB = ().
Then there exists an affine hyperplane H which separates A and B.
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Proof. Let C = A — B. By Problem 1 of Section 1.1 the set C' is convex. Since
ANB =0, we have 0 ¢ C. Therefore, by Theorem I1.2.9, there exists a hyperplane
H such that 0 € H and H isolates C'. In other words, there exists a non-zero linear
functional f : R? — R, such that f(z —y) < 0 for all z € A, y € B. We have
f(z) < f(y) for each x € A and each y € B. Therefore, there exists an o € R,
such that f(z) < a for all z € A and f(y) > « for all y € B (we can choose
o= sup{f(x) cx € A}, for example). The hyperplane H = {x eRe: f(x) = a}
separates A and B. O

PROBLEMS.

1°. Suppose that one of the sets A, B C R? is open. Prove that C = A — B is
open.

2. Construct an example of two closed sets A, B C R? such that C = A — B is
not closed.

3. Let A, B C R? be sets. Suppose that A is closed and B is compact. Prove
that the set C = A — B is closed.

4. Prove that if A, B C R? are compact sets, then C = A — B is a compact set.

5°. Let A, B C R? be open sets. Suppose that a hyperplane H separates A
and B. Prove that H strictly separates A and B.

The following result as well as its infinite-dimensional version (Theorem 3.4)
will be used extensively.

(1.3) Theorem. Let A C R? be a closed convez set and let u ¢ A be a point. Then
there exists an affine hyperplane H which strictly separates A and u.

Proof. Since A is a closed set and u ¢ A, there exists a p > 0 such that the open
ball B(u,p) = {z: ||z —u| < p} does not intersect A. Let

B=B(0,p/2) = {a: |la]l <p/2}.

We claim that A 4+ B and u + B are open non-intersecting convex sets. Indeed,

A+B= U B(xz,p/2)
T€EA

is a union of open sets, so it is open. Similarly, u + B = B(u, p/2) is an open ball
centered at u. It follows by Problem 4, Section I.1.5, that A+ B and u + B are
convex. Suppose that (A + B)N (B +u) # 0. For a point z € (A + B)N (B + u),
we have ||y — z|| < p/2 for some y € A and ||u — z|| < p/2. Therefore, ||u—y|| < p,
which is a contradiction. Therefore, the sets A + B and B + u do not intersect.

By Theorem 1.2, there is a hyperplane H that separates A + B and u + B.
Since the sets A + B and u + B are open, H must strictly separate the sets (see
Problem 5, Section 1.2). O
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PROBLEMS.

1. Construct an example of two disjoint non-empty closed convex sets A and
B in R? that cannot be strictly separated by a hyperplane.

2. Let A C R? be a non-empty closed convex set and let u ¢ A be a point.
Prove that there exists a unique point v € A such that |[u — v|| < |ju — | for all
x € A. Furthermore, prove that the hyperplane H orthogonal to u — v and passing
through the point (u + v)/2 strictly separates A and wu.

3. Using Problem 3, Section 1.2, prove that if A, B C R are disjoint non-
empty convex sets, where A is closed and B is compact, then A and B can be
strictly separated by a hyperplane H.

4. Let A,B C R? be disjoint non-empty convex sets. Suppose that B is
compact and A is closed. Prove that there is a pair of points u € A and v € B such
that ||lu —v|| < ||z — y|| for all z € A and all y € B. Furthermore, prove that the
hyperplane H orthogonal to u — v and passing through (u + v)/2 strictly separates
A and B.

(1.4) What can go wrong in infinite dimension?

While Theorem 1.3 can be generalized to a wide class of inifinite-dimensional
spaces, Theorem 1.2 apparently lacks such a generalization.

PROBLEM.

1. Let V = R, be the vector space of all infinite sequences x = (£1,£2,&3, .. .)
of real numbers such that all but finitely many terms &; are zero (see Problem 2,
Section I1.1.6). Let A C V' \ {0} be the set of all such sequences x whose last non-
zero term is strictly positive and let B = —A be the set of sequences whose last
non-zero term is strictly negative. Prove that A and B are convex, that ANB =0
and that A and B cannot be separated by a hyperplane.

The ultimate reason why a straightforward extension of Theorem 1.2 fails in
infinite dimension is that infinite-dimensional convex sets can be amazingly “shal-
low”: they can have an empty interior and yet not be contained in any hyperplane
(see Problem 1 of Section II1.2.5).

If we require at least one set to be algebraically open (see Definition II.1.5), we
can extend the separation theorem to an arbitrary vector space.

(1.5) Theorem. Let V be a vector space and let A, B C V be non-empty convex
sets such that AN B = (). Suppose that A is algebraically open. Then A and B can
be separated by an affine hyperplane.

Proof. Let C = A — B. We can write C' as a union of algebraically open sets:
C={J@A-b).
beB

Thus C is an algebraically open convex set. Furthermore, 0 ¢ C, so by Theorem
I1.1.6 there exists a hyperplane H such that 0 € H and H isolates C'. The proof is
completed as in Theorem 1.2. O
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(1.6) Definition. Let V be a vector space and let A C V be a convex set. We
say that v € A lies in the algebraic interior of A if for any straight line I passing
through v the point v lies in the interior of the intersection A NI. The set of all
points v that lie in the algebraic interior of A is called the algebraic interior of A.

PROBLEM.

1. Let V be a vector space and let A C V be a convex set. Let uy be a point
in the algebraic interior of A. Prove that for any point u; € A and any 0 < a < 1,
the point u, = (1 — a)ug + auq lies in the algebraic interior of A.

Hint: Cf. Lemma I11.2.2.

2. Prove that the algebraic interior of a convex set is an algebraically open
convex set.

Hint: Use Problem 1.

3. Let V be a vector space, let A, B C V be convex sets and let H C V be
a hyperplane. Suppose that H separates B and the algebraic interior of A. Prove
that H separates A and B.

Hint: Use Problem 1.

4. Let A C R, be the set of Problem 1 of Section 1.4. Prove that the algebraic
interior of A is empty.

Lastly, we conclude that two non-intersecting convex sets can be separated by
a hyperplane if one of them is sufficiently “solid”.

(1.7) Corollary. Let V be a vector space and let A, B C 'V be non-empty convex
sets such that AN B = (). Suppose that A has a non-empty algebraic interior. Then
A and B can be separated by an affine hyperplane.

Proof. Let A; be the algebraic interior of A. Then, by Problem 2, Section 1.6, A;
is a non-empty algebraically open convex set. By Theorem 1.5, there is a hyperplane
H which separates A; and B. Then, by Problem 3, Section 1.6, H separates A and
B. O

2. Topological Vector Spaces, Convex Sets and
Hyperplanes

We intend to study convex sets in a richer setting of topological vector spaces.
In this section, we introduce topological vector spaces and review with or without
proofs some basic facts concerning them (see [Ru91] and [C090]). We review some
topology first.

(2.1) Topological spaces. We recall that a topological space is a set X together
with a family F' C 2% of its subsets, called open sets, such that

e ) and X are open sets;
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e the intersection of any two (equivalently, of finitely many) open sets is an
open set;

e the union of open sets is an open set.

The family F' is called a topology on X. An open subset containing a point
x € X is called a neighborhood of that point. A set C' C X is called closed if X \ C
is open. A map ¢ : X — Y, where X and Y are topological spaces, is called
continuous if for any open set U C Y the preimage ¢! (U) = {z € X : ¢(z) € U}
is an open set in X. Equivalently, ¢ is continuous if for every x € X and for every
neighborhood U of ¢(z) in Y there exists a neighborhood W of = such that for each
2’ € W we have ¢(2) € U. If Fy, F, C 2% are two topologies on X, we say that I
is stronger (Fy is weaker) if Fy C F. We recall that a set C' C X is called compact
if for any family of open subsets {Ui cX, i€ I} such that C' C |J,.; U; there is a
finite subfamily U;,,... ,U;, such that C C U;, U...UU;, .

in

We recall the construction of the direct product. Let X and Y be topological
spaces. The direct product Z = X xY is made a topological space by declaring a set
U C Z open if it can be represented as a union of direct products Uy xUs, where Uy is
an open subset of X and Us is an open subset of Y. Equivalently, this topology is the
weakest among all topologies that make the projections Z — X, (x,y) — = and
Z —Y, (z,y) — y continuous. Similarly, if {Xi RS I} is a (possibly infinite)
family of topological spaces, the direct product Z = [[,.; X; is identified with the
space of all functions f on the set of indices I such that f(i) € X; for all i € I. The
topology of the direct product is the weakest topology on Z for which all projections
Z — X; are continuous. Equivalently, we declare a set open if and only if it is a
union of basic open sets U of the type U = {f € Z: f(i1) € Uj,, ..., f(in) € U, },

icl

where 41,...,4, € T and U;, C X;,,...,U;, C X;, are open sets. Tikhonov’s
Theorem asserts that if each X; is compact, then Z is compact; cf. [Ru91] and
[C090)].

Next, we introduce the central notion of this chapter.

(2.2) Topological vector spaces. Let V be a vector space. Suppose that V is
also a topological space so that the following properties hold:

e For every vector v € V the set {v} is closed.

e The map V xV — V| (z,y) — x+y is continuous. Equivalently, for every
w1, we € V and every neighborhood U of u = w; + ws, there is a neighborhood W1
of wy and a neighborhood W5 of wy such that W7 + Wy C U.

e The map RxV — V| (e, &) — ax is continuous. Equivalently, for every w
in V and every a € R, for every neighborhood U of u = aw, there is a neighborhood
W of w and a number € > 0 such that Sz € U provided z € W and | — 3| < e.

Then V is called a topological vector space.
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In particular, for any given u € V, the translation x — u + x is a continuous
transformation, and for any given a € R, the scaling x — ax is a continuous
transformation.

PROBLEMS.

1. Let V be a topological vector space and let x € V' be a vector. Prove that if
U C V is an open (closed) set, then the translation U + x is an open (closed) set.

2. Let V be a topological vector space and let o # 0 be a number. Prove that
if U C V is an open (closed) set, then aU = {ax : x € U} is an open (closed) set
inV.

3. Let V be a topological vector space and let w; # wy be two distinct points
in V. Prove that there exist neighborhoods W7 of w; and W5 of wsy such that
W1 N Wy = 0. Deduce that compact sets in V' are closed.

4*. Let V be a topological vector space and let L C V be a finite-dimensional
affine subspace. Prove that L is a closed subset of V.

5. A set A C V in a vector space V is called balanced provided aA C A for all
« such that || < 1. Prove that every neighborhood of the origin in a topological
vector space contains a balanced neighborhood of the origin.

(2.3) Definitions. Let V be a topological vector space, A C V be a set and u € V
be a point. We say that w lies in the interior of A provided there is a neighborhood
U C A of u. We say that u lies in the closure of A provided for every neighborhood
U of u we have U N A # (. The set of all points in the interior of A is denoted
int(A). The set of all points in the closure of A is denoted cl(A).

The following result is very similar to Lemma I1.2.2.

(2.4) Lemma. Let V be a topological vector space and let A C'V be a convex set.
Let ug € int(A) and uy € A. Then, for every 0 < a < 1 and uq = (1 — a)ug + auq,
we have u,, € int(A).

Proof. Let Uy C A be a neighborhood of ug. Let us consider a map T': V — V,

xl—)l (x —up) + uq.

Then T is continuous and T'(u,) = ug (see Figure 12). Therefore, the preimage
U, = T7Y(Up) is a neighborhood of u,. Let us show that U, C A. Indeed, if
x € Uy, then T(x) =y € A. Solving for z, we get z = (1 — @)y + au;. Since A is
convex, the result follows. O

(2.5) Theorem. Let V be a topological vector space and let A C V be a convex
set. Then int(A) and cl(A) are convex sets.

Proof. The proof that int(A) is a convex set follows the proof of Corollary I1.2.3.
Let us prove that cl(A4) is a convex set. Let ug,u; € cl(4) and let u, = aug +
(1 —a)u; for 0 < a < 1. We know that every neighborhood of ug or uy intersects
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A and we must prove that every neighborhood of u, intersects A. Let U be a
neighborhood of u,; see Figure 35.
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_________ 7/
Figure 35

Since the operation (z,y) — ax + (1 — a)y is continuous, there must be
neighborhoods Uy of uy and U; of u; such that az + (1 — a)y € U for every = € Uy
and every y € U;. Since ug € cl(A), there is a point € UyNA and since uy € cl(4),
there is a point y € U3 N A. Since A is convex, for z = azx + (1 —a)y we have z € A.
Therefore, U N A # (). O

PROBLEMS.

1°. Prove that int(A + z) = int(A) + = and cl(A + x) = cl(A) + « for each
AcCVandeachz e V.

2°. Prove that int(aAd) = aint(A) and cl(aAd) = acl(A) for each A C V and
each a # 0.

Among other counter-intuitive things that can happen in infinite dimension,
hyperplanes may be everywhere dense.

(2.6) Theorem. Let V be a topological vector space and let H C 'V be an affine

hyperplane. Then either c\(H) = H (that is, H is closed) or cl(H) =V (that is, H
is dense in'V ).
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Proof. It suffices to prove the result assuming that 0 € H. Let f: V — R be a
linear functional such that

H={zeV: [f(z)=0}.

Suppose that H is not closed. Then there is a point u € cl(H)\H. Let o = f(u) # 0.
Let us choose any w € V. Suppose that 8 = f(w). Let v = 8/« and let h = w—~u.
Then f(h) = f(w) —vf(u) = 0, so h € H. In other words, w = h + yu. Since
multiplication and addition are continuous operations, for every neighborhood W
of w, there is a neighborhood U of u, such that h+~U C W. Since u € cl(H), there
must be a point Ay € UN H. Then the point h + vhy lies in W. Hence WNH # ()
and w € cl(H). It follows that H is dense in V. 0

PROBLEMS.

1. Consider the space C0, 1] of all continuous functions on the interval [0, 1].
Prove that we can make C]0, 1] a topological vector space by declaring a set U C
C'[0,1] open if for every f € U there is an € > 0 such that the set

U(f,e):{geC[o,l]; If(r) — g(r)| < e forall TE[O,l]}

is contained in U.

Let L C C[0,1] be a subspace consisting of all smooth functions (a function is
called smooth if it is differentiable at every point and the derivative is continuous).
Prove that L has infinite codimension and that cl(L) = C[0, 1].

2*. Using Zorn’s Lemma and Problem 1, show that there exists a dense hyper-
plane in C[0, 1].
3. Prove that every hyperplane in R? is closed.

4. Consider the space V of all continuous functions on the interval [0, 1]. Prove
that we can make V' a topological vector space by declaring a set U C V open if
for every f € U there is an € > 0 such that the set

vira={oev: [ VI g dr < <)

is contained in U. Prove that all hyperplanes H C V are dense in V.

5. Let V be the space of all smooth functions (functions with continuous
derivative) on the interval [0,1]. Prove that we can make V' a topological vector
space by declaring a set U C V open if for every f € U there is an € > 0 such that
the set

U(f,e):{gEV: If(m) —g(T)| < e forall 76[0,1]}

is contained in U (cf. Problem 1). Let H = {f : f'(1/2) = 0}. Prove that H is a
dense hyperplane in V.

6. Let V be a topological vector space and let L C V be an (affine) subspace.
Prove that cl(L) is an (affine) subspace.

Closed hyperplanes correspond to continuous linear functionals, as the following
result shows.
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(2.7) Theorem. Let V be a topological vector space, let f : V. — R be a non-
zero linear functional and let @ € R be a number. Then the affine hyperplane
H(o)={z eV : f(z)=a} is closed if and only if f is continuous.

Proof. If f is continuous, then H(a) = f~1(a) is a closed set as the preimage of
a closed set {a}.

Let us prove that if H(«) is closed, then f is continuous. Since all the hyper-
planes

H(y)={z: f(z) =7}

are translations of each other, it follows that all H(v) are closed. The core of the
argument is to prove that both halfspaces

Hi()={a: f() >~} and H_(y)={z: f(x) <~}

are open. Since all the halfspaces H_ () are translations of each other and all the
halfspaces Hy () are translations of each other, it suffices to prove that for some
~ both H, (y) and H_(y) are open.

Suppose, for example, that H, () is not open. Then there is a point u € H (7)
such that every neighborhood of u intersects

H_(7)={z: f(z) <~}

Thus f(u) > 7, but each neighborhood U of u contains a point « such that f(z) < ~.

Applying a translation, if necessary, we may assume that v = 0 is the origin (of
course, the translation may change 7). Let us choose any neighborhood U of u = 0.
Since 0-0 = 0 and multiplication by a scalar is continuous, there is a neighborhood
W of the origin and a number 0 < § < 1 such that 7z € U for any |7| < § and
any x € W. Let U} = U 7W. Then U; C U is a neighborhood of u = 0 and

0<T<d
[u,2] C Uy for any x € Uy (cf. Problem 5 of Section 2.2 and Figure 36). Thus Uy

is a neighborhood of u and hence U; must intersect H_ (7). We claim that, in fact,
U, must intersect the hyperplane H (7). Indeed, let us choose an = € U; N H_ ().
If x € H(y), then Uy intersects H(v) as claimed. If € H_(vy), then f(z) < 7.
Since f(u) > v and f is linear, for some y € [u, 2] we have f(y) = and hence the
interval [u,z] intersects H. Since [u,x] C Uy, we conclude that U; intersects H.
Since Uy C U, we conclude that every neighborhood U of w intersects H(vy), which
contradicts the assumption that H(7) is closed. Therefore, both H () and H_(7)
are open.

Let us choose an z € V and let v = f(z). Given an € > 0, let

U=f'y—ev+e=Hi(y—¢)NH_(y+¢).

Then U is a neighborhood of = and for every y € U we have |f(y) — f(z)] < e
Hence f is continuous. O
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Figure 36. Any neighborhood U of the origin contains a neighborhood
Uy with the property that [0,2] C Uy for all z € Uy.

The set of all continuous linear functionals on a given topological vector space
can itself be made a topological vector space.

(2.8) The Dual Space. Let V be a topological vector space. The dual space
V*, as a vector space, consists of all continuous linear functionals f : V — R
with addition: g = f1 + f2 provided g(z) = fi(z) + f2(x) for all z € V and scalar
multiplication: g = af provided g(x) = af(x) for all x € V. There is a remarkable
topology, called weak* (pronounced “weak star”) topology, on V*. Open sets in V*
are unions of elementary open sets of the type

U(Il,... ’zn;al"" ’OL'IL;ﬂl;-'- ’/B'IL)

:{feV*: a; < f(z;) < B; for i:l,...,n},

where x1,... ,x, € V and a1,81,... ,an, Bn € R.

PROBLEMS.

1. Prove that for any x € V the function ¢, : V* — R, ¢(f) = f(z) is a
continuous linear functional on V*.

2*. Prove that every continuous linear functional ¢ : V* — R has the form
o(f) = f(x) for some z € V.

Hint: See Section IV.4 and Theorem 1V .4.2.

3. Prove that for any two distinct points f, g € V*, there is a continuous linear
functional ¢ : V* — R, such that ¢(f) # ¢(g).
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4. Suppose that V* is infinite-dimensional. Prove that every non-empty open
set in V* contains an infinite-dimensional affine subspace.

We are going to use the following important fact.

(2.9) Alaoglu’s Theorem. Let V be a topological vector space, let U C V be a
neighborhood of the origin and let V* be the dual space endowed with the weak*
topology. The set

Uoz{fGV*: |f(z)| <1 forall xéU}

is compact in V*.

Sketch of Proof. For every x € U, let I, = [—1, 1] be a copy of the interval [—1, 1]
indexed by x. Let
c=]]L

zeU

be the direct product identified with the set of all functions ¢ : U — [—1,1]. We
introduce the topology of the direct product on C' in the standard way; see Section
2.1. Then, by the Tikhonov Theorem, C' is compact. Now we identify U° with a
subset of continuous linear functionals of C' and prove that U° is a closed subset of
C. Hence U° is compact. g

We conclude this section with a useful lemma, which is a straightforward gen-
eralization of Lemma I1.8.6.

(2.10) Lemma. Let V be a topological vector space and let C C V be a compact
convez set such that 0 ¢ C. Then K = co(C) is a closed convex cone.

Proof. The proof is completely analogous to that of Lemma I1.8.6. Clearly, K is
a convex cone such that every point x € K can be represented in the form = = A\u
for some v € C' and some A > 0. Let us prove that K is closed.

Let us choose a point w ¢ K. Our goal is to find a neighborhood U of u such
that U N K = 0. Since C is closed and 0 ¢ C, there is a neighborhood W of the
origin such that W N C = (). Let us choose a neighborhood U; of u and a number
d > 0 such that aU; C W for all |a] < ¢ (such U; and ¢ exist because scalar
multiplication is a continuous operation). In particular, «U; NC = () for all |a| < 6.
Therefore, for all A > 6= we have U; N AC' = () (see Figure 37).

Let X = [0,671]xC and let ¢ : X — V be the map ¢(, ) = 72. Since C and
X are compact and ¢ is continuous, the image ¢(X) is compact in V. Therefore,
¢(X) is a closed subset of V' (cf. Problem 3 of Section 2.2). Since u ¢ K, we have
u ¢ $(X) and there is a neighborhood Uy of u with the property that UsNe(X) = .
Then U = Uy N U, is the desired neighborhood of w. O
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Figure 37. For large A we have U; N AC' = ) and for small A we have
UsNAC = 0.

3. Separation Theorems in Topological Vector Spaces

In this section, we adapt separation theorems in Euclidean space (Section 1) to the
infinite-dimensional situation.

(3.1) Lemma. Let V be a topological vector space and let A C 'V be an open set.
Then A is an algebraically open set.

Proof. Let L = {u +TUv:TE R} be a straight line in V' (v # 0). We must prove
that the intersection A N L is an open set in L, possibly empty. If AN L is not
empty, let w € ANL, w = u+ 1ov. Since A is open, there is a neighborhood W
of w, such that W C A. Since addition and scalar multiplication are continuous
operations, there exists an € > 0, such that if |7 — 79| < ¢, then u + 7v € W. This
implies that w is an interior point of the intersection A N L. Therefore, A is an
algebraically open set. O

PROBLEMS.

1. Let V = R, be a vector space of all infinite sequences of real numbers
x = (&1,&2,&s,...), such that only finitely many terms &; are non-zero (see Problem
1 of Section 1.4 and Problem 2, Section II.1.6). Prove that we can make V a
topological vector space by declaring a set U C V open if for every x € U there is

Licensed to Georgia Inst of Tech. Prepared on Sun Jan 14 21:00:56 EST 2024for download from IP 188.92.139.72.



118 III. Convex Sets in Topological Vector Spaces

an € > 0 such that the set
o0
Uw,e) = {y=(mom..) s Y l6—ml* < e}
i=1

is contained in U. Let A= {z €V : [&] < 1/k for k=1,...}. Prove that A is
convex and algebraically open, but not open.

2. Let V be a vector space. Let us declare a set A C V open if and only if
it is a union of algebraically open convex sets. Prove that this converts V into a
topological vector space (cf. Problem 6 of Section II.1.5).

3. Let V be a topological vector space of Problem 2. Prove that every hyper-
plane in V is closed.

4. Let V be a topological vector space and let A, B C V be non-empty open
sets. Suppose that a hyperplane H C V separates A and B. Prove that H strictly
separates A and B and that H is closed.

(3.2) Theorem. Let V be a topological vector space and let A,B C V be convex
sets. Suppose that AN B = () and that int(A) # 0. Then there is a closed affine
hyperplane H C V' which separates A and B. Equivalently, there is a continuous,
not identically zero, linear functional f : V. — R such that f(x) < f(y) for all
r€Aandy € B.

Proof. By Lemma 3.1, the algebraic interior of A is not empty. Therefore, by
Corollary 1.7, there is a hyperplane H C V which separates A and B. By Theorem
2.6, either H is closed or H is dense in V. In the latter case, H must have a
non-empty intersection with any open subset, in particular, with the interior of A.
Therefore, H has a non-empty intersection with the algebraic interior of A.

Figure 38

If £ € HN A is a point in the algebraic interior of A, then we can choose a
straight line L passing through x and not contained in H. The intersection L N A
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contains an open interval around x and hence H cannot isolate A and thus cannot
separate A and B. The contradiction shows that H must be a closed hyperplane.
By Theorem 2.7, the corresponding linear functional f is continuous. O

We define an important class of topological vector spaces with the abundance of
continuous linear functionals (there are topological vector spaces with no non-zero
continuous linear functionals; cf. Problem 4 of Section 2.6).

(3.3) Definition. A topological vector space V is called locally convex provided for
every point u € V and every neighborhood U of u there is a convex neighborhood
W C U of u.

PROBLEMS.
1. Let V be a vector space. A function p: V — R is called a norm provided

e p(u) > 0 for each u € V and p(u) = 0 only if u = 0,
o p(au) = |a| - p(u) for each u € V and each o € R,

o p(u+v) < p(u) + p(v) for each u € V and each v € V.

Let us make V' a topological vector space by declaring a set U C V open if for
every u € U there is an € > 0 such that the set

U(u,e):{UGV: p(u—v)<e}

is contained in U. Prove that V is a locally convex topological vector space. Such
a space V is called a normed space.

2. Let V be a topological vector space and let A C V be an open set. Prove
that conv(A) is an open set.

3. Let V be a vector space. Prove that the strongest topology that makes V' a
locally convex topological vector space is the topology where a set U C V' is open if
and only if it is a union of convex algebraically open sets. Prove that every linear
functional f : V — R is continuous in this topology.

4. Let V be the topological vector space of Problem 4, Section 2.6. Prove that
the only open convex sets in V' are the empty set and the whole space V.

Now we can generalize Theorem 1.3.

(3.4) Theorem. Let V be a locally convex topological vector space. Let A C'V be
a closed convex set and let u ¢ A be a point. Then there exists a closed hyperplane
H that strictly separates A and u. Equivalently, there exists a continuous linear
functional f: V — R such that f(x) < f(u) for all x € A.
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Proof. Since A is closed, the complement U = V' \ A is a neighborhood of u. Let
Up = U — u be a translation of U, so Uy is a neighborhood of the origin. Because
the transformation (z,y) — = — y is continuous, there are neighborhoods Wi and
Wy of the origin, such that  — y € Uy for each x € W; and each y € W5. Since V
is locally convex, we can choose W7 and W5 to be convex.

Let us consider A+W5 and u+W;. The sets are convex (see Problem 4, Section

1.1.5) and open, since A+ W, = U (W2 + ) is a union of open sets. Furthermore,
z€A

(A+Wa) N (u+ W) = 0.

H
//’ \\\
/ \
/ \
! u \
| ) |
| /
A \ ;
N ’
h -
\\—’/
u+W1

Figure 39

Indeed, if (A+W5) N (u+Wi) # 0, then for points a € A, y € Wy and x € Wy,
we will have a +y = u + z, that is a = u + (x — y). Since z — y € Uy, this would
imply that A and U intersect, which is a contradiction. Theorem 3.2 implies that
there is a closed hyperplane that separates A 4+ W5 and uw+ Wj. Since A+ W; and
u~+ Wy are open, the hyperplane H must strictly separate A+ W; and u+ W7 (see
Problem 4 of Section 3.1). O

PROBLEMS.

1°. Prove that in a locally convex topological vector space V', any two points
x # y can be strictly separated by a closed hyperplane.

2. Let V be a locally convex topological vector space and let A,B C V be
convex sets such that A is closed, B is compact and AN B = (). Prove that A and
B can be separated by a closed hyperplane.

Licensed to Georgia Inst of Tech. Prepared on Sun Jan 14 21:00:56 EST 2024for download from IP 188.92.139.72.



4. The Krein-Milman Theorem for Topological Vector Spaces 121

Hint: It suffices to construct convex neighborhoods W; and W5 of the origin,
such that (A + Wi) N (B + Ws) = 0 and then use Theorem 3.2. For every point
x € B, construct convex neighborhoods Wi (x) and Wa(z) of the origin, such that
(A + Wi(z)) N (z + Wa(z)) = 0. Since B is compact, there is a finite set of
points x1,...,x, € B, such that the sets x; + Wa(z;), ¢ = 1,...,n, cover B. Let

W, = ﬂ Wi(x) and Wy = m Wa(x).
i=1 =1

4. The Krein-Milman Theorem for Topological Vector
Spaces

Our next goal is to extend Theorem II1.3.3 to the infinite-dimensional situation.
The Krein-Milman Theorem that we prove below allows us to relate topological
(compactness) and geometric (convexity, extreme points) properties. For the rest
of the chapter, we will be studying the extreme points of some particular infinite-
dimensional compact convex sets.

(4.1) The Krein-Milman Theorem. LetV be a locally convex topological vector
space and let K C 'V be a compact convex set. Then K is the closure of the convex

hull of the set of its extreme points, K = cl(conv(ex(K))).

Proof. First, we establish that every non-empty compact set K in V has an ex-
treme point. Let us call a non-empty compact convex subset A C K extreme
provided for any two points =,y € K and z = (z + y)/2, whenever z € A, we must
have z,y € A. Clearly, K is an extreme set. Let X C K be the smallest extreme
subset (that is, not containing any extreme subset of K other than itself). The ex-
istence of X is established via Zorn’s Lemma or the axiom of choice. Let us prove
that X is a point. Suppose that X contains two different points, say x; and x».
Let us choose a closed hyperplane H that strictly separates 1 and x5; see Theorem
3.4. In other words, there is a continuous linear functional f : V' — R such that
f(z1) < f(z2). Let @ = min{ f(y) : y € X}. Since X is compact (a closed subset
of a compact set) the minimum is attained. Let Y = {z € X : f(z) = a} be a
face of X. Clearly, Y is a compact convex subset of K and Y is an extreme set (cf.
Theorem I11.3.2). On the other hand, Y does not contain xs, so Y is strictly smaller
than X. The contradiction shows that X must be a point, that is, an extreme
point.

Now, we prove that K is the closure of the convex hull of the set of its extreme
points. Let A = cl (conv (ex(K))). Then A is a closed convex subset of K.

Suppose that there is a point u € K \ A. Let us choose a closed hyperplane
H that strictly separates u from A (Theorem 3.4). In other words, there is a
continuous linear functional f: V — R such that f(z) > f(u) for any « € A. Let
o = min{f(z) : € K} (the minimum is attained since f is continuous and K is
compact) and let F = {z € K : f(z) = a} be the corresponding face of K. So, F
is a compact convex set and, as we proved, must contain an extreme point v, which
will be an extreme point of K (cf. Theorem I1.3.2). On the other hand, v ¢ A,
which is a contradiction; see Figure 40. g

Licensed to Georgia Inst of Tech. Prepared on Sun Jan 14 21:00:56 EST 2024for download from IP 188.92.139.72.



122 III. Convex Sets in Topological Vector Spaces

Figure 40

PROBLEMS.

1. Let C[0,1] be the vector space of all continuous functions on the interval
0,1]. Let B={f:|f(r)| < 1forall 7 € [0,1]}. Find the extreme points of B.

2. Let A be the following subset of C[0,1]:
1

A= {feC[O,l]:/ J(r)dr=0 and [f(#]<1 for all 701}
0

Let us make C]0, 1] a topological vector space as in Problem 1, Section 2.6. Check
that C10,1] is locally convex. Prove that A is a closed convex set which does
not contain straight lines and that A has no extreme points. Thus there is no
straightforward infinite-dimensional generalization of Lemma I1.3.5.

3. Let V be a topological vector space and let A be a convex set such that
int(A) # 0. Prove that for each point u € JA, there is a closed support hyperplane
at u, that is, a closed hyperplane H that contains u and isolates A.

4. Let A C V be a convex set in a vector space V and let F' be a face of
A. Prove that F' is an extreme set of A, that is, for any two x,y € A, whenever
z=(x+vy)/2 €F, we must have z,y € F.

5. Let V be the topological vector space of Problem 5, Section 2.6. Let
A={f: f@1/2)>0} and B={f: [f'(1/2)<0}
be subsets of V.

Prove that A and B are disjoint convex, algebraically open subsets of V', so
there is an affine hyperplane H C V strictly separating them. Prove that A and B
are dense in V. Deduce that there is no closed hyperplane H C L strictly separating
A and B.

We obtain an infinite-dimensional counterpart of Corollary I1.3.4.
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(4.2) Corollary. Let V' be a locally convex topological vector space and let K C 'V
be a compact convex set. Let f : V — R be a continuous linear functional. Then
there exists an extreme point u of K such that f(u) > f(x) for allz € K.

Proof. Since f is continuous and K is compact, f attains its maximum value «
on K. Let F = {z € K : f(z) = a} be the corresponding face of K. Hence F is
a compact convex set and by the Krein-Milman Theorem (Theorem 4.1), F has an
extreme point u. Then by Theorem I1.3.2 (Part 2), w is an extreme point of K. We
have a = f(u) > f(x) for all x € K. O

5. Polyhedra in L*

In this section, we study some infinite-dimensional convex sets which may be viewed
as analogues of polyhedra. First, we describe the ambient space.

(5.1) Spaces L' and L*. Let L0, 1] be the vector space of all integrable func-
tions on the interval [0, 1], that is, Lebesgue measurable functions f such that

1
/ F(7)] dr < +o0.
0

As usual, we do not distinguish between functions that differ on a set of measure
0. We make L'[0, 1] a topological vector space by declaring a set U C L*[0, 1] open
if for every f € U there is an ¢ > 0 such that the set

vr={se o [ 15 - otriar <}

is contained in U.

Let L*°[0, 1] be the vector space of all Lebesgue measurable functions f on the
interval [0, 1] such that |f(7)| < C for some constant C' and for almost all (that
is, for all except a set of zero measure) 7 € [0,1]. As usual, we do not distinguish
between functions that differ on a set of measure 0.

It is known that every continuous linear functional ¢ : L*[0,1] — R has the
form

1
o(f) = / f(r)g(r) dr

for some g € L*°[0,1]; see, for example, Appendix B of [C090]. This allows us to
view L*°[0,1] as the dual space to L'[0,1] and introduce the weak* topology on
L*°; see Section 2.8. Thus a set U C L*°[0, 1] is open if and only if it is a union of
some basic open sets

U(glv"'agn;alv"'aan;ﬁlv"'aﬁn)
1

z{fEL‘X’[O,l]: ai</gi(7)f(7')d7'<5i for izl,...,n},
0

where g1,...,g, € L'[0,1] are functions and a4, ... ,a, and Bi,..., [, are num-
bers.
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PROBLEM.

1. Check that L'[0,1] is a locally convex topological vector space.

(5.2) Proposition. Let B C L*[0,1] be the set
B = {u € L*°[0,1]: 0<wu(r) <1 for almost all T €0, 1]}

The set B is compact in the weak® topology.

PROBLEMS.

1. Prove that if u is an extreme point of B, then u(7r) € {0,1} for almost all
u € 10,1].
2. Deduce Proposition 5.2 from Theorem 2.9.

Hint: Consider a neighborhood U of the origin in L[0, 1]:

U:{gELl[O,l]: /01 |g(7’)|d7’<1}.

Let
1
K:{feLOO[O,l]: /(fg)d7'§1 for all geU}.
0

Prove that K consists of the functions f € L>°[0, 1] such that | f(7)| < 1 for almost
all 7 € [0,1]. Use Theorem 2.9 to show that K is compact. Show that B C K is a
closed subset.

3. Prove that conv(ex(B)) is not closed.
4. Deduce from Proposition 5.2 that the set

K= {f € L*°[0,1]:  |f(r)| <1 for almost all 7 € [0, 1}}
is weak™ compact.
Next, we introduce sets which may be considered as an L version of poly-
hedra (Problem 1 of Section 5.3 explains the relationship of our sets to polyhedra

in Euclidean space). The sets are defined by finitely many linear equations and
infinitely many inequalities in L*°[0, 1].

(5.3) Proposition. Let us fix m functions fi(7),..., fm(7) € LY0,1] and m
numbers B1,...,Bm € R. Let B C L*>[0,1] be the set

B = {u € L*[0,1]: 0<wu(r) <1 for almost all T € [0, 1]}7

and let )
A= {uEB :/ fitDu(r) dr=p; fori=1,... ,m}.
0

Then A is a conver weak® compact subset of L>°[0,1]. If w is an extreme point of
A, then u(t) € {0,1} for almost all T.
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Proof. It is obvious that A is convex. Furthermore, A is a closed subset of B and
so A is compact as follows from Proposition 5.2.

Let u be an extreme point of A. Suppose that the set {7 : u() ¢ {0,1}} has

a positive measure. Then for some § > 0 and X = {7 : 6 < |u(7)| < 1 — 4}, the
measure of X is positive. Let us find m + 1 pairwise disjoint subsets X1,... , X, 41
of X of positive measure and let [X;] be the indicator function of X;:

1 ifre X,

(Xil(7) = .

0 ifr ¢ X1

Let €1,...,€n+1 be real numbers (to be specified later) and let
V= 61[X1] + ...+ €m+1[Xm+1].

Furthermore, let uy = u+wv and let u_ = u—wv. Then v = (uy +u_)/2. Obviously,
if le1] < 6,...,|em| < d, we will have 0 < uy(7),u_(7) <1 for almost all 7.

| B N |

Figure 41. Decomposing u = (u4 + u—)/2

Now we show that we can choose a non-zero v so that ui,u_ € A. It suffices
to choose €1, ... ,€n+1 so that the system of m homogeneous equations

m—+1

S o [ RO dr=0. i= 1,

in m + 1 variables €1, ..., €,41 is satisfied. Since the number of variables exceeds
the number of equations, there must be a solution €1, ... , €;,11, where not all €’s
are zero. Scaling, if necessary, we make |e1],...,|emt1] < 6. Then u_,u; € A.
That contradicts the assumption that u is an extreme point of A. |
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PROBLEMS.

1. Consider the following “discretization” of Proposition 5.3. Let us choose N
points 0 < 71 < ... < 7n < 1 in the interval [0,1] and let f;(7;), i = 1,... ,m,
j=1,...,N, be real numbers. Consider the set

AZ{@“ﬂ~-mhﬂ):0§uh»§1 for j=1,...,N  and
N
Zfi(Tj)u(Tj):ﬁi for i:1,...,m}
j=1

as a polyhedron in RY. Suppose that v = (u(n), . ,u(TN)) is an extreme point
of A. Prove that at least N —m of the numbers u(7y),... ,u(ry) are either 0 or 1.

2. This is an extension of Proposition 5.3.

Let us consider the space L°°([0, 1], R?) of all Lebesgue measurable bounded
vector-valued functions f : [0,1] — R? and the space L!([0, 1], R?) of all Lebesgue
integrable vector-valued functions f : [0,1] — R Let us fix a bounded polyhe-
dron (polytope) P C R? m functions fi,..., fm € L'([0,1],R?) and m numbers

Biy.rr B Let

A= {u €L>([0,1],R%) :

u(r) € P for almost all 7 and
1
/ (fi(r),u(r)ydr=p; fori=1,... ,m}.
0

Prove that A is a convex set and that if u is an extreme point of A, then u(7) is a
vertex of P for almost all 7.

6. An Application: Problems of Linear Optimal Control

In this section, we show that a problem of optimal control can be considered as
a problem of optimizing a linear functional over an L°°-polyhedron. This is an
example of an infinite-dimensional linear program; cf. 11.4.4. We will go back to
this problem again in Section IV.12.

We review some differential equations first.

(6.1) Solving linear systems of differential equations with control. Let
A(7) and B(7) be n X n matrices, where 7 € [0,1] is a real parameter. We assume
that A(7) and B(7) are smooth functions of 7 and consider a system of linear
differential equations

(6.1.1) L x(r) = A()x(r) + B(ryu(r),
where x(7) = (21(7),... ,2x(7)) and u(7) = (u1(7),... ,u,(7)) are vectors from

R™. The function x(7) is a solution of the system (6.1.1), whereas u(7) is a control.
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If the control is chosen, under mild assumptions the solution x is determined by
the initial condition:
x(0) = xo,

where xo € R™ is a given vector. The solution x can be found as follows. Let X (7)
be an n x n matrix, which is a solution to the matrix system

d

d—X(T) = A(7)X(r) with the intial condition X (0) =1,
-

where [ is the n x n identity matrix. Then
(6.1.2) x(1) = X(7) (xo + / X~L(#)B(t)u(t) dt).
0

In general, we want to choose the control u in the space L ([O, 1], R") of vector-
valued functions [0, 1] — R™. Then, if X (7) and B(7) are continuous, the integral
(6.1.2) is well defined. Let us consider x(7) defined by (6.1.2) as a solution to
the original system of differential equations, even though it may be, say, non-
differentiable at some points. In particular, if we are to choose the control u(r) in
such a way that some terminal condition x(1) = x; is satisfied, we get the following
integral constraint:

1
(6.1.3) /0 X~H7)B(r)u(r) dr = X H(1)x1 — xo.

PROBLEM.
1°. Check that formula (6.1.2) indeed holds.

(6.2) Example. A problem of linear optimal control. Let us fix smooth real
functions ag(7), a1(7),b(7),co(7), c1(7) and d(7): 7 € [0,1]. Consider a differential
equation for a function z(7)

2 (1) = ao(T)x(T) + a1 (7)2' (1) + b(T)u(T),

where u(7) is a control, which we would like to choose in such a way that the initial
conditions
z(0) = zo, 2'(0) =wp

and the terminal conditions

are satisfied and the functional

1
/ (co(r)a(r) + ex(r)a(7) + d(r)u(r) ) dr
0
is minimized. In addition, the control must satisfy the condition

0<u(r)<1 forall 7e€l0,1].
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This is a simple example of a linear optimal control problem. The differential
equations describe the movement of an “object”, thus relating the coordinate x(7),
the velocity 2'(7) and the acceleration z’/(7). The control u is a “force” we may
apply. We want to transfer the “object” from the initial position (coordinate,
velocity) to the final position (coordinate, velocity), so that the total cost we pay for
the coordinate (“gravity”), for the velocity (“friction”) and for the control (“fuel”)
is minimized.

Our aim is to show that this optimization problem can be considered as a linear
programming problem of the type:

1
Find ~= inf/ g(T)u(r) dr
0
1
Subject to / fi(nu(r) dr = pa,
0

1
/ Fo(r)u(r) dr = B> and
0
0<u(r) <1 for almost all 7 €0,1],

where u € L°°[0,1] is a variable and the functions f1, f2,g € L'[0,1] and the
numbers (1, B2 can be explicitly computed.

To see this, let us write the differential equation in the form (6.1.1) by intro-
ducing a new variable v(7) = /(7). We get

d
%l‘(T) =wo(r) and E’U(T) = ag(7)x(7) + a1 (7)v(7) + b(T)u(T)

with the conditions

Thus, for vectors

we have

A= (ot win) ™0 0= (3 o)

in (6.1.1). Now the formulas for fi, fo and 1, 32 are obtained from (6.1.3). The
formula for g can be obtained from (6.1.2).

(6.3) Corollary. If the problem of linear optimal control is feasible, there exists
an optimal solution v € L>[0,1] such that u(t) € {0,1} for almost all 7 € [0, 1].
If the optimal solution uw € L*°[0,1] is unique, then u(r) € {0,1} for almost all
T €10,1].
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Proof. By Proposition 5.3, the set of all feasible controls u(7) is weak* compact.
By Corollary 4.2, there exists an optimal control u that is an extreme point of the
set of all feasible solutions. If w is unique, by Theorem I1.3.2 (Part 1), u necessarily
is an extreme point. By Proposition 5.3, we must have u(7) € {0,1} for almost all
T €1[0,1]. O

The conclusion of Corollary 6.3 is something akin to “unrealistic solutions” in
the Diet Problem; see Example 11.4.4. Indeed, it turns out that the optimal control
w at all times is either “hit the brakes” (u = 0) or “press the gas pedal to the floor”
(u = 1), which is not always acceptable in practice.

PROBLEMS.
1°. Consider the equation
2/ (1) = ao(T)x(T) + a1 (7)x' (1) + b(T)u(T)
with the initial conditions
z(0)=0 and 2/(0)=0.

Show that the solution z(7) depends linearly on the control w(7): if z1(7) is the
solution for uq(7), x2(7) is the solution for us(7), then z(7) = a121(7) + a2xa(7)
is the solution for u(7) = au;(7) + agus(7), where o7 and ay are real numbers.

2°. Let y(7) be a solution to the equation
y" (1) = ao(T)y() + ar(7)y'(7)
with some initial conditions
y(0) =z¢ and ¥'(0) =y
and let z(7) be a solution of the equation
2"(1) = ao(7)2(7) + a1 (7)2'(7) + b(7)u(7)

with the initial conditions 2z’(0) = 2z(0) = 0. Prove that z(7) = y(7) + 2(7) is a
solution to the equation

2/ (1) = ao(T)x(7) + a1 (7)2' (1) + b(T)u(T)

with the initial conditions z(0) = zo and z/(0) = w.

Problems 1 and 2 provide some intuition for why problems of linear optimal

1
control can be written as linear programs of optimizing / g(T)u(r) dr subject
0

1
to integral constraints fi(T)u(t) dr = p; and the “domain” constraint 0 <
0

u(r) < 1. First, Problem 2 allows us to reduce (in “nice” cases) the general case
to the case of zero initial conditions. Next, if the initial conditions z(0), z’(0) are
zero, the terminal values z(1) and z/(1) are linear functions of the control u. A

1
“reasonable” linear function (say, weak* continuous) has the form / f(r)u(r) dr
0

for some f € L'[0,1]. Thus fixing the terminal values of the solution z amounts to
fixing some integral constraints on wu.
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7. An Application: The Lyapunov Convexity Theorem

We apply Proposition 5.3 to obtain a theorem by A.A. Lyapunov (1940) which, in
full generality, asserts that the range of a non-atomic countably additive vector-
valued measure is convex. The proof below belongs to J. Lindenstrauss [Li66]. We
adapt it to the special case of a vector-valued measure on [0, 1].

(7.1) Theorem. Let us fix m functions fi,...,fm € L'[0,1] and let A be the
family of all Lebesque measurable subsets of [0,1]. For A € A, let ¢(A) € R™ be
the point

d(A) = (&1,... ,&m), where §i:/Afi(T) dr for i=1,...,m.

Then the set
x={o4): Aea}

is a compact convex set in R™.

Proof. The idea is to prove that X can be represented as the image of a compact
convex set under a continuous linear map.

Let us extend ¢ to a map ¢ : L0, 1] — R™,

1
o) = (&1,...,&m), where & :/ u(t)fi(r) dr for i=1,... m.
0

Let
B= {u € L*™°[0,1]: 0<u(r) <1 foralmostall 7 € |0, 1]}

Then B is convex and weak* compact (see Proposition 5.2). Since ¢ is linear and
continuous, the image ¢(B) C R™ is a compact convex set.

Next, we claim that ¢(B) = X. Clearly, X C ¢(B).
Conversely, let us choose a = (a1, ... ,a.;,) € ¢(B). Then the set

1
Ba:{ueB: /’U,(T)fi(T)dT:Oéi, for izL...,m}
0

is non-empty and weak* compact (Proposition 5.3). Therefore, by the Krein-
Milman Theorem (Theorem 4.1), there is an extreme point u, € By; cf. Figure 42.
By Proposition 5.3, we have u,(7) € {0,1} for almost all 7.

Let A= {7 :uq(7) = 1}. Then ¢(A) = a. Therefore, (B) C X and the result
follows. O
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Recall that we used a similar “convexification” argument in Sections 11.13-14
on quadratic convexity.

Figure 42. “Convexification”: given a set A and a map ¢, we find a
convex set B such that ¢(B) = ¢(A) and ¢ is linear on B.

Here is an interesting corollary.

(7.2) Corollary. Let S C R be a Lebesgue measurable set and suppose that
Fi(z,7) : Sx[0,1] — R, i = 1,...,m, are Lebesgue integrable functions. Let
I’ denote the set of all Lebesgue measurable functions x : [0,1] — S. For a func-
tion x € T, let us define ¥(x) € R™ by

1
Y(x) = (&1, ,&m), where & :/ Fi(x(T),T) dr for i=1,...,m.
0
Then the set X C R™,
X ={¢(): zel},

1S convex.

Proof. Let us choose two points a,b € X. Hence we have a = ¢ (z) and b = ¢(y)
for some Lebesgue measurable functions z and y on the interval [0, 1], such that
x(7),y(r) € S for all 7. We will construct a convex set Y C R™, such that Y C X
and a,b € Y. This will prove that X is convex. To do that, for a Lebesgue
measurable subset A C [0, 1], let us define a function z4(7):

() if TEA,
“0={30) rea

cf. Figure 43.
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x(T)
ZA(T)
| y(‘t)l | |
0 — | 1 0 | A | 1

Figure 43

Obviously, z4 € T'. Let
Y = {z/J(zA) for some Lebesgue measurable A C [0, 1]}

Since z(9,11(7) = x(7) and z¢(7) = y(7), we have a,b € Y. Since z4 € T, we
conclude that Y C X. To see that Y is convex, let us define functions f; € L*[0, 1],
i=1,...,m, by the formulas:

filr) = Fi(x(T),T) — Fi(y(r),r) for 1=1,...,m.
For a Lebesgue measurable set A C [0, 1], let
d(A) = (&1,... ,&m), where ¢ :/ filr)ydr for i=1,...,m.
A
Let
1
¢c=(v1,---,%vm), where = :/ Fi(y(T),T) dr for i=1,...m.
0
Then ¥(z4) = ¢(A) + c. Therefore, the set Y is a translation (by ¢) of the set
{¢(A) : A cC[0,1] is Lebesgue measurable}.

The latter set is convex by Theorem 7.1. O
PROBLEMS.

1°. Let us consider the set X C R? consisting of the points a = (a1, az, a3),
such that

1 1 1
ay :/ cos(ta(r)) dr, s :/ 322(7) dr, a3 :/ 7200() 4.
0 0 0

where z(7) ranges over the set of all Lebesgue measurable functions x : [0,1] —
(0,e) U (m,4). Prove that X is a convex set.

2*. Draw a picture of the set X from Problem 1.

Licensed to Georgia Inst of Tech. Prepared on Sun Jan 14 21:00:56 EST 2024for download from IP 188.92.139.72.
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8. The “Simplex” of Probability Measures

In this section, we present a certain infinite-dimensional analogue of a standard
simplex; cf. Section 1.2.2. First, we construct the ambient space.

(8.1) The space of continuous functions and its dual. Let C[0,1] be the
vector space of all real-valued continuous functions on the interval [0, 1]. We make
C[0,1] a topological vector space by declaring a set U C C[0, 1] open if for every
f € U there is an € > 0 such that the set

U(f,e):{geC[O,l]; If(7) —g(7)] < e forall Ogrgl}

is contained in U; cf. Problem 1, Section 2.6. Let V[0,1] be the space of all
continuous linear functionals ¢ : C[0, 1] — R. The space V0, 1] is often called the
space of signed Borel measures on [0,1]. The reason for such a name is that every
continuous linear functional ¢ : C[0,1] — R can be represented in the form

<b(f)=/01fdu,

where p is a signed Borel measure; see, for example, Appendix C of [C090]. Thus
p may be a regular measure, like pu = 72 dr,

1
o= [ sy ar
0
or a d-measure, like j1 = 6y /2,

o(f) = f(1/2).

We make V[0, 1] a topological vector space by introducing the weak* topology (see
Section 2.8).

PROBLEMS.
1°. Check that C[0, 1] is a locally convex topological vector space.
2. Let us define the norm p(¢) of a linear functional ¢ : C[0,1] — R by

p(o) = sup{\¢(f)| . feC0,1] and |f(r)]<1 forall 7 €0, 1]}.
Find the norms of the linear functionals

f(A/2+¢€) — f(1/2—¢)
2¢ ’

1 1
o(f) = /0 f(r) dr, o) = /O f(r) dr and 6.(f) =

where € > 0 is a parameter.

We introduce the central object of this section.
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(8.2) Definitions. A linear functional ¢ : C[0,1] — R is called positive if
¢(f) > 0 for all f such that f(r) > 0 for all 0 < 7 < 1. Let A C VI0,1] be
the set of all positive linear functionals ¢ : C[0, 1] — R such that ¢(1) = 1, where
1 is the function that is identically 1 on [0,1]. The set A is called the set of all
Borel probability measures on [0,1]. Let us fix a 7 € [0,1]. The linear functional
d; : C[0,1] — R, where 0,(f) = f(7), is called the delta-measure.

The set A of Borel probability measures is our infinite-dimensional analogue of
the standard simplex; see Problem 1 of Section 8.4 for some justification.

PROBLEMS.
1. Prove that every positive linear functional is continuous.
2. Prove that every continuous linear functional ¢ : C[0,1] — R can be

represented in the form ¢ = ¢ — @2, where ¢1 and ¢, are positive linear functionals.

Hint: Let f € C[0,1] be a non-negative function, f(7) > 0 for all 7 € [0, 1]. Let
o1(f) = sup{¢(g) : 0<g(r) < f(r) for all T € [0, 1]}

3. Let ¢ be a positive linear functional such that ¢(1) = 0. Prove that ¢ = 0.

4°. Prove that A is a convex set and that d, € A for any 7 € [0, 1].

5°. Prove that 6,(fg) = 0,(f)d-(g) for any 7 € [0,1] and any two functions
f.g € C[0,1].

6. Let ¢ : C[0,1] — R be a linear functional such that ¢(fg) = &(f)P(g)
for any two functions f,g € C[0,1]. Prove that either ¢ = 0 or ¢ = d, for some
T € [0,1].

7. Prove that ¢, is an extreme point of A for any 7 € [0,1].

(8.3) Proposition. The set A is compact in the weak™ topology of V[0, 1].

PROBLEM.
1. Deduce Proposition 8.3 from Theorem 2.9.

(8.4) Proposition. The extreme points of the set A of Borel probability measures
on the interval [0,1] are the delta-measures §. for T € [0, 1].

Proof. Let us choose a 7* € [0,1]. First, we prove that 0, = .~ is indeed an
extreme point of A. Clearly, d. € A (see Problem 4, Section 8.2). Suppose that
0« = (¢1 + ¢2)/2 for some ¢1,¢2 € A. Let f be any continuous function such
that f(7*) =1 and f(7) <1 for all 7 € [0,1]. Since ¢; and ¢, are positive linear
functionals, we have

Gi(f)=di(1—(1—=f)) =d:i(1) — (1= f) < 1.
On the other hand, §,.(f) = 1. Therefore, we must have ¢1(f) = ¢2(f) = 1. By
linearity, it then follows that ¢1(f) = ¢2(f) = f(7*) for any function f € C[0,1]

such that f(7*) > f(r) for all 7 € [0,1]. That is, ¢1 and ¢ agree with 6.~ on
every function f attaining its maximum at 7*. Now, for any f € C[0, 1], we have
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8. The “Simplex” of Probability Measures 135

f= 91— g2, where g1(7) = min{f(r"), f(7)} and go(7) = min{0, f(7*) — f()}.

A
*
—_
a
—

Figure 44. Representing a given function f as a difference of two
functions g1 and go that attain their maximum at a given point 7*

Hence g1 and g, are continuous functions on the interval [0, 1] that attain their
maximum value at 7*. Therefore, ¢;(g;) = g,(7*) for i, j = 1,2. By linearity, we

conclude that ¢;(f) = ¢i(g1) — ¢i(g2) = f(7*). Therefore, ¢p1 = o = s, SO 04 is
an extreme point.

Suppose that ¢ is an extreme point of A. First, we establish that ¢(fg) =
o(f)o(g) for any two functions f,g € C[0, 1] and then we deduce that ¢ = 4, for
some 7 € [0,1]. Let us fix a function h € C[0,1]. Then ¢ : C[0,1] — R defined
by ¥(f) = ¢(hf) is a continuous linear functional on C[0,1]. Let us choose h such
that 0 < h(7) < 1 for all 7 € [0,1]. Since ¢ is positive, we have 0 < ¢(h) < 1. We
define 91,49 : C[0,1] — R by

() = 20D g gy = LN

o(h) o1 —h)

It is easy to see that ; € A. We can write ¢ as a convex combination

¢ = d(h)1 + ¢(1 — h)yo.

Since ¢ is an extreme point of A, we must have ¥; = 1o = ¢. In particular,
d(fh) = ¢(h)o(f) for any f € C[0,1] and any h such that 0 < h(7) < 1 for each
7 € [0,1]. By linearity, it follows that ¢(fg) = ¢(f)@(g) for any two f,g € C[0, 1].

Let H = {f € C[0,1] : ¢(f) = 0} be the kernel of ¢. Hence H is a (closed)
hyperplane in C[0,1]. We observe that for every f € H, there is a 7 € [0,1]
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such that f(7) = 0. Indeed, if f € H is a function which is nowhere 0, then
1/f is a continuous function and we would have had 1 = ¢(1) = o(f - (1/f)) =
d(f)p(1/f) =0, which is a contradiction. Next, we observe that any set of finitely
many functions fi,..., f,, € H has a common zero 7*: f1(7%) = ... = f,(7*) = 0.
Otherwise, the function f = f2 + ...+ f2 is everywhere positive and f € H since
O(F) = O(f2) + -+ B(J2) = *(f1) + - .. + ¢*(fm) = 0. But we already proved
that every function f € H must have a zero. Finally, we conclude that there is a
point 7* € [0, 1] such that f(7*) = 0 for any f € H. Indeed, for any f € C[0, 1],
the set Xy = {7 € [0,1] : f(7) = 0} is a closed set and any finite intersection
XpnN...NnXy, for f1,..., fm € H is non-empty. Since [0, 1] is a compact interval,

the intersection ﬂ X is non-empty. Now we see that H is a subset of the kernel of

feH
0+, which implies that ¢ = ad,« for some a € R. Hence ¢ = §,«, which completes

the proof. O

PROBLEMS.

1. Consider the “discretization” of spaces C[0,1] and V[0, 1]. Namely, fix a set
T of dpoints 0 < 7 < ... < 74 < 1in the interval [0,1]. Interpret the space C(T') of
functions continuous on 7' as R%. Identify the space V(T) of all continuous linear
functionals on C(T) with R%. Identify the set A of all non-negative functionals
¢ € V(T) such that ¢(1) = 1 with the simplex

d
Ad:{(yl,...qd): Z%‘Zl and ;>0 for i:1,...7d};
i=1

cf. Problem 1 of 1.2.2. Hence A C V][0,1] may be considered as an infinite-
dimensional version of the simplex.

2. Let O C VI0,1] be the set of functionals ¢ such that |¢p(f)| < 1 for any
f € C[0,1] with the property that |f(7)| < 1 for each 7 € [0,1]. Prove that the
extreme points of O are §, and —d, for 7 € [0,1]. Hence O may be considered as
an infinite-dimensional analogue of the (hyper)octahedron; see Section 1.2.2.

1
Notation. For p € V[0,1] and f € C[0, 1] we often write / f dp instead of p(f).
0

9. Extreme Points of the Intersection. Applications

We need a simple and useful result which describes the extreme points of the inter-
section of a convex set with an affine subspace. First, we describe the intersection
with a hyperplane.

(9.1) Lemma. Let V be a vector space and let K C V be a convez set, such that
for every straight line L C 'V the intersection K N L is a closed bounded interval,
possibly empty or a point. If H C V is an affine hyperplane, then every extreme
point of KN H can be expressed as a conver combination of at most two extreme
points of K.
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Proof. Let u be an extreme point of K N H. If u is an extreme point of K, the
result follows. Otherwise, there are two distinct points uy,u_ € K, such that
u = (uy +u_)/2. Let L be the straight line passing through u; and u_. The
intersection L N K = [u1,uz] is a closed interval, containing w in its interior. We
claim that u; and us are extreme points of K. Suppose, for example, that u; is not
an extreme point of K. Then there are two distinct points vy,v_ € K, such that
up = (vy +v_)/2. Clearly, vy ¢ L and v_ ¢ L. Consider the 2-dimensional plane
A passing through the points v, v_, and us and the triangle A = conv(vy,v_, us)
in the plane A; see Figure 45.

u
V 1
+ V.
M
u
u
2
Figure 45

The point u is an interior point of the triangle. Since H is a hyperplane, the
intersection M = AN H is a straight line passing through u. Since u is an interior
point of A, the intersection A N H is an interval, containing u as its interior point.
Since K is convex, ANH C KN H, so the intersection K N H contains an interval,
containing w as its interior point, which contradicts the assumption that u is an
extreme point of K N H.

The contradiction shows that u; and us are extreme points of K N H. Since u
is a convex combination of u; and wus, the result follows. O

Carathéodory’s Theorem (Theorem 1.2.3) determines the number of points of a
set A which are needed to represent a point of the set B as a convex combination,
provided B is the convezr hull of A. The following result determines the number of
points which are needed if B is a section of A. We call it the dual Carathéodory
Theorem (we discuss the general concept of duality in Chapter IV and the duality
between intersections and convex hulls in Section IV.1).
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(9.2) Theorem. Let K be a convex subset of a vector space V' such that for any
straight line L the intersection K N L is a closed bounded interval, possibly empty
or a point. Then every extreme point of the intersection of K with m hyperplanes
Hy, ... H,, can be expressed as a conver combination of at most m + 1 extreme
points of K. Equivalently, if A CV is an affine subspace such that codim A = m,
then every extreme point of the intersection K N A can be expressed as a convex
combination of at most m + 1 extreme points of K.

Proof. First, we prove that every extreme point of the intersection KNHyN...NH,,
is a convex combination of extreme points of K. Let us define Ky = K and
K;,=K;, 1NH;,i=1,...,m. Since the intersection of a straight line L with any
affine subspace in V is either L itself or a point or empty, we can apply Lemma 9.1
to K;. Hence we conclude that every extreme point of K; is a convex combination
of at most two extreme points of K;_;. Therefore, every extreme point of K,, =
KnHN...NH,, is a convex combination of at most 2™ extreme points of Ky = K.

Let u be an extreme point of K N Hy N...N H,,. Let us write

u=aiu + ...+ ayu,, where
a; >0 and wu; €ex(K) for i=1,...,n and
ar+...+a, =1,

with the smallest possible n (we know that we can choose n < 2™). Clearly, «; > 0
for all ¢ = 1,... ,n. Furthermore, the points w1, ... ,u, are affinely independent,
since otherwise we could have reduced n as in the proof of Carathéodory’s Theorem
(see Theorem 1.2.3). Therefore, u is an interior point of the (n — 1)-dimensional
simplex A = conv(uq,...,u,) C K (cf. Problem 1, Section 11.2.3). If n > m + 1,
then the intersection A N Hy... N H,, contains an interval containing u as its
interior point, which contradicts the assumption that w is an extreme point of

KNHyN...NH,. Hence n < m + 1 and the proof follows. O
PROBLEMS.

1. Show by example that, in general, the constant m+ 1 in Theorem 9.2 cannot
be reduced.

2°. Let K = {z € R?: ||lz|| < 1} be a ball. Prove that every extreme point of
KnNHyN...NH,, is an extreme point of K.

3. Let R : d = n(n + 1)/2 be the space of n x n symmetric matrices and let
K = {X = 0and tr(X) = 1}. Prove that every extreme point of KNHN...NHp,
is a convex combination of not more than |(v/8m + 1 —1)/2| 4+ 1 extreme points of
K.

Hint: Cf. Proposition 11.13.1.

4. Let R% d = n?, be the space of all n x n matrices and let K C R? be the
Birkhoff Polytope (the polytope of doubly stochastic matrices; see Section IL.5).
Let S € R? be the subspace of all n x n symmetric matrices. Prove that every
extreme point of K N.S can be represented as a convex combination of not more
than two extreme points of K.
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A generalization of Problem 4:

5. Let G be a finite group of linear transformations of RY. Let K C R be a
compact convex set, which is G-invariant: g(z) € K for all g € G and all z € K.
Let L = {:I: €ER?: g(x) =xforallge G} be the subspace of G-invariant vectors
(check that L is indeed a subspace). Prove that every extreme point of K N L is a
convex combination of not more than |G| (the cardinality of G) extreme points of
K.

Theorem 9.2 looks intuitively obvious in small dimensions; see Figure 46.

A%
1 Vi

Figure 46. a) u is a convex combination of v; and v2; b) w is a convex
combination of v1, v2 and v3.

It has some interesting infinite-dimensional applications.

(9.3) Application: extreme points of a set of probability measures. Let
fiy---, fm € C[0,1] be continuous functions on the interval [0, 1]. Suppose that p
is an unknown Borel probability measure on the interval [0, 1] (see Section 8) but
we know the expectations

1
/ fidu=qa;, i=1,... ,m.
0

We want to estimate the expectation

1
040:/ g dp
0

of yet another known function g € C[0,1]. For instance, if we have fi(7) = 77,

i = 1,...,m, then a; are the moments of u, and g is some other function of
interest. Theorem 9.2 and Proposition 8.4 lead to the following useful discretization
principle.
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(9.4) Proposition. Let us fix continuous functions g, f1,... , fm on the interval
[0,1] and real numbers aq,... ,am. Suppose that the set B of Borel probability
measures p on [0,1] satisfying the equations

1
/fidu:ai for i=1,...,m
0

is non-empty. Then there exist measures u*, = € B such that
1. the measures u* and p~ are convex combinations of at most m + 1 delta-

measures:
m+1 m—+1
+_ + - _ -
ph=Y NG =) N6
i=1 i=1
where
m—+1 m+1

D= N =1, MOAT >0 for i=1,...,m+1,
i=1 =1

and'r% 7'.76[0,1] fori=1,...,m+1;

)

2. the set of values

1
aoz/gdu for weB
0

is the interval [a™, at], where

1 1
a = / gdu~ and ot = / g dut.
0 0

Proof. The set B can be represented as the intersection B=ANH; N...N H,,,
where A is the simplex of Borel probability measures (see Section 8) and the affine
hyperplanes H; are defined by the equations:

Hi:{ueV[O,l]: /Olfi dui:ai}.

Clearly, B is convex. Since A is weak* compact (Proposition 8.3) and H; are closed
in the weak™ topology, the set B is compact. The function

1
aozu»—>/ g du
0

is weak™ continuous and hence by Corollary 4.2 there is an extreme point u~ of B
where g attains its minimum on B and there is an extreme point pu+ of B where
ap attains its maximum on B. By Theorem 9.2, 4~ and p™ can be represented as
convex combinations of some m + 1 extreme points of A. Proposition 8.4 implies
that the extreme points of A are the delta-measures. O
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PROBLEMS.
1. Let us fix an o € [0,1]. Find a probability measure p on [0,1] such that

1 1
/ T dp = o and / (7 — @)? du is maximized.
0 0

2. Let p be a probability measure on [0,1]. Let

D(u)=/0172 dp — (/017 du)2

be the variance of p. Prove that 0 < D(u) < 1/4.

Hint: Use Problem 1.

3. Let us consider the set Sgi1 of all (d + 1)-tuples (o, ... ,&q), where & =
/1 7% dp for some € A and i = 0,...,d. Prove that Sy ; is the section of the
n?oment cone Mgy1 (see Section I1.9) by the hyperplane &, = 1.

10. Remarks

For topological vector spaces, the Krein-Milman Theorem and spaces L', L>°, C[0, 1]
and V[0, 1] see [Bou87], [Ru91] and [Co90]. We note that many of the results of
Sections 5, 7, 8 and 9 can be generalized in a straightforward way if the interval
[0,1] is replaced by a compact metric space X. The author learned Corollary 7.2
and its proof from A. Megretski; see also [MT93]. A general reference for optimal
control theory is [BH75].
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Chapter IV

Polarity, Duality and
Linear Programming

Duality is a powerful technique in convexity theory which emerges as the most
symmetric way to state separation theorems. Often, non-trivial facts are obtained
from trivial ones by simple “translation” using the language of duality. We start
with polarity in Euclidean space, prove that it extends to a valuation on the algebra
of closed convex sets, complete the proof of the Weyl-Minkowski Theorem and prove
a necessary and sufficient condition for a point to belong to the moment cone. We
proceed to develop the duality theory for linear programming in topological vector
spaces ordered by cones. We revisit many of the familiar problems such as the
Diet Problem, the Transportation Problem, the problem of uniform (Chebyshev)
approximation and the L™ linear programming problems related to optimal control
and study some new problems, such as problems of semidefinite programming and
the Mass-Transfer Problem. We obtain characterizations of optimal solutions in
these problems.

1. Polarity in Euclidean Space

Let us define the central object of this section.

(1.1) Definition. Let A C R? be a non-empty set. The set
Aoz{ceRd: (c,z) <1 for all xeA}

is called the polar of A.

143
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144 IV. Polarity, Duality and Linear Programming

PROBLEMS.
1°. Prove that A° is a closed convex set containing the origin.
2°. Prove that (R%)° = {0} and that {0}° = R?.
3°. Prove that if A C B, then B° C A°.
4°. Prove that (Uiel Ai> =Nier 45

5°. Let A C RYbe aset and let @ > 0 be a number. Prove that (a4)° = a~1A°.

6. Let L C R? be a linear subspace. Prove that L° is the orthogonal comple-
ment of L.

7°. Let A= conv(vl, e ,vm) be a polytope. Prove that
A° = {CCERn: (vi,z) <1, for i=1,... ,m}.

8°. Prove that A C (A°)°.

Here is one of our main tools which we use to “translate” properties and state-
ments about convex sets.

(1.2) The Bipolar Theorem. Let A C R? be a closed convex set containing the
origin. Then (A°)° = A.

Proof. From Problem 8, Section 1.1, we saw that A C (A°)°. It remains to show,
therefore, that (A°)° C A. Suppose that there is a point « such that v € (A°)° and
yet u ¢ A. Since A is closed and convex, by Theorem II1.1.3 there exists an affine
hyperplane strictly separating u from A. In other words, there exists a vector ¢ # 0
and a number a such that {c,z) < a for all z € A and (c,u) > a. Since 0 € A, we
conclude that o > 0. Let us consider b = a~'c. We have (b,z) < 1forallz € A

and hence b € (A°). However, (b,u) > 1, which contradicts the assumption that
u € (A°)°. Therefore (A°)° C A and the result follows. O

PROBLEMS.

1°. Prove that ((A°)°)° = A° for every non-empty set A C R?.

2. Let A C R? be a non-empty set. Prove that (A°)° is the closure of
conv(A U {0}).

3. Let A ={z € R": (¢,x) < 1fori=1,...,m}. Prove that A° =
conv(0,¢1, ... ,Cm)-

4. Let A C R? be a non-empty set such that A° = A. Prove that

A={zeR*: |z| <1},

the unit ball.

5. Let A = {(fl,... Ea) 0 —1 <& < 1fori=1,... ,d} and let B =
{(&,... &) |&|+...+|&| < 1}. Prove that A° = B and B® = A.
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1. Polarity in Euclidean Space 145

6. Let us fix p,q > 0 such that 1/p+1/g =1. Let

AZ{(§17---,€d)i Zd:|§ipél} and BZ{(§17---7§d)1 zd:|§i|qél}-
i=1 i=1

Prove that A° = B and that B° = A.

7°. Let B(0,\) = {z € R? : [|z|| < A} be the ball of radius A. Prove that
B(0,X)° = B(0,1/X).

Now we are ready to prove the second part of the Weyl-Minkowski Theorem
(the first part is Corollary 11.4.3), which will be the first time we obtain a result by
translating a known result.

(1.3) Corollary. A polytope is a polyhedron.

Proof. Let P = conv (vl, e ,vm) be a polytope in R%. Without loss of generality
we may assume that int P # () (otherwise, we consider the smallest affine subspace
containing P — see Theorem II.2.4) and that 0 € int P (otherwise, we shift P). In
other words, B(0,e) C P for some ¢ > 0, where B(0, ) is the ball of radius A
centered at the origin. By Problem 3, Section 1.1 and Problem 7, Section 1.2, we
have P° C B(0,¢€)° = B(0,1/¢), so P° is bounded. Furthermore,

Poz{ceRd: (c,v;) <1 for izl,...,m},

so P° is a polyhedron (cf. Problem 7, Section 1.1). Hence P° is a bounded poly-
hedron and therefore by Corollary 11.4.3 it is a polytope:

P° = Conv(ul, e ,un) for some w; € R%.
Applying the Bipolar Theorem (Theorem 1.2), we conclude that
P = (P°)° = {:ceRd: (wu) <1 for i=1,... n}
is a polyhedron. a
PROBLEM.
1. Prove that the polar of a polyhedron is a polyhedron.

Here are some interesting dualities:

2. Let us define the projective plane RP? as follows: the points of RP? are the
straight lines in R® passing through the origin. The straight lines in RP? are the
planes in R? passing through the origin. As usual, a line in RP? (a plane in R?)
consists of points of RP? (lines in R3).

Prove that for every two distinct points A and B of RP? there is a unique
straight line ¢ C RP? that contains A and B.
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146 IV. Polarity, Duality and Linear Programming

Prove that every two distinct lines a,b € RP? intersect at a unique point C.

There is the polarity correspondence between points and lines of RP?: a point
A € RP? corresponds to a line a C RP? if and only if A, considered as a line in
R3, is orthogonal to a, considered as a plane in R3. Prove that a point C is the
intersection of two distinct lines @ and b if and only if the distinct points A and B
lie on the straight line c.

A

<~

\\
!
01 v

Figure 47. The polarity correspondence between points and straight
lines in RP?

The Euclidean plane R? can be embedded in RP? in the following way. Let
us identify R? with an affine plane in R?, not passing through the origin. A point
x € R? is identified with the straight line X C R3, passing through z and the origin.
Hence, z is identified with a point of RP?; see Figure 48.

Figure 48. A point in R? is identified with a point in RP? and a line
in R? is identified with a line in RP2.

Prove that straight lines in R? are identified with straight lines in RP2. Describe

the points of RP? that are not identified with any point of R? and the straight lines
in RP? that are not identified with any straight line of R2.
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1. Polarity in Euclidean Space 147

3. A polytope P C R? is called self-dual if the origin is an interior point of P
and P° can be obtained from P by an invertible linear transformation. Suppose

that P = conv(vy, ... ,v441), where vq,... ,v441 are affinely independent and 0 =
v1 + ...+ v441. Prove that P is self-dual.
4. Prove that the cube I; = {(51, €l —1<g <1 i=1,... ,d} is not

self-dual for d > 2. Prove that I; and I5 are self-dual.

5. Prove that a regular polygon in R?, containing the origin as its center, is
self-dual.

6. Let e, ez, 3, e4 be the standard orthonormal basis of R*. The polytope
P:conv(ei—l—ej,—ei—ej,ei—ej: 1<i#j §4)

is called the 24-cell. Prove that P is self-dual.

The polytope P is a regular 4-dimensional polytope having twenty-four vertices
and twenty-four facets; see also Problem 9 of Section VII.3.2.

Recall (Section I1.8) that a convex set K C R? is called a convez cone if 0 € K
and Ax € K for every z € K and A > 0. Polars of cones look especially natural.

(1.4) Lemma. Let K C R? be a convex cone. Then

Koz{xeRd: (x,y) <0 for every yEK}.

Proof. By Definition 1.1, K° consists of all the points = in R? such that (z,y) < 1
for all y € K. Suppose that for some 2z € K° and some y € K we have (x,y) > 0.
Then, for a sufficiently large A > 0, one has (x, \y) > 1. Since K is a cone, Ay € K,
which contradicts the definition of K°. 0

PROBLEMS.
1°. Prove that the polar of a cone is a cone.
2°. Let Ky, Ko C R? be cones. Prove that (K; + K»)° = K{ N K§.

3. Let K1, Ky C RY be closed convex cones. Prove that (K1 N K5)° is the
closure of K7 + K3.

4. Prove that a convex cone K C R? is the conic hull of a finite set if and only
if K can be represented in the form K = {ac eERY: (c;,x) <0,i € I} for a finite,
possibly empty, set of vectors {ci,i el } C R%. Such cones are called polyhedral.

It turns out that polarity can be extended to a valuation on the algebra C(R?)
of closed convex sets; cf. Definition I1.7.3. The following result is due to J. Lawrence;
see [L88].

(1.5) Theorem. There exists a linear transformation D : C(R?Y) — C(RY) such
that D([A]) = [A°] for any non-empty closed convex set A C RY.
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148 IV. Polarity, Duality and Linear Programming

Proof. For € > 0, let us define the function F, : R x R — R,

1 if (z,y) > 1+e¢,

0 otherwise.

Fe(z,y) = {

For a function g € C(R?) and a fixed y € RY, let us consider the function h,, .(z) =
g(x)F.(x,y). We claim that h, . € C(R?). By linearity, it suffices to check this in
the case when g = [A] is the indicator function of a closed convex set A C R%. In
this case, hy . = [AN H, ], where

Hy.={zeR": (z,y)>1+¢}

is a closed halfspace. Since [A N Hy ] is a closed convex set, we have h, . € C(R%)
and we can apply the Euler characteristic x (cf. Section 1.7):

1 if(x,y) >1+¢ forsome xz€ A,

X(hw) = {

0 otherwise.
For g € C(RY) let us define f. = D(g) by the formula:
fe(y) = x(9) = x(hy,e) = x(9) = x(9(2) Fe(z,y)) forall yeR™
By Theorem 1.7.4, we conclude that
(1.5.1) Dc(a1g1 + a292) = a1D(g1) + a2Dc(g2)

for all g1,9o € C(R?) and all a;, a3 € R. Suppose that g = [A] is the indicator
function of a non-empty closed convex set A. Then for f. = D.(g) we have

1 if (z,y) <1l+e forall ze€A,
fe (y) = .
0 otherwise.
Therefore,
1 if (x,y) <1 forall ze€ A,
1.5.2 lim f.(y) =
( ) eﬁlﬂof W) { 0 otherwise.

Now, for g € C(R?) we define f = D(g) by

fly) = lim f(y) where f.="Dcg).

e—+0

By (1.5.1) and (1.5.2) it follows that D(g) is well defined, that D[A] = [A°] for all
non-empty closed convex sets A C R? and that D(a;g1+a292) = a1D(g1)+a2D(go)
for all g1, g2 € C(RY) and all a1, a9 € R. O
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1. Polarity in Euclidean Space 149

PROBLEMS.

1°. Check that the subspace Co(R?) C C(R?) spanned by the indicator functions
[A] of closed convex set A C R? containing the origin is a subalgebra of C(R?) and
that D maps Co(R?) onto itself. Consider the restriction D : Co(R?) — Co(R?).

Prove that D? = id, where id is the identity transformation of Co(R%).
2. Find the eigenvalues of D as an operator D : Co(R%) — Co(RY).

3. Consider the subalgebra Cop(R?) generated by the indicator functions [K]
of polyhedral cones K (see Problem 4 of Section 1.4). Prove that there exists a
bilinear operation x such that [K;]*[K2] = [K; + K3] for any two polyhedral cones
K, and K, (cf. Problem 1 of Section 1.8.2). Prove that the operator D maps the
space Cop(R?) onto itself. Furthermore, prove that D(fg) = D(f) « D(g). Thus,
polarity on polyhedral cones plays a role similar to that of the Fourier transform
in analysis.

4. Let IUJ = {1,...,d} be a partition and let us define two convex cones
Ky, Ky CR? by

Klz{(gl,...,gd):gizo for i€l and & >0 for jeJ} and

KQZ{(gl,...,gd):giéo for i€l and & >0 for jeJ}.
Prove that D([K1]) = (—1)/I[K>].

Theorem 1.5 allows us to associate with a valuation p : C(RY) — R the dual
valuation p* : C(R?) — R defined by the formula: p*(g) = u(D(g)). Some
interesting valuations defined on certain subspaces of C(R?) arise this way. For
example, if A C R? is a compact convex set containing the origin in its interior,
then so is A° and we can define the dual volume of A by vol*(A) = vol(A°). Hence
vol* extends to a valuation (linear functional) on the subspace of C(R?) spanned
by the indicator functions of compact convex sets containing the origin in their
interiors. Some interesting properties of volumes and dual volumes are described
in Problems 3-6 of Section V.1.3.

If K ¢ R? is a closed convex cone, then so is K°. We can define the spherical
angle v(K) of K as follows: let S“~! C R? be the unit sphere endowed with the
rotation invariant probability measure v. We let v(K) = v(K NS?!). We can
define the exterior spherical angle v*(K) of K by v*(K) = v(K°). In particular,
if d = 2, then v(K) is the usual angle divided by 27 and v*(K) = 0.5 — v(K),
provided K # {0}, R2. Hence v* extends to a valuation on the subspace of C(R?)
spanned by the indicator functions of closed convex cones.

Theorem 1.5 implies that if the indicator functions of some non-empty closed
convex sets satisfy a linear relation, then the indicator functions of their polars
satisfy the same linear relation; see Figure 49.

(1.6) Corollary. Let A;:i=1,...,m be non-empty closed convex sets in R and
let a; i =1,...,m be real numbers such that
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150 IV. Polarity, Duality and Linear Programming

Then
m
Z a;[A7] = 0.
i=1

Proof. We apply the operator D of Theorem 1.5 to both sides of the identity

~

Figure 49. Example: [Ki]| + [K2] — [K3] = [K4] and [KT]] + [K5] —
[K3] = [K%]

2. An Application: Recognizing Points in the Moment
Cone

As an application of the Bipolar Theorem (Theorem 1.2), we show how to decide
whether a given point belongs to the moment cone (see Section I1.9). This is yet
another demonstration of the “duality principle” which allows us to obtain some
useful information without extra work.

Let us consider the space R¥*! of all (d + 1)-tuples z = (£, ... ,&q). Let us fix
the interval [0, 1] C R (the case of a general interval [, 8] C R is treated similarly).
Let

g(t)=(1,7,7%,...,7%) for 0<7<1

Licensed to Georgia Inst of Tech. Prepared on Sun Jan 14 21:00:56 EST 2024for download from IP 188.92.139.72.



2. An Application: Recognizing Points in the Moment Cone 151

be the moment curve and let
M =co(g(r): 0<7<1)

be the corresponding moment cone. Given a point a = («, ... ,qq), we want to
decide whether @ € M. In other words (cf. Sections I1.9, 11.10 and I11.9), we want
to decide whether there exists a Borel measure p on the interval [0,1] with the
prescribed moments:

1
/ rtdp=0y, i=1,...,d.
0

Let K C R%*! be the cone of polynomials that are non-negative on [0, 1] (see Section
I1.11):

K = {(fyo,... va): YoF+nTH ... 7t >0 forall 7€ [0,1]}.
(2.1) Lemma. We have

M:{xGRdH: (x,c) >0 for all CEK}.

Proof. We can write
K= {c ceR¥L: (¢, g(1)) >0 forall 7€, 1]}
:{cERdH: (c,z) >0 for all xEM}.

Denoting —K = {—c : ¢ € K} and using Lemma 1.4, we can write —K = M°.
Since both K and M are closed convex sets containing the origin (cf. Lemma
I1.9.3), applying the Bipolar Theorem (Theorem 1.2), we get

M:(fK)”:{xeRdH: (x,c) >0 for all CEK},

which completes the proof. O
PROBLEM.

1. Let Hyy ,, be the real vector space of all homogeneous polynomials of degree
2k in n real variables = (&1,...,&,). Let us introduce the scalar product (f, g) as

in Problem 3 of Section I.3.5, thus making Hyy, , a Euclidean space. For a vector
c € R", let p.(z) = (c,z)2k.
Let
K, = {p € Hopp: p(xr)>0 forall ze R”}

be the cone of non-negative polynomials and let
Ky = co(pc € Hopp: c€ R")

be the conic hull of the powers of linear forms. Prove that K7 = —K5 and that
KS = —Kj.
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(2.2) Proposition. Let a = (ag, ... ,aq) be a point.
1. Suppose that d = 2m is even. Then a € M if and only if

m
> &g =0 forall x=(%,... &n) € R
i,j=0
and
m—1
> (Qigjar — igj2)68 =0 forall x= (... no1) ER™.

4,5=0

Suppose that d = 2m + 1 is odd. Then a € M if and only if

m

3 qirpabl >0 forall x=(E,... En) € R
i,j=0
and

m

Z (OéH_j — Oéi+j+1)§ifj >0 fO?” all x= (fo7 - ;fm) S R™H

4,5=0

Proof. Suppose that d = 2m. Corollary I1.11.3 asserts that the polynomial p(7) =
Yo + 7T + ...+ v47? is non-negative on the interval [0, 1] if and only if p can be
written as a convex combination of polynomials ¢7, where ¢; = &o+&17+. .. +&nT™
are polynomials of degree m, and polynomials 7(1 — T)qu, where ¢;(7) = o+ &7+
...+ &_17™ ! are polynomials of degree m — 1.

Applying Lemma 2.1, we conclude that a € M if and only if

(a,c¢y >0 for all points ¢ = (79,...,74) such that

Yo +NTH vt = (G FaT Gt ™)?

for some = = (&, ... ,&n) € R™FL and

(a,c¢y >0 for all points ¢ = (v9,...,7q4) such that

Yo+NTA+ .+ ’ydrd =7(1—-7)(& +&7+...+ §m_17'm_1)2
for some x = (&1,... ,&m_1) € R™™L
In other words, a € M if and only if

d

Zak(z §i§j)20 forall == (&,...,&n) and

k=0 i+i=k

d
Zak( Yooag - Y gigj)zo for all o= (&,... \Em1).
k=0

i+j=k—1 i+j=k—2

The first part now follows.
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Suppose that d = 2m + 1. Corollary II.11.3 asserts that the polynomial p(7) =
Yo + 71T + ... + 7ya7¢ is non-negative on the interval [0, 1] if and only if p can be
written as a convex combination of polynomials 7¢? and (1 — 7')qj2-7 where ¢;,q; =
Eo+ &+ ...+ &7 are polynomials of degree m.

Applying Lemma 2.1, we conclude that a € M if and only if

(c,a) >0 for all points ¢= (vg,...,74) such that
Yo+nT+. Ayt =G+ T+ ™)

for some z = (&, ... ,&m) € R™ and

(¢,a) >0 for all points ¢ = (yp,...,74) such that
’yo+717'—|—...—|—f)/d7'd: (1—7’)(§O+§1T+...+'ym7'm)2

for some x = (&, ... ,&n) € R™FL In other words, a € M if and only if
d
Zak< Z &fj) >0 foral zx=(&,...,&nm) and
k=0  itj=k—1
d
Sa( X &g — Y &g) =0 forall w= (&, &n)
k=0 i+j=k itj=k—1
and the proof of Part 2 follows. O

The necessary and sufficient condition for a point to lie in the moment cone is
often stated as follows.

(2.3) Corollary. Leta = (ag,...,aq) be a point.
1. Suppose that d = 2m is even.
Forn=0,...,m let A, be the (n+ 1) x (n+ 1) matriz whose (i, j)-th
entry s Qi j_o:

(675} (e73] ce (7%

(5] [6%) e Ap41
An =

Qp  Opy1 . Q2n,

Forn=0,...,m—1let A, be the (n+ 1) x (n + 1) matric whose (i, j)-th
entry s iy ;1 — Qitj,

a1 — (9 e AUpt1 — Opt2
A — Qg — Q3 cee Opt2 — Qpy3
n =
Opt1 — Opy2 ... Aop41 — O2p42

Then a € M if and only if the matrices A, forn = 0,...,m and A}, for
n=20,...,m—1 are positive semidefinite.
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2. Suppose that d =2m + 1 is odd.

Forn=0,...,m let A, be the (n+ 1) x (n + 1) matriz whose (i, j)-th
entry is i1,

a1 (6%} . Ap41

(% « e [e%
An _ 2 3 n+2
Q41 Apt2 .. Q241

Forn=0,...,m let A, be the (n+1) x (n+1) matriz whose (i, j)-th entry
IS Qlitj—2 = Qigj—1,

g — O Ay — Opy1
A = a1 — Q2 cee o Opy1 — Opy2
n =
Qp — Qpt1 ... Q2p — Q2pyd

Then a € M if and only if the matrices A, and A, forn =0,...,m are
positive semidefinite.

Proof. Follows from Proposition 2.2. O

PROBLEM.
1. Draw a picture of M and check the conditions of Corollary 2.3 when d = 2.

3. Duality of Vector Spaces

In this section, we begin to introduce the general framework of duality. We define
it first for vector spaces and extend to topological vector spaces in the next section.
We start with a key definition.

(3.1) Definition. Let F and F be real vector spaces. A non-degenerate bilinear
form () : E x F — R is called a duality of E and F.

In other words, for each e € F and each f € F, a real number (e, f) is defined
such that

(oner + ages, f) =ailer, f)+ azles, f) and
(e, arfi +anfs) = aile, fi)+asle, f2)

for all e,e,eo € E, for all f, f1, fo € F and for all a3,y € R (that is, () is a
bilinear form). Moreover,

if (e,f)=0 forall e€FE, then f=0 and
if (e,f)=0 forall feF, then e=0

(that is, () is non-degenerate).

Next, we list our main examples.
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(3.2) Examples.
(8.2.1) Euclidean spaces. Let E =R% let F = R? and let

d
(x,y}szmi, where == (&,...,&) and y= (N,...,04)-
i=1

(8.2.2) Spaces of symmetric matrices. Let E = F = Sym,, be the space of n x n
symmetric matrices (see Section I1.12.1) and let

<A,B> = tI‘(AB) = Z o‘ijﬁij; where A= (Ozij) and B = (/Blj)
i,j=1
Of course, this can be considered as a particular case of (3.2.1).

(3.2.8) Spaces L' and L. Let E = L'[0,1], let F = L*°[0,1] (see Section I11.5.1)
and let

1
(f,9) :/0 f(r)g(r) dr, where f € Ll[O, 1] and g€ L*|0,1].

Similarly, one can define dualities of LP(X, ) and LY(X, ) with 1/p+1/¢ =1 and
a space X with a measure u.

(8.2.4) Spaces of continuous functions and spaces of signed measures.

Let E = C]0, 1] be the space of all continuous functions on the interval [0, 1],
let F' = V0, 1] be the space of signed Borel measures (see Section II1.8.1) and let

1
(f,u):/o fdu, where feC[0,1] and peV[0,1].

Similarly, one can consider a more general duality of C(X) and V(X)) for a compact
metric space X.
PROBLEMS.

1°. Check that (3.2.1)—(3.2.4) are indeed dualities.

2. Prove that there is no duality with £ = R™ and F = R™, where n # m.

3°. Let E = R4 be the vector space of all sequences x = (§; : i € N) of real
numbers such that all but finitely many &;’s are 0 and let F' = R*® be the space of
all sequences x = (&; : i € N) of real numbers. Let

(z,y) = Zfﬂ?i, where z = (§;) € R and y=(m;) € R™.

i=1
Note that the sum is well defined since it contains only finitely many non-zero
terms. Prove that () is a duality.

4°. Let ()1 : By x F1 — R and ()2 : F3 x F — R be dualities. Let
E =FE @ FE; and let F = F;, & F>. Prove that () : E x F — R defined by
(e1+ ez, fi+ f2) = (e1, fi)1 + (e2, f2)2 is a duality.

We introduce another crucial definition.
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(3.3) Definition. Let (); : By x F} — R and ()2 : E5 x F5 — R be dualities
of vector spaces. Let A : By — Fs and A* : F5, — F} be linear transformations.
We say that A* is dual (also called adjoint) to A provided

<A(6), f>2 = <6, A*(f)>1
for all e € Fy and f € F5.

PROBLEMS.
1°. Prove that if a dual linear transformation A* exists, it is necessarily unique.

2°. Let ()1 : R* x R" — R and ()2 : R™ x R™ — R be the dualities of
Example 3.2.1. Let us choose the standard bases in R™ and R™. Prove that the
matrix of the dual linear transformation A* : R™ — R" is the transpose of the
matrix of the transformation A4 : R — R™.

3°. Let ()1 : E1 x F1 — R be a duality of vector spaces and let ()3 : R™ x
R™ — R be the duality of Example 3.2.1. Let us fix some fi,..., f, € F and let
A: Fy — R™ be a linear transformation defined by

Ae) = ({e, fi)1,- - (e, fm)1) forall ee By,
Prove that the transformation A* : R™ — F defined by
A (x)=&fi+ ...+ &nfm, where z=(&,...,&n)

is dual to A.

One can define polarity in this general framework.

(3.4) Polarity. Let () : E x F — R be a duality of vector spaces. Let A C E be
a non-empty set. The set A° C F,

A°:{feF: (e,f) <1 forall eeA},
is called the polar of A. Similarly, if A C F' is a non-empty set, the set A° C E,
Aoz{eeE: (e, f) <1 for all feA},

is called the polar of A.

Many properties of polars in Fuclidean space are extended in a straightforward
way to the general situation of spaces in duality.

PROBLEMS.
Let O be the origin of E and let O be the origin of F'.

1°. Prove that the polar A° C F (resp. A° C E) of a non-empty set A C E
(resp. A C F') is a convex set containing the origin Op (resp. Og).
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2°. Prove that E° = {0r}, {Og}° = F, F° = {0g} and that {Or}° = E.
3°. Prove that if A C B, then B° C A°.

4° Prove that (Uie[ AZ->O =Nier 45

5°. Let A be a set and let @ # 0 be a number. Prove that (aA4)® = a~1A°.
6°. Let L C E be a subspace. Prove that

Loz{feF: (e, fy=0 for all eGL}

and similarly for subspaces L C F.
7°. Let K C E be a convex cone. Prove that

Koz{feF: (e, f) <0 for all eeK}

and similarly for cones K C F.
8°. Prove that A C (A°)°.

4. Duality of Topological Vector Spaces

There is a standard way to introduce topology from a duality.

(4.1) The topology of a duality. Let () : E x F — R be a duality. We can
make E and F topological vector spaces in the following way. A basic open set
U C FE is a set of the type

U:{eEE: a; < e, fiy < B; for izl,...,m},

where f1,..., fm € F are some vectors and aq, 51, .. , Qm, Bm € R are some num-
bers. An open set in F is the union of some basic open sets. Similarly, a basic open
set W C F'is a set of the type

W:{fEF: a; < (f,e;) < p; for izl,...,m}7

where eq,... e, € E are some vectors and aq, 51, ... ,Qny, Bm € R are some num-
bers. An open set in F' is a union of some basic open sets.

We call this topology the weak topology of the duality.

PROBLEMS.

1°. Check that in the weak topology of the duality, £ and F' become locally
convex topological vector spaces.

2. Prove that in Examples 3.2.1 and 3.2.2, the weak topology of the duality
coincides with the standard topology in R? and Sym,,, respectively.

3°. Prove that in Examples 3.2.3 and 3.2.4 the weak topology of the duality in
the space F' is the weak* topology.
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4. Let V be a vector space and let ¢, ¢1, ..., ¢ : V — R be linear functionals
such that ¢(x) = 0 whenever ¢1(z) = ... = ¢(x) = 0. Prove that ¢ = ay¢1 +
oo+ @@y, for some aq, ... ,aq,, € R.

Hint: Consider the linear transformation
P:V—R" ®(x)=(01(),...,0m(x)).

Prove that there is a linear functional ¢ : R™ — R, such that ¢(z) = ¢ (®(x)) for
all x € V. Now use that ¢(y) is a linear combination of the coordinates of y.

5. Let ()1 : B4 x F; — R and ()2 : F3 x F5 — R be dualities. Let
E=FE & E; and F = F} @ F. Let us define a duality () : F x F — R, where
(e1 4+ ea, f1+ f2) = (e1, fi)1 + (e, f2)2 as in Problem 4 of Section 3.2. Prove that
the weak topology of the duality () is the direct product of the topologies defined
by the dualities (); and ()s; cf. Section II1.2.1.

The next result underlines a perfect symmetry between spaces in duality.

(4.2) Theorem. Let () : E x F — R be a duality and let us make E and F
topological vector spaces by introducing the weak topology of the duality ().

Then for every f € F the function ¢(e) = (e, f) is a continuous linear func-
tional ¢ : E — R and for every e € E the function ¢(f) = (e, f) is a continu-
ous linear functional ¥ : FF — R. Moreover, every continuous linear functional
¢ : E — R can be written as ¢(e) = (e, f) for some unique f € F and every
continuous linear functional b : F — R can be written as ¥(f) = (e, f) for some
unique e € E.

Proof. Let us prove that ¢(e) = (e, f) is a continuous linear functional ¢ : B —
R. Clearly, ¢ is linear. Let us choose ¢y € E and € > 0. Let o = ¢(eg) = (eo, f)
and let

U={ecE: a-e<(ef)<a+e}.

Then U is a (basic) neighborhood of ey and for every e € U we observe that
|p(e) — ¢(eg)| < e. Hence ¢ is continuous at ey. Since ey was arbitrary, ¢ is
continuous. Similarly, we prove that the function ¢ : F — R defined by ¥(f) =
(e, f) for some fixed e € E is linear and continuous.

Let ¢ : E — R be a continuous linear functional. In particular, ¢ is continuous
at e = 0. This implies that there exists a neighborhood U of 0 such that |¢(x)| < 1
for all x € U. We can choose U to be a basic open set

U:{mEE: a; < (z, fiy < p; for izl,...,m},

where a; < 0 < f; and f; € F fori=1,... ,m. Let us choose an ¢ > 0. Since ¢ is
linear, for any

:CEEU:{JSEE: ea; < (z, f;) < eB; for izl,...,m}7
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we have |¢(z)] < e. Let
L:{xEE: (x, f;) =0 for izl,...,m}

be a subspace in E. We have L C €U for any € > 0. Therefore, |¢p(x)| < € for all
xz € L and any € > 0. Hence ¢(x) = 0 for any € L. In other words, ¢(z) = 0
provided ¢;(x) = (z, f;) = 0 for i = 1,... ,m. Problem 4 of Section 4.1 implies
that ¢ can be written as a linear combination ¢ = a3¢1 + ... + @ @y,. In other
words, ¢(e) = (e, f), where f = a1 f1 + ...+ @ fm. Similarly, we prove that every
continuous linear functional ¢ : FF — R can be written as (f) = (e, f) for some
fixed e € E.

It remains to show that representations ¢ = (-, f) and ¥ = (e,-) are unique.
Indeed, suppose that there are two vectors f1, fo € F such that ¢(e) = (e, f1) =
(e, fo) for all e € E. Then (e, fi — f2) = 0 for all e € E and since the bilinear
form is non-degenerate, we must have f; — fo = 0 and f; = fo. The uniqueness of
representations for linear functionals v : I — R is proved similarly. O

Theorem 4.2 prompts the following definition.

(4.3) Definition. Let E and F' be topological vector spaces. A non-degenerate
bilinear form () : E x FF — R is called a duality of E and F if the following
conditions are satisfied:

e for every f € F the linear functional ¢ : E — R defined by ¢ = (-, f) is
continuous and every continuous linear functional ¢ : £ — R can be written as
¢ = (-, f) for some unique f € F

and

e for every e € F the linear functional ¢ : F — R defined by ¢ = (e,-) is
continuous and every continuous linear functional ¢ : E — R can be written as
¢ = (e, -) for some unique e € E.

PROBLEMS.

1. Let ()1 : By x F1 — R and ()2 : E2 X F5 — R be dualities of topological
vector spaces. Let A : £y — FE5 be a continuous linear transformation. Prove
that there exists a dual transformation A* : Fy — F}.

Hint: Let us choose a vector f € Fy. Then ¢(e) = (A(e), f)2 is a continuous
linear functional ¢ : E; — R and hence can be written in the form ¢(e) = (e, f')
for some f' € Fy. Let A*(f) = f".

2°. Let () : E x FF — R be a duality of topological vector spaces. Prove that
the polar of a set A C E, F is a closed set.

3. Let () : Ex F — R be a duality of topological locally convex vector spaces.
Let A C E, F be a closed convex set containing the origin. Prove that (A°)° = A
(Bipolar Theorem).

4°. Let ()1 : By x F1 — R and ()2 : E5 X F5 — R be dualities of topological
vector spaces. Let us introduce the topology of the direct product in £ = E; & Es
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and F = F|; & Fy. Prove that () : E x FF — R,

(e1 +e2, f1 + fa) = (e1, fi)1 + (e2, fa)2,

is a duality of E and F.

5. Ordering a Vector Space by a Cone

We introduce a structure in a vector space which generalizes the concept of a system
of linear inequalities in Euclidean space.

(5.1) Cones and orders. Let V be a (topological) vector space and let K C V
be a convex cone. The cone K defines an order on V as follows: we say that x <y
(sometimes we write  <g y) provided y — z € K. Similarly, we write 2 > y
provided x —y € K. Thus, K = {x ek: x> 0}.

PROBLEMS.

Let V be a vector space, let K C V be a convex cone and let < be the corre-
sponding order on V.

1°. Prove that x > z for any z € V.

2°. Prove that if x <y and y < z, then = < z.

3°. Prove that if z <y and « > 0, then az < ay.

4°. Prove that if z1 < y; and zo < yo, then 1 + 22 < y1 + yo.

5°. Suppose that the cone K does not contain straight lines. Prove that if
r<yandy <z, then z =1y.

6°. Suppose that K = {0}. Prove that z < y if and only if x = y. Suppose
that K = V. Prove that x <y for any two z,y € V.

7°. Suppose that V is a topological vector space and that K C V is a closed
cone. Prove that the order < is continuous: if {x,} and {y,} are two sequences
such that x = lim,,__ o, z, and y = lim,, . ¥, and x,, < y,, for all n, then z < y.

Here are our main examples of cones and associated orders.
(5.2) Examples.
(5.2.1) Euclidean space. Let V = R? and let

Rd+={(§1,...,gd): & >0 for izl,...,d}.

Consequently, z < y if & < n; for ¢ = 1,...,d, where z = (&,...,&s) and
y =, 5 ma)-
(5.2.2) Symmetric matrices. Let V' = Sym,, be the space of all n x n symmetric
matrices and let

S, = {X € Sym,, : X is positive semideﬁnite}.
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Consequently, X <Y if Y — X is a positive semidefinite matrix.
(5.2.3) Spaces L* and L. For V = L'[0,1] (see Section IIL.5.1), we let

Ll = {f € L'0,1]: f(r) >0 for almost all 7 € [0, 1]}
Similarly, for V' = L*°[0, 1], we let
Ly ={rer=01]: f(r)=0 foralmostal 7 e0,1]}.

Hence f < g if and only if f(7) < g(7) for almost all 7 € [0, 1].

(5.2.4) Spaces C[0,1] and V[0,1]. Let V = C[0, 1] be the space of all continuous
functions on the interval [0,1]. We define

C+:{feC[0,1}: F(r)>0 for every Te[o,u}.

Hence f < g if and only if f(7) < g(7) for all 7 € [0, 1].
Let V = V[0, 1] be the space of all signed Borel measures on the interval [0, 1];
see Section II1.8.1. We let

1
V+:{MEV[O,1]: / fdp>0 for every fEC’+}.
0

In other words, the cone V. consists of all positive linear functionals p : C[0,1] —
1

1
R; cf. Definition IT1.8.2. Thus p < v if and only if/ fdu < / f dv for all
0 0

continuous non-negative functions f.

PROBLEMS.

1°. Prove that the cones of Examples 5.2.1-5.2.4 are convex cones without
straight lines.

2°. Prove that the cones of Examples 5.2.1-5.2.4 are closed in the weak topology
defined by the corresponding duality; see Section 4.1.

For a cone K C V, let K — K = {x—y : x e Ky e K}; cf. Definition
I1.1.1.

3. Prove that K — K =V in Examples 5.2.1-5.2.3.
4. Prove that K — K =V in Example 5.2.4.

5. Let us consider the following lezicographic order = in R%: we say that = > v,
where x = (&1,...,&) and y = (n1,...,M4), if there is a 1 < k < d such that
& > mp and & = n; for all i < k. Prove that there is a convex cone K C R? such
that « > y if and only if x >k y. Prove that the cone K is not closed.

For the theory of linear programming that we are going to develop now, it is
more convenient to deal with dual cones rather than with polars.
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(5.3) Definition. Let () : E x FF — R be a duality of vector spaces. Let K C E
be a convex cone. The cone K* C F,

K*={feF: (e f)>0 forall ecK},

is called duwal to K. Similarly, if K C F is a convex cone, the cone K* C F,
K*={e€E: (ef)=0 forall feK},

is called dual to K.

PROBLEMS.

1°. Suppose that F and F are locally convex topological vector spaces and
K C E,F is a closed convex cone. Prove that (K*)* = K.
Hint: Use Problem 3 of Section 4.3.

2°. In Example 5.2 prove that

Re)* =RY,

S—i—)* = S—i—a

LYYy =LY and (LL)"=L%,
C+)* = V+ and (V+)* = C+.

6. Linear Programming Problems

From now on until the end of the chapter we are going to consider various lin-
ear programming problems. Linear programming grew out of a great variety of
pure and applied problems; see [Schr86]. It may be considered as a theory of
linear inequalities, thus extending linear algebra. We adopt the approach of L.V.
Kantorovich who considered linear programming within the general framework of
functional analysis. In this approach, linear inequalities are encoded by cones in
the appropriate spaces; see [AN87]. Sometimes, this general theory is called “conic
linear programming”, “linear programming in spaces with cones” or “linear pro-
gramming in ordered spaces” to distinguish it from the more traditional theory of
linear inequalities in Euclidean space.

It is very useful to consider linear programming problems in pairs. To formulate
a pair of linear programming problems, we need vector spaces in duality ordered
by their respective cones and two linear transformations dual to each other.

(6.1) The problems. Let (); : E; x F1 — R and ()5 : F3 X F» — R be dualities
of vector spaces. We fix a convex cone Ky C F; and a convex cone Ky C F5. Let
K} C Iy and K3 C F; be the dual cones:

Ki={feF: (ef)>0 forall ecK;} and
K;={feF: (ef)>0 forall ec K}.
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Let A: E; — FE» be a linear transformation. Suppose that A* : F» — F} is the
dual linear transformation, so that

(Az, 1) = (x, A"l),

for all x € Fy and [ € Fy. As is customary in linear programming, we write simply
Az and A*[ instead of A(z) and A*(1).

Let us choose a ¢ € F; and a b € Fy,. We consider a pair of linear programming
problems:

(6.1.1) Primal Problem.

Find ~ = inf(z,c);
Subject to Az >k, b and
X ZKI 0

with a variable x € Fy
and

(6.1.2) Dual Problem.

Find 3 =sup(b, ).
Subject to  A*l <k:c and
l ZK; 0

with a variable [ € F5.

A point z € E; which satisfies the conditions Ax >k, b and x >, 0 is called
a feasible plan in Problem 6.1.1 or a primal feasible plan. A point [ € Fy which
satisfies the conditions A*[ <k:c and [ > K3 0 is called a feasible plan in Problem
6.1.2 or a dual feasible plan. If Problem 6.1.1 does not have a feasible plan, we
say that v = 4o00. If Problem 6.1.2 does not have a feasible plan, we say that
B = —oo. If the infimum ~ in Problem 6.1.1 is attained, a feasible plan = such that
~v = (z,¢)1 is called an optimal plan or a primal optimal plan (solution). Similarly, if
the supremum £ in Problem 6.1.2 is attained, a feasible plan [ such that 8 = (b, 1)
is called an optimal plan or a dual optimal plan (solution).

PROBLEM.

1. If (K7)* = Ky and (K3)* = Ko, then the primal and dual problems are
interchangeable. To show that, make the substitution [ = —¢q in Problem 6.1.2:

Find —inf(b,q)s
Subject to  A*q ZKr —C and
q=-k; 0.

Show that the dual problem may be interpreted as the primal Problem 6.1.1.

The following general result is often known under a unifying name of the “Weak
Duality Theorem”.
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(6.2) Theorem.
1. For any primal feasible plan x and any dual feasible plan 1, we have

<I,C>1 Z <b, l>2

In particular, v > B (“weak duality”). If (x,c)1 = (b,1)2, then x is a primal
optimal plan, 1 is a dual optimal plan and v = B.

2. Suppose that x is a primal feasible plan and that | is a dual feasible plan
such that

(x, c=A*l)1 =0 and (Az—0b, )2 =0.

Then x is a primal optimal plan, 1 is a dual optimal plan and v = § ( “op-
timality criterion”).

3. Suppose that x is a primal optimal plan, | is a dual optimal plan so that
(x,c)1 = and (b,l)2 = B. Suppose that v = 3. Then

(x, c=A"l)1=0 and (Az—0b, [)2=0
( “complementary slackness”).

Proof. Let us prove Part 1. Since x is a feasible plan in the primal problem,
we have Ax >g, b, that is, Az — b € Ks. Since [ is a feasible plan in the dual
problem, we have | > 0, that is, [ € K3. Therefore, (Azx —b,l)2 > 0 and hence
(Az,1l)2 > (b,1)2. On the other hand, (Az,l)2 = (x, A*l); and hence

<£L’, A*l>1 2 <b, l>2

Since [ is a feasible plan in the dual problem, we have A*l <f ¢, hence c—A*l € K7.
Since x is a feasible plan in the primal problem, we have x >, 0, that is, z € K;.
Therefore, (x,c — A*l); > 0 and hence

(x,c)1 > (x, A*1)1.
Finally, we conclude that
<(E,C>1 Z <b, l>2

If (x,c)1 = (b,1)2, then x has to be a primal optimal plan since for every primal
feasible plan 2’ we must have (z’,¢); > (b,l)2 = (x,¢);. Similarly, [ has to be a dual
optimal plan since for every dual feasible plan I’ we must have (b,1")y < (z,¢); =

(b, ).

To prove Part 2, we note that
<$,C>1 = <J),A*l>1 = <AJ},Z>2 = <bal>27

which by Part 1 implies that x and [ are optimal plans in the primal and dual
problems, respectively.
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To prove Part 3, we observe that in the course of the proof of Part 1, we
established a chain of inequalities

<.’£,C>1 2 <£L’,A*l>1 = <A£L’,l>2 Z <b,l>2

for any primal feasible plan = and any dual feasible plan [. Hence if (z, )1 = (b, 1),
we must have (z, ¢); = (x, A*l)1, which proves that (x, c—A*l); = 0 and (Az, )5 =
(b, )2, which proves that (Az — b, I)2 = 0. O

While Theorem 6.2 is very simple and may even seem tautological, it is quite
powerful. By demonstrating a primal feasible plan x, we establish an upper bound
on the optimal value of 7. By demonstrating a dual feasible plan [, we establish a
lower bound for 8 and hence, by Theorem 6.2, for . The difference v —  is called
the duality gap. The most interesting (and not infrequent) situation is when the
duality gap is zero, that is, when v = 3. In this case, we can estimate the common
optimal value with an arbitrary precision just by demonstrating appropriate primal
and dual feasible plans. If the duality gap is zero and both primal and dual problems
have solutions, the complementary slackness conditions often allow us to extract
some useful information about optimal solutions and, in many cases, provides a way
to find them. We address the situation of the zero duality gap in the next section.

PROBLEMS.

1°. Suppose that v = —oo in Problem 6.1.1. Prove that Problem 6.1.2 does
not have a feasible plan. Similarly, suppose that 3 = +oc in Problem 6.1.2. Prove
that Problem 6.1.1 does not have a feasible plan.

2. Let us consider a problem of linear programming in C/0, 1]:

1
Find ~ = inf/ Tx(T) dr
0

1
Subject to / (1) dr =1 and
0
z(t) >0 forall 0<7<1
in the primal variable x € C[0,1]. Prove that v = 0 but that there are no optimal

solutions « € C[0, 1]. Using the duality (3.2.4) between continuous functions and
measures, show that the dual problem is

Find [ =supA

Subject to 7 dr — A dr is a non-negative measure on the interval [0, 1]
in the dual variable A € R. Prove that 8 = 0 and that A = 0 is the optimal solution.

3 (D. Gale). Let E; = Ry, Fi = R™ (see Problem 3, Section 3.2), E; = R?
and F» = R2. Let us consider the following linear programming problem for z =
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(& :1€N) € Ry.
Find ~ =inf¢&;

Subject to &1 + Zkfk =1,
k=2

ifk =0 and
k=2

& >0 for keN.
Interpret the problem:
Find B =sup)\;
Subject to A <1 and
kX +X2 <0 for k£>2

as the dual problem with the variable [ = (A1, A2) € R%. Prove that (1,0,...,) is
the primal optimal plan with v = 1 whereas [ = (0,0) is a dual optimal plan with

B=0.

7. Zero Duality Gap

We turn our attention to a special situation when the infimum ~ in the primal
problem is equal to the supremum [ in the dual problem. In this case, we say
that the duality gap is zero or that there is no duality gap. The main objective
of this section is to establish a sufficient criterion for the zero duality gap. We
are going to use some topology now. Thus we assume that (}; : F; x F; — R
and ()2 : Fy X F» — R are dualities of locally convex topological vector spaces,
that K1 € F1 and Ko C E5 are closed convex cones and that A : B4 — FEs is a
continuous linear transformation.

We state the criterion in the special case when Ky = {0}. The general case,
however, can be reduced to this special case; see Problem 1 of Section 7.1 and
Problems 3—4 of Section 7.2.

(7.1) Standard and canonical problems. In the context of Section 6.1, let us
suppose that Ko = {0}, the origin in E5. Hence K3 = F,. To simplify notation,
we denote the cone K1 C F; just by K. Hence we get the problems:

(7.1.1) Primal Problem in the Canonical Form.
Find v = inf(z,c);
Subject to Az =1b and
x>0
in the primal variable z € Ej.
(7.1.2) Dual Problem in the Standard Form.
Find B = sup(b,l),
Subject to A"l <g- ¢
in the dual variable [ € Fj.

Licensed to Georgia Inst of Tech. Prepared on Sun Jan 14 21:00:56 EST 2024for download from IP 188.92.139.72.



7. Zero Duality Gap 167

PROBLEMS.

1°. Consider Problem 6.1.1. Let us introduce the new spaces £ = E ® FEs and
F = F; ® F5 with the duality <> : E x F — R defined by

(e1+ea, fr+ f2) = (er, fi)1 + (e2, fa)2;

cf. Problem 4 of Section 3.2. Let K = K; x Ko C E. Let ¢ = (¢,0) € F and let us
define a transformation A : E — Es by A(u,v) = Au—v for u € Ey and v € Es.
Show that Problem 6.1.1 is equivalent to the following problem in the canonical
form:

Find ~ = inf(z,¢é)
Subject to Az =1b and

:EZKO

Prove that the dual to the above problem is equivalent to Problem 6.1.2.

2°. Let () : E x FF — R be a duality and let fi,..., fi, € F1 be vectors. Let
¢ € Fy be a vector and let 1,..., 05, be real numbers. Let K C E be a cone.
Consider the linear programming problem:

Find ~ = inf(z,c)
Subject to  (z, f;)=05; for i=1,...,m and
T ZK 0.

Interpret the problem:

Find [ =sup Z BiXi

i=1
d
Subject to Z ANifi <g-c
i=1
with real variables (A1,...,\;,) as the dual problem.

Given a duality () : E x F — R of topological vector spaces, we can extend it
to the duality between F @ R and F @ R by letting

<(e,a1), (fa a2)> = <evf> + Q1 (2,

cf. Problem 4 of Section 4.3. We give E @ R and F @ R the usual topology of the
direct product; cf. Section III.2.1.

We are going to establish a sufficient condition for the duality gap in Problems
7.1.1-7.1.2 to be zero. To this end, let us define the linear transformation A
Ei — E, &R by A(z) = (Az, (z,c)1). We are interested in the image A(K) of
the cone K.
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(7.2) Theorem (“zero duality gap”). Suppose that the cone
AK) = {(Aa:, (z,c)1): we K}

is closed in Eo @ R and that there is a primal feasible plan x. Then v = (. If
v > —o0, then there is a primal optimal plan x.

Proof. If v = —oo, then there are no dual feasible plans [ (see Problem 1, Section
6.2) and hence 8 = —oo. Therefore, we can assume that v > —oo.

In the space Fy @ R, let us consider the straight line L = (b,7), where
—00 < T < 4o00. Then the intersection LﬂA\(K) is a closed set of points (b, (x, c>1),
where x is a primal feasible plan; see Figure 50. Since there are primal feasible plans
and the objective function is bounded from below, this set is a closed bounded in-
terval or a closed ray bounded from below. Therefore, there is a primal feasible
plan z such that (x,c); = . Such an z will be a primal optimal plan.

L

A(K)

\\\\\\\\\\\\w,y)
(\

b,Y—¢€)

Figure 50

By Part 1 of Theorem 6.2, v > 3. Let us prove that for any € > 0 there is a
dual feasible plan [ such that (b,1)3 > v —e. This would imply that 8 > v —¢, and,
therefore, 8 = . We have

(b,y —€) ¢ A(K).

Since the cone E(K) is closed, the point (b, — €) can be strictly separated from

~

A(K) by a closed hyperplane (Theorem I11.3.4). In other words, there exists a pair
(I,0) € F> @ R and a number « such that

b, Do+ 0(y—¢€) >«
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and

(Az,)a + o(z,c)1 <
for all x € K. Choosing z = 0, we conclude that o > 0. Suppose that for some
x € K we have

<A.’E, l>2 + 0<.’£, C>1 > 0.

Since K is a cone, choosing a sufficiently large A > 0, we conclude that the inequality
(Az,l)o + o(z,c)1 <

is violated for some ' = Az € K. Thus we must have that
0,2 +0(y—¢€) >0

and

(Az,l)o+ o(x,c)1 <0

for all z € K. In particular, if o is a primal optimal plan then (xg,c); = v and
Axg = b, so

<b,l>2 +ov < 0.

Therefore, o < 0 and, by scaling (I, 0), if necessary, we can assume that o = —1.
Thus we have

(b,l)a—(y—€) >0

and

(Az, )2 — (x,c)1 = (x, A")1 — (z,¢)1 = (2, A"l — )1 <0

for all x € K. Therefore, ¢ — A*l € K*, that is, A*] <k~ c¢. Hence we conclude
that [ is a dual feasible plan and that (b,1)s > v — €. O

Modifying and relaxing some of the conditions of Theorem 7.2, one can get
some other useful criteria for the zero duality gap, as stated in the problems be-
low. Problems 1-2 concern linear programming problems 7.1 in the standard and
canonical forms whereas problems 3—4 deal with the general linear programming
problems 6.1.

PROBLEMS.

1. Suppose that there is a primal feasible plan, that v > —oo and that for every
€ > 0 there is a neighborhood U C Ey ® R of (b,y — €) such that UNA(K) = 0; see
Figure 51. Prove that there is no duality gap. Sometimes, this condition is referred
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to as the stability condition.

1(b,Y-e)
/

Figure 51

2. Suppose that there is a primal feasible plan xy and a neighborhood W
of the origin in F; such that zo + W C K; and U = AW = {Aw Tw E W} is a
neighborhood of the origin in Es. Prove that there is no duality gap. This condition
is known as the interior point or Kuhn-Tucker condition.

Hint: Use Problem 1. Without loss of generality, we may suppose that v > —oo.
For an € > 0, choose a point (b, — €) ¢ A(K). Without loss of generality, we may
suppose that for some number s we have |(z,c)1| < s for all z € g + W. Choose
d > 0 such that d(|s| + |y]) < €/2. Choose a neighborhood Wy C W of the origin
such that Wy, = =W, and § W, C W. Let Uy = AW,,.

Together with (7.1.1), for an arbitrary u € Uy consider two problems:

Find
Subject to

and

Find
Subject to

v+ = inf(z, c)1

Ax=b+u and
x>0

~v_ = inf(z, c)y

Az =b—u and

Prove that v < (v4++v-)/2 and that v_,v4 < v+¢/2. Deduce that vy, v- > v—¢/2
and construct a neighborhood of (b, — ¢€) which does not intersect A(K).
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The next two exercises address the general linear programming problems 6.1.

In Problems 6.1, let us suppose that (); and ()2 are dualities of locally con-
vex topological vector spaces, that K; and K, are closed convex cones and that
A : E; — FE5 is a continuous linear transformation.

3. Let us consider the cone K C Fs @ R,

K= {(Agc—y7 (:v,c)l) : xeKl,yng}.

Prove that if K is closed in Fs @R and if there is a primal feasible plan, then v = 3.
Prove that if v > —oo, then there is a primal optimal plan.

Hint: Use Problem 1 of Section 7.1.

4. Suppose that there is a primal feasible plan zy € int K7 such that Azqg—b €
int K5 (this condition is known as Slater’s condition). Suppose that there is a
primal optimal plan. Prove that there is no duality gap.

Hint: Use Problem 1 of Section 7.1 and Problem 3 above.

If there is a non-zero duality gap, one can try to choose a stronger topology of
F4 and F5 and use larger spaces F; and F5 hoping that the duality gap disappears
as the spaces grow bigger. Ultimately, we can choose the topology of algebraically
open sets in F7 and Fs; see Problems 2-3 of Section II1.3.1. In this case, F; and
F; become the spaces of all linear functionals on E; and Es, respectively. Unfortu-
nately, if the spaces F} and F5 become “too large”, the absence of the duality gap
becomes much less of interest than for “reasonable” F; and F5. Another possibility
for eliminating the duality gap is to modify the cones. In the finite-dimensional
situation, one can often enforce the interior point condition (see Problems 2 and 4
above) by replacing the cones with their appropriate faces. This trick is much less
viable in the infinite-dimensional situation though.

To be able to use Theorem 7.2, we should be able to prove that the image of
a certain cone K under a linear transformation is closed. Theorem 1.9.2 provides
us with one important example, that is, when K is a polyhedral cone. To state
another useful result in this direction, we need to recall the definition of a base of
a cone; see Definition I1.8.3.

(7.3) Lemma. Let V and W be topological vector spaces, let K C V' be a cone with
a compact convex base and let T : V — W be a continuous linear transformation
such that (kerT) N K = {0}. Then T(K) is a closed convex cone in W.

Proof. Let B be the base of K and let C = T'(B). Thus C is a compact convex
set in V and 0 ¢ C. Moreover, T'(K) = co(C). Hence by Lemma I11.2.10, T(K) is
a closed convex cone. O

PROBLEMS.

1. Construct an example of a closed convex cone K C R? with a compact base
and a linear transformation 7' : R? — R? such that T(K) is not closed.
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2. Let C]0, 1] be the space of continuous functions on the interval [0, 1] and let
K ={f:f(r) >0 forall 7 € [0,1]} be the cone of non-negative functions. Let us
consider the linear transformation T': C[0, 1] — R? defined by

1= (50, [ str)ar).

Prove that K is a closed cone, that (ker T) N K = {0} and that T'(K) is not closed.

3*. This problem assumes some knowledge of the Banach space theory; see
[Co90].

Let V and W be Banach spaces, let K C V be a closed convex cone and let
T :V — W be a continuous linear transformation such that dim(kerT') < oo,
imT C W is a closed subspace and codim(im7’) < oo. Suppose further that
K N (kerT) = {0}. Prove that T(K) C W is a closed convex cone.

4. Let V be a topological vector space and let vq,...,v, € V be a finite set of
points. Prove that co(vl, e ,vn) is a closed convex cone.

5. Construct an example of two closed convex cones Ki, Ko C R?® without
straight lines such that K7 + K5 is not closed.

8. Polyhedral Linear Programming

In this section, we consider what is known as “classical” linear programming in
Euclidean space. We call it “polyhedral” linear programming since it deals with
orders defined by polyhedral cones.

(8.1) Problems. We consider problems in canonical/standard forms 7.1. Let
E; = F; =R"™ and let Ey = F5 = R™. We cousider the standard dualities (); and
()2 of Example 3.2.1, which we denote simply by () as the usual scalar product in
Euclidean space. Let K = R (see Example 5.2.1). Then K* = R’} and instead of
writing x >k 0 and = >k« 0, we simply write z > 0. Let A : R — R™ be a linear
transformation. We can think of A as an m X n matrix. Then A* : R™ — R"
is represented by the transposed m x m matrix. Letting x = (&1,...,&,), ¢ =
Moo sM), A=(ay;),t=1,... m,j=1,...,n,and b = (f1,...,Bm), we get
the following pair of linear programming problems:

(8.1.1) Primal Problem in the Canonical Form.

Find ~= infz &5
j=1
Subject to Zaijfj =8 for i=1,...,m and
j=1
& >0 for j=1,...,n

in the primal variables x = (&1,...,&,) € R™.
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(8.1.2) Dual Problem in the Standard Form.

Find [ =sup Z Bi\;
i=1

m
Subject to Zaij)\i <w; for j=1,...,n
i=1

in the dual variables I = (A\1,...,\y) € R™.

Our main result provides a sufficient criterion for zero duality gap and existence
of optimal plans in Problems 8.1.1-8.1.2.

(8.2) Theorem (“strong duality”). Suppose that there exists a primal feasible
plan. Then v = B. If, in addition, v > —o0o, then there exist a primal optimal plan
and a dual optimal plan.

Proof. The cone K = R is a polyhedron. Therefore, by Theorem 1.9.2 the image
A(K) = {(Az,{c,z)) : « € K} is a polyhedron and hence is closed. Theorem 7.2
implies that v = 8 and that if v > —oo, then there is a primal optimal plan.

Let us prove that there is a dual optimal plan. One way to show that is to bring
the dual problem into canonical form, cf. Problem 1 of Section 6.1 and Problem
3 of Section 7.2. Let us introduce “slack” vectors y € R™ and ¢1,q2 € R™. Since
every vector | € R™ can be written as a difference q; — g for some ¢, ¢ € R* and
inequality A*[ < ¢ is equivalent to A*l +y = ¢ and y > 0, we can construct a linear
programming problem in the canonical form, which is equivalent to Problem 8.1.2:

Find @ =sup(b,q1 — ¢2) = —inf(~b,q1 — q2)
Subject to A*(q1 —q2) +y=c and
q1,92,y = 0.

As we proved above, for linear programs in the canonical form there is an optimal
plan provided —oo < 8 < +00. Thus there exists an optimal solution (g1, ¢2,¥) to
the problem. Therefore, I = ¢; — g2 is an optimal plan in Problem 8.1.2. g

PROBLEMS.

1. Suppose that there exists a dual feasible plan. Prove that 8 = . Suppose,
in addition, that 8 < 4-oc0. Prove that there exist a dual optimal plan and a primal
optimal plan.

2. Construct an example of Problems 8.1.1 and 8.1.2 such that neither has a
feasible plan.
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3. Consider a pair of linear programming problems in the form:
n
Find ~ =inf Z%{j
j=1
n
Subject to Zaijfj > B for 1ely

j=1

Zaijfj = ﬁz for i€y and

@20 for jGJJr

in the primal variables z = (&1,...,&,) € R™, where Iy U Iy = {1,... ,m} and
J+ C {1, 7’I’L}

and

Find [ =sup Z Bi\;
i=1
Subject to Zaij)\i <w; for jeJy
i=1

m

Zaij/\i =+, for j¢Ji and
i=1
)\z’ Z 0 for ¢ S I+

in the dual variables I = (A1,...,Ay) € R™.

Prove that if there is a feasible plan in one of the problems, then v = § and if,
in addition, —oo < 8 = v < 400, then there exist primal and dual optimal plans.

4. Let cg,...,cm € RY be vectors and let (c;,z) < 0 for i = 0,...,m be
a system of linear inequalities in RY. The inequality (co,z) < 0 is called active
provided there is an z € R, such that {¢;,z) <0 for i =1,... ,m and {(cg,z) > 0.
Prove Farkas Lemma: the inequality (co,z) < 0 is not active if and only if ¢y =
Aicr + ... 4+ Apcpy, for some non-negative A1, ..., Apy,.

Next, we establish polyhedral versions of the optimality criterion and comple-
mentary slackness conditions; cf. Theorem 6.2.

(8.3) Corollary. Suppose there exist a primal feasible plan and a dual feasible
plan. Then there exist a primal optimal plan and a dual optimal plan. Moreover,
1. ifx = (&,...,&) is a primal feasible plan and I = (A1,... , \p) 48 a dual
feasible plan and

m
& >0 implies Zaij)\i = Y5>

i=1
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then x is a primal optimal plan and [ is a dual optimal plan (“optimality
criterion”);

2. ifx = (&,...,&) s a primal optimal plan and 1 = (A1,... ,Am) is a dual
optimal plan, then

m

& >0 implies Zaij)\i =

i=1
( “complementary slackness”).
Proof. Follows by Theorem 8.2 and Theorem 6.2. g
PROBLEM.
1. Consider the linear programming problems of Problem 3, Section 8.2. Sup-
pose that © = (&1,...,&,) is a primal feasible plan and that [ = (A1,... ,\;,) is a

dual feasible plan. Prove that x is a primal optimal plan and [ is the dual optimal
plan if and only if

& >0 implies Zaij)\i =v; for jeJi and
i=1

n
A; >0 implies Zaijfj =p; for iely.
j=1

(8.4) Example. The Diet Problem. As an illustration of the developed theory,
let us return to the Diet Problem of Example I1.4.4. In Problem 8.1.1, we interpret
v; as the unit price of the j-th ingredient, a;; as the content of the i-th nutrient
in the j-th ingredient and B; as the target quantity of the i-th nutrient. We are
seeking to find the quantity &; of the j-th ingredient so as to get a balanced diet of
the minimal possible cost 7.

The dual variable A;, ¢ = 1,... ,m, in Problem 8.1.2 can be interpreted as
the unit price of the i-th nutrient. Hence the dual problem can be interpreted as
the problem of assigning prices to the nutrients in a “consistent” way (so that each
ingredient costs at least as much as the nutrients it contains) and the total cost of all
involved nutrients is maximized. Note that the prices A; are allowed to be negative
(“customer incentives” or “bonuses”). Problem 8.1.2 may be interpreted as the
problem faced by a manufacturer of vitamin pills who wants to supply the balanced
diet in pills containing given nutrients and has to compete with a manufacturer
of food. The condition that the package of pills costs not more than the food
ingredient it is supposed to substitute means that the pill manufacturer has a chance
to compete. Corollary 8.3 implies that for each primal optimal plan (&i,...,&,)
one can assign costs A; of pills in such a way that whenever §; > 0 (the diet uses a
positive quantity of the j-th ingredient) we have Z;nzl a;j\; = ; (the cost of the
j-th ingredient is exactly the sum of the prices of the nutrients contained in the
ingredient) and vice versa.
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9. An Application: The Transportation Problem

In this section, we consider the Transportation Problem of Section II.7.

We are given a directed graph G = (V, E) with the set V = {1,... ,n} of
vertices and a set F of m edges i — j. As in Section II.7, we suppose that there
are no loops ¢ — i. To every vertex ¢ a number 3; (“demand” if 3; > 0, “supply”
if B; < 0 and “transit” if 8; = 0) is assigned. To every edge i — j, a non-negative
number +;; (the cost per unit of transportation) is assigned. The objective is to
find a feasible flow &;; for all edges (i — j) € E minimizing the total cost of
transportation. Hence the problem is stated as follows:

(9.1) Primal (transportation) problem.

Find y=inf Y ;&
(i—j)EE
Subject to Z &i — Z &j =B for every vertex i€V
Ji(j—i)ER ji(i—j)eE
and ;>0 forall (1 —j)ekE.

We observe that Problem 9.1 is a primal problem (8.1.1) in the canonical form.
Hence we obtain the dual problem:

(9.2) Dual problem.

Find [ =sup Z Bii
i=1
Subject to  A\; —A; < y;; for every edge (i — j) € E.

Problem 9.2 has the following interpretation: the variable A; is the price of the
commodity at the i-th vertex. A vector | = (Aq,...,\,) of prices is feasible pro-
vided one cannot gain by buying the commodity in one vertex and selling it in
another vertex with the transportation costs taken into account. Thus {)\;} may
be interpreted as the prices of the product if we are to open retail shops at the
vertices of the graph. The goal is to assign prices in such a way that the total cost
of the commodity over the whole network is maximized.

PROBLEM.
1°. Check that Problem 9.2 is indeed dual to Problem 9.1.

(9.3) Corollary. Suppose that there is a primal feasible plan (feasible flow). Then
there is a primal optimal plan (optimal flow) and there is a dual optimal plan. Let
z=(&;: (i = j) € E) be a primal feasible plan and let 1 = (X1,..., \,) be a dual
feasible plan. Then x is a primal optimal plan and l is a dual optimal plan if and
only if

gij >0 zmplzes )‘j -\ = Yij-
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Proof. Since the costs v;; are non-negative, we conclude that v > —oo. Moreover,
[ =0 is a dual feasible plan. Hence the result follows by Corollary 8.3. O

Corollary 9.3 suggests an algorithm for solving the Transportation Problem.
The algorithm turns out to be extremely efficient in practice and constitutes a par-
ticular case of a more general simplex method; see Chapters 11 and 12 of [Schr86].

(9.4) A sketch of the algorithm. Proposition I1.7.2 (see also Definition I1.7.3)
implies that if x = (§;;) is an extreme point of the set of all feasible flows (trans-
portation polyhedron), then the edges i — j, where §; > 0, form a forest in G.
Suppose that x = (§;;) is a feasible flow. To make our problem simpler, suppose
that the set of edges ¢ — j, where &;; > 0, form a spanning tree T' in G, that
is, a tree such that every vertex i of V is a vertex of the tree. Essentially, this
assumption means that the flow is sufficiently non-degenerate.

Let us assign the price A\; arbitrarily. Then, if ¢ — j is an edge of T and
A; is computed, we compute A\; = A; + 7;;. Thus we compute the prices A; for
i=1,...,n. If the vector I = (A1,...,\) is a dual feasible plan, then by Corollary
9.3, x is an optimal flow. Otherwise, there is an edge (i — j) € E, i — j ¢ T, such
that A\; —A; > ;5. This suggests to us to use the edge (i — j) in our shipment plan
(informal justification: if we buy at ¢, ship to j and sell at j, we make a profit).

Figure 52. a) locating the edge where A\; — \; > 7;;, b) adjusting the
flow and ¢) getting a new flow
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Adding the edge to the tree generates a cycle. We change the flow on the edges
of the cycle in such a way that the overall balance is preserved: we increase the
flow on ¢ — j until the flow on some other edge of the cycle drops to 0 (cf. proof
of Proposition I1.7.2). We delete the edge and get a new tree 7" and a new feasible
flow with a smaller total cost (again, we assume that there be a single edge of the
cycle that “dries up”).

To construct an initial solution x, we modify the network by adding a new
vertex 0 with Sy = 0 (transit) and introduce new edges ¢ — 0 if 8; < 0 and 0 — 3 if
B; > 0. We let vo; and ;0 be very big numbers so that the transportation to/from
vertex 0 should be avoided if at all possible. We observe that if the overall balance
condition Y, 8; = 0 is satisfied, then the initial plan &o = —f;, if 8; < 0, &0 = Bi,
if B; > 0 and &;; = 0 otherwise, is a feasible plan. Now the original problem has a
feasible plan if the optimal solution in the modified problem has ;0 = 0 and £y; = 0
for all ¢ and j.

7 A ’ \

/
/

very large transportation costs

Figure 53. Constructing the initial plan by introducing an extra ver-

tex
PROBLEM.
1. Prove that on every step of the algorithm the cost of the flow indeed de-

creases.

10. Semidefinite Programming

In this section, we consider linear programming problems in the space Sym,, of nxn
symmetric matrices with respect to the cone Sy of positive semidefinite matrices;
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see Section I1.12. This type of linear programming has been known as “semidefinite
programming”; see [VB96].

(10.1) Problems. We consider problems in the canonical/standard forms of Sec-
tion 7.1. Let By = F} = Sym,, and let Ey = F5 = R™. We consider the standard
dualities (scalar products)

n

<A,B>1 = tl“(AB) = Z O‘ijﬂij

i,5=1

for symmetric matrices A = (a;;) and B = (f;;) (cf. Example 3.2.2) and

(,y)2 = Z &in
i=1

for vectors = (§1,...,&m) and y = (M1,... ,7m) in R™ (see Example 3.2.1). To
simplify the notation, we denote both scalar products by (). We fix K = §; C Sym,,
and we write X > Y instead of X >k Y for symmetric matrices X and Y. Hence
X > Y means that X — Y is a positive semidefinite matrix.

Recall (Problem 2 of Section 5.3) that K* = K. A linear transformation
Sym, — R™ can be written as X — ((Al, X), .o (A, X)) for some symmet-

ric matrices Ay, ..., A,,. The dual linear transformation R”™ — Sym,, is defined
by (&1,... ,&m) — &A1+ ... + EnAp; cf. Problem 3 of Section 3.3.
Let us fix matrices C, A4, ... , A, € Sym,, and a set of real numbers 34, ... , Bp,.

Hence we arrive at the pair of problems:
(10.1.1) Primal Problem in the Canonical Form.

Find ~ =inf(C, X)
Subject to (A;,; X)=p8; for i=1,...,m and
X>0

in the primal matrix variable X € Sym,,.
(10.1.2) Dual Problem in the Standard Form.

Find [ =sup Z Bii

i=1

Subject to Z NA; X C

i=1
in the dual variables (A1,...,\y) € R™.
PROBLEMS.
LoLetn=2m=11tC=(+ ) tet 4 = (% 1) andtet g =1
cletn =2 m =11t C= (., ) let A =[] )andlets =1L

Prove that v = 8 = 0, that Ay = 0 is the dual optimal plan and that there is no
primal optimal plan.
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0 -0.5 11
2. Let n =2, m=1,let C = 05 -1 ) let Ay = 11 and let
B1 = 0. Prove that v = 0, that there exists a primal optimal plan but that there

are no dual feasible plans, so § = —o0.

3°. Let B be a positive definite n x n matrix. Prove that if X is an n X n
positive semidefinite matrix such that (B, X) = 0, then X = 0.

Problems 1 and 2 above show that the situation is somewhat different from that
of polyhedral linear programming; cf. Section 8. The following result provides a
sufficient condition for the existence of the primal optimal plan and for the absence
of the duality gap.

(10.2) Proposition. Suppose that there are real numbers aq, ..., and p such
that
B:a1A1—|——|—OémAm+pC

is a positive definite matriz and that there is a primal feasible plan. Then v = 5,
and, if v > —oo, there is a primal optimal plan.

Proof. We use Theorem 7.2. Let us consider the linear transformation

A:Sym, —R™,  AX) = ((A1,X),..., (A, X),(C, X)).

-~

We claim that ker(A) NS, = {0}. Indeed, for every X € ker(A) we have
(C,X)=(A1,X)=...=(A4,,X)=0

and hence (B, X) = 0. Since B is positive definite and X is positive semidefinite,
by Problem 3 of Section 10.1, it follows that X = 0. Since S; has a compact base
(see Problem 4 of Section I1.12.2), by Lemma 7.3, we conclude that A(S;) is a

closed convex cone in R™*1. The result now follows by Theorem 7.2. O
PROBLEMS.
1. Suppose that the matrices Aq,...,A,, are linearly independent and that

there exists a positive definite matrix X which is a primal feasible plan. Prove that
there is no duality gap.

Hint: Use Problem 2 of Section 7.2.

2. Suppose that there is a dual feasible plan, that < +oo and that there is
no dual optimal plan. Prove that there exists a non-zero vector | = (Ag,..., \y)
such that

f:/\zAz j 0 and zm:ﬁl)\l =0.
i=1 i=1

Hint: Choose a sequence of {l,,} of dual feasible plans such that

lim  (b,1,) = 3,

n—-+4oo
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where b = (B1,...,8m). Show that we must have [|l,|| — +o0o. Consider the
sequence I, = 1, /||l |-

3. Suppose that the matrices Aq,..., A, are linearly independent, that there
is a positive definite matrix X which is a primal feasible plan and that v > —oc.
Prove that there is a dual optimal plan.

Hint: Use Problems 1 and 2 above and Problem 3 of Section 10.1.

Finally, we discuss the positive semidefinite version of the complementary slack-
ness conditions.

(10.3) Corollary.
1. Suppose that X is a primal feasible plan and | = (A1,..., \m) is a dual
feasible plan. If

(X, C— f: Aidi) =0,
=1

then X is a primal optimal plan and l is a dual optimal plan (“optimality
criterion”).

2. Suppose that X is a primal optimal plan, | = (A\1,... , A\m) is a dual optimal
plan and that there is no duality gap. Then

(X, C— iAiAi> =0

i=1

( “complementary slackness”).

Proof. Follows by Theorem 6.2. O

PROBLEMS.

1. Let X and Y be n x n positive semidefinite matrices such that (X,Y) = 0.
Prove that rank X +rankY <n.

2. Let X be a primal optimal plan and let { = (A1,...,A\) be a dual optimal
plan. Suppose that there is no duality gap. Prove that

rank(X) + rank(C - i /\iAi) <n.
i=1

3. Let us call an n x n matrix A = («;;) r-diagonal if cv;; = 0 unless |i — j| < r;
cf. Problem 5 of Section I1.14.3. Suppose that the matrices A;,...,A,, are r-
diagonal and there exists a positive semidefinite matrix X such that (4;, X) = f;
fori=1,... ,m. Prove that there exists a positive semidefinite matrix X such that
(A;, X) = p; for i =1,... ,m, and, additionally, rank X < r.

Hint: Choose an n X n positive definite matrix C' = (-y;;) such that

1 if §=j,
vij =14 €>0 if|i—jl=r
0 elsewhere
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in Problem 10.1.1. Prove that there exists a primal optimal plan X* and that there
is no duality gap. Use Problem 2 to show that if there is a dual optimal plan, then
rank X* < r. Deduce the general case from that particular case; see [Barv95].

11. An Application: The Clique and Chromatic Numbers
of a Graph

We discuss an application of semidefinite programming to a combinatorial problem.

(11.1) Cliques and colorings. Let G = (V, E) be a graph with the set of vertices
V ={1,...,n} and the set of edges E. We assume that the edges are undirected
and that there are no loops or multiple edges. A cligue of G is a set of ver-
tices W C V, such that every two distinct vertices i,j € W are connected by an
edge of the graph: (ij) € E. The largest number of vertices in a clique of G is
called the cligue number of G and denoted by w(G). A k-coloring of G is a map
¢V — {1,...,k}, such that ¢(i) # ¢(j) if (ij) € E. The smallest k, such that
a k-coloring exists, is called the chromatic number of G and denoted x(G).

a) b)

Figure 54. a) a clique, b) a coloring

PROBLEMS.
1°. Prove that w(G) < x(G).

2°. Let G be the pentagon, that is, a graph with five vertices {1, 2, 3,4, 5} and
five edges, (12), (23), (34), (45) and (51). Prove that w(G) = 2 and x(G) = 3.

Computing or even approximating w(G) and x(G) for general graphs is compu-
tationally hard. Surprisingly, there is a way to compute efficiently a number 9(G)
such that w(G) < Y(G) < x(G). This number J(G) was introduced by L. Lovész in
1979 [Lo79] and is now called the Lovdsz’s theta-function. We do not discuss how
to compute ¥(G) (see [GLS93] and [Lo86]). Instead, we show that ¢¥(G) is the
optimal value in a certain pair of problems of semidefinite programming related by
duality. There is an interesting class of graphs, called perfect graphs, for which we
have w(G) = H(G) = x(G); see Section 3.2 of [Lo86].
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(11.2) The primal problem. For 1 <i < j < n,let A;; be the n x n symmetric
matrix whose (7, j)-th and (7, ¢)-th entries are 1’s and all other entries are 0. Let .J
be the n xn matrix filled by 1’s and let I be the n xn identity matrix. Given a graph
G = (V, E), let us consider the following problem of semidefinite programming.

Find %(G) =sup(J, X) = —inf(—J, X)
Subject to  (A4;;,X) =0 for every pair (ij) ¢ E,
(I,X)=1 and
X=0

in the primal matrix variable X. In other words, we are seeking to maximize the
sum of the entries of a positive semidefinite matrix X = (x;;) of trace 1, provided
x;; = 0 if (j) is not an edge of G.

PROBLEMS.

1°. Let G; = (V,Ey) and Gy = (V, E3) be graphs with the same vertex set
V and such that Fy C FE,. Prove that w(G2) > w(Gi1), x(G2) > x(G1) and
I (Ga) > I(Gr).

2°. Let ai,...,o be non-negative numbers such that Ei;l a? = 1. Prove
that Zle a; < Vk.

It turns out that the value of ¥(G) is sandwiched between the clique number
and the chromatic number of the graph.

(11.3) Proposition. We have w(G) < 9(G) < x(G).
Proof. Let W C V be a clique and let |[W| = k. Let © = (&1,...,&,), where
(o { 1 ifiew,
“lo ifig W
Let X = (x;;), where z;; = (§£&;)/k. Then X is a feasible plan in Problem 11.2
and (J, X) = k. Therefore, ¥(G) > (J, X) = k = |W|. Hence 3(G) > w(G).

Let X = (z;5) be a feasible plan in Problem 11.2. Since X is a positive semi-
definite matrix, there exist n vectors vi,...,v, in R™ for which X is the Gram
matrix, that is, (v;,v;) = z;;. In particular, (J, X) = |lv1 + ...+ v,||%. Let us
choose a coloring ¢ : V.— {1,... ,k} of G. We observe that if ¢(i) = ¢(j), then

x;; = 0 and hence (v;,v;) = 0 (henceforth, such an n-tuple of vectors vy, ... ,v, is
called an orthogonal labeling of the graph G). Since tr X = 1, we conclude that

n

> lwil? =1.

i=1

For a number (“color”) 1 < j <k, let us define w; by

w; = E V;.

i:p(i)=j
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Thus w; is the sum of pairwise orthogonal vectors and we have

k
lw;||? = Z [|vs]|® and, therefore, Z |w;]|* = 1.
() =i i=1

Also, we observe that

Kk n b
ij = Z'Ui and hence (LX) = ZU’J'HQ‘
j=1 =1 J=1

Now
k , k 9
LX) = Y wl® < (X )
=1 =1
Denoting «; = ||wj||, we conclude that
k ) k
(J,X) < (Z aj) for some «; >0 such that Za? =1
j=1 j=1

Using Problem 2 of Section 11.2, we conclude that (J, X) < k and hence ¥(G) <
x(G). U

Writing the dual to Problem 11.2, we get
(11.4) The dual problem.

Find —sup)g=inf—X\q
Subject to Aol + Z NijAij = —J

(if)¢E
in the dual real variables Ao and A;; with (ij) ¢ E. It is convenient to make a
substitution 7 = —\g and rewrite the problem as
Find g =infr
Subject to 71 —J — Z AijAi; = 0.
(i5)¢E

We note that the matrix 71 — <J + Z )\iinj) is positive semidefinite if and
(i5)¢E
only if the largest eigenvalue of the matrix (J + Z /\iinj) does not exceed 7.
ij)¢E
Hence the dual problem is equivalent to finding (‘cil)e¢ infimum A of the maximum
eigenvalue of a symmetric matrix Y = (1,;) such that n;; = 1 if (ij) € Eori=j
and all other entries of Y are arbitrary.
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(11.5) Proposition. We have 8 = ¥(G).

Proof. By Proposition 10.2, we conclude that there is no duality gap as soon as
some linear combination of the constraint matrices in the primal problem is positive
definite. Since the identity matrix I is one of the constraint matrices in Problem
11.2, the result follows. g

PROBLEMS.
1. Prove that there exist a primal optimal plan and a dual optimal plan.
2. Let G be the pentagon; see Problem 2 of Section 11.1. Prove that 9(G) = v/5.

3. Let Gy = (V1,E;1) and G2 = (Va, F3) be two graphs. Assuming that
ViNVy = (), let us define the direct sum G = (V, E) as the graph with V = V; U V3
and F = E1 U EQ. Prove that 19(G) = ’19(G1) + 19(02)

4. Let Gy = (V4, Eq) and G2 = (Va, E3) be two graphs. Let us define their
direct product as the graph G = (V| E) with V' = V; x V5 such that ((il, i), (jl,jg))
is an edge of G if and only if (i1, 71) is an edge of G1 and (i2, j2) is an edge of G5 or
i1 = j1 and (i9, j2) is an edge of G or i3 = jo and (i1,71) is an edge of G. Prove

that 9(G) = 9(G1)9(Ga).

12. Linear Programming in L*°

In this section, we discuss our first instance of infinite-dimensional linear program-
ming. We consider the following optimization problem.

(12.1) Primal problem.

1
Find ~= inf/ g(T)u(r) dr
0

1
Subject to / fithu(t)dr=p5; for i=1,...,m and
0

0<wu(r)<1 foralmostall 7€ ]l0,1].

Here g, f, f1,... , fm € L'[0,1] are given functions, 1, ... , B, are given real num-
bers and v € L*°[0,1] is a variable. As we discussed in Section II1.6, certain
problems of linear optimal control can be stated in the form of Problem 12.1.

There are various ways to write Problem 12.1 as a linear programming problem.
We discuss one of them below.

Let By = L*[0,1] & L*°[0,1]. Hence E; consists of ordered pairs (u,v) of
functions from L*>[0,1]. Let Fy = L[0,1] @ L'[0,1]. We define the duality (); :
EixF; —R by

(), (a,b)), = /O w(F)a(r) + v(r)b(r) dr:

Licensed to Georgia Inst of Tech. Prepared on Sun Jan 14 21:00:56 EST 2024for download from IP 188.92.139.72.
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cf. Example 3.2.3. Let us choose Fy = [y = R™t! with the standard duality of
Example 3.2.1. Let us define the cone K C E; as follows:

K= {(u,v) : u(r),v(r) >0 for almost all 7 and
(12.1.1)
u(T) 4+ v(7) = constant function for almost all T}.

We define a linear transformation A : £y — Fi by

A, v) = ( /0 () dr. /O () dr. /0 () + o) dT)

Letting
¢c=(g,0) and b= (B1,...,8m,1),

we restate Problem 12.1 as a primal problem in the canonical form:

Find ~ =inf(z,c);
Subject to Axr =0b and
X ZK 0

in the primal variable z = (u,v) € L*[0,1] & L*°|0, 1].
To interpret the dual problem,

Find 3 = sup(b,p)
Subject to A*p <g- c,

we need to find the dual cone K* and the dual transformation A*.

(12.2) Lemma. We have
K* = {(a: +h, y+h): x(r),y(r) >0 for almost all T and

1
/0 h(r) dr > O},

where x,y,h € L1[0,1].

1
Proof. Suppose that z(7),y(r) > 0 for almost all 7 and that / h(t) dr > 0. Let

0
us pick a point (u,v) € K. Thus u(7),v(r) > 0 and for some constant § > 0 we
have u(7) 4+ v(7) = 4 for almost all 7. Then

1
(@+hy+h), (), = / £(r)u(r) + y(r)o(r) + Sh(r) dr >0,

from which we conclude that (x + h,y + h) € K*.
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On the other hand, suppose that (21,y1) € K*. Let
h(r) = min{ml(T),yl(T)} andlet z=xz;1—h and y=1y; —h.
Clearly, z(7),y(7) > 0 and &1 =  + h,y1 = y + h. Thus it remains to show that
1 1
/ h(r) dr = / min{ml(T),yl(T)}dT
0 0
(12.2.1) :/ z1(7) dr +/ y1(7) dr > 0.
71 (1) <y1(7)

Tiy1 (1) >21(T)

Since (x1,y1) € K*, we must have

/0 e (rulr) dr 4 /O L) dr > 0

for any two functions 0 < u(7),v(7) < 1 such that u(7) + v(r) = 1. Choosing an
arbitrary 0 < u(7) < 1, we get

1 1
/0 x1(T)u(r) dr +/0 y1 (1) (1 —u(r)) dr
:/ (z1(1) =91 (7))ulr) dT+/ yi(7) dr > 0.
0 0

Let us choose

{ 1 if zq(7) < yi(7),
u(r) = .
0 ifxi(7) > yi(7).
Then )
/ 21(7) —y1(7) dr +/ y1(7) dr > 0,
721 (7)<y1(T) 0

which is equivalent to (12.2.1). O
PROBLEM.

1. Prove that the dual transformation A* : R™*1 — L10,1] @ L[0,1] is
defined by

Ay A p) = (p—i—i)\ifi, p).
=1

From Lemma 12.2 and Problem 1 of Section 12.2, we conclude that the dual
problem is

Find = (sup P+ /Bi)\i)

i=1
Subject to g(7) — p — Z)\Z‘fi(T) > h(r) for almost all 7
i=1

—p>h(r) for almost all T and

1
/ h(t) dt > 0,
0
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188 IV. Polarity, Duality and Linear Programming

where h € L'[0,1] is a function and \q,...,\,, and p are dual variables.

Next, we observe that if (A1,..., Ay, p) is a feasible plan in the above problem
1

and h(t) dr =€ > 0, we can get a new feasible plan with a better value of the

0
objective function by modifying h := h — € and p := p+ €. Hence the last condition
1
can be replaced by / h(7) dr = 0. Denoting p(1) = —p — h(7), we come to the
0

following

(12.3) Dual problem.

m 1
Find = Xifi — d
ind 8 =sup (; B /0 p(7T) T)

Subject to  —p(7) + Z)\ifi(T) < g(r) for almost all 7 and
i—1
p(t) >0 for almost all T

in dual variables Ay, ..., \,, € R and p € L'[0,1].

PROBLEM.

1. Let us consider a discrete version of Problem 12.1:

N
Find ~ = infz g(T)u(Ts)
k=1

N
Subject to Zfi(Tk)u(Tk) =8 for i=1,...,m
k=1
—u(rp) > -1 for k=1,...N and

u(rg) >0 for k=1,...N

in the primal variables u(71), ... ,u(7n) € R. Here g(7) and f;(7%) are real numbers
fork=1,... , Nandi=1,...,m.
Using Problem 3 of Section 8.2, show that the dual problem is

m N
Find B =sup (Z XiBi — ZP(Tk))
k=1 k=1
Subject to  —p(7%) + Z Aifi(m) < g(mh) and
i=1

p(rg) >0 for k=1,...,N
in the dual variables A\q,... , Ay, and p(11),... ,p(TN)-

Next, we compare optimal values in Problems 12.1 and 12.3.
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(12.4) Proposition. Suppose that there is a primal feasible plan u(7) in Problem
12.1. Then v = (8 (there is no duality gap) and there is a primal optimal plan.

Proof. We use Theorem 7.2 and Lemma 7.3. Let us introduce the weak topology
of the duality in the spaces £y = L*°[0,1] @ L*°[0,1] and F;, = L'[0,1] @ L0, 1].
From Proposition I11.5.2 it follows that the cone K C E; defined by (12.1.1) has a
compact base consisting of the pairs (u, v), where u(7),v(7) > 0 and u(7)+v(r) =1
for almost all 7. Since for (u,v) € K we have

1
/ w(r)+v(r) dr =0 implies wu(7)=v(r)=0 for almost all 7,
0

we conclude that ker(A) N K = {0}. Therefore, by Lemma 7.3, the image A(K) is
closed in R™*2 and hence by Theorem 7.2 there is no duality gap.

Since )
vz = [ o) dr > s,
0

we conclude that there is a primal optimal plan. O

An interesting feature of Problem 12.3 is that it is, essentially, finite dimen-
sional. In fact, the only “true” variables are the real variables A1,...,A;,. Once
their values are fixed, the best possible p(7) is easy to find.

(12.5) Proposition (“the maximum principle”). Let us fix some real numbers
Al, ..., Am and define p by

m

p(r) = rnaLX{O7 —g(T)+ Z: )\lfz(T)}

Then (A1,...,A\m;p) is a dual feasible plan with the largest possible value of the
objective function with the given Ai,... , Apm. In other words, for any p1 € L'[0,1]
such that (A1,... , A\m;p1) is a dual feasible plan, we have

m 1 m 1
;/\zﬂz‘ _/0 p(7) dr > ;)\iﬂi —/0 pi(7) dr

and the inequality is strict unless p1(7) = p(7) for almost all T.

Proof. Every feasible function p in Problem 12.3 must satisfy the inequalities

p(T) > —g(1) + Z)\ifi(r) and p(T) > 0.
i=1
1
Hence to choose a feasible p with the smallest value of / p(T) dr, we must choose
0

bl = max{o.—g(r)+ N0
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as claimed. [l

Often, Proposition 12.5 allows us to find the dual optimal plan if there is any.
Then the complementary slackness conditions allow us to find the primal optimal
plan.

(12.6) Proposition. Let u(t) be a primal optimal plan and let (A1, ..., A\m;p) be
a dual optimal plan. Suppose further that the set of roots of the function

g(7) — Z Aifi(T)

has measure zero. Then

[ 1 if p(r) >0,
ulr) = { 0 if p(r)=0

for almost all T € [0, 1].

Proof. We use the “complementary slackness” conditions of Part 3, Theorem 6.2.
We observe that in this particular situation, the conditions can be written as

/Olp(f)u —u(r)) dr + /O

Both integrals are non-negative, hence we conclude that for almost all 7 such that
p(T) > 0 we must have u(7) = 1 (otherwise, the first integral is positive). From
Proposition 12.5 we have

1

(g(T) +p(7) - i_n: )\ifi(T))U(T) dr = 0.

p(r) =0 implies g(r) =3 Aifilr) > 0
=1

for almost all 7. Thus if p(7) = 0, we must have u(7) = 0 for almost all 7 (otherwise,
the second integral is positive). O

PROBLEM.
1. Consider the primal problem

1
Find ~= inf/ Tu(T) dr
0

Subject to /1 u(r) dr =1/2 and
OOS u(r) <1
and the dual problem
Find S =sup ()\/2 - /1p(7) dT)
Subject to  —p(7) + A §OT and
>

p(T) > 0.
Find the dual optimal plan and the primal optimal plan.
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13. Uniform Approximation as a Linear Programming
Problem

Let us recall from Section 1.6 the problem of the uniform (Chebyshev) approxima-
tion: suppose we are given continuous functions f,... , f,, on the interval [0, 1] and
yet another continuous function g on [0, 1] (instead of the interval [0, 1] we can con-
sider an arbitrary compact metric space X ). We want to find a linear combination
& fi+ ...+ &nfm, such that the maximum deviation

50 = max |£1f1(7—) +.. +£mfm(7_) - 9(7_)’

0<r<1

is the smallest possible.

Hence we can write the problem in the following form.

(13.1) Primal problem.
Find ~ =inf&,

Subject to & + Zfifi(T) >g(r) forall 7€]0,1] and
i=1

§o— Y &ifi(r) > —g(r) forall 7€l0,1]
i=1

in the real variables &y, &1, ... ,&m.
To interpret Problem 13.1 as a general linear programming problem 6.1.1, we
choose

e [, = F; = R™*! with the standard duality ()1 of Example 3.2.1;

o B, =C[0,1] & C[0,1] and F; = V[0,1] @ V[0, 1] with the duality

1 1
((h1,ha), (p1,p2)), :/ hy dpy +/ ha dps
0 0

(cf. Example 3.2.4 and Problem 4 of Section 3.2);

e the linear transformation A : £ — F} defined by

A(§o: 615+ &m) = (50 +> &ifi Eo- Zﬁifi>;
i=1 i=1

e cones K1 = {0} C E; and

KQZ{(hlah2)3 hi(7),ha(7) >0 for all Ongl}CEQ
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(cf. Example 5.2.4);
e vectors b = (g, —g) € Ey and ¢ = (1,0,...,0) € Ej.

Then the primal problem can be written in the usual form

Find ~=(z,¢);
Subject to Ax >k, b and

T ZKl 0.
To write the dual problem, we need to find A*, K7 and K3.

PROBLEMS.
1°. Prove that A* : V[0,1] & V[0,1] — R™"! is defined by

A*(/il’/‘?) =

1 1 1 1 1 1
</ dpn +/ dps, / f1 dpy —/ fidpa, ..., / fm dp —/ fm du2>‘
0 0 0 0 0 0

2°. Prove that K = Fi = R™ and that

K3 ={(p,p2): pa,pa € Vi)

cf. Example 5.2.4 and Problem 2 of Section 5.3.

Let us write p > 0 instead of u € V5.

Summarizing, we conclude that the dual problem

Find S =sup(b,)2
Subject to  A*l <k:c and
l ZKZ* 0

is stated as follows:

(13.2) Dual problem.
1 1
Find —sup</ g du —/ g du2>
0 0
1 1
Subject to / dp —|—/ dps =1,
0

0
1 1
/fidﬂl_/ fidugzo for i=1,...,m and
0 0
P, p2 2 0,

where the dual variables p; and ps are Borel measures on [0, 1].
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PROBLEMS.
1. Let us consider a discrete version of Problem 13.1:
Find ~ =inf&,

Subject to & + Zfifi(Tj) >g(r;) for j=1,...,N and

i=1
&o — Zfifi(Tj) > —g(rj) for j=1,... N,
i=1
where 11,... ,7n € [0,1] are some numbers.

Prove that the dual problem is

N
Find B =sup Z()\j = A;)g(75)

j=1
N
Subject to Z()\j +A7) =1,
=1
N
Z(,\j—/\;)fi(q)zo for i=1,...,m and
j=1
AS,A7 >0 for j=1,...,N
in real variables )\;r and )\; for 57 = 1,...,N. Moreover, prove that the latter

problem is equivalent to the following optimization problem:

N
Find (3 =sup Z 0;9(7;)
j=1

N
Subject to ZO’jfi(Tj) =0 for i=1,...,m  and

j=1

N

> ol <1

j=1
in real variables o1,... ,0xN.
2. For a 1 € V[0,1], let us define

Il = sup{] / fdu| s max [£(7)] < 1};

cf. Problem 2 of Section II1.8.1. Prove that every (signed) measure p such that
l]] <1 can be written as p = p; — pg for some py, pg > 0 such that

1 1
/ dpy +/ dpgs = 1.
0 0

Conversely, prove that if p = p; — pe where pi, ue > 0 and satisfy the above
equation, we have ||u|| < 1.

Problem 2 of Section 13.2 suggests the following
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(13.3) Reformulation of the dual problem.

1
Find g = sup/ g du
0
Subject to ||p| <1 and

1
/ fidp=0 for i=1,... ,m
0
with variable p which is a signed Borel measure on [0, 1].

Problem 13.1 has a simple geometric interpretation. In the space C[0,1], let
L= span(fl, e ,fm) be the subspace spanned by the functions fi,... , fm. Given
a function g € C[0, 1], we are looking for a function f € L closest to g in the uniform
metric dist(f, g) = maxo<-<1 |f(7) — g(7)|.

Figure 55

In Problem 13.3 we look for a linear functional p of the unit norm such that
wu(h) = 0 for all h € L and such that p(g) is maximized. If L were a subspace of
Euclidean space and the distance dist(f, g) were the standard Euclidean distance,
the largest possible value of u(g) should have clearly been equal to the distance
from g to L.

It turns out that indeed there is no duality gap in Problems 13.1 and 13.2 even
though the metric is different from the Euclidean one.

(13.4) Proposition. We have v = 8 (there is no duality gap). Moreover, there is
a primal optimal plan and o dual optimal plan.

Sketch of Proof. Problem 13.2 can be considered as a primal problem in the
canonical form (see Problem 7.1.1) provided we replace sup by — inf of the opposite
linear functional. One can check that the dual to that primal problem is equivalent
to Problem 13.1, cf. Problem 1 of Section 6.1. Hence we are going to apply
Theorem 7.2 to Problem 13.2 as to a primal problem. Let us introduce the weak
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topology of the duality in the spaces E1, F}, Fo and F>. We observe that there
is a feasible plan in Problem 13.2: for example we may choose 3 = ps = dr/2.
Let K = K5 = {(ul,ug) D, o € V+}. Thus we have to show that the image of
T(K) Cc R™*! is a closed set, where T is defined by

T(p1, p2) (/ dM1+/ dps, /fld/h /fldﬂ% cee
1
/fmdm /fmd,UZu /gduz—/ gdm).
0 0

One can observe that (ker T) N K = {0} since for p1, pto > 0 we have

1 1
/ dpy —|—/ dps =0 implies w1 = po = 0.
0 0

Moreover, cone K has a compact base

1 1
B:{(M1,M2)3M17M220 and / dﬂ1+/ du2=1};
0 0

cf. Section II1.8. Hence by Lemma 7.3, T(K) is a closed convex cone and by
Theorem 7.2 we conclude that there is no duality gap and that Problem 13.2 has
an optimal plan.

To prove that Problem 13.1 has an optimal plan, we use a “brute force” type
argument similar to that in the proof of Proposition 1.6.3. Without loss of generality,
we may assume that fi,..., f,, are linearly independent. For x = (&1,...,&n), let

p(z) = max |&f1(7) + ... + Emfm(T)]-

0<r<1

Then p(z) is a continuous function and p(x) > 0 for all z # 0. Let S™~! C R™ be
the unit sphere in the space of all x = (&1,...,&y). Hence there is a 6 > 0 such
that p(x) > 6 for all ¥ € S™~1. Therefore p(x) > R for all x such that ||z| > R.
Let M = maxo<-<19(7). If p(x) > 2M, then

max & fi(T)+ ...+ &nfm(T) —g(T)| > M

0<r<1

and f = 0is a better approximation to g than &; f1 +. ..+ & fm- Thus we conclude
that the optimal z is found as a point in the compact set {z : |z| < 2Mé~1}
where the minimum value of the continuous function

d(z) = max [ f1(7) + ...+ Enfm(T) = 9(7)]

0<r<1

is attained. For such an z = (&1,... ,&m), the vector (€0,&1, ..., &m) With & = d(x)
is an optimal plan in Problem 13.1. O
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PROBLEMS.

The next two problems provide a useful interpretation of the complementary
slackness conditions.

1. Prove that in Problem 13.3 there exists an optimal solution g which is a
linear combination of at most m + 1 delta-measures:

k k
n= Zmén where k<m+1, 7 €]0,1] and Z lo;| = 1.
=1 i=1

Hint: Prove that the extreme points of the set {u : ||u|| < 1} are the (signed)
delta-measures §, and —J, for some 7 € [0, 1]; cf. Problem 2 of Section II1.8.4.

2. Let ¢ = (£,&1,...,&n) be a feasible plan in Problem 13.1 and let
f=&&M+ ...+ &Enfm. Prove that z is an optimal plan if and only if there
exist k < m+ 1 points 7; € [0,1] and k numbers o; such that

k

k
loil=1, > oifi(ri) =0 for j=1,...,m

=1 i=1

and such that if o; > 0, then g(7;) — f(7:;) = &o and if 0; < 0, then g(r;) — f(r) =
—o-

Hint: Use Problem 2 and Theorem 6.2

3. In Problems 13.1 and 13.2, let m =1, f1(7) = 1 and let g(7) = 7. Find a
primal optimal plan and a dual optimal plan.

14. The Mass-Transfer Problem

In this section, we discuss an “infinite” version of the Transportation Problem (see
Section 9), known as the Mass-Transfer Problem. Historically, it is one of the oldest
linear programming problems (although it was recognized as such much later than
it was first considered). Apparently, it was considered for the first time by G.
Monge in 1781 although it was not until 1942 that L.V. Kantorovich interpreted it
as a linear programming problem. We discuss this interesting problem only briefly,
leaving much to prove to the problems.

Informally, the problem is described as follows. Suppose we are given an initial
mass distribution on the interval [0, 1] (or on an arbitrary compact metric space X)
and a target mass distribution. For “moving” a unit mass from position 7 € [0, 1]
to position 15 € [0, 1] we pay the price of ¢(71,72), where ¢ : [0,1] x [0,1] — R
is a certain (continuous) function. We are looking for the least expensive way to
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redistribute the mass.

a) b)

Figure 56. Example: a) the initial mass distribution on the interval
[0,1] and a way to obtain the target mass distribution b)

Let us think of the initial and target mass distributions as non-negative Borel
measures i1, b2 € V[0,1]. Let I; and I be two copies of the interval [0,1]. We
think of py as an element of V(1) (the space of signed Borel measures on I;) and
of po as an element of V' (I3) (the space of signed Borel measures on I).

Let us describe what “redistributing” means. Let S = I; X Is be the unit square
and let C(S) be the vector space of all real-valued continuous functions f : S — R.
We make C(S) a topological vector space in just the same way as we introduced
topology in C10,1]; cf. Section II1.8. Namely, we declare a set U C C(S) open if
for every f € U there is an € > 0 such that the set

U(f,e):{geC(S): 1f(r) — g(r)| <€ for all Tes}

is contained in U. Similarly, we introduce the space V(S) of all signed Borel
measures on S as the space of all continuous linear functionals ¢ : C'(S) — R. We
say that f € C(S) is non-negative if f(7) > 0 for all 7 € S. Similarly, we say that
an element p € V(S) is positive (denoted p > 0) provided

/ fdp >0 for any non-negative f € C(S5).
S

For example, the delta-measure §, defined for any 7 € S by
0-(f) = f(r) forall feC(S)

is a positive linear functional. Thus we interpret a redistribution of mass as a non-
negative measure p € V(S). That redistribution should satisfy initial and target
conditions.

Let us define linear transformations Pj, Py : V(S) — V(I1),V(I2), called
projections, as follows. Given a function f € C(Iy), we define its extension F €
C(S) by F(&1,&) = f(&). Similarly, given a function f € C(I2), we define its
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extension F' € C(S) by F(£1,82) = f(§2). Given a u € V(S), we define P;(u) €
V(I,) as the linear functional C(I;) — R such that for every f € C'(I1)

Pl(,u)(f)z/qu where F is the extension of f.
s

Similarly, given a p € V(S), we define Py(u) € V(I2) as the linear functional
C(I2) — R such that for every f € C(I3)

PQ(M)(f):/Fd/J, where F is the extension of f.
s

Now we write the initial condition as P;(p) = w1 and the target condition as
Py(p) = pa.

Finally, we think of a cost function ¢(71,72) as a continuous function ¢ € C(S)
on the square. Hence we arrive at the following optimization problem.

(14.1) Primal problem.

Find ~= mf/cdu
s
Subject to Py (p

and

)=
Py(p)
>0

in the primal variable p which is a Borel measure on the unit square S = [0, 1]x[0, 1].
Here p11 and g are fixed Borel measures on the interval [0, 1] and ¢ is a continuous
function on the square S.

To interpret Problem 14.1 as a linear programming problem, we define

o B4 =V(S), Fy = C(S) with the duality

</’Laf>1:/sfd,u7

Y E2 = V(Il) &b V(IQ), F2 = C(Il) D C(Ig) with the duahty

((p1, p2), (f1, f2)) /fl du1+/ Ja2 dpa,

e the linear transformation A : £y — Fs:

A(p) = (Pi(w), Pa(p)).
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e the cone K C FEi:

K={peVv(S): n=>0},

e the vectors b = (1, p2) € Es and ¢ € F}.

Then Problem 14.1 is stated as the primal linear programming problem in the
canonical form:

Find (x,¢);
Subject to Az =1b and
x>k 0.

To state the dual problems, we need to find the dual transformation A* and the
dual cone K*. They are found in Problems 3 and 4 below.

PROBLEMS.
1. Let us consider a discrete version of the problem. Let us fix some n distinct
points 71,...,7, € [0,1]. Suppose that 1 and us are non-negative combinations

of delta-measures:
n n
= by and pp =) Bio,
i=1 i=1

for some a;,8; > 0. Let us look for the measure p € V(S) which is a linear
combination of the delta-measures in the points (7;,7;), 1 <i,j < n:

n= Z gij(s(Ti,Tj)'
i,j=1
Show that Problem 14.1 is equivalent to the following linear programming problem:
Find Y= inf Z ’Vijfij
i,j=1

Subject to Z{ij =q; forall i=1,... n,

Jj=1

Z{“Z—jzﬂj forall j7=1,...,n and
i=1
&; >0 forall 4,7

Interpret the latter problem as a transportation problem of Section 9.

2. Check that the linear transformations Py, Py : C(S) — C(I1),C(I2) are
well defined.
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3. Prove that A* : C(I;) & C(Is) — C(S),

A ((f17f2)) =TI where F(&,&) = f1(&1) + f2(&2),

is the linear transformation dual to A.
4. Prove that

K*:{feC(S); F(r) =0 forall Tes}.

Using Problems 3 and 4 of Section 14.1, we conclude that the dual problem

Find B = sup(b,l),
Subject to A*l <g- ¢

is written as follows:

(14.2) Dual problem.

1 1
Find g = Sup(/ Iy duy —l—/ ly d,ug)
0 0
Subject to  l1(m1) 4+ la(72) < c(my,m2) forall 7,7 €]0,1]

in the dual variables [; and I which are continuous functions on the interval [0, 1].

PROBLEMS.

1. Suppose that p; and po are non-negative combinations of delta-measures as
in Problem 1 of Section 14.1. Check that Problem 14.2 is written as

Find J =sup Z (A;ai + )\;lﬂi)
i=1
Subject to A; + A} <y forall i,j=1,...,n

in the dual variables M., for ¢ = 1,...,n. Show that the latter problem is

equivalent to Problem 9.2 for the relevant transportation network.

2. In Problems 14.1 and 14.2, let us choose py = 7 dr, po = (1 — 7) dr and
¢(71,72) = |11 — 72l; see Figure 57. Find a primal optimal plan and a dual optimal
plan.

Hint: Guess a primal optimal plan and a dual optimal plan and show that the
corresponding values of objective functions are equal.

Licensed to Georgia Inst of Tech. Prepared on Sun Jan 14 21:00:56 EST 2024for download from IP 188.92.139.72.



14. The Mass-Transfer Problem 201

Figure 57. What is the best way to go from the distribution p to
the distribution g2 on the interval [0, 1]?

3°. Show that a dual feasible plan always exists.

4. Show that a primal feasible plan exists if and only if uq, ue > 0 and

1 1
/ dpy = / dpa.
0 0

Hint: Prove that there exists a measure u € V(S) (denoted 1 X p2) such that for
any fi € C(I1), f2 € C(I2) and F(&,&2) = f1(§1)f2(£2) one has

J 7 (/Olfl dul)(/olfz dps).

5. Prove that if P;(u) =0 for p > 0, then u = 0.
6. Deduce from the Alaoglu Theorem (Theorem II1.2.9) that the set

Bz{,uEV(S): w(S) >0 and /d,uzl}

S
is compact in the weak* topology of V(.5).

(14.3) Proposition. Suppose that there exists a primal feasible plan. Then v =
(no duality gap) and there exists a primal optimal plan.
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Sketch of Proof. We use Theorem 7.2 and Lemma 7.3. Let us introduce the weak
topology of the duality (see Section 4) in all relevant spaces E1, Fy, Fo and Fs. Let
us consider the image A(K) of the cone K = { € V(S) : > 0} under the linear

transformation A : V(S) — V(I;) & V() ® R,

uM(Pl(u), Py(p), /Scdu)-

Problem 5 of Section 14.2 implies that (ker A) N K = {0}. Moreover, cone K has a
compact base

B={uev(s): u$) >0 and /Sdu=1};

cf. Problem 6 of Section 14.2. One can show that A is a continuous linear transfor-
mation. Therefore, by Lemma 7.3, the image A(K) is closed. Hence by Theorem
7.2 there is no duality gap. Since by Problem 3 of Section 14.2; there is a dual
feasible plan, we have v = 8 > —o0 and, by Theorem 7.2, there is a primal optimal
plan. O

PROBLEMS.
1. Check that A is indeed continuous.
2*. Prove that there is a dual optimal plan.

15. Remarks

Our reference for polarity in Euclidean space is [W94]. The moment cone is de-
scribed in detail in [KS66] and [KN77]. For the general concept of duality of
(topological) vector spaces, see [Bou87]. Our exposition of linear programming is
based on [AN87] and some original papers [VT68] and [Ve70]. For the polyhedral
linear programming, see, for example, [PS98], [VO01] and [Schr86]. A comprehen-
sive survey of semidefinite programming can be found in [VB96]. Our general
reference in control theory is [BHT75].
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Chapter V

Convex Bodies and
Ellipsoids

We explore the metric structure of convex bodies in Euclidean space. We introduce
ellipsoids and prove that up to a factor depending on the dimension of the ambient
space, any convex body looks like an ellipsoid. Next, we discuss how well a convex
body can be approximated by a polynomial hypersurface (ellipsoids correspond to
quadratic polynomials). We discuss the Ellipsoid Method for solving systems of
linear inequalities. Using the technique of measure concentration for the Gaussian
measure in Euclidean space, we obtain new results on existence of low rank ap-
proximate solutions to systems of linear equations in positive semidefinite matrices
and apply our results to problems of graph realizability with a distortion. Then
we briefly discuss the measure and metric on the unit sphere. Exercises address
ellipsoidal approximations of particularly interesting convex sets (such as the Trav-
eling Salesman Polytope and the set of non-negative multivariate polynomials),
various volume inequalities and some results related to the measure concentration
technique.

1. Ellipsoids

In this section, we introduce ellipsoids, which are very important convex sets in
Euclidean space R¢.

(1.1) Definition. Let B = {z € R?: |z|| < 1} be the unit ball, let a € R? be a
vector and let T : R? —s R? be an invertible linear transformation. The set

E=T(B)+a

is called an ellipsoid and a is called its center; see Figure 58.

203
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Figure 58
We have dim E = d and we can write
E= {a: eR': (T"Y(z—a), T z—a)) < 1}

{xe]Rd: <Q(m—a), x—a>§1},

where Q = (TT*)~! is a positive definite matrix. If we choose a basis of R?
consisting of the unit eigenvectors of (), we can define F as

E= {(51,... ) MG —an) o+ A€ - aa)? < 1,
where A1,..., Aq are the eigenvalues of @ and a = (ay, ..., aq).
Consequently, for the volume of F, we have

vol B
Vdet@Q'

vol E = |detT|vol B =

PROBLEMS.

1°. Prove that any ellipsoid £ C R centered at a can be written as

E:{x: (Q(z — a), x—a>§1}

for some positive definite matrix Q.
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2. Let E = {a? eR?: (Qu,x) < 1}, where (Q is a positive definite matrix, be
an ellipsoid. Prove that the polar E° is the ellipsoid defined by

E°={zeR: (Q 'z,z) <1}.

Deduce that (vol E)(vol E°) = (vol B)?.

3. Let B C R? be a unit ball and let T : R — R* be a linear transformation
onto R¥ for some k& < d. Prove that T(B) is an ellipsoid in R¥ centered at the
origin.

4°. Let E C R? be an ellipsoid and let 7' : R — R? be an invertible linear
transformation. Prove that T(F) is an ellipsoid.

In a certain sense, ellipsoids are more natural objects than, say, balls. If we
choose a different scalar product in Euclidean space, ellipsoids will remain ellipsoids
although balls may cease to be balls. In fact, we could have defined ellipsoids
without using any Euclidean structure at all: let V' be a finite-dimensional real
vector space. Then E C V is an ellipsoid provided F = {x eV:qgqlz—a)< 1} for
some positive definite quadratic form ¢: V — R and some a € V.

Last, we will need a couple of technical results.

(1.2) Lemma. Let B C R? be a unit ball and let E C R? be an ellipsoid. Then
E = S(B) +a for some a € R? and a linear transformation S whose matriz is
positive definite.

Proof. We observe that U(B) = B for every orthogonal transformation U. Since
every square matrix 7' can be written as T' = SU, where U is orthogonal and S is
positive definite (the polar decomposition), the proof follows by Definition 1.1. O

(1.3) Lemma. Let X and Y be d x d positive definite matrices. Then

det(X ; Y) > \/det(X) det(Y).

Moreover, the equality holds if and only if X =Y.

Proof. Let U be a d x d orthogonal matrix and let X’ = U*XU and Y’ = U'YU.
We observe that the inequality is satisfied (with equality) for X and Y if and only if
it is satisfied (with equality) for X’ and Y’. By choosing an appropriate orthogonal
matrix U, we may assume that X is a diagonal matrix.

Hence we assume that X = diag(A1,...,\q), where A; > 0 fori =1,... ,d.
Let T = diag(v/A1,... ,vV/Ag), so X = T%. Letting X' = and Y/ = T-1YT~ 1,
we observe that the inequality holds (with equality) for X and Y if and only if it
holds (with equality) for X’ and Y’. Therefore, without loss of generality we may
assume that X is the identity matrix I.

Hence we assume that X = I is the identity matrix. Then, by choosing an
orthogonal matrix U and letting Y/ = U'YU, we may assume that Y is a diagonal
matrix.
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Finally, if X = I is the identity matrix and Y = diag(\1,...,\q) for some
positive A1, ..., Ay, the inequality reduces to the inequality between the geometric
and arithmetic means, that is,

1 .
“;’\’ >V for i=1,...,d,

which is satisfied as equality if and only if A; = 1, that is, if and only if X =Y. O

Lemma 1.3 leads to a series of fascinating inequalities, some of which are stated
in the problems below.

PROBLEMS.

1. Let X and Y be d x d positive definite matrices and let o and S be positive
numbers such that o + 8 = 1. Prove that

lndet(aX—i—ﬁY) > alndet X + SlndetY.

2* (The functional Brunn-Minkowski inequality). Let us fix a,, 8 > 0 such that
a+ B = 1. Suppose that f,g and h are non-negative measurable functions on R?
such that

h(az + By) > f(z)g°(y) for all z,y € R

/Rdhd:c2</Rdfd:c>a</Rdgdx)B.

The inequality is also known as the Prékopa-Leindler inequality.

Prove that

Hint: Use induction on the dimension d. For d = 1 use the following trick of
the “transportation of measure”: we may assume that f, g and h are positive and

continuous and that
e} +oo
/ fdx= / g dr=1.

Introduce functions u,v : [0,1] — R by
/jj) f(z)dz =t and /_:) g(z) dv =t
and let w(t) = au(t) + Bu(t). Use that
/_Z h(z) dz = /01 h(w(t))w'(t) dt and  o'(t)f(u(t)) =0 (t)g(v(t)) = 1;

see Section 2.2 of [Le01].

3 (The Brunn-Minkowski inequality). Let A, B C R? be compact convex sets
and let a;, 8 > 0 be numbers such that o + 8 = 1. Deduce from Problem 2 that

lnvol(aA + f8B) > alnvol A + Blnvol B.

Licensed to Georgia Inst of Tech. Prepared on Sun Jan 14 21:00:56 EST 2024for download from IP 188.92.139.72.



2. The Maximum Volume Ellipsoid of a Convex Body 207

4. Let A C R? be a compact convex set containing the origin in its interior. Let
us define its support function hy : R? — R by ha(z) = max,eca(x,y) (cf. Problem
3 of Section 1.8.3). Prove the following formula for the volume of the polar of A:

1
vol A° = —/ exp{—ha(z) }dz;
d! Jga

cf. Section IV.1 for the “dual volume”.

5 (Firey’s inequality). Let A, B C R? be compact convex sets containing the
origin in their interiors and let o and 8 be positive numbers such that o + 8 = 1.
Deduce from the formula of Problem 4 that

Invol(aA + B)° < alnvol A° 4+ Slnvol B°.

6. Let A C R? be a compact convex set containing the origin in its interior.
Let us define a function f : int A — R by f(z) = lnvol(A — z)°. Deduce from
Problem 5 that f is a convex function, that is, f(az + By) < af(z) + Bf(y) for all
x,y € int A and all «, 5 > 0 such that « + § = 1. Prove that f(z) — +o0 as x
approaches 0A.

Remark: The function f is called the volumetric barrier and plays an important
role in interior-point methods, a powerful class of methods for solving problems of
linear programming; see [NIN94].

7°. Check that for d = 1 the inequalities of Problems 1, 3 and 5 are equivalent
to the concavity of Inx for = > 0.

2. The Maximum Volume Ellipsoid of a Convex Body

We define the class of sets we are interested in.

(2.1) Definition. A compact convex set K C R? with a non-empty interior is
called a convez body. A convex body K is symmetric about the origin provided for
every point 2 € R? we have 2 € K if and only if —z € K.

The main result of this section is that for each convex body K C R? there is a
unique ellipsoid £ C K of the largest volume and that F in some sense “approx-
imates” K. Moreover, the convex bodies that are symmetric about the origin are
essentially better approximated than general convex bodies.

We prove the first main result of this section.

(2.2) Theorem. Let K C R? be a convex body. Among all ellipsoids E contained
in K, there exists a unique ellipsoid of the maximum volume.

Proof. Let B be the unit ball in R?. Let us consider the set X of all pairs (S, a),
where S is a linear transformation of R? with a positive semidefinite matrix and
a € R%is a vector such that S(B)+a C K. By Lemma 1.2, for each ellipsoid £ C K
there is a pair (5, a) € & such that E = S(B)+a. Moreover, vol E = (det S) vol B.
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208 V. Convex Bodies and Ellipsoids

Since K is compact, there is a number p such that ||z|| < p for all z € K.
Therefore, ||a]| < p and ||Sz|| < 2p for all x € B and all (S,a) € X. In particular,
X is bounded as a subset of Sym, xR; cf. Section I1.12. One can see that X is also
closed (see Problem 1 below) and hence compact.

The function (S,a) — det S attains its maximum on X at a certain point
(So,ap). Since K has a non-empty interior, we must have det Sy > 0, so Ey =
So(B) + ag is an ellipsoid having the largest volume among all ellipsoids inscribed
in K.

Let us prove that the inscribed ellipsoid of the largest volume is unique. Since K
is convex, one can see that the set X is also convex. Suppose that Eq = S1(B)+a;
and Ey = S3(B) + as are two ellipsoids of the largest volume among all contained
in K. Thus we have (S7,a1) € X and (S2,a2) € X. Letting S = (51 + 52)/2 and
a = (a1+az)/2, we observe that F = S(B)+a C K and hence (S, a) € X. Moreover,
vol By = (det S1) vol B, vol E5 = (det S3) vol B and vol E = (det S) vol B. Applying
Lemma 1.3, we conclude that unless S1 = S5, we must have vol E > vol E; = vol Fs,
which is a contradiction. Hence S; = Ss.

Let us prove that a; = as. Applying a linear transformation and translating,
if necessary, we may assume that

Ei={zeR’: |z+a|<1} and Er;={zeR’: |z—a| <1},

where a = (0,...,0,«) for some o > 0. Let

€ 1}.

E={$€Rd: f%-ﬁ-...—l—f;,l‘i‘m_

We observe that E C conv(F; U E3).

Figure 59

Indeed, let us choose an = € E, © = (&1,...,&q). If [€4] < «, then x belongs
to the cylinder &2 + ...+ &3 ;| <1, |¢4] < a, which is a part of conv(E; U Ey). If
€4 > a, then & < 1+ a and (& — «)? < £2/(1 + «)? (substituting 7 = & — o,
we reduce the last inequality to (1 + «)? < (14 a/7)? for 0 < 7 < 1). Therefore,
x € Fy. Similarly, if £; < —a, then x € Ej.
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Finally, we note that vol E = (vol B)(1 + «) whereas vol E; = vol E; = vol B.
Hence we must have a = 0 and the ellipsoid E C K of the largest volume is unique.
O

(2.3) Definition. Given a convex body K C R¢, the unique ellipsoid F C K of
the maximum volume is called the mazimum volume ellipsoid of K.

The maximum volume ellipsoid is also known as the Lowner-John ellipsoid or
just the John ellipsoid.
PROBLEMS.

1°. Check that the set X in the proof of Theorem 2.2 is indeed closed.

2. Let K C R? be a convex body and let E be its maximum volume ellipsoid.

For a vector = (£1,...,&4), let z ®x denote the d x d matrix whose (4, j)-th entry
is &;&;. Prove that E is the unit ball B = {z : ||| < 1} if and only if there exist
unit vectors uq, ... ,u, € 0K and positive numbers Aj, ..., A\, summing up to 1
such that

i)\iui =0 and i)\l(m@ul) = é],
i=1 i=1

where [ is the identity matrix. The last condition can be rewritten as

% 1

Z)\i<ui,x>2 = E\|x||2 for all z € R%.

i=1

Prove that one can choose m < (d? + 3d)/2.

Hint: Let X = 9K N B, let n = d(d + 3)/2 and let us consider the map

¢: X — R" where o¢(z)= (z@x,:c).
If (%I, O) ¢ conv(X), then (é], 0) can be separated from conv(X) by a hyperplane.

Use the hyperplane to inscribe an ellipsoid of a bigger volume; see [B97].

3. Let Fx denote the maximum volume ellipsoid of a convex body K. Prove
that for any two convex bodies A and B in R? and any two positive numbers o and
[ such that o + 8 = 1, one has

Invol Eqaqpp > alnvol E4 4+ Blnvol E.

4. Let K C R? be a convex body. Prove that there exists a unique ellipsoid
E D K of the minimum volume. The ellipsoid FE is called the minimum volume
ellipsoid (also known as the Léwner-John ellipsoid, the Lowner-Behrend-John el-
lipsoid or just the Lowner ellipsoid of K).

Although we used the Euclidean structure a lot in the proof of Theorem 2.2,
the maximum volume ellipsoid E of a convex body K C R? does not depend on
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210 V. Convex Bodies and Ellipsoids

the Euclidean structure of R? at all and is well defined for any convex body in
a finite-dimensional vector space V. Indeed, if we change a scalar product in V/,
the volumes of all measurable sets will be scaled by a positive constant and the
maximum volume ellipsoid will remain such.

It is worth noting that the definition of a convex body as well can be made
independent of the Euclidean structure. Given a finite-dimensional real vector space
V, we call a set K C V a conver body if K is a convex set not contained in any
affine hyperplane and such that the intersection of K with every straight line is a
closed bounded interval.

Our goal is to prove that the maximum volume ellipsoid of K approximates
K up to a certain factor depending on the dimension alone. Again, the statement
of the result is independent of any Euclidean structure although the proof heavily
relies on such a structure.

(2.4) Theorem. Let K C R? be a convex body and let E C K be its mazimum
volume ellipsoid. Suppose that E is centered at the origin. Then K C dE.

Proof. Applying a linear transformation if necessary, we can assume that F is
the unit ball B. Suppose there is a point x € K such that ||z|] > d. Let C =
conv (B U {x}) Since K is convex, C' C K. Our goal is to inscribe an ellipsoid Ey
in C such that vol E; > vol B to obtain a contradiction.

Without loss of generality, we assume that © = (p,0,...,0) for some p > d.
We look for F; in the form:

G-1?% 1%
(2.4.1) Elz{x: %+@;g?<1},

where 7 > 0 is sufficiently small. Because of the symmetry, if we find 7, @ and
such that F; fits inside C for d = 2, then E; fits inside C' for any d > 2. Hence we
assume for a moment that d = 2.

The convex hull C' is bounded by the two straight line intervals and an arc of
O0B. We inscribe Ej in C in such a way that E; touches B at (—1,0) and touches
the two straight line intervals bounding C' as shown on Figure 60. Since E; touches
B at (—1,0), we have a = 7 + 1. The equation of the tangent line to JF; at the
point 2z = ((1,(2) is
&
32

G—T

(1—7)+ 5&%=1

a2

Since this line passes through (p,0), we get

(G-71)? o

a? (p—7)*

The slope of that line is —1/4/p? — 1, hence we deduce the equation

B2 1 a? _p—T

G ViE—1G-17 /-1
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Therefore,
G _ B —1)
g (p=7)?
Since , )
(<1 ;27-) + % _ 1,
we get
a’ B(p* —1) _
=2 (-7
and

Bzz(p—rf—azz(p—fy—%f+1f
p?—1 p?—1 '

E’Z

Figure 60. If p is large enough, vol F; > vol B.

Summarizing, we conclude that for any d > 2 and for 0 < 7 < (p — 1)/2, the
ellipsoid E4 defined by (2.4.1) with

(=7 = (r+1)

a=7+1 and p%=

p?—1
is contained in C'. Now we have
vol By d—1 9
In B — (d—1lnf+na= 5 Inp* +1ne.
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Assuming that 7 > 0 is small, we obtain

2T
p—1

Ina=7+0(t%) and Inp*=— +0(7?).

Therefore, if p > d, then for a sufficiently small 7 > 0, we get vol E; > vol B, which
is a contradiction. g

If a convex body K possesses a symmetry, the uniqueness property of the
maximum volume ellipsoid E of K implies that £ must also possess the symmetry.
Sometimes, when the symmetry group of K is rich enough, this may lead to a
complete description of E.

PROBLEMS.
1. Let A be the standard d-dimensional simplex:

A:{(gl,...,gd+1): &>0 for i=1,...,d+1 and §1+...+§d+1:1}.

Consider A as a d-dimensional convex body in the affine hyperplane

H:{(&,--- yav1) §1+...+§d+1:1};

cf. Problem 1 of 1.2.2. Prove that the maximum volume ellipsoid of A is the ball

1 1 1
of radius —————= centered at (—, ceey —) Show that the constant d in
d(d+1) d+1 d+1
Theorem 2.4 cannot be improved.
2. Let

C:{(gla'”vgd): ‘£1|S1 for ZZI,,d}
be the cube in R?; cf. Problem 2 of 1.2.2. Prove that the maximum volume ellipsoid
of C' is the unit ball.

3. Let
O={(&0, &) l&al+...+lel <1}

be the standard octahedron in R?, cf. Problem 3 of 1.2.2. Prove that the maximum
volume ellipsoid of O is the ball of radius d—'/? centered at the origin.

4°. Suppose that a convex body K is symmetric about the origin. Prove that
the maximum volume ellipsoid of K is centered at the origin.

5. Let us fix an n x n matrix A = (a;;),

0 1 0 o ... 0 1

1 0 1 0 ... O 0

0 1 1 o ... O
A= )

0 0o 1 0 1

10 0 0 1 0
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i.e.,
1 if [i—j|=1 mod n,
Qi =

0 otherwise.

Let P the the convex hull of all matrices obtained from A by a simultaneous
permutation of rows and columns: a;; — as-1(3;0-1¢;) for a permutation o of
{1,...,n}. Then P is called the Symmetric Traveling Salesman Polytope.

a) Prove that dim P = (n? — 3n)/2.

b) Prove that if an affine subspace L in the affine hull of P is invariant under
the action of the symmetric group S,: Tij — ZTs-1(30-1(j), then L is either a
point z;; = 2/n or the whole affine hull of P (that is, the representation of S, is
irreducible).

c¢) Prove that the maximum volume ellipsoid of P (where P is considered as a
convex body in its affine hull) is a ball centered at z;; = 2/n.

d) Prove that the ball of radius v/8n — 16/(n? — 3n) centered at z;; = 2/n is
contained in P.

Remark: See [BS96] and [YKK®84| for information about the combinatorial
structure of the Traveling Salesman and other interesting polytopes.

6. Let K C R be a convex body and suppose that the points ay,... ,a541 € K
are chosen in such a way that the volume of S = conv (a17 ey ad+1) is the maximum
possible. Suppose that a; + ...+ agr1 = 0. Prove that K C —dS; cf. Problem 1 of
Section 1.5.2.

Figure 61

7. In the Euclidean space Sym,, of symmetric n x n matrices X with the scalar
product (A, B) = tr(AB), let C be the set of all positive semidefinite matrices of
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trace 1. Let us consider C as a convex body in the affine hyperplane tr X = 1
(cf. Section I1.12). Prove that the maximum volume ellipsoid of C is the ball of

radius ﬁ centered at —I, where [ is the identity matrix. Prove that C is
n(n — n

-1 1
contained in the ball of radius 4/ n centered at —1.
n n

Remark: It turns out that C is a counterexample to the famous Borsuk conjec-
ture (see Section 31.1 of [DL97]) which asserted that every d-dimensional convex
body can be partitioned into d 4+ 1 subsets of a strictly smaller diameter (the di-
ameter of a convex body is the largest distance between some two points of the
body).

8* (G. Blekherman). Let Hoy , be the vector space of all real homogeneous
polynomials p of degree 2k in n variables x = (£1,...,&,); cf. Section 1.3. Check
that dim Hoy, ,, = (""'g’;_l). Let us make Hyy ,, Euclidean space by introducing the
scalar product

(F.9)= [ I@g(e) de for f.g€ Hon,

where S"~! is the unit sphere in R and dz is the rotation invariant probability
measure on S" 1.
Let

C:{feH%,n: f(@)>0 forall zeR" and

(z) doz = 1}.

gn—1
Considering C' as a convex body in its affine hull, prove that the maximum volume

1
ellipsoid of C is the ball B of radius 4/ ——————— centered at p(z) = ||z|?** =

dim Hay,,, — 1
(3 +... + )k

9* (G. Blekherman). Let C be the convex body of Problem 8 above and let
p=|zl|**, p € C. Let
1

o =
Prove that

alp—C)+pcCC
and that the inclusion fails for any larger a. In other words, the coefficient of

symmetry of C' with p as the origin is a.

It turns out that the estimate of Theorem 2.4 can be strengthened in one
important special case.

(2.5) Theorem. Suppose that a convex body K C RY is symmetric about the
origin. Let E C K be the mazimum volume ellipsoid of K. Then E is centered at
the origin and K C VdE.
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Proof. It follows by Problem 4, Section 2.4, that E is centered at the origin.
Applying a linear transformation, if necessary, we can assume that E is the unit
ball B. Suppose that there is a point # € K such that |lz|| > v/d. Since K is
symmetric about the origin, we have —z € K. Let C' = conv(B U {z} U {—x}).
Our goal is to inscribe an ellipsoid Fy C C such that vol E; > vol B to obtain a
contradiction; cf. Figure 62.

Figure 62. If p is large enough, then vol F1 > vol B.

The proof essentially follows the proof of Theorem 2.4 with some modifications.
Without loss of generality, we assume that @ = (p,0,...,0) for some p > d. We
look for F; in the form

g 1,
(2.5.1) By ={(&, .. .&): §+@Z£-§1}.
=2

Because of the symmetry, if we find « and § such that F; fits inside C' for d = 2,
then F; fits inside C' for any d > 2. Hence we assume for a moment that d = 2.

The convex hull C' is bounded by four straight line intervals and two arcs of
0B. We inscribe E; centered at the origin and in such a way that F; touches the
intervals bounding C' as shown on Figure 62.

The equation of the tangent line to JF; at the point z = ({1, (2) is

G1 Co

?51 + E& =1
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Since the tangent line passes through (p,0), we get the equation

¢ _o?

a2 p2

The slope of the tangent line is —1/4/p? — 1, from which we deduce

(B2 _ 1

Ga? |\ /p2 -1
and ) ) )

2 (p° =1)B

52 - p2
Since

S
2 + @ =1,

we get

o2 =~ (0 ~ 1)
Summarizing, we conclude that for any d > 2 and for any 1 > 8 > 0, the ellipsoid
E; defined by (2.5.1) with a? = p? — (p? — 1)? is contained in C. Now we have

V01E1
N g = (d=1)Ing+1na.

Let us choose 8 = 1 — ¢ for some sufficiently small ¢ > 0. Then In 8 = —¢ + O(¢?)
and Ina = €(p? — 1) + O(€?). Therefore, if p > V/d, then for a sufficiently small
€ > 0, we get vol E; > vol B, which is a contradiction. O

1

PROBLEMS.

1. Prove that the constant v/d in Theorem 2.5 cannot be improved (cf. Problem
3 of Section 2.4).

2. Let K C R be a convex body symmetric about the origin and let £ > K be
its minimum volume ellipsoid (see Problem 4, Section 2.3). Prove that d~'/?F C K.

3. Let K C R? be a convex body and let £ D K be its minimum volume
ellipsoid. Suppose that F is centered at the origin. Prove that (1/d)E C K.

3. Norms and Their Approximations

We apply our results to get some information about the structure of norms, an
important class of functions on a vector space. We recall the definition of a norm.

(3.1) Definition. Let V be a vector space. A function p : V. — R is called a
norm if it satisfies the following properties:

e p(x) >0 for all z € V and p(z) = 0 if and only if 2 = 0;
o p(Az) = |A|p(x) for all z € V and all A € R;
e p(z+y) <p(z)+p(y) forall z,y € V.
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PROBLEMS.

1°. Prove that the following functions are norms in R%:

1/2
p(zr) = (ijl 612) (the £2 norm),
p(z) = max;—1,... q4|&| (the ¢°° norm) and
p(x) = E?:l || (the ¢! norm)

for x = (&1,... ,&q).
2°. Let C[0, 1] be the vector space of all continuous functions f : [0,1] — R.
Prove that

p(f) = max |f(t)|

te(0,1]

is a norm in C10, 1].

We establish a relationship between norms and convex bodies.
(3.2) Lemma. Let p:R? — R be a norm. Let
K,={z¢ RY:  p(x) < 1}.

Then K, is a convex body symmetric about the origin. Conversely, if K C R? is a
convez body symmetric about the origin, then

pr(x) = inf{)\ >0: zx¢€ )\K}
is a norm in R such that K = {x e R*: p(z) <1}.

Proof. First, we show that K, is a convex body symmetric about the origin. For
any a,b € K, and for any o, 3 > 0 such that a 4+ 8 =1 we have

p(aa + Bb) < p(aa) + p(Bb) = ap(a) + Bp(b) < a+ B <1,

so aa + Bb € K and hence K is convex. Since p(—z) = p(z), we conclude that K,
is symmetric about the origin.

Next, we remark that p is a continuous function. Indeed, let eq,... ,eq be the
standard basis of RY, so that z = &1eq + ... + £geq for x = (&1, .. ,&q). Let

V= 1pax pled)
Then
d
pla) <7 Il
=1

Let us choose two points z = (£1,...,&4) and y = (11,... ,n4) in R, Then

p(x) = p(y + (z — y)) <p(y) +p(x —y) and, similarly,
py) =p(e+ (y —2)) < p) +ply — ).
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Therefore,
d
p(x) = ()| <plx—y) <Y |m—&l,
i=1

from which we conclude that p is continuous.

Since K, is the inverse image of a closed set {\ < 1} C R?, it is closed. Let
S4=! = {x : ||z|| = 1} be the unit sphere in R?. Since p(z) > 0 for every z € S9!
and since p is continuous, there exists a number § > 0 such that p(z) > ¢ for all
x € ST Tt follows then that ||z|| < 6! for every x € K,,. Hence K, is bounded
and therefore K, is compact.

It remains to show that K, contains the origin in its interior. Since p is contin-
uous, there is a number 8 > 0 such that p(z) < j for all x € S, Then p(z) < 1
for all  such that ||z| < 1/8.

Figure 63. Example: pr(z) =15

Conversely, let K C R? be a convex body symmetric about the origin and let
pi(z) = inf{)\ >0:z€ )\K}.

Let us prove that px(z + y) < px(z) + pr(y) (all the remaining properties are
relatively straightforward). Letting px(z) = A1 and pk(y) = A2, we observe that
for any € > 0, we have z € (A +¢)K and y € (Az + €) K. From Problem 4, Section
1.1.5, we conclude that  +y € (A1 + Aa + 2¢) K. Hence px(z +y) < A1 + Ao + 2¢
and since € > 0 was arbitrary, we conclude that px(z+y) < A\ + A2 = p(x) + p(y).
(I

PROBLEMS.
1. Let V be a vector space and let p: V' — R be a norm. Let

K,={zeV: px) <1}

Prove that K, is a convex set, symmetric about the origin, which does not contain
straight lines and such that (J,,(AK},) = V. Conversely, let K C V' be a convex
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set, symmetric about the origin, which does not contain straight lines and such that
Usso(AK) = V. For x € V let px(x) = inf{A > 0: 2 € AK}. Prove that px is a
norm.

2°. Prove that px, = p for any norm p: V — R.

3. Let E C R? be an ellipsoid centered at the origin. Prove that pg(x) = /q(z)
for some positive definite quadratic form ¢ : R — R.

4. Let p : RY — R be a norm. Prove that there exists a positive definite
quadratic form ¢ : R — R such that \/q(z) < p(z) < \/dg(z) for all x € R%.

Hint: Combine Theorem 2.5, Lemma 3.2 and Problem 3 above.

5. Let p : R* — R be a norm and let S = {z € R? : p(z) = 1}. Prove that
for any 6 > 0 there is a subset N C S consisting of not more than (14 2/8)? points
such that for every x € S there exists y € N such that p(z — y) < 0. The set N is
called a d-net of p.

Hint: Choose N to be the maximal subset N C S with the property that
p(x —y) >0 for all z,y € N.

Problem 4 of Section 3.2 tells us that an arbitrary norm in R% can be approx-
imated by a square root of a quadratic form up to a certain factor depending on
the dimension d alone (equivalently, a convex body symmetric about the origin
can be approximated by an ellipsoid). The question we are going to address now
is whether we can get a better approximation by using higher degree polynomials
(equivalently, whether we can obtain better approximations of a convex body by
using higher degree algebraic hypersurfaces). As a preparation, we need to review
some linear algebra.

(3.3) Tensor powers. By the n-th tensor power
W=R'®...9R*
| ——

n times

of Euclidean space R? we mean the space of all d x ... x d arrays (tensors)
&= (6iroiy 1<, vin < d)

of real numbers (coordinates) &;,. ;. Coordinatewise addition of arrays and mul-
tiplication of an array by a number make W a d"-dimensional vector space. In
particular, R? ® R? can be thought of as the space of all (real) d x d matrices. We
introduce the scalar product

(z,y) = Z &iy.inMiy...i,, Where x = (fz’l...in) and y= (771'1...1'")

1<iy,..in<d

thus making W a Euclidean space which can be identified with R?".

Let z1,... ,7, be vectors from R, z; = (&1,...,&4q). We write 71 ® ... @z,
for the tensor
¢= (Yiy.in) Where i, i, =&y - Eni,-
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There is an identity

n

<CC1®...®I", yl®®yn>:H<IzayZ> for IiayieRda
=1

where the scalar product in the left-hand side is taken in W and the scalar products
in the right-hand side are taken in R%.

We are interested in the subspace Sym(W) of W counsisting of the tensors
T = (@-1”_1-") whose coordinates &;, ... ;, depend only on the multiset {i1,...,i,}
but not on the order of the indices in the sequence i1, ... ,i,, that is

fil.,.i" = §j1~'~jn

provided 4y .. .4, is a permutation of j; ... j,. Thus the value of &, ; depends on
how many 1’s, 2’s, ... ,d’s are among the indices 41,... ,%,. Hence the dimension
of W is equal to the number of non-negative integer solutions of the equation
k14 ...+ kg = n, that is,

dim Sym(W) = (” - 1) .

n
Finally, we observe that for any 2 € R?, the tensor

2" =zr®...0z
—_———

n times
lies in Sym(W).

PROBLEMS.

1°. Let us identify RY ® R? with the space V of d x d matrices. Show that
the scalar product in RY ® R? is defined by (A, B) = tr(AB?!). Show that Sym(V)
consists of the symmetric d x d matrices and that x ® x are the positive semidefinite
matrices whose rank does not exceed 1.

2. Let uq, ... ,u, be points in R%. Consider the points
v, =u; Qu; for i=1,...,m
in W =R!®R? Let P=conv(v; : i = 1,...,m). Let L C U be a subspace

(hence 0 € L) and let I C {1,...,m} be the set of all ¢ such that u; € L. Prove
that conv(v; : ¢ € I) is a face of P.

3°. Let B={z € R?: |lz[| <1} be the unit ball. Prove that

= d
lyll = max (y,) forall yeR".

Now we can prove that by using higher degree polynomials, we can approximate
the norm better.
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(3.4) Theorem. Let p: R? — R be a norm. For any integer n > 1 there exists
a homogeneous polynomial ¢ : R* — R of degree 2n such that
1. The polynomial q is a sum of squares:

=>4,
el

where ¢; : R — R are homogeneous polynomials of degree n. In particular,
q(z) >0 for all z € RY.
2. For all v € R?

g7 (x) < pla) < <n+d_ 1)ﬁqﬁ(wl

n

Proof. Let K = K, = {z : p(z) < 1}. Then, by Lemma 3.2, K is a convex body
in R? symmetric about the origin. Let K° be the polar of K. Then K° is also a
convex body symmetric about the origin. Applying Theorem IV.1.2 (the Bipolar
Theorem), we can write

K:{x: (x,y) <1 forall yGKO}.

By Problem 2 of Section 3.2, we can write

p(z) =inf{A >0:2 € AK}
=inf{A>0: A"z € K}
=inf{A>0:A"z,y) <1 forall ye K°}
=inf{A>0:(z,y) <A forall ye K°}.

Finally,

3.4.1 — = ,
(3.4.1) p(x) = max (z,y) = max |(z,y)]
Let

W=R'®.. . oR{=R".
N——
n times

For a vector = € R?, let
P =r®..recW.
————

n times

Hence we have (2", y®") = ((z,y))"; cf. Section 3.3. From (3.4.1), we can write

p"(x) = max (£, y°") = max |(z

n
yeK?®° yeK®° ’

Y&

Let
A = conv(y®", —y®": y e K°) C W.
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Thus

(3.4.2) p"(r) = max(z®" 2).
z€A
Since the map y — y®" is continuous and K° is compact, by Corollary 1.2.4, the

set A is compact. Moreover, A is symmetric about the origin. Since y®" € Sym(W)
for all y € R? (cf. Section 3.3), we have A C Sym(W). Therefore,

dim A < (n—l—d—l)'
n
Let F be the maximum volume ellipsoid of A in the affine hull of A. Then, by
Theorem 2.5,
d—1\"?
(3.4.3) EcCAcC (n +n ) E.

Let us define
— ®n
f(z) = rzneaé(@ ,2).

We claim that g(x) = f2(x) is a polynomial satisfying Parts 1 and 2 of the theorem.
Indeed, let B be the standard unit ball in W:

B = {(%’1...1‘”) : Z %21--'“ = 1}'

1<iy, . in<d

Since F is an ellipsoid (in the affine hull of A), there is a (non-invertible) linear
transformation T of W such that T'(B) = E. Then

f(x) =max(z®", z) = r;leaéd:z:@”, T(u))

z€E
_ *(.Qn _ * (RN
= max(T* (a°"), u) = |T* (")),
where || || is the standard Euclidean norm in W; cf. Problem 3 of Section 3.3. Now

the coordinates of ®" are the monomials of degree n in the coordinates of € R?¢
and hence the coordinates of T*(z®") are homogeneous polynomials g;, .;, (x) of

degree n in the coordinates of . Hence Part 1 follows. Part 2 follows by (3.4.2)
and (3.4.3). O

Choosing, for example, n = d in Theorem 3.4, we conclude that any norm
p: R — R can be approximated by the 2d-th root of a polynomial g of degree 2d

1/2d
within a factor of (2(1(1—1) / < 2.

PROBLEMS.

1°. Show that for any € > 0 there exists an even m = m(e) such that for any
sufficiently large d > d(¢) and any norm p : R? — R there exists a homogeneous
polynomial ¢ : R — R of degree m such that q(x) > 0 for all z € R? and

¢"/™(z) < p(z) < eVd-¢/™(x) forall zeR%
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2. Let p : RY — R be the ¢! norm,

p(flv"' agd) = ‘£1|++|£d|a

and let ¢ : RY — R be a homogeneous polynomial of degree 6 such that g(z) > 0
for all 2 € R? and

q"/(x) < p(x) < C(d)g"/*(x) forall zeRY,

where C(d) is some constant. Prove that C(d) > ¢v/d for some absolute constant
c>0.

3°. Show that for any « > 1 there exists § = f(«) > 0 such that for any
norm p : R — R there exists a homogeneous polynomial ¢ : R — R such that
m = degq < Bd, q(z) > 0 for all z € R? and

/™) < p(x) < ag'/™(z) forall zeRY
4°. In the context of Theorem 3.4, assume that p satisfies all the requirements of
Definition 3.1 except, perhaps, that p(z) = 0 implies z = 0. Let K = {x :p(z) < 1}
and let K° be the polar of K. Let D = dim span(:v@” S KO). Check that

qﬁ(gg) <px) < Dﬁq%(gc) for all 2 € R%.

5. Let H}, 4 be the vector space of all homogeneous real polynomials of degree

k in d variables x = (1, ... ,&q), so dim Hy g = (’H'Z_l). Let K C R be a compact

set symmetric about the origin. Let p : Hy ¢ — R be defined by
p(f) = 2163%|f(50)| for f € Hy,a-

Prove that for any integer n > 1 there is a homogeneous polynomial ¢ : Hy g — R
of degree 2n such that ¢(f) > 0 for all f € Hy, 4 and

kn +d— 1\
nc;_—l ) q%(f) for all f € Hygq.

a5 () < p(f) < (

Hint: Use Problem 4 above.
6°. Let p: R — R be the £*° norm,

p(gla v 7§d) = i:nil,z.l‘}.(,d ‘€z|

For a positive integer n, let us define a polynomial ¢ : R — R by

d
Q(flv"' afd) = ng"
i=1
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Prove that ) L
¢ (z) < p(x) < dzrgzi(z) forall zeR™L

7. Let Hy 4 be the vector space of all quadratic forms ¢ : R?Y — R and let
S%=1 C R? be the unit sphere. Let p: Hy 4 — R be defined by

p(f) = max |f(z)| for f & Hyq.

zeSI-1

Prove that for any positive integer n there exists a homogeneous polynomial
q: Hy g — R of degree 2n such that ¢(f) > 0 for all f € Hs 4 and

g (f) <p(f) <dzqzi(f) forall fe Hayg.

The next two problems require some representation theory.

8. Let G be a compact subgroup of the group of orthogonal transformations of
R?. Let v € R? be a vector and let

O, ={g(v): geG}
be the orbit of v. Let us define a function p : R — R by

p(e) = max|(z, g(v))]-

Let dg be the Haar probability measure on G and let us define the quadratic form
qg:RY — R by

o(x) = /G (z, 9())* dg.

Prove that

q(z) < p(z) < Vd/q(x) forall zeR?

and that, more precisely,
Va(z) < p(z) < \/dimspan(0,)/g(z) forall zeR™

Hint: Note that the eigenspaces of ¢ are G-invariant subspaces of V.

9. In Problem 8 above, for an integer n > 0, let us define a polynomial
q:RY — R by

g(x) = /G (2, g())™" dg

(thus n =1 in Problem 8). Deduce from Problem 8 that

qﬁ(l‘)gp(x)g (d+n—1

1
o
) q%(:c) for all z € RY,
n
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and that, more precisely,
g7 (z) < p(z) < (dim span Ov®n> 2_q%(x) for all z € R?
where Oyen = {(g(v))®n i g€ G} is the orbit of v®" € (R4)®",
10. In Problem 5 above, let
K=8"1= {z e RY: x| = 1}

be the unit sphere. Using Problem 9, show that one can choose

o) = [ @) ds,

where dx is the rotation invariant probability measure on S?~1.

4. The Ellipsoid Method

In this section, we briefly describe a method for finding a solution to a system of
linear inequalities. The method, known as the Fllipsoid Method, was first developed
by N.Z. Shor, A.S. Nemirovskii and L.G. Khachiyan. In 1979, L.G. Khachiyan
applied it to solving linear inequalities and problems of linear programming. It
resulted in the first polynomial time algorithm in linear programming, see [Schr86],
[PS98], [GLS93|.

(4.1) Systems of linear inequalities. Suppose we are given a system of linear
inequalities
<ai7x><ﬂi7 i:]-a"'vmv

where a; € R? are given real vectors and j3; are given real numbers. We do not
discuss how numbers and vectors may be “given” (cf. Chapter 1 of [GLS93]); for
example, we assume that ; and all the coordinates of a; are rational numbers.
Also, the method can be modified for systems of non-strict inequalities, but we
don’t discuss it here.

Our goal is to find a vector x € R satisfying (4.1) or to show that none exists.
We would like to be able to do that reasonably fast. The method is based on the
following geometric result.

(4.2) Lemma. Let

B+:{(§1,...,§d)eRd; €4+, +2<1 and gdzo}

be the “upper half” of the unit ball B. Let

d? -1 -1 d+1)2 1 \2
E={(§1,...,§d)eRd: 7€f+~-~+7€§_1+( ;2) (gd ) §1}

Cd+1

be an ellipsoid. Then
1. BT C E;
9 vol E <e {_ 1 }
CvolB =PV S
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Figure 64

Proof. Let us choose an x € BT, z = (£1,...,&). Then & +...+&2 | <1-¢2,

SO
? -1 2-1 d-1
(@) -

Furthermore,

d+1)2 1 \2 (d+1)? 2(d+1 1
: d2) (gd_d—i—l) - d2) &= (d2 )’5“?'

Adding the two inequalities together, we get

2 -1 d?—1
T§f+...+ = 2+

O - ) e 2 (o) <

since €2 — &, < 0 for 0 < &4 < 1. Hence Part 1 is proven.

To prove Part 2, we note that

volE  d ( d? )(dfl)/2
volB  d+1\d2—-1 '

Using the inequality 1+ x < exp{x} for z = —1/(d + 1) and for x = 1/(d?> — 1), we

get
s <o m ) sl )
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PROBLEMS.

1°. Check that the boundary of the ellipsoid E constructed in Lemma 4.2
contains the “great circle” {(51, ey €a1,0) 8+ + 53_1 = 1} and the point
(0,...,0,1).

2°. Let E C R? be an ellipsoid centered at ¢ € R? and let a € R? be a non-zero
vector. Consider the “half-ellipsoid” E~ = {z € E : (a,z) < (a,c)}. Construct an
ellipsoid E; C R? such that E~ C E; and

v01E1<e {_ 1 }
volE =P\ s )

(4.3) The description of the method. Let P = {z: (a;,z) < B;,i=1,... ,m}
be the set of all solutions to the system of (4.1). Suppose we know a pair of real
numbers R > r > 0 with the following property:

If P is non-empty, then for some (hitherto unknown) point zy € P we have
B(zg,7) C PN B(0,R), where B(b,p) = {x : ||z — b|| < p} is the (open) ball of
radius p centered at a point b.

Figure 65

In other words, if there is a solution, then there is a solution in a sufficiently
large ball and the set of solutions is sufficiently “thick”. The numbers R and r can
be determined from the numerical data (see Problems below). The ratio R/r can
be thought of as the “condition number” of the problem (the problems with a large
ratio R/r are “ill-conditioned”).

We construct a sequence of ellipsoids Ey, ... , E,... which satisfy the proper-
ties:
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1. If P is non-empty, then B(x,r) C E}, for all k and

VOlEk,1 1
— < ———— ¢ forall k>1.
volE, — exp{ 2(d+1) } or a -

We let Ey = B(0,R). If Ej is constructed, we check whether its center ¢

satisfies the system (4.1). If it does, then a feasible point x = ¢, is constructed. If
not, we pick an inequality violated on ¢y, say, (a;,,cr) > Bi,- Let

Ek_ = {x e FEp - <ai0,x> < <ai0ack>}

be the “half ellipsoid” which contains solutions if they exist. Using Problem 2 of
Section 4.2, we construct an ellipsoid Ej.; containing £, and such that

VO].Ek;Jrl 1
kAL - b
vol By, —eXp{ 2(d+1)}

Figure 66. a) If the center ¢ of the current ellipsoid Ej does not
satisfy the linear inequalities, we construct the half ellipsoid £, which
contains the solutions. b) We construct the ellipsoid Ejy; containing
E.. ¢) We check whether the center ¢y of the ellipsoid Ey 1 satisfies
the linear inequalities and proceed as above with Ej, replaced by Ej .

We continue until we either hit a solution or vol Fy, < vol B(zg, r), in which case
we conclude that there are no solutions. Since each time the volume of the ellipsoid
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decreases by a factor of exp{1/(2d + 2)}, the total number of the constructed
ellipsoids does not exceed

vol B(zo, R)

R
Becs) = 2d(d+1)In .

(2d+2)In
Hence the number of iterations is quadratic in the dimension d and linear in the
logarithm of the “condition number” R/r. From the computational complexity
point of view, this means that the running time of the algorithm is polynomial in
the “size of the input”.

PROBLEMS.
In the problems below, for a matrix A = (a;), we let Ly = max;; |a;;| and
for a vector b = (51,...,0m), we let L, = maxy, |8x|. We do not aim for the best

possible bounds here but want to convey a general flavor of the estimates.

1. Let A = (a;;) be an invertible n x n integer matrix and let b = (51,... ,5n)
be an integer n-vector. Let = (&1, ... ,&,) be the (necessarily unique) solution to
the system of linear equations

> ai&=p; for i=1,...,n.
=1

Prove that ; = p,/q are rational numbers, where p; and ¢ are integers with 1 <
q <n"2L7% and Ipj| < n”/2LbL2_1 forj=1,...,n.

Hint: Use Cramer’s rule and Hadamard’s inequality for determinants.

2. Let A = (o) be an m X d real matrix and let b = (81,...,5y,) be a real
m-vector. Prove that a solution z = (£1,...,&4) to the system
d
(431) Zai]{j < Bi for i= 1, oo,
j=1
of linear inequalities exists if and only if there exists a solution u = (n{,...,7};

Ny, ... 1G5 Cm) to the system

d

Zaij(n;'_n;‘/):ﬁi—@ for i=1,...,m,
(4.3.2) J=1
o / 1" .

nj,m; >0 for j=1,....d,

¢G>0 for i=1,...,m
of linear inequalities. Prove that if the set U of solutions u to the system (4.3.2) is
non-empty, then U has an extreme point.
Hint: Use Lemma II.3.5.

3. Let A = (ay;) be a (non-zero) m x d integer matrix and let b = (81, ... , Bm)
be an integer vector. Suppose that the set of solutions U to the system (4.3.2) is
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non-empty and let w = (ni,... .m0, ... ,n4;C, ... ,(n) be an extreme point of
U. Prove that each coordinate of u is a rational number which can be represented
in the form p;/q, where p; and ¢ are integers with 1 < g < (2d + m)d+m/2 2™
and |p;| < (2d +m)H 2L, L2 for j =1,...,2d + m.

Hint: Use Problem 1 and Theorem 11.4.2.

4. Let A = (a;;) be a (non-zero) m x d integer matrix and let b = (B1,... , Bm)
be an integer vector. Suppose that the system (4.3.1) of Problem 2 has a solution.

Prove that there exists a solution (&1, ... ,&q) with & = p;/q, where p; and g are
integers such that 1 < ¢ < (2d+m)?+™/2L23™ and |p;| < 2(2d+m)*+™/2 L, LA™
forj=1,...,d.

Hint: Use Problems 2 and 3.
5. Let A = (ay;) be a k x d integer matrix. Suppose that the system

d
(4.3.3) D & <0 for i=1,... .k
j=1
has a solution z = (&1, ... ,&4). Prove that there exists a solution (&1,. .. ,&q) with

&; = p;/q, where p; and q are integers such that 1 < ¢ < (2d + k (d+k/2)k  (2d+E)k
J J J A
and |pj| < 2k(2d + k)RR LCARE g0 51 d,

Hint: For ig =1, ... ,i; consider the modified system

d d
Zaijfj < 0 for 14 # ’io; Zaiojgj =—1.
j=1

j=1
Let z;, be its solution that exists in view of Problem 4 and let x be the sum of z;,
fOI‘iQZ 1, ,k.

6. Let A = (a;;) be an m x d integer matrix and let b = (51,...,8mn) be an
integer vector. Suppose that the system

d
(434) Zaijﬁj < ﬂj for i=1,...,m
j=1
of strict linear inequalities has a solution z = (§1,...,&q) and &; = p,/q, where

1 < ¢ and p; are integers. Prove that the set of solutions contains an (open) ball
of radius (¢LaVd)~! centered at .

7. Suppose that the system (4.3.4) has a solution. Prove that there exists a
solution (&1, ... ,&;) with & = p;/q, where p; and ¢ are integers such that

1< q< 4dm(2d+ m)(d+m/2)(2m+1)Lf42d+m)(2m+1)+1 and

Ipj| < 16dm(2d + m)(m/2@m+D) p, g Qdtm)Emtb

forj=1,...,d.
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Hint: Let g = (&1, ... ,&q) be the solution to (4.3.1) whose existence is asserted

by Problem 4 and let I = {z : Z?:l ;& = 52} Let y = (n1,...,n4) be the

solution to the system
d
Zaijnj<0, 1€ 1,
j=1

whose existence is asserted by Problem 5. Consider x = x4+ ey for a suitable € > 0;
see Figure 67.

Figure 67

8. Let A be an m X d integer matrix and let b be an integer vector. Show that
to solve the system (4.3.4) of linear inequalities by the Ellipsoid Method 4.3, one
can choose

r= ld_?’/zm_1 (2d + m)_(‘H'm/z)(2’”"'1)L;l(zdﬂn)(zwﬂrl)*2 and

R = 4Vd(2d + m)*T /2L, L5

Hint: Use Problems 4, 6 and 7.

We note that In R is bounded by a polynomial in In L 4, In Ly, d and m whereas
Inr~! is bounded by a polynomial in In L 4, d and m only, thus being independent
of b.

One more problem.

9*. Let Aq,..., A be n xn symmetric matrices and let 51, ... , 8r be numbers.
Develop a version of the Ellipsoid Method for the problem of finding an n xn positive
definite matrix X such that (4;, X) =g; fori=1,... k.
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5. The Gaussian Measure on Euclidean Space

The purpose of the next three sections is to introduce the technique of measure
concentration, which turns out to be quite useful in exploring metric properties of
convex bodies. We start with the Gaussian measure on Euclidean space.

(5.1) The standard Gaussian measure on R. Let us consider the standard
univariate Gaussian density

\/%exp{—ﬁz/Q} for ¢ eR.

As is known,

+oo
= ewl-e}ac-1.

hence we can define a probability measure -, called the standard Gaussian measure,
on the real line R:

1
A) = — —£2/21 d
for a Borel set A C R.

PROBLEMS.
1°. Prove that

1 [t
— exp{—/\gz} d¢ = A2 for any A > 0.
V2T /_Oo
2°. Prove that
1 e 2 2
3°. Prove that

+oo
\/%/ exp{)\§ —52/2} d¢ = exp{/\2/2} for any .
T J—c0

Hint: Substitute & = (&' + \).
4°. Prove that y(A) = y(—A) for any Borel set A C R.

The following lemma, while providing us with a simple and useful estimate,
introduces a general and powerful technique for estimating “tails”, which we will
use several times in this section.

(5.2) Lemma. For 1 >0, let

AT:{feR: ng} and BT:{geR: gg—f}.

Then
V(A7) =7(B,) < exp{~7°/2}.
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Proof. Let us choose A > 0 (to be adjusted later). Then
& > 71 implies exp{)\ﬁ} > exp{/\r}.
Therefore,
L /m exp{ A} exp{—¢?/2} d¢
V2r ) p p
(5.2.1) > \/% /A, exp{ \¢} exp{—€?/2} d¢
> exp{At} - \/% /A, exp{—§2/2} dé =~(A;) - exp{A7}.

By Problem 3 of Section 5.1,

1 +o00o
E/_w exp{/\ﬁ}exp{—fzﬂ} d¢ = exp{)\2/2}.
Therefore, from (5.2.1) we conclude that

v(A;) < exp{A?/2} -exp{—A7} = exp{A\?/2 — AT }.

Substituting A = 7, we obtain the desired bound for y(A,). Since B, = —A,, by
Problem 4 of Section 5.1 we obtain y(B;) = v(4,). O

(5.3) The standard Gaussian measure on R”. Let us consider the standard
Gaussian density in R™:

—n/2 «pd — 2 — - 1 «pd g2 T — n
(2m) "% exp{—||z]*/2} Z1;[1\/%6 p{-¢/2} for z=(&,....&) €R™

Thus
(%)-n/?/ exp{—|z|?/2} da = 1.
Rn

Hence we can define a probability measure 7, on R™:
) = 2r) " [ exp(~alP/2} do
A

for a Borel set A C R™. The measure 7, is called the standard Gaussian measure
on R”.

PROBLEMS.

1°. Let @ be an n x n symmetric matrix and let ¢ : R® — R be the corre-
sponding quadratic form, ¢(z) = (Qz,z) for x € R™. Prove that

m) ™ [ at@yesp{—lalP/2} do = tx(@).
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Hint: Use Problem 2 of Section 5.1.

2°. Let @ be an n x n positive definite matrix and let ¢ : R® — R be the
corresponding quadratic form, g(z) = (Qx, z) for x € R™. Prove that

—1/2

(27r)*”/2 / exp{—q(x)/Q} dr = (det Q)

Hint: Applying an orthogonal transformation of the coordinates, reduce to the
case of a diagonal matrix @ and use Problem 1 of Section 5.1.

The measure v, has some interesting properties; see Sections 4.1-4.3 of [Bo98]
for Problems 3 and 4 below.

3. Let A,B C R™ be convex bodies and let o, 5 > 0 be numbers such that
a4+ = 1. From Problem 2 of Section 1.3, deduce the Brunn-Minkowski inequality:

Iy, (ad + BB) > alny,(A) + Byn(B).

4*. Let B = {z € R™: ||z|| < 1} be the unit ball. Let A C R™ be a closed set
and let H C R™ be a halfspace such that v, (A) = v, (H). Prove the isoperimetric
inequality: v, (A 4+ pB) > v,(H + pB) for all p > 0.

Equivalently, if

Yn(A) = \/%/ exp{—£2/2} d¢ for a suitable « € R,

then
) = V &aTt / { / }
fYn( 5 . €xXp 5 2 dé

5°. Prove that v, (4) = 'y(U(A)) for any Borel set A C R™ and any orthogonal
transformation U : R — R™.

Now we prove that if the dimension n is large, then “almost all” measure 7, is
concentrated in the vicinity of the sphere ||z|| = /n. The method of the proof is
similar to that of the proof of Lemma 5.2.

(5.4) Proposition.
1. Forany >0

feem s el znt) < (1) ep{-a/2).

2. Forany0<d<n

wlrer s el <n—s}h < () efora),
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Proof. To prove Part 1, let us choose A € [0,1] (to be adjusted later). Then
|z]|*>n+¢6 implies exp{Alz|?/2} > exp{A(n+6)/2}.
We observe that
(2m) /2 /R exp{z]/2} exp{ — |1z /2} du

(5.4.1) > %{x ER™: exp{A||z||’} > exp{A(n+ 6)/2}} -exp{A(n+6)/2}

> 'yn{x eER™: x> >n+ 5} exp{A(n+6)/2}.
Evaluating the integral in the left-hand side, we obtain
2r) " [ exp a2} exp{~a|P/2} do
R’IL
= <L /+<>o exp{—(1 — )\)52/2} d{)n =(1-X)""/2
V2T J_so

cf. Problem 1 of Section 5.1.

Hence from (5.4.1) we conclude that
%{x eR": |z|?>n+ 5} < (1= XN 2exp{-A(n +3)/2}.

Now we choose A = §/(n + ¢) and Part 1 follows.
To prove Part 2, let us choose A > 0 (to be adjusted later). Then

||£L'||2 <n-—¢ implies exp{—)\||a:||2/2} > exp{—/\(n — 6)/2}.
We observe that

m) 7 [ esp{=AlelP 2} exp{—[ol/2} do

(5.4.2)
> ’yn{:zr eER": |z||*>n-— 5} -exp{—A(n —4)/2}.

The right-hand side integral of (5.4.2) evaluates to (1+ \)~"/2. Hence from (5.4.2)
we get:

%{x eR": [z2>n— 5} < (140" 2exp{A(n — 6)/2}.
Substituting A = §/(n — d), we complete the proof of Part 2. O

For practical purposes, the following weaker estimates are more convenient.
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(5.5) Corollary. For any 0 <e <1

vV

n
m{zeR": o2 > 77—} <exp{—n/a},

(1- e)n} < exp{—€e*n/4}.

IN

’yn{:zr cR™: ||zH2

Proof. Let us choose § = en/(1 — €) in Part 1 of Proposition 5.4. Then

(7)™ ewl-t2) = emf-Fimt1 -0 - 2}

Expanding

In(l—¢€) =—-e—€e/2-€/3—... and =14+e+e+...,

— €

from Part 1 of Proposition 5.4, we get the desired bound
’yn{x eR™:  z|? > %} < exp{—e’n/4}.
—€

Let us choose § = en in Part 2 of Proposition 5.4. Then

(n T_l 5)771/2 exp{d/2} = exp{g In(1—¢€)+ %}

Expanding
In(l—¢)=—e—e/2—€/3—...,

we obtain the desired estimate
'yn{x eER™: |z|P<(1- e)n} < exp{—€’n/4}.
O

Corollary 5.5 implies that for any sequence p,, — 400, n =1,2,..., we have

vn{xER”: Vn—pn, <|lz| < \/ﬁ—l—pn} — 1.
This is a concentration property of the Gaussian measure. Some other related

concentration properties are discussed in problems below.

PROBLEMS.

1. Let A C R™ be a closed set such that v,(A) = 1/2 and let B = {z € R" :
[z|| < 1}. Deduce from Lemma 5.2 and Problem 4 of Section 5.3 the following
concentration inequality for the Gaussian measure v, on R™:

(A + pB) > 1 —exp{—p?/2}.
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2. Let f: R™ — R be a function such that
[f() = fW)| <llz—y| forall zyeR"

Let a be the median of f, that is, a is a number such that

’yn{xeR”: f(:c)ga}Z% and vn{xER”: f(x)za}z

(check that such an « indeed exists). Deduce from Problem 1 above the concentra-
tion inequality for Lipschitz functions:

vn{xeR”: |f(x)—a\§p}21—2exp{—p2/2} for any p>0.

Remark: For this and related inequalities, see [Bo98] and [Le01].

We conclude this section with a concentration inequality for positive semidefi-
nite quadratic forms. The following result extends Proposition 5.4 and the proof is
very similar to that of Proposition 5.4.

(5.6) Proposition. Let ¢ : R® — R be a positive semidefinite quadratic form,
q(z) = (x,Qx) for an n x n positive semidefinite matriz Q.

Let py, ..., uy be the eigenvalues of QQ and let
QI = Vtr(Q?) = \/ 1 + ... + 43
Then

1. for any T > 0 we have
mi{z R q@) < 01(Q) — 7IQl} < exp{-72/4};
2. for any T > 0 such that
T <||QI for i=1,...,n
we have

m{z R s ql@) > (@) +7|Q| } < exp{—r?/8}.

Proof. Clearly, we may assume that @ # 0.
To prove Part 1, let us choose A > 0 (to be adjusted later). Then

q(z) < tr(Q) — 7||Q|| implies exp{—)\q(x)/Q} > exp{—/\ tr(Q)/2 + )\T||Q||/2}
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We observe that

2m) /2 [ exp{=da(a)/2) expl~el/2} do

(5.6.1)
> fr € R (@) < (@) —71Q | - exp{-Atx(Q)/2 + M QI /2}.

By Problem 2 of Section 5.3, the integral in (5.6.1) evaluates to
—-1/2 n
det  (I+2Q) =]+ )2,

i=1

where T is the identity matrix. Hence we deduce from (5.6.1) that

wfreR": ql) <0(Q) -l
—-1/2

< det ! (I +AQ) - exp{Atr(Q)/2 — M7||Q]|/2}

- exp{—% Z;ln(l )+ A r(Q)/2 — )\T|Q||/2}.

Now we use that In(1 + A\w;) > A — AN2p2/2, that tv(Q) = p1 + ... + p,, and that
QI? = u?+ ...+ p2. Thus

m{zeR": qla) < (@) - 7lIQI}
<e{ %2 - arll/2f = es{ 1@/ - xelal 2},
i=1

Substituting A = 7/||Q||, we complete the proof of Part 1.
To prove Part 2, let us choose A > 0 (to be adjusted later). Then

q(z) > tr(Q) + 7||Q|| implies exp{)\q(x)/Z} > exp{A tr(Q)/2 + /\7'||QH/2}.

We observe that

(2m)~"/2 /R exp{\q(z)/2} exp{—|z|?/2} dz

(5.6.2)
> yu{z €R™: gla) 2 (@) + 7IQI - exp{Atr(@)/2 + Al QIl/2}.

By Problem 2 of Section 5.3, the integral in (5.6.2) evaluates to
—1/2 n

det (1 - 2Q) = TTC = Au),

i=1
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where I is the identity matrix. Hence we deduce from (5.6.2) that

wl{zeR": @) > (@ +71Ql |

—1/2

< det (1-2Q) - exp{-A(Q)/2 — M]Ql/2)
exp{ =5 Yol = n) - Ae(Q)/2 - Q2.

Now we use that In(1 — \u;) > —Ap; — A2p? provided A\p; < 1/2, that tr(Q) =
p1+ ...+ pn and that ||Q||? = p? + ...+ p2. Thus

m{z €R" @) > 6(Q) + QI }
<e{ 3 a2 - arlel/2 = es{RQI/2 - xrlal/2),

i=1
provided Ap; < 1/2 for i = 1,...,n. Substituting A = 7/(2||Q||) and noting that

)\/LL: THi <

2lQll ~

DN | =

we complete the proof. d

PROBLEMS.

1. Let ¢ : R — R be a quadratic form, ¢(z) = (x, Qx) for an n X n symmetric

matrix Q. Let p1,... ,u, be the eigenvalues of @ and let |Q| = \/u3 + ...+ p2.
Prove that for any 7 > 0 such that |7u;| < ||@Q] for i = 1,...,n, we have

'yn{x eR": gq(z) <tr(Q)— ’7'||Q||} < exp{—72/8} and
%{x ER": q(z) > tr(Q) + T||Q||} < exp{—72/8}.

2°. Prove that tr(Q) > ||Q|| for any positive semidefinite matrix Q.

3°. Let A be an n x n positive semidefinite matrix and let @ be the mn x mn
matrix consisting of m diagonal blocks A. Prove that tr(Q) = mtr(4), [|Q| =
vm|| Al and u < m~Y2||Q|| for every eigenvalue u of Q.

4. Prove the following version of Part 2 of Proposition 5.6:

For every € > 0 there exists § > 0 such that
fyn{x eR™: q(z) > tr(Q) + THQH} < exp{—(l — 6)7’2/4}

provided 7 > 0 and 7pu; <4§||Q| fori=1,... ,n.
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6. Applications to Low Rank Approximations of Matrices

In this section, we apply our methods to obtain new results regarding systems of
linear equations in positive semidefinite matrices, which we considered in Sections
I1.13-15. We use the notation of Sections I1.13-15. Thus (A4, B) = tr(AB) for
symmetric matrices A and B; X = 0 means that X is positive semidefinite and
z ® « denotes the matrix X whose (7, j)-th entry is §;&;, where x = (&,... ,&5).

Proposition I1.13.1 asserts, roughly, that if a system of k equations (4;, X) = «;
has a solution X > 0, then there is a solution Xg > 0 such that rank Xy = O(Vk).
Now we show that if we are willing to settle for an approzimate solution, we can
make rank Xo = O(Ink). To state what “approximate” means, we assume that the
matrices A; are positive semidefinite and so the a; are non-negative.

(6.1) Proposition. Let us fix k positive semidefinite n x n matrices Ay, ..., Ag,
k non-negative numbers aq, ... ,ar and 0 < e < 1.

Suppose that there is a matric X = 0 such that
(A, X)=«a; for i=1,... k.

Let m be a positive integer such that

8
m > = In(4k).

Then there is a matriz Xo = 0 such that
ai(1—6)§<Ai,X0>§ai(l+e) for i=1...k

and
rank Xo < m.

Proof. First, we show that without loss of generality we may assume that X = I,
the identity matrix. Indeed, suppose that X > 0 satisfies the system

<Ai,X>:Ozi for Z:L,k

Let us write X = TT™* for an n X n matrix T and let B; = TA;T*. Then the B;
are positive semidefinite matrices and

a; = <AZ7X> = tI‘(AZX) = tI‘(AzTT*) = tI‘(TAzT*) = tI‘(B,L) = <BZ,I>,

so I satisfies the system (B;,I) = o; fori =1,... k.

Moreover, if Yy > 0 satisfies the inequalities
(I-ea; <(B;,Yo) <(1+ea; for i=1,...,k,
then for Xg = T*YyT we have

<Ai, X0> = tI‘(AlT*YoT) = tI‘(TAlT*Y()) = tI'(B1Y0) = <BZ, Y0>
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and hence
(1—€a; < (A, X0) < (14 €a; for i=1,... k.

In addition, Xg > 0 and rank Xy < rank Yj.

Thus we assume that X = I and so
a; = (A, 1) =tr(4;) for i=1,... k.
Let d = mn and let us consider the direct sum of m copies of R™:

RE=R"®... OR".
N—————

m times
Thus a vector z € R? is identified with an m-tuple, z = (z1,...,2Zm), where
eR*"forj=1,...,m
Fori=1,...,k, we define a quadratic form ¢; : R — R by
(6.1.1) i(x —liAa: x; —iiA zj Qxj),
= qi\T1,...,T —m: R j m: iy Lj J
where z1,...,z, € R”. Thus the matrix @; of ¢; consists of m diagonal blocks
LA,
L4 0 0 ... 0
0o L4, 0 ... 0
Qi = m
0 0 ... 0 L4

Let us consider the standard Gaussian measure v4 in R%. We apply Proposition
5.6 to the forms ¢;. We have

A _ oA e Qi

ym ~ m ym H="ym

for every eigenvalue i of @QQ;; cf. Problems 2-3 of Section 5.6.
Let us choose 7 = ey/m in Proposition 5.6. Then

tr(Q:) = tr(4;) = o, [|Qill =

1
vd{:v eERY: qi(z) — oyl > eai} < 2exp{—€’m/8} < % for i=1,... k.

Therefore,
'Vd{,TER : |qi(:v)—ai|<eai for i=1,... k}>1—k-——— —=.
— ) ) - 2k 2

In particular, there exists = (z1,...,%,) € R? such that |g;(z) — a;| < eq; for

i=1,...,k Let
1 m
X = — ; ..
0 mJZleJ@)xJ
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Then, by (6.1.1),
|<A1‘,X0>—C¥i|§€ai for Z:].,,k'

and the result follows. O

The proof of Proposition 6.1 suggests a simple recipe to construct the desired
matrix Xy. First, we find a matrix T such that X = TT*. Then we sample m
vectors yi, ... ,Ym at random from the standard Gaussian distribution in R™ and
we let Yy = L Yot Yi @ ym. Finally, we let X = T*Y,T. With probability at

m
least 1/2, the matrix X, satisfies the constraints of Proposition 6.1.

PROBLEMS.

1. Let Aq,..., A; be symmetric matrices and let o, ... , a; be numbers. Sup-
pose that the eigenvalues of every matrix A; do not exceed 1 in absolute value.
Suppose further that there is a matrix X > 0 such that

(Ai, X)=qa; for i=1,... )k
and tr(X) = 1. Let ¢ > 0 and let m be a positive integer such that
m > 32¢ 2 In(4k + 4).
Prove that there exists a matrix X > 0 such that
a;—e< (A, Xo)<a;+e for i=1,... k

and
rank Xg < m.

2. Let S"' = {z € R": ||z|| = 1} be the unit sphere and let ¢; : S"~* — R
be quadratic forms such that |¢;(z)| <1 for allz € S® !t and i =1,... , k. Consider
the map ¢ : S"7! — R*, ¢(z) = (q1(x),... ,qx(x)). Let e > 0 and let m be a
positive integer such that m > 32¢2In(4k + 4).

Prove that for any point a = (aq,...,q;) € conv(qb(S"_l)) there exists a
point b= (1, ..., S) such that

la; — Bi] <e for i=1,...,k

and b is a convex combination of m points of ¢(S”_1).
3. Prove the following version of Proposition 6.1:

For every § > 0 there exists ¢y > 0 such that for any positive semidefinite
matrices Aj,..., Ak, for any non-negative numbers aq, ... ,qx, for any positive
€ < ¢y and for any positive integer

446
2

m > In(2k)

€
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6. Applications to Low Rank Approximations of Matrices 243

there exists a matrix Xy »~ 0 such that
Oéi(l —6) < <A“X0> Sai(l-‘rﬁ) for i=1,... .,k

and
rank Xg <m

provided there exists a matrix X > 0 such that
<Ai,X0>:Cki for ’L:].,,k'

Hint: Use Problem 4 of Section 5.6.

4* (A. Frieze and R. Kannan). Let A = (a;;) be an m X n matrix such that
la;;| < 1 for all 4,j. Prove that for any € € (0,1) there exists an m x n matrix
D such that rank D = O(1/€?) and the sum of the elements in every submatrix of
A — D (among 2™ submatrices) does not exceed emn in absolute value.

Remark: See [FK99].

As in Chapter II, we apply our results to the graph realization problem; cf.
Section II.15.

(6.2) Realization with a distortion. Suppose we are given a weighted graph
G = (V,E;p), where V = {vl, e ,Un} is the set of vertices, E is the set of edges
and p : F — Ry is a function, which assigns to every edge (i,7) € E a non-
negative number (“length”) p;;. Recall that G is realizable if one can place the
vertices vq,. .. ,v, in R? for some d in such a way that

llvi —v;|| = pi; for every edge {i,j} € E.

Suppose that we are willing to permit a certain distortion. We obtain the following
result.

(6.3) Corollary. Suppose that a graph G with k edges is realizable. Then, for any
0 <e<1 and any m > 8¢ 21In(4k), one can place the vertices vy,... ,v, in R™ so
that

(L—e)p; < llvi—v|> < (A +€)p;; for every edge {i,j} € E.

Proof. As in the proof of Proposition II.15.4, we reduce the problem to a system
of linear equations in positive semidefinite matrices.

For (i,7) € E, let A;; be the n x n matrix such that (A;;, X) = x;; — 225 + x5
for any n x n matrix X. Since G is realizable, there exists X > 0 such that

(Aijs X) = pijy forall (ij) € E

(we choose X to be the Gram matrix of the vectors vq,... ,v, in a realization of
G). Now we note that A;; = 0 and apply Proposition 6.1. O

Corollary 6.3 with different constants and a slightly different method of proof
is due to W.B. Johnson and J. Lindenstrauss [JL84]; see also Problem 2 of Section
7.1.
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PROBLEM.
1. Prove the following version of Corollary 6.3:

For every § > 0 there exists ¢y > 0 such that for every positive € < ¢, for every
k and every positive integer m > (1 + d)e~21In(2k), if a graph G = (V, E; p) with k
edges is realizable, one can place the vertices vy,...,v, of G in R™ in such a way
that
(1—e€)pij <||lvi —v;|| <(1+€)p;; forevery edge {i,j} € E.

Hint: Use Problem 3 of Section 6.1.

7. The Measure and Metric on the Unit Sphere
Let S*~! C R™ be the unit sphere:
snt = {:c eR": |z| = 1}.

Let v,,_1 be the Haar probability measure on S*~!. That is, v,,_1 is the unique mea-
sure defined on Borel sets A € S*~! such that v,,_; (S”_l) =1and v,_1 (U(A)) =
vn_1(A) for every orthogonal transformation U and every Borel set A C S"~1.
Since the standard Gaussian measure 7, is also rotation invariant, there is a simple
relationship between v,,_; and «,: for A C S*7!, let

Z:{A:CER”: r €A and )\20}.

Then B
Vn-1(A4) = 1 (A);
see Figure 68.

> |

Figure 68. A set A C S" ! and the corresponding set A C R"

The following estimate will be used in Section VI.8 (the bound is far from the
best possible but works fine for our purposes).

(7.1) Lemma. Let us choosey € S"~! and € > 0. Then
Vn,l{x es™t: (x,y) > e} < 2exp{—€°n/16}.
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Proof. Without loss of generality we may assume that y = (1,0,...,0). Hence
our goal is to estimate v,_1(A), where

A= {(51,... £ estl g > e}.
We have v,,_1(A) = v,(A), where

A
A={o=(a . &) eR": & 2elal}.
Let
B={(&,... &) R S5 (1-gn and €<l ~an}.
i=1
By Corollary 5.5 and Lemma 5.2,
Yn(B) > 1 —exp{—€’n/4} — exp{—€*(1 — €)n/2}.

Thus

Y (B) >1— 2exp{—62n/4} provided €<

N =

Then A C R\ B and hence

Yn(A) <1 —7,(B) < 2exp{—€°n/4} provided €<

N | =

We observe that v,_1(A) decreases as € grows and that A is empty for € > 1. Hence

Vp—1(A) < 2exp{—n/16} for e>

DN | =

and, in any case,
Vn-1(A) < 2exp{—€°n/16}.

O

Lemma 7.1 implies that if the dimension n is large, then with high probability,
for any two randomly chosen vectors z,y € S"~!, we have |(z,y)| = O(n~1/?),
so x and y are “almost orthogonal”. This is an example of a concentration prop-
erty for the uniform probability measure on the unit sphere. Some other related
concentration properties are discussed in problems below.

PROBLEMS.

1. Let L C R™ be a subspace and let k = dim L. For z € S*7!, let x;, denote
the orthogonal projection of x onto L. Prove that for any 0 < e < 1

vn_l{x es™ s (1- e)\/g <zl < (1 _6)1\@} > 1 —4dexp{—€c’k/4}.
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Thus if k is large, then the length of the projection z; for “almost any” vector
x € S" 1 is close to \/k/n.

2. Instead of fixing a subspace L C R", we can fix a vector x € S"! and
choose a random k-dimensional subspace L. More precisely, let G (R™) be the
Grassmannian of all k-dimensional subspaces L C R™ and let v, ; be the rotation
invariant probability measure on G (R™); cf. Section 1.8.3. Let us fix x € S*~1.
Prove that for any 0 < e < 1

un,k{L €Gy(R™): (1- e>\/§ < el < (1 - e)l\/g} >1—dexp{—€’k/4}.

Hence if k is large, then the length of the projection z; for “almost any” k-
dimensional subspace L C R" is close to \/k/n.

Remark: The original proof of Corollary 6.3 in [JL84] uses the following con-
struction. Let us choose a realization vy,...,v, € R"™ of G and let L C R"™ be
a randomly chosen m-dimensional subspace. Let u; be the orthogonal projection
of v; onto L for ¢ = 1,... ,m. Then, with high probability, the points (y/n/k)u;
provide the desired m-realization of G.

3. Let ¢, : S" ' — R,

¢7l(£1’ cee 7671) = 61\/57

be a map. Prove that
v(4) = lim anl(@?l(A))

n—-4oo

for any Borel set A C R. Hence the standard Gaussian measure can be obtained as
a limit of the appropriately scaled projection of the uniform measure v,,_1 on the
sphere.

4*. Let us make S”~! a metric space by letting dist(z,y) = arccos(z, y) for all
2,y € S"~1. Thus 0 < dist(z,y) < 7 is the angle between x and y. For a closed set
AcCS"'and p>0,let

A, = {x eS" . dist(x,y) <p forsome y€ A}

be the p-neighborhood of A. The p-neighborhood of a point y € S*~! is called the
spherical cap of radius p centered at y and denoted C(y,p). Let A C S"~! be a
closed set and let C(y, p) be a spherical cap such that

Vn-1(A) = vp—1 (C(y, P)) .

Prove the isoperimetric inequality for the unit sphere: for any € > 0

anl(Ae) > Un—1 (C(yu P + 6))

Remark: See [FLM77].
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5. Deduce the isoperimetric inequality for the Gaussian measure (cf. Problem
4 of Section 5.3) from the isoperimetric inequality for the unit sphere and Problem
3 above.

6. Let A C S?! be a closed set such that v,,_1(A4) = 1/2. Deduce from
Problem 4 above and Lemma 7.1 a concentration inequality for the unit sphere:

Up—1(Ae) > 11— Qexp{—cezn}

for some absolute constant ¢ > 0 and all € > 0.
7. Let f : S* ! — R be a function such that

|f(x) — fly)] < dist(z,y) forall z,y€ st

cf. Problem 4 above. Let a be the median of f, that is, « is a number such that

1 1

n—1. < > n—1. > > .

Vn,l{x €S fz) < a} 25 and un,l{x es f(z) > a} 5
cf. Problem 2 of Section 5.5. Deduce from Problem 6 above a concentration in-

equality for Lipschitz functions:
yn_l{a: eSS |f(x) —al < e} >1—4exp{—ce’n}

for some absolute constant ¢ > 0 and all € > 0.

Concentration inequalities are used to prove the existence of “almost ellip-
soidal” sections and projections of convex bodies. Those results are beyond the
scope of this book (see [MiS86] and [P94]), but we state some of them as prob-
lems.

8* (Dvoretzky’s Theorem). Prove that for any € > 0 and for any positive
integer k there exists a positive integer m = m(k,e) (one can choose m about
exp{O(e~?k)}) such that for any n > m and for any convex body K C R" sym-
metric about the origin there exists a k-dimensional subspace L C R™ and an
ellipsoid £ C L centered at the origin such that

(1—e)E ¢ KNL C (1+¢E.

Remark: The two main ingredients of the proof from [FLMT77] are the results
of Problem 7 above and Problem 5 of Section 3.2.

9. Here is the dual form of Dvoretzky’s Theorem: For any € > 0 and for any
positive integer k there exists a positive integer m = m(k,€) (one can choose m
about exp{O(e_Qk)}) such that for any n > m and for any convex body K C R"
symmetric about the origin there exists a k-dimensional subspace L C R™ and an
ellipsoid E C L centered at the origin such that

(1—-e)E C K. C (1+6E,
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248 V. Convex Bodies and Ellipsoids

where K7, is the orthogonal projection of K onto L. Deduce the equivalence of the
statements of Problems 8 and 9.

10* (Milman’s QS Theorem). Prove that for any 0 < € < 1 there exists o =
a(€e) > 0 such that for any convex body K C R™ symmetric about the origin there
exist subspaces Ly C Ly C R™ with dim Ly > (1 —¢€)n and an ellipsoid E C Lo such
that

E Cc (KNLy)L, C aF,

where (K N L), is the orthogonal projection of the section K N L; onto Lo.

Remark: “QS” stands for “quotient of subspace”. In the dual (equivalent) form
of the theorem we take the projection first and then the intersection.

11* (The “Volume Ratio” Theorem). Let K C R™ be a convex body symmetric
about the origin and let £ C K be the maximum volume ellipsoid; see Section 2.

Let
(volK) 1/n
o= .
vol K
Prove that for Kk = 1,... ,n — 1 there exists a subspace L C R™ with dimL = k
such that
KNL C (4ma)»FE.

8. Remarks

For an accessible introduction to metric convex geometry including approximating
ellipsoids and Dvoretzky’s Theorem, see [B97]. For more advanced texts, see [P94]
and [MiS86]. We did not discuss other interesting and important ellipsoids, such as
Milman’s ellipsoid and the inertia ellipsoid, associated with a (symmetric) convex
body; see [P94], [B97]. The volume inequalities and the Brunn-Minkowski Theory
are discussed in detail in [Sc93]. First counterexamples to the Borsuk conjecture
(see the remark after Problem 7 of Section 2.4) were constructed by J. Kahn and
G. Kalai; see [K95]. Results of Problems 8 and 9 of Section 2.4 regarding the
metric structure of the set of non-negative polynomials are due to [B102]. For the
Ellipsoid Method, see [Lo86], [GLS93] and [PS98]. A comprehensive reference
for the measure concentration techniques is [Le01]. For Gaussian measures, see
[Bo98|.
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Chapter VI

Faces of Polytopes

We explore the combinatorial structure of polytopes. We discuss the number of
faces of a given dimension that a polytope can have, how the faces fit together
and what is the facial structure of some particularly interesting polytopes, such
as the permutation polytope and the cyclic polytope. Our approach is based on
considering a sufficiently generic linear function on a polytope and using some
combinatorial (counting) or metric arguments.

1. Polytopes and Polarity

Recall (Definition 1.2.2) that a polytope is the convex hull of a finite set of points
in R?. We proved that a polytope is a polyhedron (Corollary IV.1.3) and that a
bounded polyhedron is a polytope (Corollary 11.4.3). Recall that an extreme point
of a polyhedron (polytope) is called a vertex (cf. Definition I1.4.1). In this section,
we apply polarity (see Chapter IV) to obtain some general results about the facial
structure of polytopes.

To warm up, we prove that a face of a polytope is the convex hull of the vertices
of the polytope that belong to the face.

(1.1) Lemma. Let P = conv(vl, e ,vm) C R? be a polytope and let F C P be a
face. Then F = COHV(Ui 1 € F) In particular, a face of a polytope is a polytope
and the number of faces of a polytope is finite.

Proof. Since F is a face of P, there exists a linear functional f : R — R and a
number « such that f(z) < « for all z € P, and f(z) = a if and only if x € F' (see
Definition I1.2.6). Let I = {i : f(v;) = a}, so f(v;) < « for all i ¢ I. Obviously,
conv(v; : ¢ € I) C F. It remains to show that F' C conv(v; : ¢ € I). Let us choose
an x € F. Since x € P, we have

$:Z>\ﬂh‘, where X\; >0 for i=1,...,m and Z)‘izl'
i=1 i=1

249
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250 V1. Faces of Polytopes

If A; > 0 for some i ¢ I, then f(\v;) = A f(v;) < Mo and

f(x):z:/\if(vi) <OKZ/\¢=CY7

i=1

which is a contradiction. Hence A; =0 for i ¢ I and = € conv(v; : i € I). O

As an immediate corollary, we conclude that the faces of a polytope fit together
nicer than in the case of a general convex body; cf. Problem 6, Section I1.2.6.

(1.2) Corollary. Let P be a polytope, let F be a face of P and let G be a face of
F. Then G is a face of P.

Proof. Suppose that
P= conv(vl, . ,vm), F= conv(vi 11 € I) and G = conv(vj cjedcl).

There exists a linear functional f : R — R and a number « such that f(v;) = a
for all i € I and f(v;) < « for all i ¢ I, and there exists a linear functional
g : RY — R and a number 3 such that g(v;) = 8 for i € J and g(v;) < B for
i € I'\ J. Then, for a sufficiently small ¢ > 0, the functional h = f + €g has the
following property: h(v;) = o+ €8 for i € J and h(v;) < a + €S for i ¢ J. Hence
G is a face of P. O

PROBLEMS.

1°. Prove that a vertex of a polytope is a O-dimensional face of the polytope.

2°. Prove that a face of a polyhedron is a polyhedron.

3. Let P = {x eRY: (cj,x) < Bifori=1,... ,m} be a polyhedron and let
u € P be a point. Let I, = {i : (c;,u) = B3;}. Let F = {z € P: {(¢;,z) = f; for
i€ Iu}. Prove that F' is the smallest face of P containing u (we agree here that P
is a face of itself).

4. Prove that a polyhedron has finitely many faces.

5. Let P C R? be a polyhedron, let F' C P be a face of P and let G C F be a
face of F'. Prove that G is a face of P.

6°. Prove that the intersection of two polytopes is a polytope.

Now we present the main result of this section, which establishes an inclusion
reversing correspondence between the faces of a polytope and the faces of its polar.
It will serve us as a “translation device”, which, in the general spirit of duality,
allows us to obtain some results “for free”.

(1.3) Theorem. Let P C R? be a polytope, containing the origin in its interior
and let Q = P°. Then Q is a polytope. For a face F' of P, let

ﬁ:{weQ: (x,y) =1 for each yEF}
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1. Polytopes and Polarity 251

(we agree that 0 =Q and that P = 0). Then
1. the set F is a face of Q and

dimF +dimF=d—1

2. if F C G are faces of P, then GcC ﬁ;
3. let G be a face of Q and let

F:{yGP: (z,yy =1 for each xéG}
(we agree that F = P for G = and that F =0 for G = Q). Then

F=aG.

Proof. The proof that @ is a polytope is incorporated in the proof of Corollary
IV.1.3. Suppose that P = conv(vl, ) ) By Lemma 1.1, F = conv(vz i€ I)

for some set of indices 1. Let v = 1 Z v;, where || is the cardinality of I. Hence

el
v € F. We claim that

(1.3.1) F={zeQ: (z,0)=1}.

Indeed, v € F, so (z,v) =1 for any x € F. On the other hand, for any z € @ and
any v;, we have (z,v;) < 1. Therefore, if z € Q and (z,v) = 1, then (z,v;) =1 for
i € I and hence z € F. By (1.3.1), we conclude that F is a face of Q.

Let us prove that dim F' + dim F = d — 1. Since F is a face, there is a vector
¢ € R? and a number «, such that

(c,vy=a for i€l and (c,v) <a for ié¢l.

Smce 0 € int P, a« > 0. Scaling, if necessary, we can assume that « = 1. Then
ceF. Suppose that dim F' = k. For any x € F we must have (z,v;) =1 for i € I,
or, in other words, (x — ¢,v;) =0 for ¢ € I. Since dimspan(F') = k + 1, we get that
dim ' < d—k—1. On the other hand, if y € R? is a vector such that (y, v;) = 0 for
1€, thenx=c+ey € F for a sufficiently small ¢ > 0. Hence dimEF=d—k— 1.
Part 1 is proved.

Let us prove Part 2 of the theorem. For any z € G, we have (x,y) =1 for any
y € G. Since F C G, we have (z,y) = 1 for any y € F. Therefore, = € F and the
proof of Part 2 follows.

By Theorem IV.1.2, Q° = P. Then, by Part 1, F' is a face of P and it is clear
that G C F. Let ¢ € RY be a vector such that (¢,z) = 1 forall z € G and (¢, z) < 1
for z ¢ Q\ G (see the proof of Part 2 above). Then ¢ € F. Therefore, for all z € F
we have (z,¢) = 1, so x € G. Therefore, F C G. Hence G = F and the proof of
Part 3 follows. O
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252 V1. Faces of Polytopes

Figure 69 presents an example of the polarity correspondence between faces of
the cube and octahedron in R3. It should be noted that the figure reflects only
some general combinatorial features of the correspondence since each polytope is
pictured in its own copy of the ambient space R3.

Figure 69. The polarity correspondence between faces

Faces of certain dimensions have special names.

(1.4) Definitions. A 0-dimensional face of a polytope is called a vertex. A 1-
dimensional face of a polytope is called an edge. A (d — 1)-dimensional face of a d-
dimensional polytope is called a facet. A (d—2)-dimensional face of a d-dimensional
polytope is called a ridge. Vertices v and u of a polytope are called neighbors if the
interval [u,v] is an edge of the polytope.

PROBLEMS.

1. Prove that every d-dimensional polytope has a facet. Deduce that a
d-dimensional polytope has a k-dimensional face for each 0 < k <d — 1.

2. Let P C R? be a d-dimensional polytope. Prove that every ridge of P
belongs to precisely two facets.

Hint: What is the dual statement?

3. Prove the following diamond property. Let P be a polytope and G C F be
two faces of P such that dim F' — dim G = 2. Then there are precisely two faces
H,y, Hs, such that G C Hy, Hy C F (all inclusions are proper).

4. Let P C R? be a d-dimensional polytope containing the origin in its interior,
let F C P be a k-dimensional face of P and let F' C P° be the face from Theorem
1.3. Hence F is a (d — k — 1)-dimensional polytope. We consider F as a full-
dimensional polytope in its affine hull and choose the origin to be in its interior.
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1. Polytopes and Polarity 253

Let R = F°. Hence R is a (d —k — 1)-dimensional polytope. Establish an inclusion-
preserving bijection ¢ between the faces of R and the faces H of P containing F.
The (facial structure of) the polytope R is called the face figure of F in P and
denoted P/F.

- P/G

Figure 70. A polytope P and its face figures
Remark: The picture of the face figure P/F can be obtained by intersecting P
with an appropriate affine subspace of dimension dim P — dim F' — 1.

5. Let K C R? be a compact convex set containing the origin in its interior.
Let Qo = K°, let p € int Qg be a point and let ), be the polar of K with the origin
moved to p:

Qp:{xeRd: (x—p, y—p) <1 forall yeK}.
Prove that @), is the image of Q)9 under the projective transformation:
—> D+ r
x p+——F—r.
1- <£L’,p>
We will need the following useful result, which can be considered as a sharpening

of Corollary IV.1.3.

(1.5) Lemma. Let P C R? be a d-dimensional polytope. Then P can be repre-
sented in the form

P:{xERd: file) <a; for i=1,... ,m},
where f; : RY — R are linear functionals, a; € R are numbers and the sets
F;, = {x eP: filx)= ai}
are the facets of P fori=1,... ,m.
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254 V1. Faces of Polytopes

Proof. The proof follows the proof of Corollary IV.1.3 with some modifications.
Let us choose the origin in the interior of P and let @ = P° be the polar of P. We
can write Q = conv(v; : i =1,...,m), where v; are the vertices of Q. Then

P:{x: (v, )y <1 for i:l,...,m}.

Let us choose f;(x) = (v;,x) and ; = 1. By Theorem 1.3, F; = 0; are the facets of
P. O

2. The Facial Structure of the Permutation Polytope

In this section, we describe the facial structure of a particular polytope. Recall (see
Definition I1.6.1) that the permutation polytope P(a), where a = (a1,...,an),
a € R™, is the convex hull of the points o(a) obtained from a by permutations of
the coordinates. In this section, we describe the facial structure of P(a) assuming
that the coordinates oy, ... , a, are distinct. We need a simple and useful result.

(2.1) Lemma. Let x = (&1,...,&,) and y = (n1,... ,mn) be n-vectors. Suppose
that & > & and 1; < n; for some pair of indices © # j. Lety be the vector obtained
from y by swapping n; and n;. Then

(z,9) > (z,y).

Proof. We have

(z,7) — (@, y) = &ny +Emi — &mi — &y = (& — &)y —ms) > 0.

PROBLEM.

The intuitive meaning of Lemma 2.1 is conveyed by the problem below.

1°. Suppose that there are six boxes in front of you. The first is stuffed with
$100 bills, the second with $50 bills, the third with $20 bills, the fourth with $10
bills, the fifth with $5 bills and the sixth with $1 bills. You are allowed to take
from each box a number of bills with the only condition that the (unordered) set
of the numbers of bills taken is the (unordered) set {3,5,10,2, 15,8} (that is, you
should take three bills from some box, then five bills from some other box and
so forth). How many bills should you take from each box to maximize the total
amount taken?

Surprising as it may seem, the reasoning behind Problem 1 of Section 2.1 is
powerful enough to lead to the complete description of the facial structure of the
permutation polytope P(a); cf. Figure 16.
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2. The Facial Structure of the Permutation Polytope 255

(2.2) Proposition. Leta = (a1,...,ay) be a point such that oy > ag > ... > ay
and let P = P(a) be the corresponding permutation polytope. For a number 1 <
k <n, let S be a partition of the set {1,... ,n} into k pairwise disjoint non-empty
subsets S1,...,Sk. Let s; = |S;| be the cardinality of the i-th subset fori =1,...  k,
let t; = 22:1 sj fori=1,... k and let us define sets Ay = {a;: 1 <j < s} and
AZ‘:{OAJ' Sti_l S]Stz} fOTi:2,... ,k.

Let Fs be the convex hull of the points b = o(a), b = (B1,...,0n) such that

{B;j:j€8Si}=A; foralli=1,... k. In words: we permute the first s; numbers
Q1,...,Qs, in the coordinate positions prescribed by S1 C {1,... ,n}, the second s9
numbers g, 41, - - . , Us, 15, 10 the coordinate positions prescribed by So C {1,... ,n}

and so forth, and take the convex hull Fs of all resulting points.

Then Fs is a face of P, dim Fs = n — k and for every face F' of P we have
F = Fs for some partition S.

Example. Let n = 10, a = (20,16, 15,10,9,7,5,4,2,1), S; = {4,5,6,7}, Sy =
{1,2,3} and S3 = {8,9,10}. Hence A; = {20,16,15,10}, Ay = {9,7,5} and
Az = {4,2,1}. The face Fs is the convex hull of all points b = o(a) of the type

( L] [ ] [ ) (] [ ] [ ] L) (] [ ] [ ] )
—_——— |y
permutation of 9,7,5 permutation of 20,16,15,10 permutation of 4,2,1

and dim Fs = 7.

Proof of Proposition 2.2. Let us describe all the faces F' of P containing a.
Let ¢ = (y1,... ,7n) be a vector and A be a number such that (¢,z) < A for

all z € P and (c,x) = A if and only if x € F. Since a € F, we have (c,a) = .

Lemma 2.1 implies that we must have v; > v > ... > =, since if for some i < j

we had y; < 7, we would have obtained (¢, 7(a)) > (c,a) for the transposition 7
that swaps «; and «;.

Let us split the sequence 1 > v5 > ... > , into the subintervals S1,... Sk
for which the 4’s do not change:

VL= e = Vty 2 Va1l = e = Vg > Veotl = oo 2 Va1 = - = T

S1={1,...,t1} Sa={t1+1,... t2} Sp={tk—1+1,... ,n}

Hence S1 ={j:vj=m},si=t1=1|5]and S; ={j: v =v,_,+1}, si = |S;| and
ti=t;_1+s;fori=2,... k.

We observe that for b = o(a), b = (B1,...,0n), we have (b,c) = (a,c) if

and only if (B1,...,08) is a permutation of (ai,...,ay), (By+1,---,0,) IS a
permutation of (a,41,...,0,), and so forth, so that (8¢, _,4+1,...,5n) is a per-
mutation of (e, ,+1,...,0n). Applying Lemma 1.1, we conclude that F' = Fs
for the partition S = {S1,...,Sk}. In this case, we have A1 = {aq,... ,as, } and
Ai = {ati—l"l‘l? . 7Otti} for i = 2, . 7]43.

Vice versa, every vector ¢ = (y1,... ,7,) with v1 > v > ... > =, gives rise to

a face Fs containing a, where § = S; U Sy U ... U S is the partition of {1,... ,n}
into the subintervals on which 4’s do not change.
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256 V1. Faces of Polytopes

Let a1 = (a1,...,as) € R* and let a; = (o, ,41,...,0) € R% for
i=2,...,k. Geometrically, the face Fs is the direct product

FS:P(CL1) X oo, xP(ak)

of the permutation polytopes P(a;) C R*. Since a has distinct coordinates, the
coordinates of each a; are distinct as well, so by Problem 4, Section I1.6.1, we have
dim P(a;) = s; — 1 for i = 1,... , k. Therefore,

k k k
dim Fs =Y dim P(a;) =Y (s; —1) = (Zsi) —k=n—k

i=1 i=1 i=1

Hence we have described the faces F' of P containing a. Let o € S;, be a permutation
and let o(x) =y for x = (§1,...,&,) and y = (1,... ,mn) provided n; = &, -1(;).
Then the action x — o(z) is an orthogonal transformation of R™. Hence we
conclude that F' is a face of P if and only if for some permutation o, the set o(F)
is a face of P containing a. If o(F) = Fs for § = S; U...U Sk, then F = Fg/,

where 8’ = 071(S1) U... U0 (Sk). This completes the proof. O
PROBLEMS.

1°. Let a = (au,...,a,) be a vector such that a; > as > ... > «, and let
P(a) be the corresponding permutation polytope. Let b = (f51,. .., 5n) be a vertex

of P. Let b’ be another vertex of P. Prove that the interval [b,d'] is an edge of
P if and only if b’ is obtained from b by swapping two values 3; and j3; such that
Bi = oy and Bj = apqq forsome k=1,... ,n—1.

2°. Prove that the facets of the permutation polytope can be described as
follows. Let us choose a partition S of the set {1,...,n} into two non-empty
disjoint subsets S and S>. Let s; = |S1| be the cardinality of S; and let sy =
|S2| be the cardinality of Si, so that s; + s = n. Let Fg be the convex hull
of all points b obtained by permuting the numbers a;,...,as, in the coordinate
positions prescribed by S; C {1,... ,n} and permuting independently the numbers
Qg +1,- - ,Qy in the coordinate positions prescribed by Sy C {1,...,n}. Prove
that Fs is a facet of P(a) and that every facet of P(a) has the form Fs for some
partition § = 57 U Ss.

3. Let a € R™ be a vector with distinct components and let P(a) be the
corresponding permutation polytope. Let fi be the number of k-dimensional faces
of P. Prove that

n!
fre = Z — .
myl- My _!

mi+...+My_p=n
mi,... ,My_f are positive integers

4*. Let us choose a = (n—1,n—2,...,1,0), a € R"™. The polytope P,_1 = P(a)

is called the permutohedron. Prove that the permutohedron is a zonotope, that is,
the Minkowski sum of finitely many (namely, (g)) straight line intervals.
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2. The Facial Structure of the Permutation Polytope 257

Hint: Let eq, ... ,e, be the standard basis of R™. For ¢ < j let

1 1 1 1
I;; = conv(§el- — 5% 5%~ 562').

Then )
n—
P, 1= 5 (1,...,1)-’-2]@‘,

1<j

where “Y” stands for the Minkowski sum; see Example 7.15 of [Z95].

5. Let a € R™ be a vector with distinct components and let P(a) be the
corresponding permutation polytope. Let us consider P(a) as a full-dimensional
polytope in its affine hull and let us choose the origin in the interior of P(a).
Describe the combinatorial structure of the polar @ to P(a).

Hint: Combinatorially, @ is the first barycentric subdivision of the simplex.
Namely, we start with the standard (d — 1)-dimensional simplex A (see Problem 1
of Section 1.2.2) considered as a convex body in its affine hull, choose a point pg in
the interior of every face F' of A and slightly push pp “outward” by the distance
ed=dim I for o sufficiently small € > 0.

As a corollary of Proposition 2.2, we obtain a theorem of R. Rado (1952),
which gives us a useful criterion for checking whether a given point belongs to a
given permutation polytope.

(2.3) Rado’s Theorem. Leta = (ai,...,ay) be a point, where a; > ag > ... >
oy, and let P(a) C R™ be the corresponding permutation polytope. Let b € R™ be
a point and let By > B2 > ... > B, be the ordering of the coordinates of b. Then
b € P(a) if and only if

k k
Zﬂiﬁzai for k=1,... ,n—-1
i=1 i=1

and

n n
E 5i=§ Q.
=1 i=1

Proof. We prove the result assuming that a; > ag > ... > a,. The proof in the
general case follows then by a continuity argument.

We know that dim P(a) = n — 1 and that P(a) lies in the affine hyperplane

H:{(gl,...,gn): §1+...+§n:a1+...+an}

(see Problem 3, Section I1.6.1). Problem 2 of Section 2.2 implies that the facets Fs
of P are indexed by the partitions & = S1US; of the set {1,... ,n} into non-empty
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258 V1. Faces of Polytopes

disjoint subsets. Suppose that |S1]| = s and |S2| = s2, 50 $1, 82 > 0 and 1+ 52 = n.
The facet Fis is a convex hull of the points = o(a), © = (&1, ... ,&,) such that

{51-: ieSl}:{al,...,asl} and {fi: /L.ESQ}:{O{SI+17...,CYS”}.

It follows then that in H the facet Fs is defined by the inequality

(2.3.1) Sa<y

€51 i=

since (2.3.1) is trivially satisfied on all vertices of P and is sharp on the vertices
from Fs. Lemma 1.5 implies that b € P(a) if and only if b € H and b satisfies the
inequality (2.3.1) for every facet Fs of P. Since for every subset S; C {1,...,n}

we have o
S Bi<> B
=1

€S, i=
the result follows. O

3. The Euler-Poincaré Formula

In this section, we prove a classical relation for the number of faces of an arbitrary
polytope. Throughout this section, we use the Euler characteristic x (see Section
L.7). For a set A C RY, we write simply x(A) instead of x([A]). In what follows,
we agree that a polytope P is a face of itself. By convention, the dimension of the
empty face is —1.

(3.1) Lemma. Let P C R? be a d-dimensional polytope, let OP be the boundary
of P and let int P be the interior of P. Then

x(OP) =1+ (—=1)*' and x(int P) = (—1)%

Proof. Since P is the union of faces of P, the indicator function [0P] belongs to
the algebra KC(R?) of compact convex sets, so x(OP) is defined. We prove the first
identity by induction on d. If d = 1, then P is an interval, so 0P consists of two
points and x(9P) = 2.

Let us introduce a family of hyperplanes H, = {(51, &) &g = T} for
7 € R. By Lemma 1.7.5,

X(OP) = %(X(ap NH)— Tim (PN HH)).

Let

Tiin = Héig &g and  Tax = meag &4
x xr

For any 7min < 7 < Tmax, the intersection P N H. is a (d — 1)-dimensional poly-
tope and (P N H,) = OP N H,. Therefore, x(OP N H,) = 1+ (—1)?"2 for all
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3. The Euler-Poincaré Formula 259

T € [Tmins Tmax). Furthermore, for 7 = 7ynin and 7 = Tyax, the intersection PN H. is
a face of P lying in 9P. Therefore, x(OPNH,) = 1 for 7 = Typax OF T = Tiin. Finally,
for 7 > Tmax and 7 < Tmin, the intersection P N H., is empty, so x(P N H.) = 0.

T Vmax °
T Tmin
Figure 71. The boundary of a polytope and its “slices”
Summarizing,
x(OP)=1-(1+(-1)" ) +1=1+ (-4,
as claimed. Now we observe that [int P] = [P] — [0P] and hence

x(int P) = x(P) = x(9P) = 1 =1 — (~1)*"* = (~1)".

Now we are ready to obtain the Euler-Poincaré Formula for polytopes.

(3.2) Corollary (The Euler-Poincaré Formula).

Let P C R? be a d-dimensional polytope and let f;(P) be the number of
i-dimensional faces of P. Then

¥
L

(D' filP) = 1+ (1",

s
I
=)
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260 V1. Faces of Polytopes

Proof. For every (non-empty) face F of P, including P itself, let int F' be the
interior of F considered in its affine hull (in particular, if F' is a vertex of P, then
int F = F). Then we can write:

P = lint 7,

F

where the sum is taken over all non-empty faces F' of P including P; cf. Figure 72.

Figure 72. Writing a polytope as the sum of the interiors of the faces

Let us apply the Euler characteristic x to the both sides of the identity. By
Lemma 3.1, x[int F] = (—1)4™ ¥ and the result follows. O

The first complete proof of Corollary 3.2 was, apparently, obtained by H.
Poincaré in 1893 (using methods of algebraic topology). A somewhat incomplete
proof was given by L. Schlafli in 1852. The formula for d < 3 was known to L.
Euler.

(3.3) Definition. Let P be a d-dimensional polytope. The d-tuple (fo(P),...,
fd_l(P)), where f;(P) is the number of i-dimensional faces of P, is called the
f-vector of P. By convention, f_;(P) = f4(P) = 1.

PROBLEMS.

1. Let P Cc R? be a d-dimensional polytope and let H C R? be an affine
hyperplane passing through an interior point of P and not containing any of the
vertices of P. Let H, be an open halfspace bounded by H and let f;" be the
number of i-dimensional faces contained in H,. Prove that

2. Let P C R? be a d-dimensional polytope and let £ : R — R be a linear
functional, which takes different values on different vertices of P. For a vertex
v of P, let us denote by f the number of i-dimensional faces F' of P such that
¢(v) = max{{(x) : x € F}. Prove that

A1 1 if ¢(v) is the minimum of ¢ on P,
(=1)ifp =< (=141 if £(v) is the maximum of ¢ on P,
=0 0 otherwise.
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3. The Euler-Poincaré Formula 261

3. Let P be a d-dimensional polytope and let F' C P be its k-dimensional face.
Let f;(F,P) denote the number of j-dimensional faces of P that contain F. Prove
that

d—
Z ) fi(F, P) = (=1)"".

4. Let P ¢ R? be an unbounded d-dimensional polyhedron, which does not
contain a straight line. Let f?(P) be the number of bounded i-dimensional faces of
P, let f° be the number of unbounded i-dimensional faces of P and let f;(P) =
f2(P) + f7°(P) be the total number of i-dimensional faces of P. Prove that

U
—

d

d
CVP)=1, Y (~)TEP)=1 and Y (=1)'fi(P) =0.
=0

i=1

s
Il
o

5. Let P C R? be a 3-dimensional polytope. Let us define the curvature r(v)
at a vertex v of P as follows. Let Fi, ..., F,, be the facets containing v. Then F;
is a planar polygon and let «; be the angle at the vertex v of F;. Let

m
v) =27 — Z Q.
i=1
Prove the Gauss-Bonnet Formula:

Z k(v) = 4m,

v

where the sum is taken over all vertices v of P.

Remark: The general Gauss-Bonnet Formula asserts that the value of the sim-
ilar sum taken over the vertices of an oriented polyhedral 2-dimensional surface
S is 2mx(S), where x is the Euler characteristic. For smooth surfaces the sum is
replaced by an integral.

6. Let us fix d > 1. In R? consider the set of all f-vectors of d-dimensional
polytopes. Prove that the affine hull of this set is the hyperplane Z?;()l (=1)if; =
14 (=1)471. In other words, prove that there are no linear relations for the numbers
fi of i-dimensional faces other than the Euler-Poincaré Formula, which would hold
for all d-dimensional polytopes.

7. A finite set P = {Pi Cc R e I} of distinct polytopes in R? is called a
polytopal complex provided the following two conditions are satisfied: for any two
polytopes P;, P; € P, the intersection F; N P; is a face of both F; and P; and if
P, € P and F is a face of P;, then F' € P. The union

|P\=Upi

el

is called the support of P.
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262 V1. Faces of Polytopes

Let P be a polytopal complex, let |P| C R be its support and let f;(P) be the
number of i-dimensional polytopes in P. Prove that

d

X(IP) =D (=1)"f:(P).

i=0
8. Let P C R? be a d-dimensional polytope. Prove that

(=1)fint P = Y (=" F[F],

F

where the sum is taken over all faces F' of P, including P.

4. Polytopes with Many Faces: Cyclic Polytopes

Our goal is to construct polytopes with many faces. To this end, we modify the
definition of the moment curve; see Section I11.9.1.

(4.1) Definition. Let us fix an interval, say, [0,1] C R!. Let
g(r) = (r,7%,... 7% 0<7<1

be a curve in R?. Let us pick n distinct points 0 < 7 < o < ... < 7, < 1 and let
v; = q(7;) for i =1,... ,n. The polytope

C(d,n) = conv(vy,...,v,)
is called the cyclic polytope.

Although the construction depends on how the points 7, < 70 < ... < 7, are
chosen, we will see soon that the facial structure of C(d,n) is independent of the
choice of the points as long as their number n is fixed.

PROBLEMS.

1°. Prove that each affine hyperplane H C R? intersects the moment curve
q(7) in at most d points.

2°. Prove that dim C(d,n) =d for n > d + 1.

It turns out that any subset of at most d/2 vertices of C(d,n) is the set of
vertices of some face of C'(d, n). For example, every two vertices of the 4-dimensional
polytope C(4,n) are neighbors (the endpoints of an edge).

(4.2) Proposition. Let C(d,n) = conv(vy,...,v,) be a cyclic polytope. Let
I C {1,...,n} be a set such that |I| < d/2. Then F = conv(v; : i € I) is a
face of C(d,n).
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4. Polytopes with Many Faces: Cyclic Polytopes 263

Proof. We will find a non-zero vector ¢ = (y1,...,74) and a number « such that
(c,vy=a for i€l and (c,v) <a for i¢l.

This would clearly imply that F is a face of C(d, n).

Let I = {iy,d9,...,ir}, hence k < d/2. Let us consider a polynomial p of
degree d in T:

p(T) = _Td72k(7— - Ti1)2 o (T - Tik)z'

Hence p(1;) =0 for i € I and p(7;) <0 fori e {1,... ,n}\ I. Let us write
p(7) = yar? + ya 1t L m — @
and let ¢ = (71,...,74). Then
<c, q(7)> =T+l 4+ . Fyrd =p(r) +a.

Hence (c,v;) = a for i € I and (c,v;) < « for i ¢ I and the result follows. O

PROBLEMS.

1. Let P = conv(vy,...,v,) C R? be a d-dimensional polytope with n vertices
and let k > d/2. Prove that if every k vertices v;,, ... ,v;, are the vertices of a face
of P, then n =d+ 1.

Hint: Use Radon’s Theorem (see Theorem 1.4.1).

2. Let I C {1,...,n} be a set, |I| = d. Prove that F' = conv(v; : i € I) is
a facet of C'(d,n) if and only if Gale’s evenness condition is satisfied: every two
elements ¢, 7 which are not in I are separated by an even number of elements from

1.
— OO0 0000 O 00O e —
Figure 73. Example: white dots are not in I; black dots are in I.
Gale’s condition is satisfied.
3. Describe the faces of the polytope C(4,n).
4*. Prove that for 1 < k < d — 1, the number f; of k-dimensional faces of
C(d,n) is

. { S n (Y (L) i dis odd,

SUL L) i diseven

5. Let us define a closed curve

o(r) = (Sin T,co0sT,sin 27, cos 27, ... ,sin kT, cos k7)7 0<r<2orm
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inRY, d =2k Let 0 <7 <7 <...<7, <21 andlet v; = ¢(r;). Let
P = conv(vy,...,v,). Prove that P and C(d,n) have the same facial structure.
In particular, the facial structure of P does not depend on the choice of 0 < 7 <
... < Tp < 2w and the cyclic permutation vy — vy — ... —> v, — v gives
rise to a permutation of faces of C'(d,n).

The cyclic polytope C(d,n) has the following important property: among all
polytopes in R? with n vertices, the polytope C(d,n) has the largest number of
faces of each dimension k =1,... ,d — 1. Our next goal is to sketch a proof of this
result.

5. Simple Polytopes
In this section, we introduce an important class of polytopes.

(5.1) Definitions. A d-dimensional polytope P is called simple if every vertex
v of P belongs to exactly d facets of P. In particular, suppose that a polytope
P C R? with dim P = d is defined as a d-dimensional bounded polyhedron,

P:{zeRd: (¢iyx) < B; for i:l,...,m}.

Then P is simple provided for every vertex v of P the set I(v) = {i: {(¢;,v) = B;}
of inequalities that are active on v consists of precisely d elements (cf. Theorem
11.4.2).

PROBLEMS.
1°. Prove that the cube I = {x ERY: —1<g < 1lfori=1,... ,d} is a

simple polytope and that the (hyper)octahedron O = {z € R : [ ]+...+ || < 1}
is not simple for d > 2.

2. A polytope which is the convex hull of affinely independent points is called
a simplez. Let P C R? be a polytope such that 0 € int P. Prove that P is simple
if and only if every facet of P° is a simplex (such polytopes are called simplicial).

3. Prove that if a polytope is both simple and simplicial (see Problem 2 above),
then it is either a simplex or a polygon.

4°. Let us fix a vector a = (o, ... ,aq) with distinct coordinates and let P(a)
be the corresponding permutation polytope (see Section 2). Prove that P(a) is a
simple (d — 1)-dimensional polytope.

5. Prove that the cyclic polytope C(d, n) is simplicial.

6. Let P C R? be a polytope, let v be a vertex of P and let ui,... ,u, be
the neighbors of P. Suppose that £ : R? — R is a linear functional such that
l(v) > £(u;) for i = 1,... ,n. Prove that the maximum of ¢ on P is attained at v.

Locally, in the neighborhood of every vertex, a simple d-dimensional polytope
P looks like the standard non-negative orthant

Ri:{(gl,...,gd): & >0 for z’:l,...,d}.

The following result summarizes some useful properties of simple polytopes.
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(5.2) Proposition. Let P C R? be a d-dimensional simple polytope. Then

1. Every vertex v of P has precisely d neighbors uy, ... ,uq.
2. For every vertex v of P and for every k < d neighbors u;,, ... ,u;, ofv there
exists a unique k-dimensional face F' of P containing v and wi,, ... ,u;,.

3. The intersection of any k < d facets of P containing v is a (d — k)-
dimensional face of P.

4. Letl:R? — R be a linear functional such that £(u;) < £(v) for all neighbors
u; of some vertex v of P. Then the maximum of { on P is attained at v.

5. FEwvery face of P is a simple polytope.

Proof. Let
P:{xGRd: (¢iyx) < B; for i:l,...,m}

and let v € P be a vertex. Translating P, if necessary, we may assume that v = 0 is
the origin, and changing the basis, if necessary, we may assume that the inequalities
that are active on v are & > 0 for i = 1,... ,d. Thus P is the intersection of the
non-negative orthant R‘i = {(51,... €4) t & >0fori=1,... ,d} with finitely
many halfspaces containing the origin in their interior.

Figure 74

To prove Part 1, note that v belongs to exactly d edges; the i-th edge is the
intersection of P with the hyperplane > ki &; = 0. The other endpoints of these

edges are the neighbors uq, ... ,uq of v. Thus all but the ¢-th coordinate of u; are
0 and the i-th coordinate of u; is positive. Let us prove that there are no other
edges with the endpoint v = 0. Indeed, suppose that ¢ = (71,...,74) is a vector

such that 0 = (c,v) > (c,z) for all z € P, so that F = {z : (c,z) = 0} is a face
of P containing v. Substituting x = wu;, we get that v; < 0 for i = 1,... ,d. Then
F = {x e P: Zi:’%’<0 §i = 0}, which is an edge of P if and only if all but one ~;
are equal to 0.

To prove Part 2, note that F' is the intersection of P with the hyperplane
Ejs'fil,m VK gj =0.
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To prove Part 3, we observe that the i-th facet is defined by the equation &; = 0.
Therefore, the intersection of the facets with the indices i1, is,... , i is the face F
defined by the equation Zj:il)_” i, & = 0. Clearly dim F' = d — k, since F’ contains
a point where &; > 0 for j # i1,... 1.

To prove Part 4, assume that £(x) = y1& + ... + va€q. Hence we have £(u;) <
{(v) = 0, so all v;’s are negative. Therefore {(z) < 0 for any z € RY and ¢(z) = 0
if and only if z = v = 0.

To prove Part 5, it suffices to prove that if F' is a facet of P, then F is a
(d — 1)-dimensional simple polytope. Let us choose a vertex v of F. Then v is a
vertex of P and there are exactly d facets G1,... ,G4 of P containing v. Without
loss of generality, we may assume that F' = G4. As above, we may assume that
v = 0 and that G; is defined by the equation § = 0. Then FNG;,i=1,...,d—1,
are the facets of F' containing v (cf. Part 3). O

Note that Part 4 of Proposition 5.2 holds for all (not necessarily simple) poly-
topes; cf. Problem 6 of Section 5.1.

PROBLEMS.

1*. Let P ¢ R? be a d-dimensional polytope with n facets. Construct a
simple d-dimensional polytope P C R? with n facets such that f;(P) < f;(P) for
1=0,...,d—2, where f; is the number of i-dimensional faces.

Hint: Suppose that

Let
]3:{37: (ci,x>§5i for i:l,...,n}7

where 3; are generic small perturbations of £3;.

2°. Prove that every face of a simplicial polytope is a simplex (see Problem 2,
Section 5.1).

3. Prove that a d-dimensional polytope is simple if every vertex of the polytope
has precisely d neighbors.

4. Let P be a simple d-dimensional polytope. Prove that dfy(P) = 2f1(P).

5. Let P be a 3-dimensional simple polytope. Then the facets of P are polygons
and let py be the number of k-gons among its facets. Prove that 3ps 4+ 2ps + ps =

6*. Let pg for k > 2,k # 6 be non-negative integers such that 3ps + 2ps + p5 =
12 + Ek27(k — 6)px. Prove that for some pg there exists a simple 3-dimensional
polytope whose facets consist of py k-gons for k = 3,4,5,....

Remark: This is Eberhard’s Theorem; see Section 13.3 of [Gr67].
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6. The h-vector of a Simple Polytope. Dehn-Sommerville
Equations

The information about the number of faces of a simple polytope is best encoded by
its h-vector.

(6.1) Definition. Let P be a d-dimensional simple polytope and let f;(P) be the
number of the i-dimensional faces of P (we agree that fy(P) =1). Let

d

_ ik (V) _
hi(P) = 2(_1) (k) fi(P) for k=0,....,d,
|
where my___m is the binomial coefficient.
n nl(m —n)!

The (d + 1)-tuple (ho(P), ... ,ha(P)) is called the h-vector of P.
(6.2) Lemma. Let P be a d-dimensional simple polytope. Then
Lk
fi(P) = kz:: (i)hk(P) for i=0,...,d.
Furthermore, the numbers hy,(P) are uniquely determined by the above equations.
Proof. Let us introduce two polynomials in one variable 7:
d

f(r)=>_fi(P)r" and h(r)=

=0

hi(P)7T.

=
Il &
o

Then the equations of Definition 6.1 are equivalent to the identity f(7 —1) = h(7),
whereas the equations of Lemma 6.2 are equivalent to the identity f(7) = h(r +1).
The result now follows. O

We observe that the expession of f;(P) in terms of hy(P) is a linear combination

with non-negative coefficients. Therefore, a bound for hy(P) for k =0, ... ,d easily
implies a bound for f;(P) for i =0,...,d. The following is the main result of this
section.

(6.3) Theorem. Let P C R? be a simple d-dimensional polytope. Let £ : R — R
be a linear functional such that £(v;) # €(v;) for every pair of neighbors v;,v;. For a
vertex v of P let us define the index of v with respect to £ as the number of neighbors
v; of v such that £(v;) < £(v). Then for every 0 < k < d the number of vertices of
P with index k with respect to £ is equal to hy(P). In particular, this number does
not depend on the functional £.
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Proof. Let us count the i-dimensional faces F' of P. On one hand, we know
that this number is f;(P). On the other hand, on every i-dimensional face F'
let us mark the unique vertex v € F where the maximum of ¢ on F' is attained:
¢(v) = maxgep £(x) (cf. Part 4 of Proposition 5.2). Let us see how many times a
given vertex v € P gets marked.

Suppose that the index of v is equal to k > i. Then there are exactly k£ neighbors
v; of v for which £(v;) < €(v) (we call them the lower neighbors of v as opposed to
the d — k neighbors v; for which ¢(v;) > ¢(v) and which we call the upper neighbors
of v). By Part 2 of Proposition 5.2, for any i of the lower neighbors there exists
a unique i-dimensional face F' containing them and by Part 4 of Proposition 5.2,
¢ attains its maximum on F at v. Conversely, if F' is an ¢-dimensional face such
that the maximum of £ on F' is attained at v, then v should have ¢ neighbors v;
(see Parts 5 and 1 of Proposition 5.2) and for every such neighbor v; we must have
{(vj) < €(v). In particular, the index of v with respect to £ must be at least 1.

Summarizing, we observe that every vertex v of index k > i is marked precisely
.| times and that the vertices whose indices are smaller than ¢ are not marked
)

at all. Denoting for a moment by h(P,¢) the number of vertices of P whose index
with respect to £ is k, we conclude that

fi(P)—zd:(k)hk(P,e) for i=0,...,d

1

k=1
3
:
! v
2 l 2
|
| 1
l |
P V2
1 A RN 1
0

Figure 75. Example: a polytope P, a linear function ¢ and a vertex v.
The numbers show the index of the corresponding vertex. The arrows
show the direction along which ¢ decreases. We have h3(P) = 1, ho(P) =
3, h1(P) = 3 and ho(P) = 1. There are two edges (bold) and one 2-
dimensional face (shaded) with the maximum of ¢ attained at v.
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By Lemma 6.2, the numbers hy(P,{) are uniquely determined by the above
identities and must coincide with hy(P). O

(6.4) Corollary (Dehn - Sommerville Equations). Let P be a simple d-dimen-
stonal polytope. Then

hi(P) = hq—r(P) for k=0,...,d.

Proof. Let us choose a linear functional ¢ : R? — R such that ¢(v;) # £(v;) for
any two neighboring vertices v;,v; of P. Then hy(P) is the number of vertices of
P that have index k with respect to ¢ (Theorem 6.3). Applying Theorem 6.3 with
the functional —¢, we conclude that the number of vertices of P with index d — k
with respect to —¢ is equal to hg—(P). The proof is completed by the observation
that the index of a vertex with respect to /¢ is k if and only if the index of the vertex
with respect to —¢ is d — k. O

The relations (in a different form) were found by M. Dehn in 1905 for d < 5
and for an arbitrary d by D. Sommerville in 1927. The idea of the above proof is
due to P. McMullen; see [MShT71].

PROBLEMS.

1°. Prove that 37 _ hy(P) = fo(P).

2°. Let P be a simple d-dimensional polytope. Check that the equation
ho(P) = hq(P) is the Euler-Poincaré Formula for P.

3°. Prove that hy(P) > 0 for every simple polytope P.

4. Compute the h-vector of a d-dimensional simplex (the convex hull of d 4 1
affinely independent points in R?).

5. Let P be a simple 3-dimensional polytope. Prove that the Dehn-Sommerville
equations for P are equivalent to fo — f1 + fo =2 and 3fy —2f1 = 0. In particular,
the number of faces of a simple 3-dimensional polytope is determined by the number
of vertices.

6. Let P be a simple 4-dimensional polytope. Prove that the Dehn-Sommerville
equations for P are equivalent to fo — f1 + fo — fs = 0 and f; = 2fp.

7. Let I = {(fl, &l 06 < 1} be a d-dimensional cube. Prove that
he(I) = ({) for k=0,... ,d.

8. For a permutation o of the set {1, cey n}, let us define a descent as a number
i=2,...,nsuch that (i) < o(i — 1). Let E(n, k) be the number of permutations
having precisely k — 1 descents, k = 1,... ,n. Let a = (aq,...,a,) be a point

with distinct coordinates ay > ... > «, and let P = P(a) be the corresponding
permutation polytope (see Section 2). Then P(a) is a simple (n — 1)-dimensional
polytope (see Problem 4, Section 5.1) and one can define hi(P) for k =0,... ,n—1.
Prove that hy(P) = E(n,k+1) and that E(n,k) = E(n,n—k+1)fork=1,... ,n.
The numbers E(n, k) are called Fulerian numbers.
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7. The Upper Bound Theorem

In this section, we sketch a proof of the Upper Bound Theorem, which tells us the
maximum number of faces that a polytope of a given dimension and with a given
number of vertices (equivalently, facets) may have. The proof below belongs to
P. McMullen (1970). More precisely, McMullen gave a detailed proof which is, in
a sense, dual to our approach, but he also remarked about what the dual (to his
proof, that is, our proof) looks like.

(7.1) Lemma. Let P be a d-dimensional simple polytope and let F be a facet.
Then F' is a (d — 1)-dimensional simple polytope and

hi(F) < hg(P) for k=0,...,d—1.

Moreover, if the intersection of every k+1 facets of P is non-empty, then hy(F) =
hi(P).

Proof. Part 5 of Proposition 5.2 implies that F' is a simple polytope. Since F'is a
facet of P, there is a linear functional £ and a number « such that ¢(x) > « for any
x € P and {(z) = « if and only if z € F. In particular, £(v) > « for any vertex v
of P that is not in F. Let us perturb ¢ —s ¢ slightly so that ? has different values
on different vertices of P and ¢(v) > f(u) for every pair of vertices u and v of P,
where v ¢ F and u € F.

Figure 76. a) A polytope P, a facet F of P and a linear function
¢ attaining its minimum on F, b) a perturbed linear function ¢. Now
every vertex of the polytope acquires an index.
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Theorem 6.3 asserts that hy(P) (resp. hi(F)) is the number of vertices of P
(resp. of F) that have index k with respect to £. Let v be a vertex of F of index k.
Then v has d — 1 neighbors u1,... ,uq_1 in F and precisely k of them produce a
smaller value of £. As a vertex of P, v has one additional neighbor ug ¢ F, where
we have £(uq) > £(v). Therefore, the index of v in P is also k. Hence we proved
that hk(F) § hk(P)

Suppose that the intersection of every k facets of P is non-empty. Suppose that
v is a vertex of P of index k and v is not in F'. There are d— k upper neighbors, say,
Uk41,--- ,Uq Of v such that Z(ul) > Z(v) foralli = k+1,...,d. Then, by Part 2
of Proposition 5.2, there is d — k-dimensional face G containing v and ug41, ... ,uq
and by Part 4 it follows that { achieves its minimum value on G at v. Moreover,
using Part 3 of Proposition 5.2, we can represent G as the intersection of k facets,
G = F,N...NFy, where F; is a facet of P containing v and all but u; of its lower
neighbors. Then the intersection FNFyN...NF, = FNG is non-empty, and hence
we must have g(x) > f(v) for some € F, which is a contradiction; see Figure 76.

[
\
\
\
9
;o
I
/
/
/
X /
‘\ 7
F S . Ve
Figure 77. A vertex v, its upper neighbors ug41,...,uq and a face

G containing them all. For # € G N F we must have £(z) > £(v), which
is a contradiction.

The contradiction shows that there are no points of index k outside of F' and
hence hy(F) = hi(P). O

(7.2) Lemma. Let P be a simple d-dimensional polytope. Then

> hi(F) = (d = k)hye(P) + (k + 1)hi41(P).

F is a facet of P
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Proof. To prove the formula, let us choose a linear functional ¢, which attains
different values at neighbors in P. By Theorem 6.3, the left-hand side of the
formula counts the vertices on the facets of P that have index k relative to the
facet. Let us see how many times a given vertex v of P gets counted. There are
exactly d facets of P containing v and each such facet F' of P contains all but one
neighbor of v (see Part 2 of Proposition 5.2).

If the index of v in P with respect to £ is smaller than &, then there are fewer
than k lower neighbors u; of v with ¢(u;) < £(v), so v is not counted at all in the
left-hand side.

Similarly, if the index of v is greater than k + 1, then every facet F' contains at

least k + 1 lower neighbors u; of v with £(u;) < £(v), and so v is not counted in the
left-hand side.

Figure 78. Example: let kK = 3. In how many ways can we choose a
facet F' so that the index of v relative to F' is k7 a) If there are fewer
than k lower neighbors, there is no F. b) If there are more than k + 1
lower neighbors, there is no F. ¢) If there are k lower neighbors, we can
choose F in d — k ways by choosing an upper neighbor not in F. d)
If there are k + 1 lower neighbors, we can choose F' in k + 1 ways by
choosing a lower neighbor not in F.

If the index of v in P is k, then there are precisely k lower neighbors uq, ... ,ug
of v with £(u;) < £(v). Then there are precisely d — k facets F' of P that contain v
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and all its neighbors except one of d — k upper neighbors. Hence every vertex v of
P of the index k is counted d — k times.

Finally, suppose that the index of v in P is k 4+ 1. Thus v has k + 1 lower
neighbors. Then there are exactly k + 1 facets F' of P such that the index of v
relative to the facet is k. The i-th such facet F' is determined uniquely by the
condition that it contains v and all the neighbors of v except one lower neighbor
u;. Hence a vertex v of P of index k + 1 is counted k + 1 times. The proof now
follows. O

Summarizing, we get
(7.3) Theorem. Let P be a d-dimensional simple polytope with n facets. Then

hi(P) < (”_dzk_1> for k=0,...,d

Moreover, if the intersection of every k facets of P is non-empty, then

he(P) = <nd;€rk1>.

Proof. Combining Lemma 7.1 and Lemma 7.2, we get

nh;(P) > (d —i)h;(P) + (i + 1)hi11(P)

or
—di
hii1(P) < "lTl“hi(P) for i=0,....d,
and the equality holds if every i 4+ 1 facets of P intersect.
Combining it with ho(P) = ha(P) = 1, we get the desired inequality. O

Let C(d,n) C R? be the cyclic polytope and let Q(d,n) be the polar of C(d, n)
with the origin chosen in the interior of C'(d,n). Hence Q(d,n) is a d-dimensional
polytope with n facets and for every k < d/2, the intersection of any k facets of
Q(d,n) is a (d — k)-dimensional face of Q(d, n); cf. Proposition 4.2 and Theorem
1.3. Now we prove the celebrated Upper Bound Theorem which asserts that Q(d, n)
has the largest number of faces of any dimension among all d-dimensional polytopes
with n facets.

(7.4) The Upper Bound Theorem. Let P be a d-dimensional polytope with n
facets and let Q be a d-dimensional simple polytope with n facets, such that for
every k < d/2, the intersection of k facets of Q is a (d — k)-dimensional face of Q.
Then

fi(P) < fi(Q) forall i=0,...,d—1.
Moreover, fori < |d/2],

- E O S 0

k=i k=|d/2]+1
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and fori > |d/2],

(7.42) = (,",)

—1
Proof. The equation (7.4.2) is obvious. By Theorem 7.3,

(7.4.3) m@ = ("

© ) for k=0,...,|d/2].

Combining this with the Dehn-Sommerville equations h(Q) = hg—x(Q) (Corollary
6.4) for k > d/2, we get (7.4.1) from Lemma 6.2.

If P is a simple polytope, then from Theorem 7.3 and (7.4.3), we have
hi(P) < hi(Q) for k < d/2. Combining this with the Dehn-Sommerville equations,
we get hi(P) < h(Q) for all k =0,... ,d. Then by Lemma 6.2, f;(P) < f;(Q) for
alli=1,...,d—1.

The case of an arbitrary polytope P reduces to that of a simple polytope P by
Problem 1, Section 5.2. 0

PROBLEMS.

1. Let us fix the dimension d. Prove that the number of faces of a polytope
P C R? with n facets is O(nl%/2]).

Remark: A simple proof of this fact due to R. Seidel [Se95] goes as follows. It
suffices to bound the number of vertices of a simple polytope P. Let us choose a
generic linear functional ¢. Then every vertex v of P has either at most d/2 lower
neighbors or at most d/2 upper neighbors with respect to £. Consequently, v is
either the highest point or the lowest point of some face F' of P with dim F' < d/2.
Therefore, the number of vertices is at most twice as big as the number of faces F
with dim F' < d/2.

2. Deduce the Upper Bound Theorem for d-dimensional polytopes with n
vertices.

3. Write the inequalities of the Upper Bound Theorem for a 4-dimensional
polytope with n facets and for a 4-dimensional polytope with n vertices.

4*. Let P be a simple d-dimensional polytope. Prove the Unimodality Theo-

Remark: The proof was first obtained by R. Stanley using a technique from
algebraic geometry [St80]. A “convex geometry” proof was later found by P. Mec-
Mullen in [Mc93b] and [Mc96].

8. Centrally Symmetric Polytopes

Let P C R? be a d-dimensional polytope. Suppose that P is symmetric about the
origin (or centrally symmetric), that is, P = —P.
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In this section, we prove that a centrally symmetric polytope must have either
many vertices or many facets or both. Apart from the result itself, the method of
proof is very interesting. For the first time in this chapter we rely on metric and
measure arguments.

The following result was obtained by T. Figiel, J. Lindenstrauss and V.D.
Milman [FLM77].

(8.1) Proposition. There exists a constant v > 0 such that for any centrally
symmetric d-dimensional polytope P with |V| vertices and |F| facets one has

In|V| -In|F| > ~d.
Proof. Let P be a d-dimensional centrally symmetric polytope. Applying a suit-

able linear transformation, we may assume that the maximum volume ellipsoid of
P is the unit ball B = {z : ||lz|| < 1}; see Section V.2. Hence, by Theorem V.2.5,

Bc PcVdB

Let S = {z € R? : ||z = 1} be the unit sphere and let v be the Haar
probability measure on S?~!; see Section V.7.

For x # 0 let us denote by T = z/||«|| the radial projection of x onto the unit
sphere S9~1. Let us choose some ¢ > 0 and consider the set A, C S¢~! defined as
follows:

A= {c €Sl (¢,7) > e forsome wv€ V}.

By Lemma V.7.1, we have
v(A.) < 2|V|exp{—€°d/16}.
We observe that for every ¢ € S¢1\ A,
max{(c,z) : = € P} = max{(c,v): ve V} < Vdmax{(c,7): veV}<e/d
We want to choose an € > 0 so that v(A¢) < 1/3. We can take, say,
e=md 22|V,

where v; > 0 is a sufficiently large number. Then
(8.1.1) max{{(c,z): v € P} < In? V| for every ce S\ A..

Suppose that P is given by a system of linear inequalities

P= {a:e]Rd: (ai,x) <oy for i=1,... ,|F|}

for some a; € R Since P contains the unit ball we must have a; > 0 and,
therefore, using a proper scaling, we can assume that a; = 1 for all 4. Since the
point a;/||a;|| = @; is in P, we must have ||a;]| <1 fori=1,...,|F|. Thus

P:{xeR*lszwgl hri:lwuﬁﬂ}

where J|la;|| <1 for i=1,...,|F|.

Licensed to Georgia Inst of Tech. Prepared on Sun Jan 14 21:00:56 EST 2024for download from IP 188.92.139.72.



276 V1. Faces of Polytopes

Let us choose some § > 0 and consider the set Bs € S?! defined as follows:
Bs = {c es¥l: (¢c,a;) >4 forsome i=1,... ,|F|}
By Lemma V.7.1, we get
v(Bs) < 2|F|exp{—5°d/16}.

Let us choose a ¢ € S\ Bs. Since |la;|| < 1, we conclude that (c,a;) < §
for i = 1,...,|F|. Therefore, the vector z = 6 'c satisfies the system of linear
inequalities (a;,x) < 1 and hence belongs to the polytope P. Hence for every
c € S¥1\ B; we have

max{(c,r): v € P} >4 "

Now we want to choose a § > 0 so that v(Bj) < 1/3. We can take, say,
§ = y2d 212 |F),
where 5 > 0 is a sufficiently large number. Then
(8.1.2) max{(c,z): v € P} > ’ygld% In"2 |F| for every ceS% 1\ Bs.

Since v(A.) < 1/3 and v(Bs) < 1/3, there is a point ¢ ¢ A, U Bs and for such
¢ both (8.1.1) and (8.1.2) are satisfied. Thus we have

—1 4,1, 1 1
77 'dE I [P < It |V,
or, in other words,
In|V|-In|F| > vd,
where 7 = (7172) 7% O

PROBLEMS.

1. Prove that there exists v > 0 such that for any k¥ < [ < d and for any
centrally symmetric d-dimensional polytope P we have In f;-In f, > v(I—k), where
fi is the number of i-dimensional faces of P.

2. Let B C R? be the unit ball centered at the origin. Prove that there exists
an absolute constant v > 0 such that for any polytope P C R? with the property
that B C P C pB one has

I [V]-In|F| > ~yd*/p?,
where |V is the number of vertices of P and |F| is the number of facets of P.

Here are a couple of open problems.

3*. Is it true that any d-dimensional centrally symmetric polytope has at least
3¢ faces?

4*. What is the maximal number of edges that a centrally symmetric 4-
dimensional polytope can have?
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9. Remarks

For combinatorial theory of polytopes, see [Gr67], [MShT71], [Brg83], [Z95] and
[YKKB84]|. For the structure of the permutation polytope and related polytopes,
see [BS96] and [YKKB84]. Rado’s Theorem (Theorem 2.3) and its ramifications
are discussed in [YKK84] and [MO79]. A simple self-contained proof of the
Euler-Poincaré Formula can be found in [L97]. Our discussion of simple polytopes
(Sections 5-7) follows [Brg83]. The necessary and sufficient algebraic conditions for
a d-tuple (fo,..., fa—1) to be the f-vector of a simple (or simplicial) polytope are
known. They were conjectured by P. McMullen, the necessity part was established
by R.P. Stanley [St80] and the sufficiency part was proved by L.J. Billera and C.W.
Lee [BL81].
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Chapter VII

Lattices and Convex
Bodies

We discuss some discrete aspects of convexity. We define a lattice in Euclidean
space and explore how lattices interact with convex bodies. In this chapter, we
focus on metric rather than combinatorial aspects of this interaction. The landmark
results of this chapter are the theorems of Minkowski and Minkowski-Hlawka with
applications to number theory problems and construction of dense sphere packings
(which are related to coding), flatness results and the Lenstra-Lenstra-Lovész basis
reduction algorithm. Problems address properties of some particular lattices, such
as Z", D,, A,, Es, By and Fg; results on enumeration of lattice points in convex
bodies, such as Pick’s Formula and its extensions; and other interesting results,
such as Doignon’s lattice version of Helly’s Theorem.

1. Lattices

We define the main object of this chapter.

(1.1) Definitions. A set A C R? is called an (additive) subgroup of R¢ provided

e 0 €A,
e xr+y € A for any two x,y € A and

e —x c A for any x € A.

A subgroup A C R? is called discrete provided there is an € > 0 such that the
ball B(0,€) of radius e centered at the origin does not contain any non-zero lattice

279
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280 VII. Lattices and Convex Bodies

point:
B(0,e)NA={0} where B(0,¢)={z: ||z]| <€} forsome €>0.

A discrete subgroup A of RY such that span(A) = RY is called a lattice. The
dimension d is called the rank of A and denoted rank A.

Given a lattice A C R?, a set of linear independent vectors uq,...,uq € A is
called a basis of A if every x € A can be written in the form x = pyug +. .. + pqud,
where p; € Zfori=1,...,d.

Here are some examples.
(1.2) Examples.

(1.2.1) Let Z¢ C R? be the set of points with integer coordinates:
74 = {(51,‘.‘ £ & €L for i=1,... ,d}.
The lattice Z< is called the standard integer lattice.
(1.2.2) Let us identify R? with the hyperplane
H= {(517--- ar1) ERTL & 4+ + Ea 20}

in R Let Ag = Z¥ ' N H, so Aq C R? is a lattice.

[ ] [ ]
o [ ]
[ ] [ ] [ ] o [ ] o
o [ ]
[ ] [ ] .0 [ ] [ ] o .0 o
o [ ]
[ ] [ ] [ ] o [ ] o
o [ ]
[ ] [ ]
a) b)

Figure 79. Lattices a) Z2 and b) As
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(1.2.3) Let us define D,, C Z™,

Dn:{(fla---,fn)i &€eZ for i=1,...,n and

&L+...4+ &, isaneven integer}.

(1.2.4) Let n be an even number and let g = (1/2,...,1/2) € R™. Let us define
D = Dy, U(Dy, + x0), where Dy, +xg = {z +z0 : = € Dy} is a shift of D,, (check
that if n is odd, then the set D; so defined is not a lattice). The lattice Dg is
special and is called Fg.

(1.2.5) Let us identify R” with the hyperplane

H = {(fl,m ,&s) §1+~~+§8:0}
in R®. We define E; = Eg N H, so E; is a lattice in R7.
(1.2.6) Let us identify RS with the subspace L C R®,

L:{(gla'-'7£8): §1+§8=§2+...+§7=0}-

We define Eg = EsN L, so Eg is a lattice in RS.

PROBLEMS.

1°. Prove that a set A C R"™ is a subgroup if and only if A is non-empty and
x —y € A for any two x,y € A.

2°. Let B(zo,€) = {z : |z — mo|| < €} be the ball centered at z( of radius .
Let A C R? be a lattice. Prove that if B(0,¢) N A = {0}, then B(zo,e) N A = {x¢}
for any z¢ € A.

3°. Let A C R? be a lattice and let B(zg,p) = {z : ||z — zo|| < p} be a ball.
Prove that BN A is a finite set.

4°. Construct a subgroup A C R™ which is not discrete.

5. Let uy, ... ,uq € R? be linearly independent vectors. Let
A= {ulul—l—...—i-udud: w; €Z for i=1,... ,d}.

Prove that A is a lattice.

Hint: Construct an invertible linear transformation
T:R? — R?

such that T(Z%) = A. Then T~! is an invertible linear transformation such that
T~Y(A) = Z4. In particular, T~ is continuous.
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6. Check that Z?, Ay, D,, D, Eg, E; and Ej are indeed lattices.
7°. Draw pictures of Dy and As,.

8°. Construct a basis of Z2.

9. Prove that

u = (2,0,0,0,0,0,0,0), us=(—1,1,0,0,0,0,0,0),
(0,—1,1,0,0,0,0,0), uys = (0,0,—1,1,0,0,0,0),
(0,0,0,—1,1,0,0,0), ug = (0,0,0,0,—1,1,0,0),

( 1111111 1)

= 0707()’0)07_17170 d :(_7_7_7_a_a_5_7_
“7 Joand us={55293223

Uz =
Uy =

is a basis of Ejg.

10°. Let uq, ... ,uq be a basis of a lattice A C R?. Let us choose a pair of indices
i # j and let u] = u; + u;, where o € Z. Prove that wi,... ,uj—1, U}, Uit1,... ,Uq
is a basis of A.

11. A set S € R?is called a semigroup provided x4y € S for any two x,y € S.
A set X C S is called a set of generators of S if and only if every s € S can
be represented as a finite sum s = ) p,x, where pu, are non-negative integers.
Prove that every semigroup S C Z possesses a finite set of generators and construct
a semigroup S C Z? which does not have a finite set of generators.

Our first goal is to prove that every lattice has a basis. In fact, we will obtain the

stronger result that for any set of linearly independent lattice vectors by, ... ,bg € A
with d = rank A there is a basis ui,...,uq of A which is “reasonably close” to
by,...,bg. To this end, let us invoke the distance function in R¢:

dist(z,y) = ||z —y|| for any two points x,y € R?
and let
dist(z, A) = in£ dist(z,y) for apoint z€R? andaset AcCR%
IS
First, we prove that given a subspace spanned by lattice points which does not
contain the entire lattice, there is a lattice point with the minimum possible positive

distance to the subspace. In fact, the exact structure of the distance function is
not important here. It could have come from any norm in R%; see Section V.3.

We will use the following notation:

For a real number &, let |£]| denote the largest integer not exceeding & and let

{&=¢6—1&),500<{&} < 1forall &

(1.3) Lemma. Let A C R? be a lattice and let by, ... by € A, k < d, be linearly
independent points. Let L = span(bl, ..., br). Then there exists a point v € A\ L
and a point x € L such that

dist(v, z) < dist(w,y) for every w e A\L and every ye€ L.

In words: among all lattice points not in L, there exists a point closest to L.
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Proof. Let I be the parallelepiped spanned by b1, ... , by:
k
II = {Zaibi5 0<a; <1 for i=1,... ,k}.
i=1

Then II is a compact set. We claim that among all lattice points not in L, there is
a point v which is closest to II.

Indeed, let us choose any a € A\ L and let p = dist(a,II) > 0. Let us consider
the p-neighborhood of II:

II, = {x eR?:  dist(z,II) < p}.
Then II, is a bounded set and since A is discrete, the intersection II, N A is finite

(Problem 3, Section 1.2). Moreover, there are points in II, N A which are not
contained in L (such is, for example, the point a).

Let us choose a lattice point v € II, \ L which is closest to II:
dist (v, IT) < dist(w,II) for every lattice point w € II, \ L.
Let x € II be a point such that
dist(v, z) = dist(v, IT).

We claim that v and x satisfy the requirements of the lemma.

Indeed, let us choose any w € A\ L and any y € L. We can write

k
y= Z vib; for some real ;.
i=1

‘We observe that
k

z= ZL%‘Jbi and w—z

i=1

are lattice points, that w — z ¢ L and that

k
y—z=Y {nbh
i=1

is a point from II. Therefore,
dist(w, y) = dist (w -z, y— z) > dist (w -z, H) > dist (v, H) = dist(v, x)

and the result follows. O
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PROBLEMS.

1. Let A C R? be a lattice, let by,... by € A, k < d+ 1, be lattice points and
let A be the affine hull of {by,... ,bx}. Prove that there is a lattice point with the
minimum possible positive distance to A.

2. Give an example of a straight line L C R? such that

inf dist(z, L) = 0.

z€Z?\L
3°. Let A C R? be a lattice, let uq,...,un € A be lattice points and let
L = span(ul, ... yUp). Let us consider the orthogonal projection pr : R4 — L+

onto the orthogonal complement L of L. Prove that the image A; = pr(A) is a
lattice in Lt.

4°. Let A C R? be a lattice and let by,... by € A be linearly independent
lattice points. Let Ly = {0} and Ly = span(bl, e ,bk) for k =1,...,d. Prove
that for k = 1,... ,d there exists a lattice point uy € Ly \ Li—1 closest to Ly_1.

Now we are ready to prove that every lattice of positive rank has a basis. In
fact, we prove a stronger result.

(1.4) Theorem. Let d > 0 and let A C R? be a lattice. Let by,... ,bg € A be
linearly independent lattice vectors. Let us define subspaces {0} = Lo C L1 C ... C
Ly C R by

Ly = span(bl,... Jop)  for k=1,...,d.

For k = 1,...,d let u be a lattice point in Ly \ Li_1 closest to Ly_1. Then

U, ... ,Uq s a basis of A. In particular, every lattice of positive rank has a basis.
Proof. First, we observe that by Problem 4 of Section 1.3 such points u1,... ,uq
indeed exist. Let A, = AN L. We conclude that Ay is a lattice in L.

We prove by induction on k that w,...,us is a basis of Ag. For k = 1, we
have

u; = a1by  for some «aq # 0.

Let v € A; \ {0} be a point. Then
v = by forsome f(e€R.

We claim that 4 = /a; is an integer. Otherwise, 0 < {u} < 1 and the lattice
point

uy =v—|plur = v — puy + {p}ur = {pur € Ay \ {0}
is closer to the origin than wu;, which is a contradiction. Thus v = pu; for some
1 € Z and hence u; is a basis of Aj.

Suppose that £ > 1. For a point

k
Izz%bn J)ELk,

i=1
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we have
diSt(l‘, Lk—l) = diSt(’}/kbk, Lk—l) = |7k| diSt(bk, Lk—1)~

We have

k
up = Zaibi for some real «; such that ay #0.
=1

Let v € Ag be a point. Then
k
v = Zﬂibi for some f; € R.
i=1

We claim that g = B/ is an integer. Otherwise, 0 < {u} < 1 and the lattice
point
k-1
up = v — [pjur = v — pug + {ptur = {plarby + Z(/Bz — L) ok ) b
i=1
is a point from A \ Ax_1 which is closer to Ly_1 than ug, which is a contradiction.
Thus p € Z and v — puy, € Ax—1. Applying the induction hypothesis, we conclude

that v is an integer linear combination of uq, ... ,u, and the result follows. O
PROBLEMS.

1. Construct bases of A,,, D, D;', Eg and E; (see Example 1.2).

2°. Let uq, ... ,uq be a basis of a lattice A € R?, let Ly, = span(ul7 .. yuy) for

kE=1,...,dand let Ly = {0}. Prove that

lv > min dist(uk, Lr—1)

for every vector v € A\ {0}.
3. Let A C R? be a lattice. Prove that there exists a basis u;, us of A such that
the angle between u; and wusy is between 60° and 90°.

Hint: Choose u; to be a shortest non-zero lattice vector and us to be a shortest
lattice vector such that wuy,us is a basis of A.

4. Let A C R? be a lattice and let by,... by € A be linearly independent
vectors. Prove that there exists a basis u1,... ,uq of A such that
k
Up = Za;ﬂ-bi where 0<ap; <1 for i=1,...,k
i=1
fork=1,...,d.
5. Let A ¢ R? be a lattice and let by,...,bgy € A be linearly independent
vectors. Prove that there exists a basis uy,... ,uq of A such that
k
uy, = Zakibi where 0<agr <1 and |ag| <1/2 for i=1,...,k—1
i=1
fork=1,...,d.

The following convex set plays a crucial role in what follows.
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(1.5) Definition. Let A C R? be a lattice and let uy, ... ,uq be a basis of A. The

set 4
II= {Z%‘Uii 0<aq; <1 for izl,...d}
i=1
is called the fundamental parallelepiped of the basis uq,... ,uq and a fundamental

parallelepiped of the lattice A.
PROBLEM.

1°. Prove that the fundamental parallelepiped is a convex bounded set.

2. The Determinant of a Lattice

We proceed to define an important metric invariant of a lattice.

(2.1) Lemma. Let A C R? be a lattice and let 11 be a fundamental parallelepiped
of A. Then, for each point x € R there exist unique v € A and y € 11 such that

r=v-+y.
Proof. Suppose that IT is the fundamental parallelepiped of a basis uq, ... ,uq of
A. Then ui,...,uq is a basis of R? and every point 2 can be written as x =
aiuy + ... + aqug for some real ay,...,aq. Let
d d
v = ZLaijui and y= Z{ai}ui,
i=1 1=1

where || is the integer part and {-} is the fractional part of a number. Clearly,
veMNyelland x =v+y.

Suppose that there are two decompositions x = v1 +y; and x = vy + yo, where
v1,02 € A and

d d
Y1 = Zaiui and ys = Zﬁiui, where 0<aq;,58;, <1 for i=1,...,d.
i=1 i=1
Then
d
V] — Vg =Yg — Y1 = Z%‘Uz‘, where v, = 8; — a.
i=1
We observe that |v;| < 1 fori =1,...,d and that v; — vo € A. Since uy,... ,uq
is a basis of A, the numbers v; must be integers. Since |y;| < 1, we conclude that
v, =0and o; = 3; for i = 1,...,d. Therefore, yo = y; and hence v = v;. O

(2.2) Corollary. Let A C R? be a lattice and let I1 be a fundamental parallelepiped
of A. Then the translates {H +u:u € A} cover the whole space RY without
overlapping. O

Now we are ready to introduce the most important invariant of a lattice.
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(2.3) Theorem. Let A C R? be a lattice. Then the volume of the fundamental par-
allelepiped of a basis of A does not depend on the basis. It is called the determinant
of A and denoted det A.

For p> 0 let B(p) = {z € R : ||z < p} be the ball of radius p centered at the
origin and let |B(p) N A| be the number of lattice points in B(p). Then

1B
lim L(p) = det A.
oo B(p) N A
In other words, det A can be interpreted as the “volume per lattice point”.

Proof. Let us choose a fundamental parallelepiped II of A. The parallelepiped IT
is a bounded set (see Problem 1 of Section 1.5), so there is a vy such that II C B(v).
Let us choose a p > 7. Let us consider the union

X(p= | @+a).

u€B(p)NA

B(p)

Figure 80. A fundamental parallelepiped II, a ball B(p) and the set
X(p)

By Corollary 2.2, the translates IT + « do not overlap, so

B _ vol X(p)
(2.3.1) vol X (p) = |B(p) N Al - (volII) and (volIl) = B Al
Since II C B(7), we have
(2.3.2) X(p) C B(p+~v) and volX(p) <volB(p—+7).
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Corollary 2.2 implies that for every x € B(p — «y) there is a u € A such that
x € II 4+ u. Then we must have ||z — u|| < v and so u must be in B(p). Hence we
conclude that

(2.3.3) B(p—~) C X(p) and volB(p—-) <volX(p).
Combining (2.3.1)—(2.3.3), we conclude that

vol B(p)

vol vol
ol B(p) > B(p) > (VOlH) ) m_

(ol - ST B =) Z B nA] =

Since vol B(p £7) = (p £+ v)?vol B(1), we have
vol B(p) . vol B(p)

oo volB(p—7) p— oo vol B(p + %)

which completes the proof. O

Lattices of determinant 1 are called unimodular.

PROBLEM.

1. Let u1,...,uq and v1,...,vq be two bases of a lattice A. Suppose that
u; = Z?:l a;jv; and v; = 2?21 Bijuj. Let A = (oy;) and B = (B;;) be the
d x d matrices composed of «;;’s and B;;’s correspondingly. Prove that A and
B are integer matrices and that AB = I is the identity matrix. Deduce that
|det A| = |det B| = 1. Give an alternative proof of the fact that the volume of a
fundamental parallelepiped does not depend on the basis.

(2.4) Definitions. Let A C R? be a lattice. A lattice Ag C A is called a sublattice
of A. For z € A the set z + Ay = {x +y:ye€ Ao} is called a coset of A modulo
Ag. The set of all cosets is denoted A/Ag. The number of cosets of A modulo Ay is
called the index of Ag in A and denoted |A/Ag].

PROBLEMS.
1°. Prove that two cosets of A modulo Ag either coincide or do not intersect.
2. Let A ¢ R? be a lattice and let Ag C A be a sublattice. Prove that there

exist a basis ui,...,uq of A and a basis vq,...,vq of Ag such that v; = \;u; for
some positive integers \; for ¢ =1,... ,d, where A; divides A;41 fori=1,... ,d—1.
Hint: With a basis U = (ul, e ,ud) of A and a basis V :(vl, e ,,vd) of Ag,

let us associate an integer d x d matrix A = Ay v, where A = (aij) and

d
vl-:g aju; for i=1,...,d
i=1

Let us choose a pair U,V of bases such that a;; > 0 and the value of a1 is the
smallest possible among all pairs U, V with positive a;1. Prove that all other entries
a;; must be divisible by a;;. Modify the bases so that a;; = 0 and a;; = 0 for all
1,7 =2,...,d. Repeat the same argument with asa, ... ,agq.
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2. The Determinant of a Lattice 289

(2.5) Theorem. Let A C R be a lattice and let Ag C A be a sublattice. Let Tl
be a fundamental parallelepiped of Ag. Then

det AO
det A~

|A/Ao| = Tlg N A| =

In particular, the number of points from A in a fundamental parallelepiped of Ag
does not depend on the parallelepiped.

Proof. By Lemma 2.1, for every € A there is unique representation x = v + y,
where v € Ag and and y € IIy. Since x € A and v € A, we conclude that y € A.
Hence the points of IIp N A are the coset representatives of A/Ag, so |A/Ag] =
[TIy N A|. In particular, we conclude that |A/Ag| is finite.

Let B(p) = {z € R?: ||z|| < p} be the ball of radius p. From Theorem 2.3,

CBOA_ L BN A _ 1
p—+oo vol B(p) det A p—+oo  vol B(p) det Ao’

We claim that for any = € R?,

BN Mot 1
im = :
p—>Fo0 vol B(p) det Ag

Indeed, let B(—x, p) be the ball of radius p centered at —z. Then B(p)N(Ag+z) =
B(—z,p) N Ag. Since B(0,p — ||z||) € B(—=z,p) C B(0,p + ||z]|), we obtain the
desired limit as in the proof of Theorem 2.3. Since A = {J,cp;, (¥ + Ag) and the
cosets do not intersect (cf. Problem 1, Section 2.4), we have

B(o)nAl= 3 [B(p)N (Ao +2)l.

z€llpNA
Summarizing,
1 o N A det Ao
det A det Ag and A/l det A’
which completes the proof. O
. orollary. Let uy,...,uq € e linearly independent vectors. en the
2.6) C 11 L 74 be l d d Th h

number of integer points in the “semi-open” parallelepiped

d
H:{Zaiui: 0<a; <1 for izl,‘.‘,d}
i=1

s equal to the volume of I, that is, the absolute value of the determinant of the
matriz with the columns uy, ... ,uq.
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290 VII. Lattices and Convex Bodies

Proof. Let Ag be the lattice with the basis uy, ... ,uq (cf. Problem 5, Section 1.2).

The proof follows by Theorem 2.5 since det Z¢ = 1. O
- 7
- - - /
2.3 _ - - /
( s ) - ° e /
/
/
/
-+ ° ° /
/
/
/
T ° ° 3. D
| | |
T T T
0

Figure 81. Example: the parallelepiped spanned by (3,1) and (2, 3)

contains ‘det <3 2

1 3> ‘ = 7 integer points.

PROBLEMS.

1°. Prove that detZ? = 1, det D,, = 2 and det D;} = 1 (cf. Examples 1.2.1,
1.2.3 and 1.2.4).

2. Prove that det 4,, = v/n+ 1 (cf. Example 1.2.2).

3. Prove that det By = /2 (cf. Example 1.2.5) and that det Eg = /3 (cf.
Example 1.2.6).

4. Let oy, ..., g1 be a set of coprime integers and let us identify R? with the
hyperplane H = {(51, oy &ar) s ot Fagiiar = O}. Let A = HNZ¥*! be

aset in H = R?%. Prove that A is a lattice in H and that det A = /a2 + ... + g

Hint: Let a = (ay,...,a441) € Z%" and let n = af + ... + o3, ,. Consider
the lattice A, C R4+,

A= {a; €eZ: & +...+ ag+1€a+1 =0 mod n}

Prove that |Z9T1/A;| = n and use the fact that if uy,... ,uq is a basis of A, then
Ul,... ,Uq,a is a basis of Aj.
5°. Let A C R? be a lattice and let uq,. .. ,uq be a set of vectors from A such

that the volume of the parallelepiped

{alul—l—.‘.—i—adud, 0<a; <1 for z':l,...,d}
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2. The Determinant of a Lattice 291

is equal to det A. Prove that uq,...,uq is a basis of A.

6. The convex hull of finitely many points in Z? is called an integer polygon.
Following the steps below, prove Pick’s Formula: the number of integer points in
an integer polygon with a non-empty interior is equal to the area of the polygon
plus half of the number of integer points on the boundary plus 1.

Figure 82. Example: area = 10.5, number of integer points = 15,
number of integer points on the boundary = 7; Pick’s Formula: 15 =
1054+ 7/2+1

a) Let a,b € Z? be linearly independent vectors and let ¢ = a + b. Prove that
the number of integer points in the triangle conv(0, a, b) is equal to the number of
integer points in the triangle conv(a, b, c).

Hint: Consider the transformation z — ¢ — x.

b) Using Corollary 2.6 and part a), prove Pick’s Formula for integer triangles.

¢) Prove Pick’s Formula in whole generality using part b) and the induction on
the number of vertices of the polygon.

7. Prove that linear independent vectors u,v € Z? constitute a basis of Z? if
and only if the triangle conv(0,u, v) contains no integer points other than 0, % and
.

8. Construct an example of linearly independent vectors u,v,w € Z2 such that

conv (0, u, v,w) contains no integer points other than 0, wu, v, w but u,v,w is not a
basis of Z3.

9. Let A € R? be a compact convex set. For a point a € A, let us define the
solid angle ¢(A,a) of A at a by

L vol(A N B(a,e))
(4, 0) = i, vol B(a, €)
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292 VII. Lattices and Convex Bodies

Let

®(A) =) ¢(Aa).

a€zd

Figure 83. Example: ®(A) =146(1/2)+2(1/8)+1/4=45

a) Let A be an integer polygon (see Problem 6 above). Show that Pick’s
Formula is equivalent to the identity ®(A) = area of A.

b) Prove that ® gives rise to a valuation (see Section 1.7): if Ay,..., A,, C R?
are compact convex sets and aj, ... , o, are real numbers, then

m m

Z%‘[Ai] =0 implies Zai@(Ai) =0.

i=1 i=1
Prove further that ®(A + u) = ®(A) for all u € Z? and that if dim A < d, then
®(A)=0.

c) Let uq, ... ,uq € Z¢ be linearly independent vectors and let
d
A= {Zaiui: 0<a; <1 for i:l,...d}
i=1

be the parallelepiped spanned by ug, ... ,uq. Prove that ®(A + z) = vol A for any
vector = € R?,

d*) Let I; = [ug,v;], us,v; € Z% for i = 1,... ,m be a collection of intervals.
Let A=1I;+...+ I, (such a set A is called a zonotope). Prove that ®(A) = vol A.

Hint: Show that A can be dissected into a union of parallelepipeds and use
Parts b) and ¢) above.

e) Let A C R? be a polytope and let A C Z? be a lattice such that

RY = U (A+u) and int(A + uy) Nint(A + ug) = 0 for distinct uy,up € A. Prove

uEA
that ®(A4) = vol A.
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3. Minkowski’s Convex Body Theorem 293

*) Let A C R? be a polytope with integer vertices. Suppose that for every
facet F' of P there is a point ug € F such that 2up — F = F (in other words, each
facet I has a center of symmetry). Prove that ®(A) = vol A.

g*) Let A C R? be a polytope with integer vertices. Prove that for some
ag(A),...,aq(A)

d
d(mA) = Z ar(A)m* and all positive integers m.
k=0

Prove that ay(A) =vol A, ap =0 and ap = 0 if d — k is odd.
Remark: See [BP99].

3. Minkowski’s Convex Body Theorem

In this section, we prove one of the most elegant and powerful results in convexity,
Minkowski’s Convex Body Theorem. It stands along with Helly’s Theorem (The-
orem 1.4.2) as one of the most glorious results in finite-dimensional convexity. We
start with a result of H.F. Blichfeldt (1914), which states that a set of a sufficiently
large volume contains two points that differ by a non-zero lattice point.

(3.1) Blichfeldt’s Theorem. Let A C R? be a lattice and let X C R be a
(Lebesgue measurable) set such that volX > det A. Then there exist two points
x £y € X such that x —y € A.

Proof. Let II be a fundamental parallelepiped of A. For every lattice point u € A
let us define a set X, C II as follows:

Xu:{yEHS y+ueX}, that is, Xu:((H+u)ﬂX)—u;

cf. Figure 84. Corollary 2.2 implies that the translates X, + u cover X without
overlapping. Hence

ZVOIXU =vol X > vollIl = det A.
u€A

We claim that some two subsets X, and X, have a non-empty intersection for some
lattice points u # v. Indeed, let [X,,] be the indicator function of X,, (see Definition

1.7.1) and let
f= Z[Xu]
uEA

Then

/Hf deZ/H[Xu] dr = vol X, > volIL.

ueN u€A
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294 VII. Lattices and Convex Bodies

Figure 84. A set X, a fundamental parallelepiped II, a lattice vector
u and the set Xy

Therefore, for some x € II we have f(z) > 1, so f(x) > 2 and hence X,NX,, # 0
for some v # v. Let 2z € X, N X,. Then z+u=2x€ X and z+v=y € X. We
observe that x —y = u — v € A and the result follows. O

There are numerous extensions of Blichfeldt’s Theorem. Some of them are
presented below.

PROBLEMS.
1. Suppose that vol X = det A and X is compact. Prove that there exist two
points x # y € X such that  — y is a lattice point.

2. Suppose that vol X > mdet A or vol X = mdet A and X is compact, where
m is a positive integer. Prove that there exist m + 1 distinct points z1,... ,Z;my1 €
X such that z; —z; € A for all 7 and j.

3. Let f be a non-negative integrable function on R? and let A € R? be a
lattice. Prove that there exists a point z € R such that

Zf(u+z)>; f(z) de.

el — detA Rd

Now we are ready to prove Minkowski’s Theorem.

(3.2) Minkowski’s Convex Body Theorem. Let A C R? be a lattice and let
A C R? be a convex set such that vol A > 2¢det A and A is symmetric about the
origin. Then A contains a non-zero lattice point w. Furthermore, if A is compact,
then the inequality vol A > 29 det A can be relazed to vol A > 2% det A.
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3. Minkowski’s Convex Body Theorem 295

Proof. Let ) .
X=-A= {— :
2 2"
Then vol X = 27%vol A > det A. Therefore, by Theorem 3.1, there exists a pair
z,y € X such that x —y = u is a non-zero lattice vector. Now 2,2y € A and since
A is symmetric about the origin, —2y € A. Then, since A is convex,

:CEA}.

1 1
u=x—y= 5(2x)+§(72y) €A

Hence A contains a non-zero lattice point u.

Suppose now that A is compact and that volA = 2%det A. Then for any
1< p<2and pA= {px S A} we have vol(pA) = p?(vol A) > 2¢det A, so there
is a non-zero lattice point u, € pA. Since A is compact, the family {u,} has a limit
point, which has to be a non-zero lattice point from A. O

PROBLEMS.

1°. Construct an example of a convex symmetric non-compact set A C R?,
such that vol A = 2¢ but A does not contain a non-zero point from Z2.

2°. Construct an example of a convex (but not symmetric) set A C R? of an
arbitrarily large volume such that A N Z?2 = ().

3. Let A C R? be a lattice and let A C R? be a centrally symmetric convex set
with vol A > m2" det A for some positive integer m. Prove that A contains at least
m pairs of non-zero lattice points u;, —u; : i =1,...,m.

4 (K. Mahler). Let A C R be a convex body containing the origin as its
interior point. Suppose that for some o > 0 we have —ox € A for all x € A. Prove
that if vol A > (1 + o~ 1)?det A, then A contains a non-zero lattice point wu.

5* (D.B. Sawyer). Show that the inequality of Problem 4 can be relaxed to
volA > (1+0 1)1 — (1 —0)%) det A.
6* (E. Ehrhart). Prove that if A C R? is a compact convex set whose center of

gravity coincides with the origin and vol A > %det A, then A contains a non-zero
lattice point.

7. Prove the following version of the Minkowski Theorem, suggested by C.L.
Siegel. Let A C R? be a compact centrally symmetric convex body which does not
contain a non-zero point from Z%. Then

-1 2
24 = vol A 4 44 (vol A) Z ’ / exp{—2mi(u, z)} dz| .
wezd\fo} 734

Hint: Let
$lx) = > [u+(1/2)A],

ueZa

where [X] is the indicator function of the set X C R%; see Definition 1.7.1. Then ¢
is a periodic function on R? and we may apply Parseval’s Formula to ¢.
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8*. Prove the following Minkowski FExtremal Conver Body Theorem. Let K C
R? be a convex body symmetric about the origin such that vol K = 2%det A and
such that (int K) N A = {0}. Prove that K is a polytope with at most 2(2¢ — 1)
facets.

Hint: Through every non-zero lattice point u, let us draw an affine hyperplane

H, isolating K in such a way that H, and H_, are parallel. Let H," be the closed
halfspace containing K. Let L
P= (1 Hi.

weA\{0}
Then P is a symmetric convex body containing K and not containing any non-
zero lattice point. We must have vol P = 2%det A and hence P = K. Show
that the halfspaces H, which correspond to “far away” lattice points u can be
discarded. Deduce that P = K is a polyhedron. Show that each facet of K
must contain a lattice point in its interior (otherwise, we could increase K). Let
Ao =2A = {2u:u € A} be a sublattice of A. Prove that [A/Ag| = 2¢. Argue that
if the number of facets is greater than 2(2¢ — 1), then there is a pair of lattice points
x # —y in different facets of K such that x —y € Ag. Show that z = (z — y)/2
would have been an interior point of K.

9. Let A C R? be a lattice. Let
K = {x e R%: dist(z,0) < dist(z,u) forall ue A}.

Prove that K is a convex body and that vol K = det A. Prove that int(2K) N A =
{0}. Deduce from Problem 8 that K is a polytope.

10. Let A = Dy (see Example 1.2.3) and let K C R* be the polytope of Problem
9 above. Prove that up to a change in the coordinates, K is the 24-cell of Problem
6, Section IV.1.3.

11. Let A C R? be a lattice and let A C R? be a convex d-dimensional set
symmetric about the origin. Let us define successive minima A1, ..., Ag by

A = inf{T >0: dimspan(TA N A) = k}

a®) Check that Ay < Ao < ... < A4

b) Check that Minkowski’s Convex Body Theorem is equivalent to the inequal-
ity A4 vol(A) < 2¢det A.

c¢*) Prove Minkowski’s Second Theorem: A --- Agvol(A) < 2¢det A.

Hint: To describe the idea of a possible approach, let us first sketch a slightly
different proof of Theorem 3.2 in the case of A = Z?. Let X C R? be a (Jordan
measurable or otherwise “nice”) set and let us consider the map ® : X — [0,1)4,
(&1y.o 5 8a0) — ({&)s- -, {&a}), where {£} is the fractional part of . Prove that
® preserves volume locally. Deduce that if @ is injective, then vol ®(X) = vol X.
Deduce that if vol X > 1, then X — X contains a non-zero lattice point.

Now, let us refine the above reasoning. First, show that it suffices to prove
Minkowski’s Second Theorem in the case of A = Z?. Then show that by changing
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the coordinates, if necessary, we may assume that for any k and for any 7 < A,
non-zero coordinates of the points in 74 N Z% are permitted in the first k — 1
positions only. Let X = (1/2)A. Taking one fractional part at a time, prove that
vol(®(AgX)) = Ay - -+ Agvol X. Deduce Minkowski’s Second Theorem from there.

12. Let A C R? be a lattice and let p : R? — R be a norm; see Section V.3.
Let K, = {z € R?: p(z) < 1}. Deduce from Problem 11, c) above and Problem 5
of Section 1.4 that there is a basis u1,... ,uq of A such that

d
vol(K,) Hp(ui) < (d+1)!det A.
i=1

Remark: General references for Problems 3-9 and 11-12 are [C97] and [GL87].

Before we proceed with applications of Minkowski’s Theorem, we need to do
some volume computations.

The volume of the unit ball in R?. Let B(p) = {z € R?: ||lz|| < p} be the
ball of radius p > 0 and let S¥~(p) = {z € R? : ||1’|| = p} be the sphere of radius
p>0.

We will use the integral
“+oo 5
/ et dt =/

cf. Section V.5.1.

(3.3) Definition. The Gamma function is defined by the formula

+oo
I'(z) = / t"tetdt for x>0.
0

We recall (without proof) Stirling’s Formula:
T\
Nz+1) = 271’1’(—) (1 + O(x_l)) as x — +o0.
e

PROBLEMS.
1. Prove that T'(z 4+ 1) = «I'(x).
2. Prove that T'(z) = (z — 1)! for positive integers z.
3. Prove that I'(1/2) = /7.

(3.4) Lemma. Let 34 be the volume of the unit ball B = {x € R* : |lz|| < 1}.

Then
/2

P Tap
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Proof. Let r4_1 be the surface area of the unit sphere S*! = {z e R? : ||z = 1}
and let
541 = fa e R%: Jaf = p}

denote the sphere of radius p.

Since ||z]|? = & + ... + &2, we have

+
/ e~ ll=l® g — (/ 006_52 df)d =7/,
R4

—00

Using polar coordinates, we can write

2 Foo 2 Foo 2
72 = / e 117 gy :/ e volg_1 S (p) dp = nd,l/ p e dp.
Rd 0 0

Substituting 7 = p? in the last integral, we get

d/2 _ Rd-1 e (d—2)/2 -7 _ KRa-1
Tt = —— T e Tdr= I'(d/2).
2 Jo 2

Therefore,
27Td/2
M T Ry
Now,
Kao1 /2
d — T(d/2+1)

1 1
Bq = / volg_1 Sd_l(p) dp = nd,l/ pd_l dp =
0 0

PROBLEM.
1°. Compute ﬂl, ﬂg, ﬂg and 54.

4. Applications: Sums of Squares and Rational
Approximations

In this section, we discuss some applications of Minkowski’s Convex Body Theorem
(Theorem 3.2). Our first goal is to give a proof of Lagrange’s result that every
positive integer is a sum of four squares of integers. We start with a simple lemma.

(4.1) Lemma. Letcy,...,c, € Z4 be integral vectors and let 1, ... ,Ym be posi-
tive integers. Let

A:{xEZd: (ciy,z) =0 mod ~; for izl,...,m}.

Then A is a lattice and det A < 71 -+ Yo -
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4. Applications: Sums of Squares and Rational Approximations 299

Proof. Obviously, A is a discrete subgroup of R%. Since A contains (7y; - - - v )Z4,
we conclude that A is a lattice. Let us construct the coset representatives of Z¢/A.
For an m-tuple of numbers b = (B, ... , Bm), where 0 < 3; < ~;, let 2, € Z% be a
lattice point, if one exists, such that (¢;,xp) = ; mod ~; for i = 1,... ;m. Thus
for every x € Z¢ there is unique z; € Z? such that

(ciyx) = {¢j,xp) mody; for i=1,... ,m.
Therefore, Z¢ = U(mb + A) and hence m;, are the coset representatives of Z¢/A. Tt

b
follows that the number of possible x}’s does not exceed the product ~1 - - - v, By
Theorem 2.5, det A = |Z?/A|det Z¢ = |Z%/A| < 1 - - -y, and the proof follows.

O

PROBLEM.
1°. Let &1,&2,83,8 and n1,m2, 13, m4 be numbers. Let

Gr=2E&m —&am2 — &3m3 — &uma, G2 = &1 + Sam + §3ma — Eums,
G3=E&mz —&ama +&3m +&ume and Gy = §1ma + Eamz — &3m2 + Eumn.

Check that
E+E8+E+E) M +m+m+m)=G+G+E+E.

In particular, the product of two sums of four squares of integers is a sum of four
squares of integers.

(4.2) Lagrange’s Theorem. FEvery positive integer number n can be represented
as a sumn =&} + &2 + €3 + €3, where £1,&2, &3 and &4 are integers.

Proof. Problem 1 of Section 4.1 implies that the product of sums of four squares
of integers is a sum of four squares of integers. Since every integer is a product of
primes, it suffices to prove the result assuming that n is a prime number. Assuming
that n is prime, let us show there are numbers o and 3 such that

a?4+6241=0 mod n.

Indeed, if n = 2 we take & = 1 and 8 = 0. If n is odd, then all the (n + 1)/2
numbers a? : 0 < a < n/2 have distinct residues mod n. To see this, assume that
a? = a2 mod n for some 0 < ag, s < n/2. Then (o — az)(ag + az) =0 mod n.
On the other hand, 0 < a; + a3 < n and since n is prime, we must have a; = as.
Similarly, the (n+1)/2 numbers —1 — % : 0 < 3 < n/2 have distinct residues mod
n. Therefore there is a pair a, 8 such that o® = —1 — 82 mod n, or, equivalently,
o2+ B32+1=0 mod n.

Let us consider the lattice
A={(&166.6) €2 & =ag+ g modn and

& = P&3 — afy mod n}
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300 VII. Lattices and Convex Bodies

Lemma, 4.1 implies that A is a lattice and that det A < n?. Let us consider an open
ball of radius 2n:

B={(6,6 6 &) eR: &+&++e <2mj.
From Lemma 3.4, we have
vol B = 2n%72 > 16n2 > 2* det A.

Therefore, by Theorem 3.2, there is a point z = (£1,£2,€3,€4) € A such that
0 < &2+ €2+ ¢2 +¢2 < 2n. On the other hand, since z € A, we get that

E+8+8+8=2+82+1DE+ @+ +1)EE =0 mod n.

Therefore, £2 + &2 + €2 + £7 is divisible by n and since 0 < £ + €3 + €3 + £7 < 2n,
we must have &2 + &3 + €2 + €2 =n. O

This proof is due to H. Davenport.

PROBLEMS.

1°. Give an example of a positive integer that cannot be represented as a sum
of three squares of integers.

2. Let k be a positive integer. Prove that if there is a solution to the congruence
€24 1=0 mod k, then k is the sum of two squares of integers. Deduce that every
prime number p =1 mod 4 is the sum of two squares of integers.

3*. Prove that the number of integral solutions of the equation £2+£2+£3+¢€7 =
n is 8 times the sum of all d such that d divides n and 4 does not divide d (Jacobi’s
Formula).

Remark: For a short proof, see [AEZ93].

Next, we consider how to approximate a given real number by a rational num-
ber. Obviously, given a real number « and a positive integer g, we can approximate
a by a rational number p/q so that |« —p/q| < 1/2q. It turns out, we can do better.

(4.3) Theorem. There exists a constant 0 < C' < 1 such that for any a € R one
can find an arbitrarily large positive integer q and an integer p such that

C
o2]<G
q q

Proof. Without loss of generality, we may assume that « is irrational. Let us
choose a positive integer QQ > 2 and consider the set A C R?:

1
A={@y): loz—yl< g bl <0}
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Figure 85

Then A is a compact convex centrally symmetric set (parallelogram). Further-
more, vol A = 4. Therefore, by Theorem 3.2, there is a non-zero integer point
(¢,p) € A. We observe that ¢ # 0 since otherwise p = 0. Because of the symmetry,
we may assume that ¢ > 0. It now follows that

1
43.1 ’af—lg— and 0<q<Q.
(4.3.1) 0
The inequalities (4.3.1) imply that

1

P
(4.3.2) ‘a - —‘ <

q

Our goal is to establish that ¢ can be made arbitrarily large in (4.3.2). Indeed,
let M be a natural number. Since « is irrational, we can choose @ in (4.3.1) so
big that the inequality (4.3.1) is not satisfied for any 1 < ¢ < M (since there
are finitely many possibilities to approximate a number within a given error by a
fraction whose denominator does not exceed M and not a single such approximation
will be precise). Therefore, (4.3.1) and thus (4.3.2) are satisfied with some ¢ > M.
O

Licensed to Georgia Inst of Tech. Prepared on Sun Jan 14 21:00:56 EST 2024for download from IP 188.92.139.72.



302 VII. Lattices and Convex Bodies

The construction used in the proof of Theorem 4.3 does not provide the best
way to get a rational approximation of a given real number. It is known that the
best value of C' is C' = 1/1/5 (one can take o = (v/5 — 1)/2), whereas the proof of
Theorem 4.3 gives us only that C' < 1. A better method of rational approximation
is via continued fractions which are not discussed here (see [Kh97]). However, in
the case of a simultaneous approzimation (see Problem 1 below), the approach via
Minkowski’s Theorem turns out to be quite useful.

PROBLEM.
1. Prove that there exists C' > 0 such that for any real numbers a4, ... , a, one
can find an arbitrarily large positive integer ¢ and integers p1,... , p, such that
ai—& < - for ¢1=1,... n.
q! = ¢ltw

5. Sphere Packings

In this section, we discuss the notion of the packing density which is closely related
to Blichfeldt’s and Minkowski’s Theorems (Theorems 3.1 and 3.2).

(5.1) Definitions. For a number p > 0 and a point z¢ € R? let B(zo, p) = {z €
R : |l — 2o|| < p} denote the open ball of radius p centered at zo. Let A C R?
be a lattice. The packing radius of A is the largest p > 0 such that the open
balls B(z, p) and B(y, p) do not intersect for any two distinct points x,y € A. Let
X = U,en B(z, p) be the part of the space R covered by the balls centered at the
lattice points, where p is the packing radius.

The packing density of A is the number

vol(X N B(0, 7'))
A= i
o(A) T*l>r$oo vol B(0, 7)

In other words, o(A) is the “fraction” of the space R filled by the largest congruent
non-overlapping balls centered at the lattice points.

It has been known for some time that some lattice packings utilize space better
(that is, have a higher packing density) than others; see Figure 86.

PROBLEMS.

1°. Show that the packing radius exists and that it is equal to one half of the
minimum length of a non-zero vector from A.

2°. Show that the packing density exists and that it is equal to

Bap? md/2pd
det A T(d/2+1)detA’

where p is the packing radius and Sy is the volume of the unit ball in R%; see Lemma
3.4.
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3°. Explain why the Minkowski Convex Body Theorem (Theorem 3.2) for a
ball centered at the origin is equivalent to the statement that the packing density
a(A) of any lattice A does not exceed 1.

Lattices A; and Ay in R? are called similar (denoted Ay ~ Ag) if one can be
obtained from another by a composition of an orthogonal transformation of R% and
a dilation x — ax, a # 0.

4. Prove that the packing densities of similar lattices are equal.
5. Prove that Dy ~ Z2, D3 ~ A3, and D} ~ Z* (cf. Example 1.2).
6. Prove the following identities for the packing radii:

P(Zd) = %7 p(An) = p(D,) = g for n>2,

2
p(D}) = £ for n>S8,

2
p(DF) = s oD) =5 p<D6>—\/§ and
o(Ee) = plEr) = L.

(cf. Example 1.2).

S0e
900
S

Figure 86. The Z? packing and the Ao packing of discs in R2. The
latter has a higher packing density.

7. Prove the following identities for the packing densities

Y Y
Z)=1, = T~ 09069, o(As) = —— ~ 0.7405,
U( ) 0( 2) \/ﬁ J( 3) m
,R_Q 2 3
D,) = — = 0.6169, Ds) = ~ (0.4653, FEg) = =~ (0.3729,
oD =T o(Ds) = 2 o) = T
7.[.3 4
E;)=—=0.2 d Eg) = — = 0.2
o(Er) = 102 ~0.2053 and  o(By) = 5o ~ 02537
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304 VII. Lattices and Convex Bodies

(cf. Examples 1.2).

8. Let K C R? be a compact convex set with non-empty interior. The kissing
number of K is the maximum number of congruent copies of K that can touch
K without any two overlapping. Using lattices Ao, A3, D4 and Eyg, prove that the
kissing number of a ball in R? is at least 6 for d = 2, at least 12 for d = 3, at least
24 for d = 4 and at least 240 for d = 8.

9*. Prove that for every dimension d there exists a lattice A C R? with the
largest possible packing density among all lattices of rank d.

(5.2) Packing densities and signal transmission. Suppose we want to trans-
mit a signal which we interpret as a d-tuple of numbers (1, ... ,&;). Hence the space
R? is interpreted as the space of all signals. If we want to transmit information,
some signals may serve as codes of transmitted symbols.

Realistically, we can expect that every transmitted signal gets somewhat dis-
torted. Then to decode a signal, we need to “round” it to a code, hence there is
some error bound p > 0, such that within the distance less than p of the signal
there is at most one code and that code can be found more or less efficiently.

If the codes form a lattice in R?, then p is the packing radius and the packing
density o is the “percentage” of all signals that can be decoded. Naturally, we
would like to make o as big as possible. Of course, there are other circumstances
which we would like to take into account. For example, we want to make decoding,
that is, finding a lattice point closest to a given signal, as simple as possible.

PROBLEMS.
1. Prove the following inequalities for packing densities:

o(Ay) > o(Z?),

o(A3) > o (Z?),

o(Dy) > 0(Ay) > o(Z4),

o(Ds) > a(As) > o(Z°),

o(Eg) > 0(Dg) > o(Ag) > o(Z5),
o(E7) > o(D7) > o(A7) > o(Z7),
o(Eg) > o(Dg) > a(Ag) > o (Z8).

2. Construct an efficient algorithm of rounding a point x € R* to the nearest
point of Dy.

3. Construct an efficient algorithm of rounding a point 2 € R® to the nearest
point of Eg.

Minkowski’s Theorem results in the following general estimates.

(5.3) Corollary. Let A C R? be a lattice. Then for the packing radius p(A) we

have
(M) < FI/L\//?”(det A)l/d _ \/%(1 +0(1/d)) (det A)l/d.
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6. The Minkowski-Hlawka Theorem 305

Proof. By Problem 1, Section 5.1, it follows that for p = p(A) the ball B(0, 2p) does
not contain lattice points in its interior. The proof now follows by the Minkowski
Theorem (Theorem 3.2), the formula for the volume of a ball (Lemma 3.4) and
Stirling’s Formula I'(x + 1) = v27rz(x/e)* (1 + O(1/x)). O

The inequality of Corollary 5.3 is exactly equivalent to the statement that the
packing density of any lattice does not exceed 1. It seems obvious intuitively (and
is indeed true) that the packing density of any d-dimensional lattice is strictly less
than 1 for any d > 1 and that the density approaches zero as the dimension d grows.
Thus, Minkowski’s Convex Body Theorem (Theorem 3.2) is not optimal for a ball.
In fact, the lattices Z, Ao, A3 ~ D3, D4, D5, Eg, E7 and Eg are the lattices with
the highest packing density in their respective dimensions; see [CS99]. Similarly,
one can define the packing density of an arbitrary (measurable) set. Blichfeldt’s
and Minkowski’s Theorems are equivalent to stating that the packing density does
not exceed 1.

PROBLEMS.

The following simple estimates turn out to be quite useful.

1. For x = (&1,...,&4) € R let ||7||o = max;—; 4]&|. Let A C R be a
lattice. Prove that there exists a non-zero point z € A such that [|z[| < (det A)'/<.
2°. Let A C R? be a lattice. Prove that there exists a non-zero point x € A

such that ||lz|| < v/d(det A)l/d.

6. The Minkowski-Hlawka Theorem

Next, we discuss an interesting method to construct higher-dimensional lattices
with a reasonably high packing density. As we will see, the packing radius of
the d-dimensional unimodular lattice that we construct will be about v/d up to a
constant factor, which is the best possible by Corollary 5.3. The main idea of the
construction is to choose a random lattice.

(6.1) Lemma. Let M C R? be a Lebesgue measurable set, let A C R? be a lattice
and let TI be a fundamental parallelepiped of A. For x € R let A + x = {u +x:
u € A} be the translation of A and let |[M N (A + )| be the number of points from
A+x in M. Then

/ |[M N (A+z)| de = vol M.
I

Proof. For a lattice point u € A let [M — u] : R? — R be the indicator function

of the translation M — u; see Section 1.7.1. Then [M N (A+x)| = >, A [M —u](x)
and
/ IM N (A+2)|de = Z/[M—u}dx - Zvol((ﬂ—i-u) mM) = vol M.
I ueA V1T u€EA

The last equality follows since the translates IT 4+ u cover M without overlapping
by Corollary 2.2. g

Licensed to Georgia Inst of Tech. Prepared on Sun Jan 14 21:00:56 EST 2024for download from IP 188.92.139.72.



306 VII. Lattices and Convex Bodies

PROBLEMS.

1°. Let A C R? be a lattice and let M C R be a measurable set such that
vol M < det A. Prove that there exists an # € R? such that M N (A + z) = 0.

2°. Let f(z) = |M N (A + z)|. Prove that f(z +u) = f(x) for all u € A.

We are going to apply Lemma 6.1 to very reasonable sets M, such as a ball, and
definitely not to a general Lebesgue measurable set. In what follows, we assume
that M is “Jordan measurable”, which implies that the volume of M can be well
approximated by using more and more refined meshes. The reader may always
think of M as something familiar, such as a ball or a convex body. Although we
don’t prove the result in its full power (for so-called “star” bodies M), we still get
quite interesting asymptotics. The result was conjectured by H. Minkowski and
proved by E. Hlawka in 1944.

(6.2) The Minkowski-Hlawka Theorem. Let d > 1 and let M C R? be a
bounded Jordan measurable set. Let us choose § > vol M. Then there exists a
lattice A C R? such that det A = 6 and M does not contain a non-zero point from

A.

Proof. Without loss of generality we may assume that vol M < 1 and that § = 1.
Let eq,...,eq be the standard basis of R? and let R%~! be the subspace spanned
by e1,...,eq—1. Hence we fix a decomposition R¢ = R?~! @ R. Let us fix a small

a > 0 and let us consider a family of hyperplanes Hy, = {x 1&g = ka}, keZ. In
particular, Hy = R4-1. Let My = M N Hy, be the (d — 1)-dimensional slice of M;
see Figure 87. We choose a to be small enough so that

(6.2.1) Every point from My lies within the cube |&| < o~ (@D fori=1,... ,d—1
(we can do it since M is bounded).

+oo
(6.2.2) a Y volg_ My < 1.

k=—o00

We can choose such an « because M is Jordan measurable, vol M < 1 and the sum
approximates vol M arbitrarily close if « is sufficiently small.

We construct A by choosing a basis. More precisely, we choose the first
d — 1 vectors uq, ... ,uqg—1 of the basis and then choose the remaining vector uy at
random. Let us choose the first d — 1 basis vectors of A:

w=a Y@ Ve, for i=1,....d—1.
Let IT be the fundamental parallelepiped of the basis ui,... ,uq_1 in Hy, so
1

volg 1 Il =a™ .

Now, for an z € II, let us choose ug(z) = z + aeq and let A, be the lattice with
the basis u1, ... ,uq—1,uq(x). Since ug(z) € Hy, det A, = (volll)a = 1.
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We claim that for some z € II, the lattice A, satisfies the desired property.
The proof is based on the formula

(6.2.3) / [Ap N My|dx = volg—q My, for k#0.
o

Indeed, let Ag C Hy be the lattice with the basis u1,... ,uq—1. We consider the
case of k > 1 (the case k < —1 is treated similarly). We can write

‘Ax n Mk‘ = ‘Mk n (AQ + kud(x))| = |Mk N (AO + kaeg + ]CI)|

Let us think of the hyperplane Hj as a (d — 1)-dimensional Euclidean space with
the origin at kaeg. Then A = Ag+ kaeg is a (d — 1)-dimensional lattice in Hy and
Ao + kug(x) is a translation of Ay by the vector kz.

2
u (x)
M1 d Hl
o
MO . HO
0
M | H
-1
M
-2
\_/ H_ 2
M
Figure 87
We get

/|AmﬂMk|dx:/ \Mkn(Ak+kx)|dx:k*(d*1)/ |My N (A + )| dy
II II kIT

(we substitute y = kx). On the other hand, the parallelepiped kII is the union of
k91 non-intersecting lattice shifts II + u for u € Ag, so by Problem 2, Section 6.1,
we get that

/ (M 1 (Ao + )] dyzkd-l/ My 1 (Ao + )] dy.
kII I1
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Applying Lemma 6.1, we finally conclude that
/ M50 (Ao + y)| dy = vola_y My
in

and hence (6.2.3) follows. Now we observe that

1
_— My NA;| ) de = lg—1 M, 1
VOld—1H/er<Z| Kl |> ! aZVOd L=

k0 k70

by (6.2.2). Therefore, the average value of the number of points in (M \ My)NA, is
strictly smaller than 1. Therefore, there must be an « € II such that the intersection
(M \ Mp) N A, is empty. By (6.2.1) we conclude that My N A, consists of at most
the zero vector, which completes the proof. O

PROBLEMS.

1. Let ¢ be a Lebesgue integrable function on R? and let A € R? be a lattice.
Prove that there exists a z € R? such that

1
> élu+z) < —— [ ola)dz.

ueN

2. Let ¢ be a bounded Riemann integrable function vanishing outside a bounded
region in R?, d > 1, and let € be a positive number. Prove that there exists a uni-
modular lattice A C R? such that

Z o(u) < e—l—/Rd o(z) dz.

ueA\{0}

3. Let M Cc R%, d > 1, be a bounded centrally symmetric Jordan measurable
set and let § > (1/2)(vol M). Prove that there exists a lattice A C R? such that
det A = 6 and M does not contain any lattice point, except possibly 0.

Hint: Either M does not contain any non-zero lattice point or it contains at
least two.

(6.3) Corollary. For any o < 2% there exists a d-dimensional lattice A C R?
whose packing density is at least o. Similarly, for any

e [ o))

there exists a d-dimensional lattice A C R? with packing radius at least p and
determinant 1.
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Proof. Let B(0,2) the ball of radius 2 centered at the origin. By Theorem 6.2,
for any € > 0 there exists a d-dimensional lattice A C R¢, such that detA =
(1+¢€)vol B(0,2) and such that AN B(0,2) = {0}. Then the packing radius of this
lattice is at least 1 and the packing density is at least

vol B(0,1) 274

(1+¢)volB(0,2) (1+4¢€)

Let us choose A; = aA where o > 0 is chosen so that det Ay = 1. The packing
density of A; is the same as that of A (cf. Problem 4 of Section 5.1), but A; is now
a unimodular lattice. The second part follows from the relationship between the
packing density and packing radius; see Problem 2 of Section 5.1 and also Corollary
5.3. |

Lattices whose existence is asserted by Corollary 6.3 are not bad at all when the
dimension d is high. For example, the packing radius of such a lattice has the same
order of magnitude as the upper bound in Corollary 5.3, that is, of the order of v/d.
It is not easy to present explicitly a sequence of unimodular lattices whose packing
radius grows unbounded as the dimension grows. The proof of Theorem 6.2 suggests
the idea of how to construct such a lattice: we choose a random lattice A C R,
More precisely, only the last basis vector should be chosen at random, whereas the
first d — 1 basis vectors are very easy to construct deterministically. The exact
asymptotics of the best packing radius are not known; note that any improvement
by a constant multiplicative factor of the packing radius results in the improvement
of the packing density by an exponential (in the dimension) factor.

PROBLEMS.

1. Prove that for any o < 2!79¢ there exists a lattice in R? whose packing
density is at least o.

Hint: Use Problem 3 of Section 6.2.

2*. Prove that there exists a lattice in R? whose packing density is at least
21-d,

Remark: In fact, one can strengthen the bound to ((d)2!~%, where ((d) =
S n=? and d > 1; see Section IX.7 of [C97].

7. The Dual Lattice

As is the case with convex duality (polarity), some important information about a
lattice can be extracted from a properly defined dual object, which, not surprisingly,
turns out to be a lattice.

(7.1) Definition. Let A C R? be a lattice. The set
A*:{xGRd: (x,y) € Z for all yGA}

is called the dual (or polar or reciprocal) to A.

Licensed to Georgia Inst of Tech. Prepared on Sun Jan 14 21:00:56 EST 2024for download from IP 188.92.139.72.



310 VII. Lattices and Convex Bodies

PROBLEMS.
1°. Let A C R? be a lattice with a basis u1,... ,uq. Prove that A* C R is a
lattice with the basis vq, ... ,vq, where

1 if i+j=d+1,

0 otherwise.

(ui,vj) = {

Prove that det(A*) - det(A) = 1.
2°. Prove that (A*)* = A.
3°. Prove that (Zd)* =74,
4. Prove that (Eg)* = Eg; cf. Example 1.2.4.

5. Prove that D4 and (D4)* are similar; cf. Example 1.2.3 and Problem 4 of
Section 5.1.

There is a useful relationship between the packing radius of A and the packing
radius of A*. Recall that the packing radius p(A) is equal to half the length of a
shortest non-zero vector from A.

(7.2) Lemma. Let A C R? be a lattice and let A* C R? be the dual lattice. Then,
for the packing radii of A and A*, we have

=~

p(A) - p(A") <

Proof. The result follows by Minkowski’s Convex Body Theorem. By Problem 2
of Section 5.3, we have

p(A)ﬁ%\/E(detA)l/d and  p(A*) < =Vd(det A) "

DN | =

The result follows by Problem 1, Section 7.1. g

Using Corollary 5.3, we can replace the upper bound d/4 by a better bound of
d/(2me)(1 4 O(1/d)), but we will not need this refinement.

PROBLEMS.
1°. Let A be a lattice and let Ag C A be a sublattice. Prove that

p(A) < p(Ao) < |A/ho| - p(A).

2°. Let A C R? be a lattice and let uy,... ,uq be linearly independent vectors
from A*. Prove that

for each vector v € A\ {0}.
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3. Let A C R? be a lattice and let A* be the dual lattice. Let us construct a

basis v1,...,vq of A* as follows: let v; be a shortest non-zero vector in A* and let
v € A\ span(vl, e ,%—1) be a closest vector to span(vl, . ,vk_l) for k > 1; cf.
Theorem 1.4. Check that vy, ... ,v4 is a basis of A*. Let uy, ... ,uq be a basis of A
dual to vy,...,vg:

1 ifi+j=d+1,

0 otherwise.

(ui, vj) :{

Check that uy, ... ,uq is a basis of A. Let Ly = {0} and let L = span(ul, . 7uk)
for k > 1. Prove that there is a vector u € A\ {0} such that

<d win dist(ug, Ly—1);
lull <d min  dist(ur, Li-1);

)

cf. Problem 2 of Section 1.4.

Remark: This result is due to J.C. Lagarias, H.-W. Lenstra and C.-P. Schnorr
[LLS90].

A quantity which may be viewed as “dual” to the packing radius of a lattice is
its covering radius.

(7.3) Definition. Let A C R? be a lattice. The largest possible distance from
a point in R? to the nearest lattice point is called the covering radius of A and
denoted p(A):
#(A) = max dist(z, A).
z€R4
In other words, p(A) is the smallest number « such that the balls of radii a centered
at the lattice points cover the whole space R?.

V2

Figure 88. Example: the covering radius of 72 is 5
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PROBLEMS.
1°. Check that the covering radius is well defined and finite.
2. Prove that
Vd NG

M(Zd) = 7; M(D3) =1 and ,U(Dn) = 7 for n 2 4.

3. Prove that u(Es) = 1.

There is a remarkable duality result relating the covering radius of a lattice and
the packing radius of the dual lattice.

(7.4) Theorem. Let A C R? be a lattice and let A* C R? be the dual lattice. Then
the covering radius of A and the packing radius of A* are related by the inequalities

d3/2

d
S k< —.
k=1 4

< u(A) - p(A*) <e(d), where ¢(d) =

=
] =

Proof. We prove the lower bound first (this is the “easy” part and it was known
long before the upper bound). Let us choose linearly independent vectors uq, ...,
ug € A as follows: u; is the shortest non-zero vector in A, us € A is the shortest
vector such that u; and ug are linearly independent, and so forth, so that ug € A
is the shortest vector such that uq,... ,uq are linearly independent. Then |u;|| <
[luz]] < ... < |ug|l (the lengths of ||u;|| are called successive minima; cf. Problem
11 of Section 3.2). Let z = (1/2)ug. We claim that

dist(x, A) = dist(z, 0) = dist(z, uq) = ||uall/2.

Indeed, suppose that v € A is a point such that dist(x,v) < ||ug||/2. Then, by the

triangle inequality, |[v]| < [|z| + dist(z,v) < |lugl|. If v ¢ span(u1,... ,ug—1), we
get a contradiction with the definition of ug. If v € span(uq,... ,uq4—1), then w =
20 — ug € A is linearly independent of uq,... ,uq4—1 and |Jw|| = [|2(v — z)|| < |Jud],

which is a contradiction.

Thus we conclude that

M(A)Z U2d ZHWH

2

By Problem 2 of Section 7.2, for all v € A*\ {0} we have

ﬂ.
=B
]
R
Y
=
B
Y
—_
o
=
(oW
=
)
B
)
@
=
—
=
S~—
=
Vv
N =

Since p(A*) = ||v||/2 for a shortest vector v € A*\ {0}, we get the lower bound

p(A) - p(A) =

=] =
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We prove the upper bound by induction on d. If d = 1, then A = {am tm € Z}
and A* ={a"'m :m € Z} for some a > 0. Hence pu(A) = a/2 and p(A*) = a~1/2,
so u(A) - p(A*) =1/4.

Suppose that d > 1. Let u be a shortest non-zero vector in A, so that

(7.4.1) [[ull = 2p(A).

Let us identify the orthogonal complement to u with R?~! and let pr : R¢ — R4~!
be the orthogonal projection. Let A; = pr(A) be the orthogonal projection of A
onto R4!. Then A; is a lattice in R?~!; see Problem 3 of Section 1.3.

— el _____
A pr
1
w(y-v)
777777 O------0-—---0X
y I e
| 7
I///
********* T T T TR T T
M\\\‘ v~”/ W e A
u
[ 4 . J
0
u

Figure 89. Black points are from A, grey points are from A, white
points are from R? or R4~ 1,

Let A} C R?! be the lattice dual to A;. For every a € A} and every b € A,
we have (a,b) = (a,pr(b)) € Z, so A} C A*. In particular,

(7.4.2) p(A}) = p(A").

Let us choose a point x € R? and let us estimate dist(z, A).
Let y = pr(x). Let v € A; be a closest point to y in Ay, so

(7.4.3) dist(y, v) < p(Aq).
The line through v parallel to u intersects A by a set of equally spaced points, each

being of distance ||u|| from the next. Hence we can find a point w € A such that
pr(w) = v and

(7.4.4) dist(z, w+ (y —v)) < @;
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314 VII. Lattices and Convex Bodies

see Figure 89. By Pythagoras’ Theorem,
dist?(z, w) = dist? (z, w+ (y—v)) + dist?(y, v).
Applying (7.4.4) and (7.4.3), we get

s g2 2 [l
dist”(z,w) < p*(A1) + 1
Since z was chosen arbitrary, by using (7.4.1), we conclude that

i) < () + P = ) + 2 )

Applying (7.4.2), the induction hypothesis and Lemma 7.2, we get

pA(A) - (A7) <

p(Ar) - pP (A7) + p*(A) - p*(A)
< pP (A1) - (A7) + PP (A) - p* (A7)
2 d
< 1)+ —
<c(d-1)+ T
which completes the proof. O

It is known that one can choose ¢(d) in Theorem 7.4 to be vd for some constant
~v > 0. The above proof belongs to J.C. Lagarias, H-W. Lenstra and C.-P. Schnorr
[LLS90].

PROBLEMS.

1°. Let uq,...,uq € A be linearly independent vectors. Prove that

d
1
n(A) < 3 Z [l
i=1

In Problems 2—4, {{&}} denotes the distance from a number £ € R to the
nearest integer, so that 0 < {{&}} <1/2.

2. Let 64, ...,60, be real numbers such that m160; +...+m,0, + m,11 =0 for
integers my,... ,my4+1 implies m; = ... = my4+1 = 0. Prove Kronecker’s Theorem:
for any real vector a = (a1, ... , ;) and for any € > 0 there exists a positive integer

m such that {{a; —mb;}} <efori=1,... n.

Hint: Let d = n+ 1 and let 7 > 0 be a number. Consider the set A, C
R? of all integer linear combinations of the vectors u; = (1,0,...,0), ..., up =
0,...,0,1,0), upt1 = (1,...,0,,771). Show that A, is a lattice and that the
packing radius of A¥ grows to infinity when 7 grows. Deduce that the covering
radius of A, approaches 0 as 7 grows.
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8. The Flatness Theorem 315

3. Let A C R? be a lattice and let # € R? be a point. Prove that for every
v e A*\ {0}

HmH gt ).

[[o]]

4*. Prove that for every lattice A C R? and every z € RY there is a point
v € A*\ {0} such that

{{v,2)}} 1
ol > 6 11 dist(z, A).

Remark: This result is due to J. Hastad [HA88].

8. The Flatness Theorem

Minkowski’s Convex Body Theorem (Theorem 3.2) asserts that a symmetric convex
body of sufficiently large volume contains a lattice point other than the origin. One
may ask if a similar statement can be made about a general convex body. It quickly
becomes clear that the volume is not an issue here: a convex body without lattice
points can have an arbitrarily large volume.

Figure 90. A convex body without lattice points can have an arbi-
trarily large volume.

Having done some experimenting, we start to feel that a convex body without
lattice points must be somewhat “flat”.

Let A C R? be a lattice and let A* C R? be the dual lattice. Let v € A* be
a non-zero lattice point. Then lattice A can be “sliced” into “layers” Ay of lattice
points:

Ak:{uEA: <u,v>:k} for keZ.

It turns out that a convex body without lattice points must be “squeezed” in
between some layers that are not very far apart. This is the main content of the
“Flatness Theorem” that we prove in this section. In fact, there are many “flatness
theorems”: they differ from each other by estimating exactly how far apart those
layers can be. The best possible bound is not known yet and we don’t strive to
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316 VII. Lattices and Convex Bodies

obtain it. Our objective is to give a simple proof of a reasonably good bound. Our
main tool is Theorem 7.4.

(8.1) Lemma. Let A C R? be a lattice and let B be a ball such that BN A = ().
Let v € A* be a shortest non-zero vector. Then

max{(v,x) : € B} —min{(v,z): € B} < c(d)
where one can choose c(d) = d*/2.

Proof. Let a be the center of B and let 3 be the radius of B, so B = {z : [|[z—al| <
B} Then

max{(v,z) : € B} —min{(v,z): = € B}
= (tv,a) + Blol) = ((w,0) = Blloll) = 28]lo]l-

Since B does not contain lattice points, its radius does not exceed the covering
radius of A, so 8 < u(A). Since v is a shortest non-zero vector from A*, the length
of v is twice the packing radius of A*, so ||v|| = 2p(A*). The proof now follows by
Theorem 7.4. 0

PROBLEM.

1°. Let Ay C R? be a lattice and let T : R* — R¢ be an invertible linear
transformation. Prove that A = T'(A;) is a lattice and that A* = (T*)71(A}).

(8.2) Lemma. Let A C RY be a lattice and let E C R? be an ellipsoid such that
ENA=0. Then there exists a non-zero vector w € A* such that

max{(w,z): v € E} —min{(w,z): z € E} < ¢(d)
where one can choose c(d) = d*/?.

Proof. Since E is an ellipsoid, there exists an invertible linear transformation T’
such that E = T(B), where B is a ball. Let A; = T~!(A). Hence, by Problem 1 of
Section 8.1, A; is a lattice and A = T'(A;). Then BN A; = () and hence by Lemma
8.1 there exists a non-zero vector v € A} such that

max{(v,y) : y € B} —min{(v,y) : y € B} < c(d).
Let w = (T*)~!v. By Problem 1 of Section 8.1, we have w € A* \ {0}. Now
max{(w,z): z € B} —min{(w,z): z € E}
=max{(w, T(y)): y € B} —min{{w, T(y)): y € B}
= max{(T*(w), y): y € B} —min{(T*(w), y): y € B}
=max{(v,y): y € B} —min{(v,y): y € B} <c(d)

and the result follows. O

Finally, we prove the general “flatness theorem”.
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(8.3) Theorem. Let A C R? be a lattice and let K C R? be a convex body such
that K N A = 0. Then there ezists a non-zero vector w € A* such that

max{(w,z): v € K} —min{(w,z): z € K} < ¢1(d)

where one can choose ¢ (d) = d°/?.

Proof. Let E be the maximum volume ellipsoid of K; see Section V.2. Assuming
that a is the center of F, by Theorem V.2.4 we get

ECK Cd(E—-a)+a=dE+ (1-d)a.

Let w € A* be the vector for the ellipsoid F whose existence is asserted by Lemma

8.2. Then
max{(w,z): v € K} <max{(w,z): z € dE+ (1—d)a}
= (1 —d)(w,a) + dmax{(w,z) : € E}.
Similarly,
min{(w,z) : € K} >min{{w,z) : v € dE+ (1 —d)a}
= (1—-d){w,a) + dmin{(w,z) : = € E}.
Therefore,

max{(w,z): v € K} —min{(w,z): z € K}
< dmax{(w,z): z € B} —dmin{(w,z) : € E} <dc(d) = c1(d)

by Lemma 8.2. O

Let w € A* be the vector from Theorem 8.3. Let
Ay={ueA: (uw)=k} for keZ

be the “layers” of lattice points determined by w. Let Hy be the affine hull of
Aj. Theorem 8.3 asserts that if a convex body does not contain lattice points,
then it may intersect only a small number (polynomial in the dimension d) of affine
hyperplanes Hy; cf. Figure 91.

The smallest possible value of ¢;(d) is not known. It is conjectured though
to be roughly proportional to d. The first (exponential in d) bound for ¢;(d) was
obtained by A.Ya. Khintchin in 1948. Theorem 8.3 is due to J.C. Lagarias, H.W.
Lenstra and C.-P. Schnorr [LLS90]. It is known that one can choose ¢(d) = ~vd for
some v > 0 in Lemmas 8.1 and 8.2 [Ba95] and that one can choose c;(d) = O(d*/?)
in Theorem 8.3 [BLP99]. Moreover, if K has a center of symmetry, then one can
choose ¢1(d) = O(dlnd) [Ba95], [Ba96], which is optimal up to a logarithmic
factor.
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Figure 91
PROBLEMS.
1. Show that we must have ¢;(d) > d in Theorem 8.3.
2. Let P C R be a polytope with the vertices vy, ... ,v,, € Z% Suppose that
m > 2%. Prove that there is a point v € P N Z< different from vy, ... ,vp,.

3* (J.-P. Doignon, 1972). Let Ai,...,A,, C R? be convex sets. Prove the
following integer version of Helly’s Theorem: if

(Ailﬁ...ﬂAik)ﬂZd#@

for every collection of k = 2% sets A;,,... , A;,, then
( N Ai) Nzt 0.
i=1

Remark: See [Do73].

4. Let P C R? be a convex polygon with vertices in Z2. Suppose that P does
not contain any point from Z2 other than its vertices. Prove that there exists a
vector w € Z* \ {0} such that

max{(w,z) : z € P} —min{(w,z): z € P} <1.

5* (R. Howe). Let P C R? be a convex polytope with vertices in Z3. Suppose
that P does not contain any point from Z? other than its vertices. Prove that there
exists a vector w € Z3 \ {0} such that

max{(w,z): € P} —min{(w,z): € P} <1.

Remark: See [S85].
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9. Constructing a Short Vector and a Reduced Basis

For various reasons we often need to compute efficiently a shortest or a reasonably
short non-zero vector in a given lattice. This is the case, for example, for the
Flatness Theorem of Section 8 if we want to know a direction in which a convex
body without lattice points is flat. In this section, we sketch an efficient algorithm
due to A K. Lenstra, H-W. Lenstra and L. Lovdsz [LLL82]. The procedure is called
now the Lenstra-Lenstra-Lovész reduction or just the LLL reduction. Given a basis
of a lattice, it produces another basis of the same lattice which has some very useful
properties.

(9.1) Reduced basis. Let A C R? be a lattice and let u, ... ,uq be a basis of A.
Let us describe the properties that we want our basis to satisfy.

Let us define subspaces {0} = Lo C Ly C ... C Ly = R% by
L, = span(ul,... ,uk) for k=1,...,d.

Let Lt denote the orthogonal complement of Ly and let wy denote the orthogo-

nal projection of u; onto L,Jf-_l. In other words, ws, ... ,wy is the Gram-Schmidt
orthogonalization (without normalization!) of uq, ..., ug4.
w,
2
“y
0 u =w
1 1
Figure 92
In particular, w; = uq, wa, ... ,wq is a basis of R? and

|lwi|| = dist(ug, Lr—1) for k=1,...,d.

Hence we can write

k—1
(9.1.1) uk:wk+2akiwi for k=1,...,d.
i=1
We say that the basis uq,... ,uq is reduced (or Lenstra-Lenstra-Lovdsz reduced or

LLL reduced) if the following properties (9.1.2)—(9.1.3) are satisfied:

1
(9.1.2) || < B forall 1<i<k<d
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and

distQ(uk, kal) STdiStQ(ukJrl, kal) for k= 1, . ,d— 1
(9.1.3)

with 7= —.

3

The last condition is written in a bizarre way; indeed, the exact value of 7 is not
really important as long as 1 < 7 < 4 with the standard choice being 7 = 4/3. We
will trace the role of the parameter 7 throughout the proofs that follow to reveal
the mystery of 4/3.

At this point, it is not clear whether a reduced basis exists, let alone how to
construct one. But before we show how to construct such a basis, we demonstrate
that a reduced basis, if one exists, satisfies some useful properties.

(9.2) Theorem. Let A C R? be a lattice and let uy, ... ,uq be its reduced basis.
Then .
luil| <272 ||v|]| forall ve A\ {0}

In other words, the first basis vector uy is reasonably short.

Proof. By (9.1.1),

dist(ur41, Li—1) = ||Wet1 + Qpt1,pwk]|-

By (9.1.3) and (9.1.2), we get

lwe||* = dist2(uk, Lip—1) < TdiSt2(U]g+1, Li_1) = Tllwis|)* + Tai+17k||wk||2

< 7llwpa [ + (7/4) w1

Therefore,

~ 1
lwesal® = 7701 = 7/4) we* = 5 [lwe]*

(now we see why we should have 7 < 4). Iterating the inequality, we get

lwrl* > S llwe-al* > Zllwr—all* > ... > 27" a1,

N | =
>~ =

In particular,

. 1-d 1-d
dist(ug, Lip—1) = |lwgll = 277 lwr]| =277 [lua |-

The proof follows by Problem 2 of Section 1.4. O
PROBLEMS.
1. Let A C R? be a lattice and let u1, ... ,uq be its reduced basis. Prove that

[lug]| < 20@=1/4(det A) l/d; cf. Problem 2 of Section 5.3.
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2. Let A € R? be a lattice and let uq, ... ,uq be its reduced basis. Prove that

d d(d—1)
[T il < 275 det A,
=1

cf. Problem 3 of Section 1.4 and Problem 12 of Section 3.2.

3 (L. Babai). Let A C R? be a lattice, let uy, ... ,uq be its reduced basis and
let wq, ... ,wq be the Gram-Schmidt orthogonalization of uy,... ,uq. Given a point
b € R%, show that there exists a point v € A such that

b—v—éﬁiwi where |3;] < % for i=1,....,d
and that for such a point we have
dist (b, v) < 2%271 dist(b, A).
4. Let A C R? be a lattice, let u1, ... ,uq be its reduced basis and let v € A be

a shortest non-zero lattice vector. Suppose that u = 22:1 Yru) for some vy € Z.
Prove that |y;| <3¢ fork=1,... ,d.

Now we discuss why a reduced basis exists and how to construct one.

(9.3) The algorithm to construct a reduced basis. We start with an arbitrary
basis u1, ... ,uq of A. Indeed, we have to assume that the lattice A is given to us
somehow; we assume, therefore, that it is given by some basis. The algorithm
consists of repeated applications of the following two procedures.

(9.8.1) Enforcing conditions (9.1.2). Given the current basis uq,... ,uq of A, we
compute the Gram-Schmidt orthogonalization wy,... ,wg as in Section 9.1 and
compute the expansion (9.1.1). These are problems of linear algebra and can be
solved easily. If |ay;| < 1/2 for all 1 < i < k < d, we go to (9.3.2). Otherwise, we
locate a pair of indices i < k with |ag;| > 1/2 and the largest i. We modify uy by

new uy := old uy — [ag]u;, where [ag;] is the nearest integer to gy

(and ties are broken arbitrarily). Clearly, this action does not change the subspaces
Ly = span(ul, ... ,ug) and the vectors wy,...,wq. It changes, however, some of
the coefficients in (9.1.1). The coefficients of (9.1.1) that do change are ay; with
7 <. In particular, we get

new ayg; := old ay; — [old ag;] = {{old ay;}},
where {{¢}} is the signed distance of a real number ¢ to the nearest integer, so
—-1/2 < {{¢&}} < 1/2. We repeat this procedure, always “straightening out”

the rightmost “wrong” coefficient ay; so that any of oy iy1,..., ks do not get
“spoiled”. After repeating the procedure at most (g) times, (9.1.2) is satisfied.
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(9.3.2) Enforcing conditions (9.1.3). We check conditions (9.1.3); they are easy to
check having expansions (9.1.1). If the conditions are satisfied, we stop and output
the current basis uq,... ,uq. If, in fact,

diStQ(uk, kal) > TdiStQ(Uk+1, kal),
we swap ug and Ug41:

new uy :=old ugpy; and new ugyi = old uyg

and go to (9.3.1).

Ly Ly
new
old u; 4 “k
- BN
new u
k+1
old

0 0

Figure 93. If ujyq is much closer to Ly_; than u; we swap uy and

Uk+41-

Clearly, if the algorithm ever stops, it outputs the reduced basis uq,... ,uq.

It is not obvious, however, that the algorithm cannot cycle endlessly. In fact, it
does stop and, moreover, the running time is quite reasonable. In practice, the
algorithm performs quite well. We prove a bound for the running time, which,
although not optimal, hints that the algorithm actually runs in polynomial time
(to prove that the algorithm indeed runs in polynomial time, we also need to verify
that the numbers do not grow too wild, which we don’t do here).

PROBLEMS.
1°. Let A € R? be a lattice and let uq, ... ,uqg € A be its basis. Let

Lo={0} and Lk:span(ul,...,uk) for k=1,...,d.
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Let wy be the orthogonal projection of uj onto Lé'—1 fork=1,...,d.

For k =1,...,d, let Ay = AN L;. Considering Ay as a lattice in Lg, prove
that

k
det Ay, = [T llwill.
=1

2°. Let A C R? be a lattice, let uy, ... ,ur € A be linearly independent points
and let Ly = span(ul, ... ug). Let Ay, = AN Ly. Let us consider A as a lattice in
L. Prove that

A\ K
Ay > (= h, = mi :
det Ay, > (\/E) , where A ue%\lil{lo} [lee]|

(9.4) Theorem. Let A C R? be a lattice given by its basis ui,...,uq. Let us
define the subspaces {0} = Lo C Ly C ... C Ly = R% by

Ly =span(ui,...,u;) for 1<k<d.

Let A, = AN L. We consider Ay as a lattice in Ly. Let us define

d—1

D(ul, . ,ud) = H (det Ak;)
k=1

and let

A= min |l
veA\{0}

be the length of a shortest non-zero vector of the lattice.

Let m be a positive integer such that

i V3\ /2 02T e
T /QD(ul,...,ud):(T) D(ul,...,ud)<)\d(d 1)/2Hk: k/2,
k=1

Then Algorithm 9.3 stops after at most m + 1 applications of (9.3.1) and at most
m + 1 applications of (9.3.2).

In particular, every lattice has a reduced basis.

Proof. Let ussee what happens to D(uq, ... ,ug) when we change the basis uq, ... ,
ug by performing procedures (9.3.1) and (9.3.2) of the algorithm. Procedure (9.3.1)
does not change the spaces Lj and hence does not change D(uq, ... ,uq).

Swapping wuy and wug41 in procedure (9.3.2) changes the space Ly only. Let us
see how det A, changes.

Let wyq, ... ,wq be the Gram-Schmidt orthogonalization of uy, ... ,uq. By Prob-
lem 1 of Section 9.3,

k
det Ay, = [T llwill.
=1
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In this product, procedure (9.3.2) changes the factor ||wg|| only. We have

|Inew wy|| = dist(new Uk, Lk_l) = dist(old Ukt 1, Lk—l)
< 7712 dist (old uy, Ly—1) = 7712 0ld wy]|.

Hence each application of swapping in procedure (9.3.2) gets D(ug, ... ,uq) mul-
tiplied by 772 = v/3/2 or a smaller number (it clear now why we should have
T>1).

By Problem 2 of Section 9.3, we get

d—1 -1\ d-1
D(uy,... ,uq) = [[(det Ay) > H(T) = AUV T s
k=1 jot VR k=1
for any basis uq, ... ,uq of A.

Hence Algorithm 9.3 performs procedure (9.3.2) at most m + 1 times (the last
application checks that conditions (9.1.3) are satisfied and outputs the current basis
Ui,... ,uq). Since each application of procedure (9.3.2) is accompanied by at most
one application of procedure (9.3.1), the result follows. O

C.-P. Schnorr constructed a modification of the algorithm, which, for any fixed
€ > 0, produces in polynomial time a non-zero lattice vector whose length approx-
imates the length of a shortest non-zero lattice vector within a factor of (1 + )¢

[Sch87].
PROBLEM.

1. Suppose that A C Z¢ is a sublattice of the standard integer lattice. Prove
that D(ug,...,uq) > 1 for any basis ug, ... ,uq of A.

10. Remarks

Our main references are [C97], [GL87] and [CS99]. In particular, [CS99] contains
a wealth of material on particularly interesting lattices and sphere packings. For the
Lenstra-Lenstra-Lovész reduced basis and its numerous applications, see [Lo86],
[GLS93] and the original paper [LLL82]. A nice generalization of the reduction
for arbitrary norms is given in [LS92].
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Chapter VIII

Lattice Points and
Polyhedra

We discuss the enumeration of lattice points in polyhedra. Our main tools are
generating functions, also known as exponential sums, and some identities in the
algebra of polyhedra. A parallel theory for exponential integrals is developed in the
exercises. Since we are interested in combinatorial rather than metric properties,
we consider the case of the standard integer lattice Z¢ C R? only. The case of a
general lattice A C R? reduces to that of Z? by a change of the coordinates.

1. Generating Functions and Simple Rational Cones

Let P C R? be a polyhedron and let Z¢ C R? be the standard integer lattice. For

a point m = (p1, ..., uq) € Z% we write x™ for the monomial
Xm, — x&tl . de
in d (complex) variables (z1,...,z4). We agree that 29 = 1 for all i = 1,... ,d.

The main object of the chapter is the generating function

fPx)= > x™
mePNZ4

see Figure 94 for an example.

If the sum is infinite, the issue of convergence emerges. Usually, there will
be a non-empty open set U C C¢ such that the series converges absolutely for
all x € U and uniformly on compact subsets of U. We don’t emphasize analytic
rigor here; one can always think that the series behaves “just like the (multiple)

325

Licensed to Georgia Inst of Tech. Prepared on Sun Jan 14 21:00:56 EST 2024for download from IP 188.92.139.72.



326 VIII. Lattice Points and Polyhedra

geometric series”, the basic example being the series Zﬁ:o 2™ which converges to
1/(1 — z) absolutely for all z with || < 1 and uniformly on compact subsets of the
set U={xeC:|z| <1}

Figure 94. Example: f(P,x) = :1’1_1:172_1 + xl_l + :02_1 +1+ xl_lxg +
2175 + @1 + T2 + 2172 + 73 + 1125 + 210

It is convenient to introduce some notation. For y = (9,... ,n4) € CY, let us
define

e’ = (exp{m},...,exp{na}) € C%

Hence for m = (1, .., puq) € Z¢ and x = e¥ we have
x™ = exp{m}" - exp{na}" = exp{nip + ... +napa} = exp{{y,m)}.

We denote by Zi the set of all d-tuples (u1, ..., uq) of non-negative integers.

Our immediate goal is to look at the generating function when P is a cone.

(1.1) Definition. Let u1,...,u; € Z¢ be linearly independent lattice vectors and
let

K:co(ul,... ,uk).

The cone K is called a simple rational cone.
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1. Generating Functions and Simple Rational Cones 327

PROBLEMS.

1°. Check that a simple rational cone in R? is a closed convex cone without
straight lines.

2°, Let K = {(51,52) :0< & < 51\/5} C R2%. Prove that K is not a simple
rational cone.

3°. Let K = [0, +00) C R, Check that

f(K,z)= Zx" _
n=0

1—x

for all x € C such that |z| < 1.
4°. Let

K:Ri:{(gl,...,gd)eRd: & >0 forall z':l,...,d}.

Prove that )
1
f(K,x) = Z xlltl...xlde:Hl_z,
(11,0 pa) EZE i=1 ¢
for all (z1,...,74) € C such that |v;| < 1 fori=1,....d.

5°. Let u € Z® be an integer vector and let U = {x eCd: x4 < 1}. Prove

that
DL
1—xv
MEZLy

for every x € U and that the convergence is absolute and uniform on compact
subsets of U.

Here is our first result.

(1.2) Lemma. Let

K = co(ul,... LUk )
where w1, ... ,u, € Z are linearly independent vectors. Let
k
H:{Zaiui: OSozi<1}
i=1
be the “semi-open” parallelepiped spanned by uq, ... ,ux. Let

U:{XE(Cd: |x"
Then for all x € U the series
>, X"

meKNZ

<1 for i:l,...,k}.

converges absolutely and uniformly on compact subsets of U to the rational function
k

= (X« )i

nellnze =1
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328 VIII. Lattice Points and Polyhedra

Proof. The proof resembles that of Lemma VII.2.1. For a real number &, let [¢]
be the integer part of £ (the largest integer not exceeding &) and let {¢} =& — [¢]
be the fractional part of &.

Let us choose a point m € K NZ%, so

k
m:Zaiui where «; >0 for i=1,...,d.
i=1

Let

k k
mi = Z{ai}ui and mgy = ZLQZJUZ
i=1 i=1

Thus m = my + mo, my is an integer point in II and ms is a non-negative integer
combination of wy,... ,u,. Hence every point m € K NZ? can be represented as
the sum of an integer point from II and a non-negative integer combination of the
vectors u;. As in Lemma VII.2.1, it follows that the representation is unique. It
is also clear that the sum of an integer point from II and a non-negative integer
combination of uy,...,u, is an integer point from K.

Therefore, we have

S oo (3 w)( X )

meKNZd nellnzd (V1. ,l/k)EZ’i

(as formal power series). The second factor is a multiple geometric series which

sums up to

H 1

LLl] —xwi

=1
and the result follows; cf. Problem 5 of Section 1.1. O
PROBLEMS.

1°. Let K C R? be a simple rational cone as in Lemma 1.2 and let
E
= {Z%‘Ui: 0<a; <1 for i=1,... ,k}.
i=1

Let int K denote the interior of K considered as a convex set in its affine hull. Prove
that

fintK,x)= S x"= ( > X”) ﬁ 1 _1Xui

m€int KNZ4 nellnzd i=1

provided |x*i| < 1fori=1,... k.
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1. Generating Functions and Simple Rational Cones 329

2°. Given a simple rational cone K = co(uy,...,ug), let us consider two
rational functions

f(K,X)—( > x")f[l_lxui and

nellnz? =1
oo
int K,x) = "
f(int K, x) < Z X>H1—x“i
ne€lnzd i=1

in d complex variables x € C? as in Lemma 1.2 and Problem 1 above. Let x~!
denote (xfl, e ,x;l) for x = (21,...,24). Prove the reciprocity relation

f(il’lt Ks Xil) = (_1)kf(Ka X).

Hint: Consider the transformation m — u—m, where u=ur+...+tug. Show
that it establishes a bijection between the sets IIN Z<¢ and II N Z2.

3°. Let uq, ... ,u, € Z% be linearly independent vectors, let Lj, = span(ul, cee
uk) and let A, = Z% N Li. Let us consider Ay as a lattice in L. Suppose that
U1,...,us is a basis of Ag. Prove that under the conditions of Lemma 1.2, we have
b
K,x)= .
J(K. %) ljl g~

Here is a continuous version of Lemma 1.2.

4. Let u,... ,uq € R? be linearly independent vectors and let K = co(ul, cey
ug) be the cone spanned by wuq, ... ,uq. Let

H:{Zaiui: 0<a; <1 for i:l,...,d}

be the parallelepiped spanned by uq,... ,uq.

Prove that for ¢ = a + ib where a € int K° (recall that K° is a polar of K) and
b € R%, we have

d
/exp{cx}dx— VOIHH —c,uq)
K i=1

(we let {a+ib,z) = (a,x) +i(b, x)).
Hint: Applying a linear transformation, we may assume that K = Ri is the

standard non-negative orthant.

Here are some other interesting generating functions.
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330 VIII. Lattice Points and Polyhedra

5. Let a and b be coprime positive integers. Let

SZ{maJruzb: Hi, 2 € Z  and M17M220}

be the set of all non-negative integer combinations of a and b (in other words,
S C Zy is a semigroup generated by a and b; cf. Problem 11 of Section VII.1.2).

Prove that
ab

m 1-—2z
2 = =)

mesS
provided |z| < 1.

6*. Let a,b and ¢ be coprime positive integers. Let

S={uw+uzb+ugc: p1, ph2s 3 € Z and MlaMQa,U3ZO}

be the set of all non-negative integer combinations of a, b and ¢. Hence S C Z4
is a semigroup generated by a, b and c¢. Prove that there exist positive integers J;,
t=1,...,5, and numbers ¢; € {—1,1}, i =1,...,5, such that

Z m L+ €129 + 5292 + 329 + €420 + 5%
€T =

= (1—2%)(1 —x%)(1 — z°)
provided |z| < 1.

Remark: See [BP99] for discussion and some references.

2. Generating Functions and Rational Cones

Our next goal is to extend Lemma 1.2 to a larger class of sets.

(2.1) Definitions. Let ¢; € Z%, i =1,... ,n, be integer vectors. The set
K= {xeRd: (ci,x)y <0 for i=1,... ,n}

is called a rational cone.

Let ¢; € Z% be integer vectors and let a; € Z be integer numbers for i =
1,...,n. The set

P:{xERd: (ci,z) < oy for izl,...,n}

is called a rational polyhedron.
We denote by Q7 the set of all points with rational coordinates in R<.

A polytope P C R? is called an integer (resp. rational) polytope provided the
vertices of P are points from Z¢ (resp. Q).

We will need “rational” versions of the Weyl-Minkowski Theorem; see Corollary
11.4.3 and Corollary IV.1.3.
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PROBLEMS.

1°. Let P C R? be a rational polyhedron and let v be a vertex of P. Prove
that v has rational coordinates.

Hint: Cf. Theorem I1.4.2.

2°. Let P C R? be a bounded rational polyhedron. Prove that P is a rational
polytope.

Hint: Use Problem 1 above and Corollary 11.4.3.

3° Let P C R? be a rational polytope. Prove that the polar P° C R is a
rational polyhedron.

Hint: Cf. Problem 7 of Section IV.1.1
4°. Let P C R? be a rational polytope. Prove that P is a rational polyhedron.
Hint: Use Problem 3 above and Corollary IV.1.3.

5°. Let P C R? be rational polytope. Prove that there exists a positive integer
& such that P is an integer polytope.

Next, we prove that a rational cone without straight lines has an integer poly-
tope as a base; see Definition I1.8.3.

(2.2) Lemma. Let K C R?, K # {0}, be a rational cone without straight lines.
Then there exists an integer polytope Q C R* which is a base of K. In other words,
there exist points vy, ... ,v, € Z¢ such that every point x € K \ {0} has a unique
representation x = \y for y € Q = conv (vl, e ,vn) and A > 0.

Proof. Suppose that
K= {x: (c;yz) <0 for i=1,... ,m},

where ¢; € Z%. Let ¢ = ¢1 + ...+ ¢m, S0 ¢ is an integer vector. Let us prove that
(c,z) <0 forall x € K\ {0}.

Clearly, {(c,z) < 0 for every € K. On the other hand, if (¢,x) = 0 for some
x € K, then we must have (¢;,z) = 0 for i = 1,... ,;m (if the sum of non-positive
numbers is 0, each number should be equal to 0). Since we assumed that K does
not contain straight lines, we must have z = 0.

In particular, since K # {0}, we have ¢ # 0.
Let us define an affine hyperplane

H={zeR': (cz)=-1}

and let P = KN H. Hence for every x € K \ {0} there is a A > 0 such that Az € P.
Thus P is a base of K.

Clearly, P is a rational polyhedron. We claim that P is a polytope. To demon-
strate this, we prove that P does not contain rays (see Section 11.16). Indeed,
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suppose that P contains a ray a + 7b for 7 > 0. Then b # 0 and we must have
(ci,b) <0 fori=1,...,m and hence b € K. On the other hand, we must have
(e, by = 0, which is a contradiction. By Lemma I1.16.3, P must be a convex hull of
the set of its extreme points and hence, by Theorem 11.4.2, P must be a polytope.
Finally, by Problem 2 of Section 2.1, P is a rational polytope.

Choosing Q = 6P for some appropriate positive integer § (cf. Problem 5 of

Section 2.1), we obtain an integer polytope @ which is a base of K. O
PROBLEM.

1. Prove that K C R? is a rational cone if and only if K can be written as
K= co(ul,... ,un) for some w1, ... ,u, € Z%.

To reduce the case of a rational cone to the case of a simple rational cone, we
need an intuitively obvious, although not-so-easy-to-prove, fact that every polytope
adopts a triangulation, that is, it can be represented as a union of simplices such
that every two simplices can intersect only at a common face.

Figure 95. A triangulation of a polygon

Since a rigorous proof may require considerable effort, we sketch only a possible
approach below; see Chapter 9 of [Z95].

(2.3) Lemma. Let P C R? be a polytope with the vertices vy, ... ,v,. There exists
a partition I; U ... UL, ={1,... ,n} such that for the polytopes
A :conv(vi :iEIj), j=1,...,m,
we have
1. the points {v; : i € I;} are affinely independent for all j = 1,... ,m and
dimA; =dim P forj=1,... ,m;

2.
m
P = U Aj;
j=1
3. the intersection Aj N Ay, if non-empty, is a proper common face of A; and
Aj.
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Sketch of Proof. Without loss of generality, we may assume that dim P = d.
Let us consider R? as the hyperplane £;,1 = 0 in R?T!. Thus we think of vertices
v; of P as points (v;,0) in R4, Let us “lift” v; slightly into R%*!. Namely,
we let u; = (v;,7;), where 7; > 0 are “generic” numbers for ¢ = 1,... ,n. Let
Q= conv(ui e=1,... ,n) be the “lifted” polytope, so @ C R, One can show
that if the 7; are sufficiently generic, then @ is a simplicial (d + 1)-dimensional
polytope, that is, every facet of @ is a d-dimensional simplex.

d+ 1

Figure 96. Lifting a polytope to obtain its triangulation

For a generic point « € P, the straight line (z,7) intersects 9Q at two points:
one belonging to the “lower” facet and the other belonging to the “upper” facet.
The projections of the lower facets induce a triangulation of P. O

Now we are ready to prove the main result of this section (it is still a lemma,
not a theorem though).

(2.4) Lemma. Let K C R? be a rational cone without straight lines and let K° be
the polar of K. Let us define a subset U C C? by

U= {ewﬂz . x€eint K° and z€ Rd}.
Then U C C? is a non-empty open set and for every x € U the series
>, X"
meKNZ3
converges absolutely and uniformly on compact subsets of U to a rational function

n

f(KvX):Z pi(X)

— (1 — Xuﬂ) . (1 — Xuz'd)’

where p;(x) are Laurent polynomials and w;; € Z* are integer vectors for i =
1,...,nandj=1,...,d.
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Proof. Without loss of generality, we assume that K # {0}. By Lemma 2.2, there
exists an integer polytope @ which is a base of K. Triangulating ) (Lemma 2.3), we
represent K as a union of simple rational cones (see Definition 1.1) K, ¢ € I, such
that the intersection of every two cones is a common face of the cones, which, if not
{0}, must be a simple rational cone. Using the Inclusion-Exclusion Formula (see
Section 1.7), we can represent the indicator function of K as a linear combination
of the indicator functions of Kj:

[K] = Zei[Ki] where ¢ € {—1,1}.

Hence the same relation holds for the generating functions (considered as an identity
between formal power series):

> =Yl X oxm).

meKNZ el meK;NZ4

Clearly, for all x € U and all m € K NZ? we have [x™| < 1, so by Lemma 1.2 the
series in the right-hand side of the identity converges absolutely and uniformly on
compact subsets of U to rational functions in x of the required type (multiplying
the numerator and denominator of each fraction by some binomials (1 — x*), we
can ensure that each denominator is the product of exactly d binomials).

It remains to show that the set U is open. If dim K° < d, then by Theorem
I1.2.4 the cone K° is contained in a hyperplane and hence K = (K°)° contains
a straight line, which is a contradiction. Thus dim K° = d and hence the result
follows. g

PROBLEMS.

1. In Lemma 2.4, let K = dim K and let int K denote the interior of K consid-
ered as a convex set in its affine hull. Prove that for every x € U the series

>, ="

meint KNZ4

converges absolutely to a rational function f(int K, x) and that
fint K,x™ 1) = (=1)*f(K,x)
(the reciprocity relation).

Hint: Use Problems 1 and 2 of Section 1.2 and Problems 7 and 8 of Section
VI.3.3.

Here is a continuous version of Lemma 2.4.

2. Let K C R? be a polyhedral cone without straight lines. Prove that for
c =z + iy, where z € int K° and y € R?, the integral

/K exp{(c,z)} d
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converges to a rational function

m d
Zai H(-C, uig) ',
i=1  j=1

where u;; € R? are some vectors and «; are some real numbers.

Hint: Use Problem 4 of Section 1.2.

3. Generating Functions and Rational Polyhedra

In this section, we prove the main result of this chapter. But first we need one more
lemma.

(3.1) Lemma. Let P C R? be a rational polyhedron without straight lines. Then
there exists a non-empty open set U C C? such that for all x € U the series

> X"

mePNZ4

converges absolutely and uniformly on compact subsets of U to a rational function

f(P,x) of x.

Proof. Let us identify R? with the affine hyperplane H defined by the equation
€441 = 1 in R4, Suppose that P is defined by a system of linear inequalities:

P:{zeRd: (i, ) < ay, i:l,...,n}, where ¢; €Z¢ and «; €7
for i =1,... ,n. Let us define K C R**! by
K= {(x, Eavr1): {(ci,x) — ;€441 <0 for i=1,...,n and &z11 > O}.

Clearly, K C R%*! is a rational cone. If P is bounded, then K = co(P) and if P is
unbounded, then K = cl(co(P)). Note that P = K N H; see Figure 97.

Moreover, K does not contain straight lines. Indeed, suppose that K contains
a straight line in the direction of y = (n1,... ,74+1). Then we must have g3 =0
since the last coordinate must stay non-negative and then 7, = ... = 1y = 0 since
P does not contain straight lines.

By Lemma 2.4, there exists a non-empty open set U; C C%1 such that for all
y = (x,24941) € Uy the series

m o __ ma .M
DD D D

meKNZI+1 (my,p)eKNZI+L

converges absolutely and uniformly on compact subsets of U; to a rational function
f(K, (%, .Td+1)).
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Figure 97. The reader who imagines the positive direction as upward
may need to view this picture upside down.

We obtain f(P,x) by differentiating f (K, (x,2411)) with respect to z441 and
substituting x441 = 0 into the derivative.

Indeed, we observe that for every lattice point (m,u) € K the last coordinate
1 is non-negative. By a standard result in complex analysis, we can differentiate
the series and conclude that the series

—1 —1
(3.1.1) E pxmral T = E x4+ E px"ral
(m1,p)eKNZITL mq EPNZI (m1,p)e KNZATL
m1€2%,u>1 m1 €L, pn>2

converges absolutely and uniformly on compact sets in U; to a rational function

0
0441

f(Ka (Xa derl))'

Let U C C? be the projection of Uy: (X,z441) — X. Substituting 411 = 0 in
(3.1.1), we conclude that for every x € U the series

E x™m™
my €PNZI

converges absolutely and uniformly on compact subsets of U; to the rational func-
tion
0

0rq11

f(Pa X) = f(Ka (szd-l-l))‘

z441=0"
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PROBLEMS.

1°. In the situation of Lemma 3.1, let m € Z? be a lattice vector and let P +m
be the translation of P. Prove that

f(P+m,x) =x"f(P,x).

Here is a continuous version of Lemma 3.1.

2. Let P C R? be a polyhedron without straight lines. Prove that there exists
a non-empty open set U C C? and a rational function ¢ : C? — C such that for
all c € U we have

/ exp{(c,z)} dz = ¢(c)

P

and the integral converges absolutely. Again, we let {(c,z) = (a,z) + i(b,z) for a
complex vector ¢ = a + ib.

Hint: Use Problem 2 of Section 2.4 and the trick of Lemma 3.1. Instead of
differentiating, use the Laplace transform.

3*. Let ug, ..., u, € Z% be vectors such that the cone K = co(ul, . ,un) does
not contain straight lines. Let

n

S = {Z a;u; where «1,...,q, are non-negative integers}
i=1
be the semigroup generated by uq,...,uy; cf. Problem 6 of Section 1.2. Prove

that there exists a non-empty open set U C C? such that for all x € U the series
Y mes X converges absolutely and uniformly on compact subsets of U to a rational
function in x.

Hint: Let R} be the non-negative orthant in R™. Construct a linear transfor-
mation 7 : R® — R? such that T(Zf_) = 5. Construct a set @ C R’} which is a
finite union of rational polyhedra and such that the restriction T': Q NZ" — S is
a bijection. Apply Lemma 3.1.

We are getting ready to prove the central result of this chapter. We state it
in the form of the existence theorem for some particular valuation; cf. Sections
1.7 and 1.8. We need the rational analogue of the algebra P(RY) of polyhedra; see
Definition 1.9.3.

(3.2) Definitions. The real vector space spanned by the indicator functions [P]
of rational polyhedra P C R? is called the algebra of rational polyhedra in R¢ and
denoted P(Q%). Let C(z1,... ,74) denote the complex vector space of all rational
functions in d variables.
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PROBLEMS.
1°. Check that the intersection of rational polyhedra is a rational polyhedron.

2°. Prove that P(R?) (resp. P(Q?) ) is spanned by the indicator functions [P]
of polyhedra P C R? (resp. rational polyhedra P C R?) without straight lines.

3°. Let P C R? be a rational polyhedron which contains a straight line. Prove
that there exists a vector m € Z% \ {0} such that P +m = P.

Hint: Assume that P = {x Dej,x) <o fori=1,... ,n} for some vectors
c; € 74 and some numbers a; € Z. Prove that there exists a vector u € R?\ {0}
such that (c;,u) = 0 for all i € I. Deduce that one can choose u € Q¢ \ {0}.
Conclude that one can choose u € Z%\ {0}.

The theorem below was proved independently by A.V. Pukhlikov and A.G.
Khovanskii [PK92] and J. Lawrence [L91b].

(3.3) Theorem. There exists a map
F:PQ%) — C(z1, ... ,zq)

from the algebra of rational polyhedra in R® to the space of rational functions in d
complex variables x = (z1,... ,2q) such that the following hold:
1. The map F is a valuation, that is, a linear transformation.
2. If P C R? is a rational polyhedron without straight lines, then F[P] =
f(P,x) is the rational function such that

f(P,x) = Z x™

mePNZa

provided the series converges absolutely.

3. For a function g € P(Q?) and an integer vector m € Z2, let h(z) = g(x—m)
be the shift of g. Then F(h) = x™F(g).

4. If P C R? is a rational polyhedron containing a straight line, then F([P]) = 0
(the rational function that is identically zero).

Proof. We know how to define F[P] for a rational polyhedron P C R¢ without
straight lines. By Lemma 3.1 there is a non-empty open set U C C? such that the

series
> X"
mePNZ4

converges for all x € U to a rational function f(P,x). Hence we let F[P] = f(P,x).
By Problem 2 of Section 3.2, the algebra P(Q%) is spanned by the indicator functions
of rational polyhedra [P] without straight lines, so we may try to extend F by
linearity. To be able to do that, we should show that whenever

(3.3.1) zn:oél[PZ] =0
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3. Generating Functions and Rational Polyhedra 339

for rational polyhedra P; without straight lines and real numbers «;, we must have
(3.3.2) > aif(P,x)=0.
i=1
Indeed, suppose that (3.3.1) holds. For a non-empty subset I C {1,...,n}, let
Pr=()P.
il
Using the Inclusion-Exclusion Formula (see Lemma 1.7.2), we obtain that
[Url= >, )" e,
i=1 I1c{1,... n}
140

Multiplying the above identity by [P;], we obtain

[P] = Z (—1)‘I|_1[P1u{z‘}]-
Ic{1,...,n}
140
Hence
Soxm= > (pfiet Y ke
mePp;NZ* IC{]I;AQ)’n} mePIU{i}ﬁZd

as formal power series. Now P; is a rational polyhedron without straight lines and
Prygiy C P are rational polyhedra as well, so by Lemma 3.1 there is a non-empty
open set U C C% where all involved series converge absolutely. Therefore,

(3.3.3) fFPux) = Y (=) (P, ).
Ic{1,...,n}
I#0

Let us choose a non-empty I C {1,...,n}. Multiplying (3.3.1) by [P;], we get

Zai[PIu{i}] =0.
i=1

Therefore,
n

Yol 3 xr)=

i=1 mEPIU{i}ﬁZd

as formal power series. Since Pj is a rational polyhedron without straight lines and
Prygy C P, there is a non-empty open subset U C C? where all series involved

converge absolutely. Therefore, for every non-empty I C {1,...,n}, we have
(3.3.4) > aif(Prugiy,x) = 0.
i=1
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From (3.3.3) and (3.3.4) we get (3.3.2). Thus (3.3.1) implies (3.3.2) and we can
extend F by linearity to the whole algebra P(Q%).

Since by Problem 1 of Section 3.1 F([P 4+ m]) = x™F([P]) for every rational
polyhedron P without straight lines and every m € Z and the indicator functions
[P] span P(Q%), Part 3 follows.

It remains to prove Part 4. Let P C R be a rational polyhedron with a straight
line. By Problem 3 of Section 3.2 we have P 4+ m = P for some non-zero integer
vector m. Then by Part 3 we must have

F([P]) = F([P + m]) = x"F([P]).
Hence F([P]) = 0 and the proof is completed. O

(3.4) Example. Letd =1, let P, = [0,400) and let P_ = (—o0,0]. Thus Py and
P_ are rational polyhedra in R'. Let Py = P_NP, = {0} andlet P = P_UP, =R.

We have )
Z xmzzxmzl—x’

meP,NZ m>0

where the series converges absolutely for all = such that || < 1. Thus by Part 2 of

Theorem 3.3, we must have
1

1—a

m m 1
>, A=) e e

meP_NZ m<0

FlPy] =

Similarly,

where the series converges absolutely for all z such that |z| > 1. Thus by Part 2 of
Theorem 3.3 we must have

FIP = o

T
Now, Py = {0}, so we must have

FlPy] = 1.
The polyhedron P is the whole line R and hence by Part 4

F[P] =0.
By the Inclusion-Exclusion Formula,

[P] = [P-] + [Py] = [Po].

Then, by Part 1 we must have

1 1

0= FIP] = FIP_] + FIP] = FIP)) = -— + ———

_ 1 x
T 1l-z 11—z

which is indeed the case. Note that there are no x for which both series for F[P_]
and F[P4] converge.

_1’
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PROBLEMS.
Here is a continuous version of Theorem 3.3.

1. Prove that there exists a valuation ® : P(R?) — C(v1,...,74) such that
the following hold:

(1) If P c R? is a polyhedron without straight lines, then ®([P]) is the rational
function ¢(P,¢) in ¢ = (y1,... ,7q) such that

qb(P,c):/IDexp{(c,x)} dr for c¢=(y1,.--,7q)

provided the integral converges absolutely (cf. Problem 2 of Section 3.1).

(2) For a function g € P(R?) and a vector a € R, let h(x) = g(z — a). Then
®(h) = exp{(c,a)}(g)-

(3) If P C R is a polyhedron with straight lines, then ®(P) = 0.

2. Let P C R? be a d-dimensional polytope defined by a system of linear

inequalities,
pP= {:I:: (uj,z) < a; for i=1,... ,n},
where o; > 0 and |lu;|| =1 for i = 1,... ,n. Suppose that
F; = {x eP: (uz) :ai}
is a facet of P for i = 1,... ,n and let u; be the Lebesgue measure on the affine

hull of F;. Prove that for every ¢ € C? and every v € R? one has

n

{c,v) /Pexp{(c, z)} do = Z(v,uz) /F exp{{c,z)} dp;.

i=1 i

Hint: Use Stokes’ Formula; see [Barv93|.

4. Brion’s Theorem

In this section, we discuss the structure of the algebra of (rational) polyhedra in
more detail and obtain an important formula for the valuation F.

(4.1) Definition. Let P C R? be a polyhedron and let v € P be a point. We
define the support cone of P at v as

cone(P,v):{xERd: ex+ (1 —e)v e P for some 0<e<1}.

Strictly speaking, cone(P,v) is not a cone since it has its vertex at v.
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cone (P, a) cone (P, c)
cone (P, b)

Figure 98. Example: a polyhedron P and its support cones

PROBLEMS.

1°. Check that the support cone at v is the translation of the cone of feasible
directions at v (see Problem 2 of Section II.16.1) by the vector v.

2°. Let P C R? be a polyhedron defined by a system of linear inequalities
P= {xeRd: (ci,x)y < B; for i=1,... ,n}

and let v € P be a point. Let I = {i: (¢;,v) = B;} be the set of inequalities active
on v. Prove that

cone(P,v) = {z eR*: (c;,z)<B; for iel}
(if I = 0, we let cone(P,v) = R9). In particular, the support cone of a rational

polyhedron is a rational polyhedron.

3°. Let P C R? be a polyhedron and let u,v € P be points which lie in the
interior of the same face F' of P. Prove that cone(P,v) = cone(P,u). Hence we can
talk about the support cone, denoted cone(P, F'), of a face F' of P.

Our goal is to prove that “up to straight lines”, every polyhedron is the sum
of its support cones.

(4.2) Definition. Let Py(RY) (resp. Po(Q?)) denote the subspace of the algebra
P(RY) (resp. P(Q?)) spanned by the indicator functions [P] of polyhedra (resp.
rational polyhedra) with straight lines.

We start with the case of a standard simplex; cf. Problem 1 of Section 1.2.2.
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4. Brion’s Theorem 343

(4.3) Lemma. Let A C R be the standard d-dimensional simpler, A =
conv(ei i=1,...,d+ 1), where ey, ... ,eq1 are the standard basis vectors. Then
one can find rational polyhedra P, C R%, k=1,...,N, such that
1. each polyhedron Py contains a straight line parallel to e; — e; for some pair
1<i<i<d+1;

2. we have
d+1 N
[A] - Z [cone(A, ¢;)] = Zak[Pk] for some «ay, € {—1,1}.
i=1 k=1

In particular, modulo Py(Q?), the indicator function of the standard simplex is the
sum of the indicator functions of the support cones at its vertices.

Proof. Let us identify R? with the affine hull of eq, ... ,eq41. Let H_j be the closed
halfspace & > 0 in R?. Then

d+1
A= ﬂ H and cone(A,e;) = ﬂ H.
i=1 i#j

By the Inclusion-Exclusion Formula (see Lemma 1.7.2), we have

d+1
R =[JaT= > pftaEk
i=1 Ic{1,... , d+1} iel
170
Let S
Pr=(H}'.
el

If 1 ={1,...,d+ 1}, we have P = A. If I = {1,...,d+ 1} \ {i}, we have
P = cone(A,e;). All other polyhedra P; contain straight lines. In particular, if
i,j ¢ I, then P; contains a straight line in the direction of e; — ¢;. O

PROBLEMS.

1°. Let cone(P, F') be the support cone of P at a face F' C P; see Problem 3 of
Section 4.1. Let us fix a 0 < k < d. Prove that for the standard simplex A

[A] — Z (=1)M™F [ cone(A, F)]
F isda falge of A

im F'<

is a linear combination of the indicator functions of polyhedra P; each of which
contains a (k 4 1)-dimensional affine subspace.

2°. Let P C R™ be a rational polyhedron and let 7' : R® — R? be a linear
transformation with a rational matrix. Prove that T'(P) is a rational polyhedron
in R<.
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344 VIII. Lattice Points and Polyhedra

Hint: “Rationalize” the reasoning of Section I.9.

3°. Let P C R™ be a polyhedron, let T : R — R be a linear transformation
and let @ = T'(P). Let v € P be a point and let ©w = T'(v). Check that cone(Q, u) =
T (cone(P,v)).

Next, we generalize Lemma 4.3 to (rational) polytopes.

(4.4) Lemma. Let P C R? be a polytope (resp. rational polytope) with the vertices
V1,... ,Um. Then we can write

for some function g € Po(R?) (resp. for some g € Po(Q?)).

Proof. Let us consider the standard simplex A C R™*! and let T be the linear
transformation, T : R™*1 — R9 such that T'(e;) = v;. Then T(A) = P. Using
Lemma 4.3, we can write

m—+1 N
[A] = Z [Cone(A,ei)] + Z%[Qk},
=1 k=1

where each Q) is a rational polyhedron containing a straight line in some direction
e;—e;. Linear relations among indicator functions of polyhedra are preserved under
linear transformations; see Problem 1 of Section 1.9.3. Applying the transformation
T to the above identity and using Problem 3 of Section 4.3, we get

[P] = [T(A)] =) [cone(P,v;)] + Y [T (Q)]-
k=1

i=1

By Problem 2 of Section 4.3, each T'(Qy,) is a (rational) polyhedron. Moreover, since

U1,... U, are distinct, e; — e; ¢ kerT' for every pair of indices ¢ # j. Therefore,
each polyhedron T'(Qy) contains some straight line in the direction of T'(e; — e;).
The proof now follows. O
PROBLEMS.

1*. For a face F of a polytope P C R?, let cone(P, F) be defined as in Problem
3, Section 4.1. By convention, P is a face of itself (so cone(P, P) = R?%). Prove
Gram’s relation, also known as the Brianchon-Gram Theorem:

[P] =) (=1)"™F[ cone(P, F)],

F

where the sum is taken over all non-empty faces F' of P, including F' = P.
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4. Brion’s Theorem 345

Remark: The following proof was suggested by J. Lawrence. Let us choose the
origin in the interior of P and let Q = P° be the polar of P. Using Problem 8 of
Section VI.3.3, write

(=D)*MQI = > (=)™ Flconv(F U {0})],

F

where the sum is taken over all faces ' # @ of @, including the empty face. Apply
the polarity valuation D of Theorem IV.1.5 to both sides of the identity and use
Theorem VI.1.3 to interpret the resulting identity as Gram’s relation for P.

2°. Let P C R? be a polyhedron with a straight line. Prove that P does not
have a vertex.

3°. Let P;, P, C R? be polyhedra and let v; € P; and vo € P, be points. Let
us define P} x P, C R? @ R? = R?? by

P x Py = {(x,y) . rzePLye Pg}.
Prove that P = P; x P, is a polyhedron and that for v = (v1,v3), we have

cone(Py x Py, v) = cone(Py, v1) x cone(Py, v3).

Finally, we extend Lemma 4.4. to (rational) polyhedra.
(4.5) Theorem. Let P C RY be a polyhedron (resp. rational polyhedron). Then

[Pl=g+ Z [ cone(P,v)]

v is a vertex of P

for some function g € Po(R?) (resp. for some g € Po(Q?)).

In words: modulo the indicator functions of (rational) polyhedra with straight
lines, the indicator function of every (rational) polyhedron P is equal to the sum of
the indicator functions of the support cones of P at the vertices of P.

Proof. Suppose that P is defined by a system of linear inequalities

pP= {x: (ci,x)y < By, i=1,... 7n},
where ¢; € Z% and B; € Z. First, we observe that if P does not have vertices,
then by Lemma I1.3.5 the polyhedron is either empty or contains a straight line; in
both cases the result is immediate. Suppose, therefore, that P has vertices and let

Q = conv (ex P) be their convex hull. Then @ is a (rational) polytope; cf. Problem
2 of Section 2.1. Let

Kz{x:(ci,@g(): izl,...,n}
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346 VIII. Lattice Points and Polyhedra

be the recession cone of P; see Section I1.16 and, in particular, Problem 3 of Section
I1.16.1. Thus K is a (rational) cone without straight lines and Lemma I1.16.3 implies
that

P=Q+K.

By Lemma 4.4, we can write

Q= > [cone(@v)]+> @i,

veex(P) i€l

where the @; are (rational) polyhedra with straight lines and the «; are numbers.

Let us consider R?? as a direct sum of two copies of R*: R2? = R? ¢ R%. For
sets X, Y CR% let X xY = {(:my) cx e X,y€ Y} C R?? be its direct product.
Multiplying the last identity by [K], we get

[Qx K| = Z [ cone(Q,v) x K] +Z%‘[Qi x K].

veex(P) i€l

For v € R?, let © = (v,0) € R?¢. Using Problem 3 of Section 4.4, we can write

Q@ x K] = Z [cone (Q x K, 5)]+Zozi[Qi><K].
veex(P) el
Clearly, Q; x K are (rational) polyhedra.

Let T : R?¢ — RY, (x,y) — z + y be the projection. Applying T to both
parts of the identity (cf. Problem 1 of Section 1.9.3 and Problem 3 of Section 4.3),
we get

[P] = [P+K] = Z [cone(Q—&—K,v)] —&-Zai[Qi—&—K]

veex(P) i€l
= > [cone(Pv)] +> ai[Qi + K].
veex(P) i€l

Since @Q; + K are (rational) polyhedra with straight lines, the result follows. O

Now we are ready to prove the main result of this section. The theorem below
was first obtained by M. Brion in 1988 [Bri88] (see also [Bri92]) by methods of
algebraic geometry. Since then many elementary proofs appeared; see, for example,
[PK92], [L91b], [BV97] and [Barv93]. We obtain the result as a corollary of
Theorem 4.5 (this is the approach of [PK92] and [L91b]).

(4.6) Corollary (Brion’s Theorem). Let F : P(Q?) — C(xy,...,z4q) be the
valuation of Theorem 3.3. Then, for every rational polyhedron P C R?, one has

F[P] = Z F|cone(P,v)].

v is a vertex of P
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Proof. Follows by Theorem 3.3 and Theorem 4.5. O
c=(0,1)
P
a=(0,0) b=(1,0)
c
cone (P c)
cone (P, a) cone (P, b)
a b
Figure 99

(4.7) Example. For the triangle P in Figure 99, there are three vertices a, b and
¢ and three support cones. For cone(P,a), we have

mo__ M1 2 1
>, x"= ) e Y .

mé&cone(P,a)NZ? (p,l,p,g)EZi_

provided |z1|, |z2| < 1. Therefore, by Part 2 of Theorem 3.3, we have
1
(1 - Il)(l - Ig) '

The support cone at b, translated to the origin, is spanned by the vectors a — b =
(—1,0) and ¢ — b= (—1,1). Since we have

-1 -1
‘det(o 1)‘—1,

by Corollary VII.2.6 the fundamental parallelepiped of a — b and ¢ — b does not
contain any lattice point other than the origin. Therefore, by Lemma 1.2 we have

m _ b p1(a—b)+pa(c—b) _ !
P D DR (-2 )1 =, )

mecone(P;b) (m1,p2) €L7%

F|[cone(P,a)] =
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provided z1 < 1 and |x2/z1| < 1. Hence by Part 2 of Theorem 3.3,
1

F|[cone(P,b)] = A=) o m)

Similarly, we get
L2

(1—z3 ") (1 —2ay )

F|cone(P,c)] =

Now
F|cone(P,a)] + F|cone(P,b)| + F[ cone(P, c)]
1 T T2
TOm(-m) Q- (- | Q—ap ) —awy))
_(@i—m)—af(l—w)tad(l—a1) _ (w1 —22) — (2 — 23) + 212a(a] — 29)
(1—$1)(1—$2)($1 —.TQ) (1—$1)(1—$2)($1 —.TQ)

1= (2% + @9 + 23) + z122(21 + 22)
- (1 =z1)(1 = 22)
(1 —af) — (z122 — 2fay) — (23 — 1123)
(1 —a1)(1 = 22)
_ 1+ 2 — 2129 — 73 _ (1 —22) +21(1 — 29) it
1— a9 1 -z

On the other hand,

Z xm:1+x1+x2,

mePNZ?

hence we must have
F[P] =14z + a2

and Brion’s identity indeed holds.

It is interesting to note that while each of the three rational functions corre-
sponding to the support cones of P have singularities, all the singularities cancel
each other out in the sum. We observe also that there are no values x; and o
for which all the three series defining F[cone(P,a)], F[cone(P,b)] and Flcone(P,c)]
simultaneously converge.

PROBLEMS.
1 (M. Brion). Let P C R? be a rational polyhedron. Prove that
Flint P] = Z F|int cone(P,v)],
v is a vertex of P
where the interiors are taken in the affine hull of the polyhedron.
Remark: See [Bri88].
2°. Let @ be the valuation of Problem 1, Section 3.4. Prove that

o[P] = Z ® [ cone(P,v)]

v is a vertex of P

for any polyhedron P C R%.

Licensed to Georgia Inst of Tech. Prepared on Sun Jan 14 21:00:56 EST 2024for download from IP 188.92.139.72.



5. The Ehrhart Polynomial of a Polytope 349

5. The Ehrhart Polynomial of a Polytope

As an application of Brion’s Theorem (Corollary 4.6), we describe how the number
of lattice points in a polytope changes when the polytope is subjected to dilation
by an integer.

Suppose that P C R? is a (rational) polytope. Obviously, we can compute
the number |P N Z%| of integer points in P by substituting x = (1,...,1) into the
generating function

f(P,x) = Z x™.

mePNZ3

If, however, we are to use Brion’s Theorem to evaluate f(x), we should exercise
some care since x = (1,...,1) is a pole of every generating function

f(cone(P, v), x) = Z x";

mécone(P,v)NZ4

see Example 4.7. A way to resolve this problem is to approach the point x = 1 via
some curve and compute an appropriate limit. To see how this works, we prove
the existence of the Fhrhart polynomial, named after E. Ehrhart who first studied
them.

(5.1) Theorem. Let P C R? be an integer polytope. Then there exists a univariate
polynomial poly, called the Ehrhart polynomial of P, of degree at most d such that
for every positive integer k we have

kP N Z4] = poly(k).

In words: the number of integer points in the dilated polytope is a polynomial in the
coefficient of dilation.

Proof. Let vq,...,v, be the vertices of P, hence v; € Z% for i = 1,... ,n. Then
the vertices of kP are kvy,... , kv,. Let

K; = cone(P,v;) — v;

be the support cone of P at v; translated to the origin. Thus K is a rational cone
(cf. Problems 1 and 2 of Section 4.1). It is not hard to see that

cone(kP,v;) = kv; + K;.
Applying Part 3 of Theorem 3.3, we conclude that
F[cone(kP,v;)] = x" FK;].
By Corollary 4.6 and Part 2 of Theorem 3.3,

Y x"=F[kP] = ixk“i}'[l{i].

mekPNZ4
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We observe that as k changes, the F[K;] remain the same and only the x*¥ change.
Applying Lemma 2.4, we conclude that

pi(x)
FIK;] = ,
[ l] (]__Xuil)...(]__xuid,)
where u;1,...,u;q are integer vectors and p; are Laurent polynomials in x =
(x1,...,24). Thus we can write

(5.1.1) Yoxm= ; ’_‘kvll.’.( x)

Let us choose some very special x. Let ¢ € R be a vector such that (c, u;;) # 0
for all 7, j and let 7 be a number. We substitute

X:eTC

in (5.1.1) and observe what happens as 7 — 0, so that x approaches (1,...,1).
In the left-hand side, we get

Z x™ = Z exp{7(c,m)}.

mekPNZd mekPNZ4

The sum is an analytic function of 7. Expanding it in the neighborhood of 7 = 0,
we see that the constant term is the number |kP N Z?| of lattice points in kP. Let
us see what we get in each fraction of the right-hand side.

‘We have
kaipi(X)
(1 — Xuil) R (1 — Xuid)
_ exp{T<c, k;vi>} - ;i (e”)
(5.1.2) (1 _ exp{T<C, u21>}) . (1 — exp{T (c, Uid>})
d
=7 exp{T ¢, kv;) }pz Jl;[l 1 —exp{T B uw>}.

Now, we observe that the part

d
TCH

[eS)
E OzilTl

—exp{T Cy Usj } =

is an analytic function of 7 which does not depend on % at all. On the other hand,
the Laurent expansion of

% exp {7’ c, kv, _de‘l © Uz
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contains some negative terms and does depend on k. We are interested in the
constant term of the expansion of (5.1.2). Collecting the terms, we conclude that
the constant term of (5.1.2) is

d !
C,V;
Zk‘l< I ) Qid—1;

=0

which is a polynomial in k. Equating the constant terms in (5.1.1), we get

n d 1
d| _ 1 (e, i)
kPOZY = ">k 0

=1 =0

Qi d—1 = POly(k),

which completes the proof. O

3P
2P

Figure 100. Example: a triangle P and its dilations 2P and 3P. One
can observe that |kP N Z2% = k%/2 4+ 3k/2 + 1.

PROBLEMS.

1. Let P C R? be an integer polytope and let p(k) = |kP N Z4| be its Ehrhart
polynomial. Prove that degp = dim P.

2. Deduce the existence of the Ehrhart polynomial for integer polygons from
Pick’s Formula; see Problem 6 of Section VII.2.6. Prove that in the case of integer
polygons the coefficients of the Ehrhart polynomial are non-negative.

3. Let P C R? be an integer polytope and let p be its Ehrhart polynomial.
Prove that for any positive integer k we have

p(—k) = (~1) P int(kP) N 2%,

where the interior of a polytope is considered with respect to its affine hull (the
reciprocity relation).

Hint: Use Problem 1 of Section 4.7 and Problem 1 of Lemma 2.4.
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4. Let a4(k) denote the number of d x d matrices with non-negative integer
entries such that all row and column sums are equal to k.

a) Prove that for each d, a4(k) is a polynomial pg(k) in k of degree (d — 1)2.
Hint: See Section II.5.

b) Deduce from Problem 3 that pg(—1) = ... =pg(—d+1) =0.

5. Let P C R? be an integer polytope such that dim P = d and let p be its

Ehrhart polynomial. Prove that the highest coefficient of p is equal to the volume
of P.

6*. Prove that the constant term of the Ehrhart polynomial is 1.

7. Let P C R3 be the tetrahedron with the vertices (0,0,0), (1,0,0), (0,1,0)
and (1,1,n), where n > 0 is an integer parameter. Prove that the Ehrhart polyno-

mial of P is 19
plk) = Sk3 4 K2+ ==

k4 1.
6 +

8. Let P C R? be a rational polytope and let m be a positive integer such that
mP is an integer polytope. Let f(k) = |kP NZ%. Let us fix a positive integer k.
Prove that f(ko + nm) is a polynomial in n, where n is a positive integer.

9. Let c1,...,cn € Z% be integer vectors and let I' C Z™ be a set of m-tuples
a = (ai,...,qn) such that the polyhedron

P(G)Z{QCERd: (ci,x) < a; for izl,...,m}

is an integer polytope for all @ € T' and any two polytopes P(a) and P(b) for
a,b € I' have the same combinatorial structure (that is, there is an inclusion-
preserving bijection between the set of faces of P(a) and the set of faces of P(b)).
Prove that there is an m-variant polynomial p such that

|P(a)NZ% =p(a) forall acT.

10. Let ci,...,¢n € R? be vectors and let I' € R™ be a set of m-tuples
a = (ai,...,qn) such that the polyhedron

P(G)Z{QCERd: (ci,x) < a; for izl,...,m}

is a polytope for all a € T and any two polytopes P(a) and P(b) for a,b € T have
the same combinatorial structure. Prove that there exists an m-variant polynomial
p(a) such that

volP(a) =p(a) forall ael.

Hint: Cf. Problem 2 of Section 4.7, Problem 1 of Section 3.4 and Problem 2 of
Section 2.4.
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6. Example: Totally Unimodular Polytopes

In one special case, Brion’s Theorem (Corollary 4.6) gives a particularly succinct
representation of the generating function.

(6.1) Definition. Let uy,...,u; € Z? be linearly independent vectors and let
K = co(ul,... ,uk). Let L), = span(ul,... ,uk) and let Ay, = Z4N L. We say
that K is a unimodular cone provided uy, ... ,u is a basis of Ay, considered as a
lattice in Lg. We call ug, ... ,uy generators of K.

Let P C R? be an integer polytope. We say that P is totally unimodular
provided the support cone at every vertex of P is a translation of a unimodular
cone.

Some important polytopes are totally unimodular.

PROBLEMS.
1. Let A be the standard (d — 1)-dimensional simplex in R%:

d
A:{(gl,...,gd); Y &=1 and >0 for z':l,...,d}.

i=1
Prove that A is a totally unimodular polytope.

2. Let us fix positive integers m and n and let us identify R%, d = mn, with
the space of m x n real matrices (;;). Thus Z? is identified with the space of all
m X n integer matrices. Let us fix positive integers a, ..., and 8q,..., 5, and
let P C R? be the polyhedron of all non-negative m x n matrices with row sums
a1, ... , 0, and column sums By, ..., B,. Suppose that dim P = (m—1)(n—1) and
that P is a simple polytope; see Definition VI.5.1 (which means that «a1,... ,ay,
and B1,..., B, are chosen in a sufficiently generic way). Prove that P is a totally
unimodular polytope.

Remark: More generally, a sufficiently generic transportation polytope (see
Section I1.7) is totally unimodular. Non-negative integer matrices with prescribed
row and column sums are called contingency tables.

3. Let ui,...,uq € Z% be linearly independent lattice points and let K =
co (ul, . ,ud). Prove that K can be dissected into the union of unimodular cones,
that is, there is a decomposition

where each cone K; is unimodular and the intersection K;NK; of every two distinct
cones K; and Kj is a proper face of both.

4. Let K C R? be a unimodular cone such that dim K = d. Prove that the
polar K° C R? is a unimodular cone.

For totally unimodular polytopes, Brion’s Theorem (Corollary 4.6) gives a par-
ticularly nice identity.
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(6.2) Corollary. Let P C R? be a totally unimodular polytope with the vertices
V1, Up. Suppose that dim P = k and that cone(P,v;) = v; + K;, where K; is a

unimodular cone with the generators w;1,... ,u;x fori=1,... ,n. Then
n v
X k2
mo__
Z X _Z (]__Xuzl) (1_xu7k)
mePNZ? =1
Proof. Follows by Brion’s Theorem and Problem 3 of Section 1.2. O
PROBLEMS.
1. Let K C R? be a unimodular cone with the generators ui,...,uq. Let us
define vectors uj,... ,u}; by

<ui,uj>—{ 1 if i=34,

0 otherwise.

Let v € Q¢ be a rational vector. Prove that

d

where w = Z((v,u;"ﬂuz

i=1

Xw

(1_Xu1)...(1_xud)’

F[K 4] =

Here [£] denotes the smallest integer greater than or equal to &.

2. Let P C R? be a rational polytope with the vertices v1,. .. , v, such that the
support cone of P at v; is a translation of a unimodular cone with the generators
Uil, - -+, Uid- Let us define ujy, ... ,uj; by

1 if k=3,

0 otherwise.

(wij, ujp) = {

Prove that
n XWi d
Z XM — ) (=) where w; = Z[(vz,ufjﬂu”
mePNZ4 i=1 j=1

Here is a continuous version of Corollary 6.2.

3. Let P C R? be a simple polytope with the vertices v1,... ,v,. Suppose that
dim P = d and that cone(P,v;) = v; + K;, where K; = co(uil, . ,uid) for some
linearly independent vectors u;1, ... ,u;q. Let a; be the volume of the parallelepiped
spanned by u;1,... ,u;q. Prove that

1

d
L (= uig)

/Pexp{<c, z)} do = Zexp{(o, v;) by H
i=1 j=
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The formula of Corollary 6.2 provides a way to compute the number of points
in a totally unimodular polytope P by specializing x = (1,...,1). Of course, one
should do it carefully because of the singularities in the right-hand side. One way
to do it is to choose a vector ¢ € R? such that (c,u;;) # 0 for all i and j, substitute
X = e€"¢, where 7 is a real parameter, and compute the constant term of the Laurent
expansion of the left-hand side in the neighborhood of 7 = 0, as we did in the proof
of Theorem 5.1. Another possibility is to substitute x sufficiently close to (1,...,1)
and round the result to the nearest integer.

(6.3) The duality trick. It happens sometimes that a polytope P is rather close
to being totally unimodular and yet is not totally unimodular. For example, if the
transportation polytope P in Problem 2 of Section 6.1 is not simple, it cannot be
totally unimodular. Then it becomes a problem to compute F[K], where K is the
translation to the origin of the support cone of P at some integer vertex wv.

A computationally efficient way to handle F[K] is as follows. Suppose, for
simplicity, that K C R? is a d-dimensional rational cone. Let K° C R? be the polar
of K. Let us dissect (or otherwise decompose) K° into the union of unimodular
cones; see Problem 3 of Section 6.1. Thus, by the Inclusion-Exclusion Formula, we
can write

n
[K°] = Z[KZ] + indicators of lower-dimensional rational cones,
i=1

where K; C R? are d-dimensional unimodular cones. Polarity preserves linear
relations between closed cones; see Corollary IV.1.6. By the Bipolar Theorem
(Theorem IV.1.2), we have (K°)° = K. Moreover, polars of lower-dimensional
rational cones are rational cones containing straight lines. Hence we can write

[K] = Z[K ’] £ indicators of rational cones containing straight lines.

By Theorem 3.3, Part 4, valuation F ignores rational polyhedra with straight lines
and hence

FIK] = Z}'[Kf].

By Problem 4 of Section 6.1, K; are unimodular cones. Hence we get a closed
formula for F[K].

The computational savings for passing to the polar cones and then going back
compared to the direct decomposition of K into unimodular cones are twofold.
First, we are able to ignore the lower-dimensional cones completely. Second, in
many problems it is much easier to decompose the polar cone K° into unimodular
cones. Suppose, for example, that P is a transportation polytope of Problem 2,
Section 6.1. Let v be a vertex of P and let K = cone(P,v) —v. Let us consider
K as a cone in the subspace L = aff(P) — v and let K° C L be its polar in that
subspace. Then any triangulation of K° produces totally unimodular cones. Thus
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if P is sufficiently close to being a simple polytope, we get a closed formula for the
generating function
F[P] = Z x.

mePNZ4

7. Remarks

Gram’s relation or the Brianchon-Gram Theorem expresses the indicator function
of a polyhedron P as an alternating sum of the indicators of the support cones at
the bounded faces of P (cf. Problem 1 of Section 4.4 where the formula is stated
for polytopes). It is discussed, for example, in [L91a].

Triangulations, which we discussed very briefly (see Lemma 2.3), are discussed
in detail in [Z95].
A survey of results pertaining to this chapter (with an algorithmic slant) can

be found in [BP99]. An implementation of the algorithm for counting contingency
tables based on Brion’s Theorem (see Problem 2 of Section 6.1) is found in [DS+].

For Ehrhart polynomials and their interesting properties, see Chapter IV of
[St97]. An analytical approach leading to interesting closed formulas is found
in [DR97]. For extension to lattice semigroups (cf. Problem 3 of Section 3.1),
see [Kho95] and [BP99]. Lattice points in irrational polytopes exhibit a very
interesting behavior [Sk98]. That topic, however, is beyond the scope of this book.
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