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Preface

This book, as the title suggests, is about first-order methods, namely, methods that
exploit information on values and gradients/subgradients (but not Hessians) of the
functions comprising the model under consideration. First-order methods go back
to 1847 with the work of Cauchy on the steepest descent method. With the increase
in the amount of applications that can be modeled as large- or even huge-scale op-
timization problems, there has been a revived interest in using simple methods that
require low iteration cost as well as low memory storage.

The primary goal of the book is to provide in a self-contained manner a com-
prehensive study of the main first-order methods that are frequently used in solving
large-scale problems. This is done by gathering and reorganizing in a unified man-
ner many results that are currently scattered throughout the literature. Special
emphasis is placed on rates of convergence and complexity analysis. Although the
name of the book is “first-order methods in optimization,” two disclaimers are in
order. First, we will actually also consider methods that exploit additional opera-
tions at each iteration such as prox evaluations, linear oracles, exact minimization
w.r.t. blocks of variables, and more, so perhaps a more suitable name would have
been “simple methods in optimization.” Second, in order to be truly self-contained,
the first part of the book (Chapters 1-7) is actually purely theoretical and con-
tains essential topics that are crucial for the developments in the algorithmic part
(Chapters 8-15).

The book is intended for students and researchers with a background in
advanced calculus and linear algebra, as well as prior knowledge in the funda-
mentals of optimization (some convex analysis, optimality conditions, and dual-
ity). A MATLAB toolbox implementing many of the algorithms described in the
book was developed by the author and Nili Guttmann-Beck and can be found at
www.siam.org/books/mo25.

The outline of the book is as follows. Chapter 1 reviews important facts
about vector spaces. Although the material is quite fundamental, it is advisable
not to skip this chapter since many of the conventions regarding the underlying
spaces used in the book are explained. Chapter 2 focuses on extended real-valued
functions with a special emphasis on properties such as convexity, closedness, and
continuity. Chapter 3 covers the topic of subgradients starting from basic defini-
tions, continuing with directional derivatives, differentiability, and subdifferentia-
bility and ending with calculus rules. Optimality conditions are derived for convex
problems (Fermat’s optimality condition), but also for the nonconvex composite
model, which will be discussed extensively throughout the book. Conjugate func-
tions are the subject of Chapter 4, which covers several issues, such as Fenchel’s

Xi
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Xii Preface

inequality, the biconjugate, calculus rules, conjugate subgradient theorem, relations
with the infimal convolution, and Fenchel’s duality theorem. Chapter 5 covers two
different but closely related subjects: smoothness and strong convexity—several
characterizations of each of these concepts are given, and their relation via the con-
jugate correspondence theorem is established. The proximal operator is discussed in
Chapter 6, which includes a large amount of prox computations as well as calculus
rules. The basic properties of the proximal mapping (first and second prox theo-
rems and Moreau decomposition) are proved, and the Moreau envelope concludes
the theoretical part of the chapter. The first part of the book ends with Chapter
7, which contains a study of symmetric spectral functions. The second, algorithmic
part of the book starts with Chapter 8 with primal and dual projected subgradient
methods. Several stepsize rules are discussed, and complexity results for both the
convex and the strongly convex cases are established. The chapter also includes dis-
cussions on the stochastic as well as the incremental projected subgradient methods.
The non-Euclidean version of the projected subgradient method, a.k.a. the mirror
descent method, is discussed in Chapter 9. Chapter 10 is concerned with the proxi-
mal gradient method as well as its many variants and extensions. The chapter also
studies several theoretical results concerning the so-called gradient mapping, which
plays an important part in the convergence analysis of proximal gradient—based
methods. The extension of the proximal gradient method to the block proximal
gradient method is discussed in Chapter 11, while Chapter 12 considers the dual
proximal gradient method and contains a result on a primal-dual relation that al-
lows one to transfer rate of convergence results from the dual problem to the primal
problem. The generalized conditional gradient method is the topic of Chapter 13,
which contains the basic rate of convergence results of the method, as well as its
block version, and discusses the effect of strong convexity assumptions on the model.
The alternating minimization method is the subject of Chapter 14, where its con-
vergence (as well as divergence) in many settings is established and illustrated. The
book concludes with a discussion on the ADMM method in Chapter 15.

My deepest thanks to Marc Teboulle, whose fundamental works in first-order
methods form the basis of many of the results in the book. Marc introduced me
to the world of optimization, and he is a constant source and inspiration and ad-
miration. I would like to thank Luba Tetruashvili for reading the book and for her
helpful remarks. It has been a pleasure to work with the extremely devoted and
efficient STAM staff. Finally, I would like to acknowledge the support of the Israel
Science Foundation for supporting me while writing this book.
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Chapter 1

Vector Spaces

This chapter reviews several important facts about different aspects of vectors spaces
that will be used throughout the book. More comprehensive and detailed accounts
of these subjects can be found in advanced linear algebra books.

1.1 Definition

A wector space E over R (or a “real vector space”) is a set of elements called vectors
such that the following holds.

(A) For any two vectors x,y € E, there corresponds a vector x+y, called the sum
of x and y, satisfying the following properties:
1. x+y=y+xfor any x,y € E.
2. x+(y+z)=(x+y)+zforany x,y,z € E.

3. There exists in E a unique vector 0 (called the zeros vector) such that
x 4+ 0 = x for any x.

4. For any x € E, there exists a vector —x € E such that x + (—x) = 0.
(B) For any real number (also called scalar) o € R and x € E, there corresponds
a vector ax called the scalar multiplication of o and x satisfying the following

properties:

1. a(fx) = (af)x for any a, 8 € R, x € E.

2. 1x = x for any x € E.

(C) The two operations (summation, scalar multiplication) satisfy the following
properties:

1. a(x+y)=ax+ay for any a € R, x,y € E.
2. (a+ B)x = ax + Bx for any a, 8 € R, x € E.

1
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2 Chapter 1. Vector Spaces

1.2 Dimension

A set of vectors {vi,va,...,v,} in a vector space E is called linearly independent
or just independent if the linear system

n
E a;V; = 0
=1

implies that a3 = as = -+ = a, = 0. In other words, there does not exist a
nontrivial linear combination of vectors that is equal to the zeros vector. A set of
vectors {v1,Vva, ..., v, } issaid to span E if for any x € E, there exist 81, fBa,...,0n €
R such that

n
X = Z ﬁivi.
i=1

A basis of a vector space E is an independent set of vectors that spans E. It is
well known that the number of vectors in all the bases of a vector space E is the
same; this number is called the dimension of the space and is denoted by dim(E).
In this book we will discuss only vector spaces with a finite dimension, namely,
finite-dimensional vector spaces.

1.3 Norms

A norm || -] on a vector space E is a function || - || : E — R satisfying the following
properties:

1. (nonnegativity) [|x|| > 0 for any x € E and ||x|| = 0 if and only if x = 0.
2. (positive homogeneity) | x| = || ||x|| for any x € E and A € R.
3. (triangle inequality) |[[x+y|| < [x| + [y| for any x,y € E.

We will sometimes denote the norm of a space E by || - ||g to emphasize the identity
of the space and to distinguish it from other norms. The open ball with center c € E
and radius r > 0 is denoted by B(c,r) and defined by

Ble,r)={xcE:|x—c| <7}

The closed ball with center ¢ € E and radius r > 0 is denoted by Blc, ] and defined
by
Ble,r]={x€E:||x—c| <r}.

We will sometimes use the notation Bj.|[c,r] or Bj.(c,r) to identify the specific
norm that is being used.

1.4 Inner Products

An inner product of a real vector space E is a function that associates to each pair
of vectors x,y a real number, which is denoted by (x,y) and satisfies the following
properties:

1. (commutativity) (x,y) = (y,x) for any x,y € E.
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1.5. Affine Sets and Convex Sets 3

2. (linearity) (a1x1 + asXa2,y) = a1(X1,y) + @2(x2,y) for any a1, a3 € R and
X1,X2,y € E.

3. (positive definiteness) (x,x) > 0 for any x € E and (x,x) = 0 if and only
if x=0.

A vector space endowed with an inner product is also called an inner product space.
At this point we would like to make the following important note:

Underlying Spaces: In this book the underlying vector spaces, usually denoted
by V or E, are always finite dimensional real inner product spaces with endowed
inner product (-,-) and endowed norm || - ||.

1.5 Affine Sets and Convex Sets

Given a real vector space E, a set S C E is called affine if for any x,y € S and
A € R, the inclusion Ax + (1 — A\)y € S holds. For a set S C E, the affine hull
of S, denoted by aff(S), is the intersection of all affine sets containing S. Clearly,
aff(S) is by itself an affine set, and it is the smallest affine set containing S (w.r.t.
inclusion). A hyperplane is a subset of E given by

Hop ={x€E:(a,x) =0},

where a € E and b € R. It is an easy exercise to show that hyperplanes are affine
sets.

A set C C E is called convez if for any x,y € C and A € [0, 1] it holds that
Ax + (1 — Ny € C. Evidently, affine sets are always convex. Open and closed balls
are always convex regardless of the choice of norm. For given x,y € E, the closed
line segment between x and y is a subset of E denoted by [x,y] and defined as

xy]={ax+(1-a)y:aecl0,1]}.
The open line segment (x,y) is similarly defined as
(x,y) ={ax+ (1 —-a)y:ae(0,1)}

when x # y and is the empty set ) when x = y. Closed and open line segments are
convex sets. Another example of convex sets are half-spaces, which are sets of the
form

Hy,={x€E:(ax) <b},

where a € E and b € R.

1.6 Euclidean Spaces

A finite dimensional real vector space equipped with an inner product (-, -) is called
a Buclidean space if it is endowed with the norm ||x|| = /(x,x), which is referred
to as the Fuclidean norm.
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4 Chapter 1. Vector Spaces

1.7 The Space R"

The vector space R™ (n being a positive integer) is the set of n-dimensional column
vectors with real components endowed with the component-wise addition operator,

X1 Y1 T1+ Y1
T2 Y2 T2 + Y2

+ . = . ’
T Yn Tn + Yn

and the scalar-vector product,

I )\LCl
X9 )\[IJQ
A = ,
T, AT,
where in the above 1, s, ..., T,, A are real numbers. We will denote the standard
basis of R™ by eq,es,...,e,, where e; is the n-length column vector whose ith

component is one while all the others are zeros. The column vectors of all ones and
all zeros will be denoted by e and 0, respectively, where the length of the vectors
will be clear from the context.

By far the most used inner product in R” is the dot product defined by

n
<X7 y> = Z ZiY;-
=1

Inner Product in R™: In this book, unless otherwise stated, the endowed inner
product in R”™ is the dot product.

Of course, the dot product is not the only possible inner product that can be defined
over R™. Another useful option is the Q-inner product, which is defined as

<Xa Y>Q = XTQYa

where Q is a positive definite n x n matrix. Obviously, the Q-inner product amounts
to the dot product when Q = I. If R™ is endowed with the dot product, then the
associated Euclidean norm is the l>-norm

1x[l2 = v/ (%, %) =

If R™ is endowed with the Q-inner product, then the associated Euclidean norm is

the Q-norm
Ix[lq@ = vx"Qx.
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1.7. The Space R" 5

For a given p > 1, the [,-norm on R" is given by the formula

1x[lp =

The lo-norm on R” is defined by

[X[loo = _max fz;].
=1 ,n

1.7.1 Subsets of R"

The nonnegative orthant is the subset of R™ consisting of all vectors in R™ with
nonnegative components and is denoted by R :

R" = {(xl,xg,...,xn)T:xl,xg,...,xn 20}.

Similarly, the positive orthant consists of all the vectors in R™ with positive com-
ponents and is denoted by R” | :

Ri"r = {(J]‘l’aj?’,..,xn)T:$1,$2,---,xn >0}

The wnit simplex, denoted by A,,, is the subset of R™ comprising all nonnegative
vectors whose components sum up to one:

An:{XER”:XZO,eTx:l}.

Given two vectors £,u € R™ that satisfy £ < u, the bor with lower bounds £ and
upper bounds u is denoted by Box[£, u] and defined as

Box[l,u] ={x € R": £ <x < u}.

Thus, for example, Box[—e, e] = [—1, 1]™.

1.7.2 Operations on Vectors in R™

There are several operations on vectors in R™ that will be frequently used in the
book. For a given vector x € R™, the vector [x]; is the nonnegative part of x
defined by [x]4+ = (max{x;,0})_,. For a given x € R", the vector |x| is the vector
of component-wise absolute values (|z;|)I;, and the vector sgn(x) is defined as

17 Zq 2 07
sgn(x); =
-1, x; <O.

For two vectors a,b € R", their Hadamard product, denoted by a ® b, is the vector
comprising the component-wise products: a ® b = (a;b;) ;.
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1.8 The Space R™*"™

The set of all real-valued m x n matrices is denoted by R”*™. This is a vector space
with the component-wise addition as the summation operation and the component-
wise scalar multiplication as the “scalar-vector multiplication” operation. The dot
product in R™*" is defined by

(A,B) =Tr(A"B) =Y > A;B;, ABecR™"
i=1 j=1

The space R™*™ is sometimes associated with the space R™" in the sense that
each matrix in R™*" corresponds to the mn-length vector constructed by stacking
the columns of the matrix. Unless otherwise stated, we will assume that the inner
product in R™*" is the dot product.

Inner Product in R™X"™: In this book, unless otherwise stated, the endowed
inner product in R™*" is the dot product.

1.8.1 Subsets of R™*™
The set of all n x n symmetric matrices is denoted by S™:
S"={AeR"™:A=A"T}.

Note that S™ is also a vector space with the same summation and scalar multipli-
cation operations as in R™*™. The inner product in S™, unless otherwise stated, is
the dot product.

The set of all n x n positive semidefinite matrices is denoted by S7}:

Si:{AeR”X":AEO}.
The set of all n x n positive definite matrices is denoted by S% | :
SiJr:{AER”X”:A>-O}.

Obviously, the inclusion S |, € S C S™ holds. Similarly, S is the set of all n x n
negative semidefinite matrices, and S™ _ is the set of all n X n negative definite
matrices:

S’iz{AER”X":AjO},
Sﬁfz{AER”X":A<O}.
The set of all n x n orthogonal matrices is denoted by Q™:

0" ={A R : AAT = ATA=T1}.

1.8.2 Norms in R™*"

If R™*" is endowed with the dot product, then the corresponding Euclidean norm
is the Frobenius norm defined by

|Allr = \/Tr(ATA) =

m n

> A%, AeRrR™

i=1 j=1
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Many examples of matrix norms are generated by using the concept of induced

norms, which we now describe. Given a matrix A € R™*™ and two norms | - [|4
and || - |lp on R™ and R™, respectively, the induced matriz norm ||All4p is defined
by

[Allap = max{[|Ax|s : [[x[[a < 1}.

It can be easily shown that the above definition implies that for any x € R", the
inequality
[Axlp < [|Aflapllxla

holds. We refer to the matrix norm || - ||q,» as the (a,b)-norm. When a = b, we will
simply refer to it as an a-norm and omit one of the subscripts in its notation, that
is, use the notation || - ||, instead of || - ||a,q-

Example 1.1 (spectral norm). If |- || = | - |lo = || - |2, then the induced norm

of a matrix A € R™*" is the maximum singular value of A:

||‘A||2 = HAH2,2 =\ /\max(ATA) = Umax(A). [ |

Example 1.2 (1-norm). When || - |lo = | - ||s = || - |1, the induced matrix norm
of a matrix A € R™*" is given by

3Ly

This norm is also called the mazximum absolute column sum norm. [ |

Example 1.3 (co-norm). When || |lo = || - |ls = || - ||, the induced matrix norm
of a matrix A € R™*" is given by

n
[Alle = max > [A; .
i=1,2,....m £
Jj=1
This norm is also called the mazimum absolute row sum norm. [ |

1.9 Cartesian Product of Vector Spaces

Given m vector spaces Eq,Eo, ..., E,, equipped with inner products (-, -)g,, their
Cartesian product E; x Ey x --- X E,, is the vector space of all m-tuples (vq, va,
..., Vi) equipped with the component-wise addition between vectors:

(V17V23 ... 7V’m.) + (W17W27 ... 7Wm) - (Vl + Wi, V2 + W2,..., Vi + Wm.)
and the scalar-vector multiplication operation given by
a(Vi,Va, ..., Vi) = (@Vi,ava, ..., av,y,).

The inner product in the Cartesian product space is defined as

m

(Vi,ve, ooy Vim), (W1, Was oo, Wi ) ) By xBo x - xE,,, = Z(Vz‘,wz‘h&- (1.1)
i=1
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The space R x R, for example, consists of all two-dimensional row vectors, so in that
respect it is different than R?, which comprises all two-dimensional column vectors.
However, with only a slight abuse of notation, we will occasionally refer to R x R
as R2.

Suppose that Eq,Eo, ..., E,, are vector spaces with endowed norms || - ||g,, || -
l£ss - - s |||k, » respectively. There are many ways to define a norm on the Cartesian
product space E; X Eg x --- X E,,. For example, for any p > 1, we can define the
composite [,-norm as

||(u17u27"'aum)| =7

m
> Il
=1

Another norm is a composite weighted lo-norm:

m
> willuil2,,
=1

where wq,ws, .. .,w,, are given positive real numbers.

We will use the convention that if Eq,Es,...,E,, are Euclidean spaces, then
Ei1 x Es x --- X E,, is also a Euclidean space, and consequently, by the definition
(1.1) of the inner product in product spaces,

(a1, u, ..oy wm) [y xEy x - xE,, = ]%

m
> |
=1

1.10 Linear Transformations

Given two vector spaces E and V, a function A : E — V is called a linear transfor-
mation if the following property holds for any x,y € E and «, 8 € R:

Aax + By) = aA(x) + BA(y).
All linear transformations from R”™ to R™ have the form
A(x) = Ax

for some matrix A € R™*"_ All linear transformations from R™*" to R* have the
form

Tr(ATX)
AX) = Tr(ATX)
Tr(ATX)

for some A1, As, ..., Ar € R™*™  The identity transformation, denoted by Z, is
defined by the relation Z(x) = x for all x € E.
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1.11 The Dual Space

A linear functional on a vector space E is a linear transformation from E to R.
Given a vector space E, the set of all linear functionals on E is called the dual space
and is denoted by E*. For inner product spaces, it is known that given a linear
functional f € E*, there always exists v € E such that

F(x) = (v,x). (1.2)

For the sake of simplicity of notation, we will represent the linear functional f
given in (1.2) by the vector v. This correspondence between linear functionals and
elements in E leads us to consider the elements in E* as exactly the same as those
in E. The inner product in E* is the same as the inner product in E. Essentially,
the only difference between E and E* will be in the choice of norms of each of the
spaces. Suppose that E is endowed with a norm || - ||. Then the norm of the dual
space, called the dual norm, is given by

[yll+ = max{(y,x) : [x]| <1}, y € E". (1.3)

It is not difficult to show that the dual norm is indeed a norm. A useful property is
that the maximum in (1.3) can be taken over the unit sphere rather than over the
unit ball, meaning that the following formula is valid:

[ylle = max{{y,x) : x| = 1}, y € E".

The definition of the dual norm readily implies the following generalized version of
the Cauchy—Schwarz inequality.

Lemma 1.4 (generalized Cauchy—Schwarz inequality). Let E be an inner
product vector space endowed with a norm || -||. Then

[y, x)| < |lyll«||x]| for anyy € E*,x € E. (1.4)

X
[E

Proof. If x = 0, the inequality is trivially satisfied. Otherwise, take x =
Obviously, ||X|| = 1, and hence, by the definition of the dual norm, we have

1
||YH* > <Y7)~{> = —<yvx>a
[l

showing that (y,x) < |ly|«||x|. Plugging —x instead of x in the latter inequal-
ity, we obtain that (y,x) > —|ly|l«||x||, thus showing the validity of inequality
(14). O

Another important result is that Euclidean norms are self-dual, meaning that
|||l =1 |l«. Here of course we use our convention that the elements in the dual
space E* are the same as the elements in E. We can thus write, in only a slight
abuse of notation,' that for any Euclidean space E, E = E*.

IDisregarding the fact that the members of E* are actually linear functionals on E.
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Example 1.5 (lp-norms). Consider the space R” endowed with the [,-norm.
When p > 1, the dual norm is the /,-norm, where ¢ > 1 is the number satisfying
1—1) + % = 1. When p = 1, the dual norm is the lo-norm, and vice versa—the dual

norm of the loo-norm is the l;-norm. N

Example 1.6 (Q-norms). Consider the space R" endowed with the Q-norm,
where Q € S” . The dual norm of || - ||q is || - |[q-1, meaning

[x|q-1 = VXTQ x.

As an example, consider the case where Q is diagonal: Q = diag(wy,ws,...,wy,)
with wq,ws, ..., w, > 0. The Q-norm in this case takes the form

and its dual norm is

Example 1.7 (dual norm of Cartesian products of spaces). Cousider the
space E =E; XxEq x---XE,,, where E{,Eo, ..., E,, are inner product vectors spaces
with norms || - ||lg,, || - l|Egs- - -, || - ||&,,, respectively. Recall that we assume that the
inner product in the product space is given by

m

<(V13 V2,..., V’m)7 (W17W27 s 7W’m)> = Z<V17WZ>
i=1
The dual space to E; x Eg x - - x E,, is the product space E} x E3 x - -- x E¥ with
endowed norm defined as usual in dual spaces. For example, suppose that the norm
on the product space is the composite weighted lo-norm:

m
(g, ug, . w)l| = | D willwill2, weE,i=12...p,

=1

where wy,wa, .. .,wy, > 0 are given positive weights. Then it is simple to show that
the dual norm in this case is given by

m

1 .
ZJ”V”]%EH vi e Ei=1,2,...,p.

i=1 ¢

[(vi,va, o vl =

where || - | E;, namely, the norm of the dual space Ef. 1

g: is the dual norm to || - |

1.12 The Bidual Space

Given a vector space E, the dual space E* is also a vector space, and we can also
consider its dual space, namely, E**. This is the so-called bidual space. In the
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setting of finite dimensional spaces, the bidual space is the same as the original
space (under our convention that the elements in the dual space are the same as
the elements in the original space), and the corresponding norm (bidual norm) is
the same as the original norm.

1.13 Adjoint Transformations

Given two inner product vector spaces E,V and a linear transformation A from V
to E, the adjoint transformation, denoted by AT, is a transformation from E* to
V* defined by the relation

(y, A(x)) = (A" (y), %)

for any x € V,y € E*. When V = R*,E = R™ (endowed with the dot product),
and A(x) = Ax for some matrix A € R™*", then the adjoint transformation is
given by AT (x) = ATx.

Example 1.8 (adjoint of a transformation from R™*" to R¥). Consider now
a linear transformation from the space R™*" to R¥. As was already mentioned in
Section 1.10, such a transformation has the form

Tr(ATX)
Tr(ATX)
AX) = . ;

Tr(ATX)

where A; € R™*" are given matrices. The adjoint transformation A7 will be a
transformation from R* to R™*™. To find it, let us write the defining relation of
the adjoint operator:

(y, AX)) = (AT (y),X) for all X € R™*",y € R,

which is the same as (recall that unless otherwise stated, the inner products in
R™*™ and R* are the dot products)

k
> uiTr(ATX) = (AT (y), X) for all X € R™*",y € R¥,
=1

that is,

k T
Tr ZyiAi] X | = (AT (y),X) for all X € R™*" y € R*.
=1

Obviously, the above relation implies that the adjoint transformation is given by

k
ATy) = yA. 1
=1
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The adjoint of the adjoint transformation is the original transformation: (A”)7
= A. It also holds that whenever A is an invertible transformation,

(AT)fl _ (Afl)T'

1.14 Norms of Linear Transformations

Let A:E — V be a linear transformation from a vector space [E to a vector space
V. Assume that E and V are endowed with the norms || - ||g and || - ||v, respectively.
The norm of the linear transformation is defined by

Al = max{[lA)[v : [Ix]e < 1}

It is not difficult to show that ||A|| = | AT||. There is a close connection between
the notion of induced norms discussed in Section 1.8.2 and norms of linear trans-
formations. Specifically, suppose that A is a linear transformation from R™ to R™
given by

A(x) = Ax, (1.5)
where A € R™*" and assume that R” and R™ are endowed with the norms || - |4
and || - ||», respectively. Then || A|| = ||Allqb, meaning that the induced norm of a

matrix is actually the norm of the corresponding linear transformation given by the
relation (1.5).
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Chapter 2

Extended Real-Valued
Functions

Underlying Space: Recall that in this book, the underlying spaces (denoted
usually by E or V) are finite-dimensional inner product vector spaces with inner
product (-, -) and norm || - ||

2.1 Extended Real-Valued Functions and Closedness

An extended real-valued function is a function defined over the entire underlying
space that can take any real value, as well as the infinite values —oo and oco. Since
infinite values are allowed, we also define the appropriate arithmetic operations with
—o0 and oo as follows:

at+oo=00+a =00 (—0<a<o0),
a—00=-00+a =-00 (—00<a<o0),
a-0c0o=00-a =00 (0<a<o0),
a-(—o0)=(—00)-a =-00 (0<a<o),
a-00=00-a =-00 (—o00<a<D0),
a-(—o0)=(—00)-a =00 (—oc0<a<0),

0-c0o=00-0=0-(—00) =(—00)-0 =0.

In a sense, the only “unnatural” rule is the last one, since the expression “0 - c0”
is considered to be undefined in some branches of mathematics, but in the context
of extended real-valued functions, defining it as zero is the “correct” choice in the
sense of consistency. We will also use the following natural order between finite and
infinite numbers:
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For an extended real-valued function f : E — [—00, o], the effective domain
or just the domain is the set

dom(f) ={x€E: f(x) < oo}.

The notation “f : E — [—o00, 00]” means that f is (potentially) extended real-valued
(even if not explicitly stated). The notation “f : E — (—o00,00]” means that f is
extended real-valued and does not attain the value —oo.

The simplest examples of extended real-valued functions are indicators.

Example 2.1 (indicator functions). For any subset C C E, the indicator func-
tion of C is defined to be the extended real-valued function given by

0, xedC,
do(x) = [ |
o0, x¢C.
We obviously have
dom(d¢) = C.

The epigraph of an extended real-valued function f : E — [—o0, 00| is defined by

epi(f):{(xay):f(x) SvaEEﬂyER}'

The epigraph is a subset of E x R. Note that if (x,y) € epi(f), then obviously
x € dom(f). A function f : E — [—o00, 0] is called proper if it does not attain the
value —oo and there exists at least one x € E such that f(x) < oo, meaning that
dom(f) is nonempty. The notion of closedness will play an important role in much
of the analysis in this book.

Definition 2.2 (closed functions). A function f : E — [—00, 0] is closed if its
epigraph is closed.

The indicator function d¢ is closed if and only if its underlying set C' is closed.

Proposition 2.3 (closedness of indicators of closed sets). The indicator
function d¢ is closed if and only if C' is a closed set.

Proof. The epigraph of §¢ is given by
epi(dc) = {(x,y) EEXR:dc(x) <y} =C x R4,
which is evidently closed if and only if C' is closed. 0O
We thus obtained in particular that the domain of a closed indicator function
is necessarily a closed set. However, in general, we note that the domain of a closed

function might not be closed. A classical example for this observation is given
below.
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Example 2.4. Consider the function f : R — [—00, 00] given by

8=

, x>0,
flx) =

00, else.

The domain of the function, which is the open interval (0,00), is obviously not
closed, but the function is closed since its epigraph

epi(f) = {(z,y) : 2y = Lz > 0}

is a closed set; see Figure 2.1. 1

Figure 2.1. The epigraph of the function f(x) = % for >0 and oo otherwise.

A property that will be later shown to be equivalent to closedness is lower
semicontinuity.

Definition 2.5 (lower semicontinuity). A function f : E — [—00,00] is called
lower semicontinuous at x € E if

f(x) <liminf f(x,)

n—r oo

for any sequence {xp}n>1 C E for which x, — x as n — co. A function f : E —
[—00,00] is called lower semicontinuous if it is lower semicontinuous at each
point in E.

For any a € R, the a-level set of a function f:E — [—o00,00] is the set
Lev(f,a) ={x € E: f(x) < a}.

The following theorem shows that closedness and lower semicontinuity are equiva-
lent properties, and they are both equivalent to the property that all the level sets
of the function are closed.
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Theorem 2.6 (equivalence of closedness, lower semicontinuity, and closed-
ness of level sets). Let f : E — [—o0,00]. Then the following three claims are
equivalent:

(i) f is lower semicontinuous.
(i1) f is closed.
(iii) For any o € R, the level set
Lev(f,a) ={x € E: f(x) < a}

18 closed.

Proof. (i = ii) Suppose that f is lower semicontinuous. We will show that epi(f)
is closed. For that, take {(Xn,¥yn)}n>1 C epi(f) such that (x,,yn) — (x*,y*) as
n — 0o. Then for any n > 1,

f(xn) < Yn-

Therefore, by the lower semicontinuity of f at x*, we have

f(x*) <liminf f(x,) < liminfy, = y*,
n—oo n—oo
showing that (x*,y*) € epi(f) and hence that f is closed.

(ii = iii) Suppose that f is closed, namely, that epi(f) is closed. Let € R.
We will show that Lev(f, @) is closed. If Lev(f, a) = @), we are done. Otherwise, take
a sequence {Xp}n>1 C Lev(f,a) that converges to X. Obviously (x,,a) € epi(f)
for any n and (x,,qa) = (X,a) as n — oco. By the closedness of epi(f), it follows
that (x,a) € epi(f), establishing the fact that x € Lev(f, «).

(iii = 1) Suppose that all the level sets of f are closed. We will show that it is
lower semicontinuous. Assume by contradiction that f is not lower semicontinuous,
meaning that there exists x* € E and {x,}n,>1 C E such that x, — x* and
liminf, o f(xn) < f(x*). Take « that satisfies

liminf f(x,) < a < f(x¥). (2.1)

n—00

Then there exists a subsequence {xy, }x>1 such that f(x,,) < a for all £ > 1. By
the closedness of the level set Lev(f, «) and the fact that x,,, — x* as k — oo, it
follows that f(x*) < a, which is a contradiction to (2.1), showing that (iii) implies

(). O

The next result shows that closedness of functions is preserved under affine
change of variables, summation, multiplication by a nonnegative number, and max-
imization. Before stating the theorem, we note that in this book we will not use
the inf/sup notation but rather use only the min/max notation, where the us-
age of this notation does not imply that the maximum or minimum is actually
attained.
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Theorem 2.7 (operations preserving closedness).

(a) Let A : E — V be a linear transformation from E to V and b € V and
let f:V — [—00,00] be an extended real-valued closed function. Then the
function g : E — [—o00, 00] given by

9(x) = f(A(x) + b)

is closed.
(b) Let f1, fay. -y fm : E = (—00,00] be extended real-valued closed functions and
let ay,a9,...,a, € Ry. Then the function f = 2211 a; fi is closed.

(c) Let fi : E — (—o00,00],i € I be extended real-valued closed functions, where I
is a given index set. Then the function

£(60) = max fi(x)

s closed.

Proof. (a) To show that g is closed, take a sequence {(Xn,yn)}n>1 C epi(g) such
that (x,,yn) — (x*,y*) as n — oo, where x* € E and y* € R. The relation
{(XnsYn)}n>1 C epi(g) can be written equivalently as

f(A(xp) +b) <y, for all n > 1.

Therefore, (A(x,) + b,yn) € epi(f). Hence, since f is closed and A(x,) + b —
Ax*) + b,y, — y* as n — oo (by the continuity of linear transformations), it
follows that (A(x*) +b,y*) € epi(f), meaning that

fARXT) +b) <y,

which is the same as the relation (x*,y*) € epi(g). We have shown that epi(g) is
closed or, equivalently, that g is closed.

(b) We will prove that f is lower semicontinuous, which by Theorem 2.6 is
equivalent to the closedness of f. Let {x,}n>1 be a sequence converging to x*.
Then by the lower semicontinuity of f;, for any i =1,2,...,m,

fi(x*) < liminf fi(x,,).

n— oo

Multiplying the above inequality by «; and summing for i = 1,2,...,m gives

(i aifi> (x*) < ihpﬂinf a;fi(x,) < liniinf <i aifi> (xn),
i=1 i=1 i=1

where in the last inequality we used the fact that for any two sequences of real
numbers {ay, }n>1 and {by, },>1, it holds that

liminf a,, 4+ liminf b,, < liminf(a, + b,).

n—oo n—oo n—oo
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A simple induction argument shows that this property holds for an arbitrary num-
ber of sequences. We have thus established the lower semicontinuity and hence
closedness of > | v f;.

(c) Since f; is closed for any i € I, it follows that epi(/f;) is closed for any 1,
and hence epi(f) = (,c; epi(f:) is closed as an intersection of closed sets, implying
that f is closed. 0O

2.2 Closedness versus Continuity

A relation between continuity and closedness is described in the following theorem
stating that if an extended real-valued function is continuous over its domain,?
which is assumed to be closed, then it is closed.

Theorem 2.8. Let f : E — (—o00,00] be an extended real-valued function that is
continuous over its domain and suppose that dom(f) is closed. Then f is closed.

Proof. To show that epi(f) is closed (which is the same as saying that f is closed),
take a sequence {(Xn,yn)}n>1 C epi(f) for which (x,,y,) = (x*,y*) asn — o
for some x* € E and y € R. Since {xp}n>1 C dom(f), x, — x* and dom(f) is
closed, it follows that x* € dom(f). By the definition of the epigraph, we have for
alln > 1,

f(xn) < yn. (2.2)

Since f is continuous over dom(f), and in particular at x*, it follows by taking n
to oo in (2.2) that

fxT) <y,
showing that (x*,y*) € epi(f), thus establishing the closedness of epi(f). 0O
In particular, any real-valued continuous function over E is closed.
Corollary 2.9. Let f:E — R be continuous. Then f is closed.
The above results demonstrate that there is a connection between continuity
and closedness. However, these two notions are different, as the following example

illustrates.

Example 2.10. Consider the function f, : R — (—o0, 00| given by

a, x=0,
falz)=9q 2z, 0<z<1,
oo, else.

2A function g : E — (—o0, 0] is continuous over its domain if for any sequence {xn}n>1 C
dom(g) satisfying x, — x* as n — oo for some x* € dom(g), it holds that g(xn) — g(x*) as
n — 0o.
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0.5

-0.5 0 0.5 1 1.5

Figure 2.2. An example of a closed function, which is not continuous over
its domain.

This function is closed if and only if a < 0, and it is continuous over its domain if
and only if & = 0. Thus, the function f_¢ 1, plotted in Figure 2.2, is closed but not
continuous over its domain. [ |

Example 2.11 (lg-norm). Consider the lp-norm function f: R™ — R given by

fx) = lIxllo = #{i: @ # 0}.

That is, ||x||o is the number of nonzero elements in x. Note the lp-norm is actually
not a norm. It does not satisfy the homogeneity property. Nevertheless, this termi-
nology is widely used in the literature, and we will therefore adopt it. Although f
is obviously not continuous, it is closed. To show this, note that

Fx) =Y (i),
i=1
where I : R — {0, 1} is given by
0, y=0,

. y#0.

I(y) =
1

The function I is closed since its level sets, which are given by

0, a <0,
Lev(I,a) =4 {0}, a€[0,1),
R, a>1,

are closed sets. Therefore, f, as a sum of closed functions, is closed (Theorem

2.7(b)). W
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It is well known that a continuous function over a nonempty compact? set
attains a minimum. This is the well-known Weierstrass theorem. We will now show
that this property also holds for closed functions.

Theorem 2.12 (Weierstrass theorem for closed functions). Let f : E —
(—o00, 0] be a proper closed function and assume that C' is a compact set satisfying

CNdom(f) # 0. Then
(a) f is bounded below over C.

(b) f attains its minimal value over C.

Proof. (a) Suppose by contradiction that f is not bounded below over C. Then
there exists a sequence {X,},>1 C C such that
lim f(x,) = —oc. (2.3)
n—oo
By the Bolzano—Weierstrass theorem, since C' is compact, there exists a subse-
quence {X,, }x>1 that converges to a point x € C. By Theorem 2.6, f is lower
semicontinuous, and hence

Jx) < liminf f(xn,),

which is a contradiction to (2.3).

(b) Denote by fopt, the minimal value of f over C'. Then there exists a sequence
{xn}n>1 for which f(x,) = fopt asn — co. As before, take a subsequence {x,, }r>1
that converges to some point x € C. By the lower semicontinuity of f, it follows
that

f(f() < kILI{:O f(XTLk) = fopta

showing that X is a minimizer of f over C. 0O

When the set C in the premise of Theorem 2.12 is not compact, the Weierstrass
theorem does not guarantee the attainment of a minimizer, but attainment of a
minimizer can be shown when the compactness of C' is replaced by closedness if the
function has a property called coerciveness.

Definition 2.13 (coerciveness). A proper function f : E — (—o0,00] is called
coercive if
F(x) = .

llx[| =00

An important property of closed coercive functions is that they possess a
minimizer on any closed set that has a nonempty intersection with the domain of
the function.

Theorem 2.14 (attainment under coerciveness). Let f : E — (—oo, 0] be a
proper closed and coercive function and let S C E be a nonempty closed set satisfying
SNdom(f)#0D. Then f attains its minimal value over S.

3A set is called compact if it is closed and bounded.
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Proof. Let x¢ be an arbitrary point in SNdom(f). By the coerciveness of f, there
exists an M > 0 such that

f(x) > f(x0) for any x satisfying ||x|| > M. (2.4)

Since any minimizer x* of f over S satisfies f(x*) < f(x¢), it follows from (2.4)
that the set of minimizers of f over S is the same as the set of minimizers of f over
SN By [0, M], which is compact (both sets are closed, and Bj.[0, M] is bounded)
and nonempty (as it contains xg). Therefore, by the Weierstrass theorem for closed
functions (Theorem 2.12), there exists a minimizer of f over SN B[0, M] and hence
also over S. O

2.3 Convex Functions

2.3.1 Definition and Basic Properties

Like closedness, the definition of convexity for extended real-valued functions can
be written in terms of the epigraph.

Definition 2.15 (convex functions). An extended real-valued function f : E —
[—00, 0] s called convex if epi(f) is a convex set.

It is not difficult to show that a proper extended real-valued function f : E —
(—00, 0] is convex if and only if dom(f) is convex and the restriction of f to dom(f)
is convex over dom(f) in the sense of convexity of real-valued functions over convex
domains. Using this observation, we conclude that a proper extended real-valued
function f is convex if and only if

FOx+ (1= Ny) < Af(x)+ (1 =N f(y) forall x,y € E, X\ € [0,1], (2.5)

or, equivalently, if and only if dom(f) is convex and (2.5) is satisfied for any x,y €
dom(f) and A € [0,1]. Inequality (2.5) is a special case of Jensen’s inequality,
stating that for any x1,x2,...,x; € E and A € Ay, the following inequality holds:

k k
f (Z )\ixi> <Y ONif(xi).
=1

i=1

There are several operations that preserve convexity of extended real-valued
convex functions. Some of them are summarized in Theorem 2.16 below. The proof
can be easily deduced by combining two facts: (i) the same properties are known to
hold for real-valued convex functions defined on a given convex domain, and (ii) the
observation that a proper extended real-valued function is convex if and only if its
domain is convex and its restriction to its domain is a real-valued convex function.

Theorem 2.16 (operations preserving convexity).

(a) Let A:E — V be a linear transformation from E to V (two underlying vector
spaces) and b € V, and let f : V — (—o0,00] be an extended real-valued
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convex function. Then the extended real-valued function g : E — (—00, o0

given by
9(x) = f(A(x) + b)
1S convez.
(b) Let f1,fa,.--yfm : E = (—00,00] be extended real-valued convex functions,
and let ay,az,...,am € Ry. Then the function EZl «; fi is convex.

(c) Let f; : E — (—o0,00],i € I, be extended real-valued convex functions, where
I is a given index set. Then the function

£(60) = max fi(x)

1S conver.

Given a nonempty set C' C E, the distance function to C is defined by

de (x) = min |lx — y|.

The next example shows that for Euclidean spaces, the function 3 (||x|? — dZ(x))
is always convex, regardless of whether C' is convex or not.

Example 2.17.* Suppose that the underlying space E is Euclidean (meaning that
Il -1l =+/(,)). Let C CE be a nonempty set, and consider the function

pe(x) = 5 (I — d3(x))

To show that p¢ is convex, note that
2 - T 2 2y, x) — 27
c(x) = min fx — y[|" = [|x[|” — max{2(y, x) — |ly[|"]
Hence,
L2
= LX) — = . 2.6
o) = max (v 51517 (2.6

Therefore, since ¢ is a maximization of affine—and hence convex—functions, by
Theorem 2.16(c), it is necessarily convex.

Another operation that preserves convexity is partial minimization of jointly
convex functions.

Theorem 2.18 (convexity under partial minimization). Let f : ExV —
(—00,00] be a convex function satisfying the following property:

for any x € E there exists'y € V for which f(x,y) < oo. (2.7)

4Example 2.17 is from Hiriart-Urruty and Lemaréchal [67, Example 2.1.4].
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Let® g : E — [—00,00) be defined by
9(x) = min f(x,y).
Then g is convex.

Proof. Let x1,x3 € E and A € [0,1]. To show the convexity of g, we will prove
that
g(Ax1 + (1 = A)x2) < Ag(x1) + (1 = A)g(x2). (2.8)

The inequality is obvious if A = 0 or 1. We will therefore assume that A € (0,1).
The proof is split into two cases.

Case I: Here we assume that g(x1),g(x2) > —oo. Take ¢ > 0. Then there exist
¥Y1,y2 € V such that

(x1) + ¢, (2.9)
(x2) +&. (2.10)

By the convexity of f, we have

JOxi+ (1= Nx2, Ay + (L= A)yz) < Af(x,y1) + (1= A) f(x2,y2)
COLY N (gx1) +€) + (1= A)(glxa) + )

= Ag(x1) + (1= Ng(x2) +e.
Therefore, by the definition of g, we can conclude that
g(Ax1 + (1 — A)x2) < Ag(x1) + (1 — N)g(x2) +&.

Since the above inequality holds for any e > 0, it follows that (2.8) holds.

Case II: Assume that at least one of the values g(x1), g(x2) is equal —oco. We will
assume without loss of generality that g(x;) = —oo. In this case, (2.8) is equivalent
to saying that g(Ax; +(1—A)x2) = —oco. Take any M € R. Then since g(x1) = —o0,
it follows that there exists y1 € V for which

f(x1,y1) < M.

By property (2.7), there exists yo € V for which f(x2,y2) < co. Using the convexity
of f, we obtain that

FOX1 + (1= Nx2, Ayr + (1= N)y2) < Af(x1,51) + (1= ) f(x2,¥2)
<M + (1= N f(x2,¥2),

which by the definition of g implies the inequality
gAx1 + (1 = N)x2) < AM + (1 — N) f(x2,y2)-
Since the latter inequality holds for any M € R and since f(x2,y2) < 00, it follows

that g(Ax1 4+ (1 — A)x2) = —o0, proving the result for the second case. 0O

5The fact that g does not attain the value oo is a direct consequence of property (2.7).
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2.3.2 The Infimal Convolution

Let hi,hy : E — (—00,00] be two proper functions. The infimal convolution of
h1, ho is defined by the following formula:

(h10Ohs)(x) = ?ég{hl(u) + ha(x —u)}.

A direct consequence of Theorem 2.18 is the following result stating that the infimal
convolution of a proper convex function and a real-valued convex function is always
convex.

Theorem 2.19 (convexity of the infimal convolution). Let hy : E — (—00, o0]
be a proper convex function and let hy : E — R be a real-valued convex function.
Then h10Ohg is conver.

Proof. Define f(x,y) = h1(y) + ha(x —y). The convexity of hy and hy implies
that f is convex. In addition, property (2.7) holds since for any x € E, we can
pick any y € dom(h;) and obtain that f(x,y) = hi(y) + ho(x —y) < oo. Thus,
by Theorem 2.18, the function hi1[0hg, as a partial minimization function of f(-,-)
w.r.t. the second argument is a convex function. 0O

Example 2.20 (convexity of the distance function). Let C' C E be a nonempty
convex set. The distance function can be written as the following infimal convolu-
tion:

de(x) =min{|[x —y|| -y € C} = min {oc(y) + [x — y[[} = (dcHh1)(x),

where hi(-) = | - ||. Since §¢ is proper and convex and hy is real-valued convex, it
follows by Theorem 2.19 that d¢ is convex. N

2.3.3 Continuity of Convex Functions

It is well known that convex functions are continuous at points in the interior of
their domain. This is explicitly recalled in the next result, which actually states a
stronger property of convex functions—local Lipschitz continuity.

Theorem 2.21 (local Lipschitz continuity of convex functions [10, Theo-
rem 7.36]). Let f:E — (—o0,00] be convex. Let x¢ € int(dom(f))). Then there
exist € > 0 and L > 0 such that B[x¢,e] C C and

[ (x) = f(x0)| < Ll[x = xol| (2.11)

for all x € B[xo,¢€].

Convex functions are not necessarily continuous at boundary points. Conti-
nuity is not guaranteed even when the function at hand is closed and convex (cf.
Example 2.32). However, for univariate functions we will now show that closed and
convex functions are continuous.
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Theorem 2.22 (continuity of closed convex univariate functions). Let
f iR = (—o00,00] be a proper closed and convexr function. Then f is continuous
over dom(f).

Proof. Since f is convex, its domain is some interval I = dom(f). If int(I) = 0,
then I is a singleton, and consequently the continuity of f over I is obvious. Assume
then that int(I) # (). The fact that f is continuous over int(7) follows from Theorem
2.21. We only need to show the continuity of f at the endpoints of I (if it exists).
For that, we can assume without loss of generality that the interval I has a left
endpoint a, and we will prove the right continuity of f at a. We begin by showing
that lim;_,,+ f(¢) exists. Let ¢ > a be an arbitrary scalar in I and define the

function .
gty = 1= =1)

Obviously, ¢ is defined on (0, ¢—a]. We will show that g is nondecreasing and upper
bounded over (0,c¢ — a]. For that, take 0 < ¢ < s < ¢— a. Then

c—t= (1—2)0—#5(0—5),

s
and hence, by the convexity of f,

fe=0 < (1-2) 1@ + i)

which after some rearrangement of terms can be seen to be equivalent to

fle=t) = fle) _ fle=s)—fle)
t - s
Thus,
g(t) <g(s)forany 0 <t <s<c—a. (2.12)

Namely, ¢ is nondecreasing over (0,c¢ — a]. To show the upper boundedness, just
plug s = ¢ — a into (2.12) and obtain that

g(t) < g(c—a) for any t € (0,¢ — a. (2.13)

We can thus conclude that lim;_,._q)- g(t) exists and is equal to some real number
{. Hence,

fle=1) = f(e) +tg(t) = f(e) + (c = a)t,

ast — (c—a)~, and consequently lim,;_,,+ f(¢) exists and is equal to f(c)+ (c—a)¥.
Using (2.13), we obtain that for any ¢ € (0,¢ — a,

fle=t) =fle)+tg(t) < f(e) +(c—a)glc—a) = f() + (c —a)———— =

implying the inequality lim; ..+ f(¢) < f(a). On the other hand, since f is closed,
it is also lower semicontinuous (Theorem 2.6), and thus lim; .+ f(t) > f(a). Con-
sequently, lim;_,,+ f(¢t) = f(a), proving the right continuity of f at a. O
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2.4 Support Functions

Let C C E be a nonempty set. Then the support function of C is the function
oc : E* — (—o0, 0] given by

oc(y) = gleagw, X).

For a fixed x, the linear function y — (y, x) is obviously closed and convex. There-
fore, by Theorems 2.7(c) and 2.16(c), the support function, as a maximum of closed
and convex functions, is always closed and convex, regardless of whether C' is closed
and/or convex. We summarize this property in the next lemma.

Lemma 2.23 (closedness and convexity of support functions). Let C C E
be a nonempty set. Then oc is a closed and convex function.

In most of our discussions on support functions in this chapter, the fact that
oc operates on the dual space E* instead of E will have no importance—recall that
we use the convention that the elements of E* and E are the same. However, when
norms will be involved, naturally, the dual norm will have to be used (cf. Example
2.31).

Additional properties of support functions that follow directly by definition
are given in Lemma 2.24 below. Note that for two sets A, B that reside in the same
space, the sum A + B stands for the Minkowski sum given by

A+B={a+b:ac A bc B}.
Also, for a scalar @ € R and a set A C E, the set aA is

aAd={ca:ac A}

Lemma 2.24.

(a) (positive homogeneity) For any nonempty set C CE)y € E* and a > 0,
oo(ay) = aoe(y).
(b) (subadditivity) For any nonempty set C CE and y1,y2 € E*,
oc(yr+yz2) < ocly1) +oc(y2).
(¢) For any nonempty set C CE,y € E* and o > 0,
oac(y) = aoc(y).
(d) For any two nonempty sets A,B CE and y € E*,

oa+B(y) =o0a(y) +oB(y).
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Proof. (a) oc(ay) = maxyxec(ay,Xx) = amaxyec(y,x) = aoc(y).
(b)
oc(yr+y2) = r}glgg(yl +y2,x) = max [(y1,%) + (y2,x)]
< = .
< 13354<y1,x> + gleaé(<y2,x> oc(y1) +oc(y2)

()

oac(y) = ){ggﬁgy, X) = g{ngg@, axy) = a;ngg@, x1) = aoc(y).
1 1
(d)

oarBy) = xghafBW, X) = o hax B<y, X1 + X2)

= Jex [y, x1) + (y,x2)] = glgﬁ(y, x1) + ggg(y, X2)
=oaly)+op(y). 0O

Following are some basic examples of support functions.

Example 2.25 (support functions of finite sets). Suppose that
C ={by,ba,..., by},
where by, bo,...,b,;, € E. Then

oc(y) = max{(b1,y), (ba,y),...,(bm,y)}.

Recall that S C E is called a cone if it satisfies the following property: for any
x € S and A > 0, the inclusion Ax € S holds.

Example 2.26 (support functions of cones). Let K C E be a cone. Define the
polar cone of K as

K°={yeE":(y,x) <0forallx € K}.
We will show that

o (y) = 0re(y)- (2.14)

Indeed, if y € K°, then (y,x) < 0 for all x € K and for x = 0, (y,x) = 0.
Therefore,

ox (y) = max{y,x) = 0.

If y ¢ K°, then there exists X € K such that (y,X) > 0. Since \x € K for all
A >0, it follows that

ok (y) > (¥, A%) = My, %) for all A > 0.

Taking A — 0o, we obtain that ok (y) = oo for y ¢ K°, and hence formula (2.14)
is proven. N
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Example 2.27 (support function of the nonnegative orthant). Consider
the space E = R™. As a special case of Example 2.26, since (R} )° = R”, it follows
that

ory (¥) = Orn (y)-

The next example uses Farkas’s lemma,® which we now recall.

Lemma 2.28 (Farkas’s lemma—second formulation). Let ¢ € R" and A €
R™*™_ Then the following two claims are equivalent:

A. The implication Ax < 0 = cTx < 0 holds true.
B. There exists y € R such that ATy =c.
Example 2.29 (support functions of convex polyhedral cones). Let the
underlying space be E = R™ and let A € R™*". Define the set
S={xeR": Ax < 0}.
Since S is a cone, we can use Example 2.26 to conclude that
os(y) = dse(y).
Note that y € S° if and only if
(y,x) <0 for any x satisfying Ax < 0. (2.15)
By Farkas’s lemma (Lemma 2.28), (2.15) is equivalent to the statement
there exists A € R’ such that ATx=y.

Hence,
5 ={ATX:XeRT}.

To conclude,

os(y) = 5{AT>\:>\GR$} (y)

Example 2.30 (support functions of affine sets). Let the underlying space be
E =R"™ and let B € R™*" b € R™. Define the affine set

C={xeR":Bx=hb}.

6The lemma and its proof can be found, for example, in [10, Lemma 10.3].
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We assume that C' is nonempty, namely, that there exists x¢o € R™ for which Bxy =
b. The support function is obviously given by

ocly) = mfux{(y,x> : Bx =b}.

Making the change of variables x = z+ xg, we obtain that the support function can
be rewritten as

oc(y) = max{(y. ) + (y.x0) : Bz = 0}
= (y,Xo) + mzax{<y, z) : Bz = 0}
= (y,%0) + 0&(y), (2.16)

where C' = {x € R": Bx = 0}. The set C is a convex polyhedral cone that can be
written as .
C={xeR": Ax <0},

where A = (7BB). By Example 2.29, it follows that

05 = Ogo, (2.17)
where C° is the polar cone of C, which is given by
C° = {B"A; —BTXy: A, X2 e RT}.

We will show that R
C° = Range(BT). (2.18)

Indeed, if v € C’O, then there exists A1, Ao € R for which v = BTA; — BT, =
BT (A1 — X2) € Range(B7). In the other direction, if v € Range(B”), then there
exists A € R™ for which v = BT, Defining A\; = [A]4,A2 = [-A]4, we obtain
that A = A1 — A2 with A1, A2 € R, and hence

v=BIA=BT(A\ — X)) =B'A —BA, € C°.

Combining (2.16), (2.17), and (2.18), we finally conclude that

oc (Y) = <Y7 X0> + 5Range(BT) (Y)

Example 2.31 (support functions of unit balls). Suppose that E is the un-
derlying space endowed with a norm || - ||. Consider the unit ball given by

BHH[O’ 1] = {X cE: ||X|| < 1}.

By the definition of the dual norm, we have for any y € E*
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B 0,1(y) = ”1)13”?241<Y7X> = [yl

Thus, for example, for the space R"™ we have

1 1
om0 ®) = Il (1=poelilot).

Ty 1ol (¥) = I¥lq-r (QEST,).

In the first formula we use the convention that p = 1/00 corresponds to ¢ = co/1.

The next example is also an example of a closed and convex function that is not
continuous (recall that such an example does not exist for one-dimensional functions;
see Theorem 2.22).

Example 2.32.” Consider the following set in R?:
22
C = {(xl,xQ)T txy + ?2 < O}.

Then the support function of C' is given by

2
X
oc(y) = max {ylxl +ypty i x + =2 < 0} . (2.19)

T1,T2 2
Obviously, o¢(0) = 0. We will compute the support function at y # 0. In this case,
it is easy to see that the maximum of problem (2.19) is attained at the boundary
of C.8 Therefore,

2
T
oc(y) = max § y121 + Yoo : X1 + 20y = Inax{—&xg +y2f132} .
Xr1,T2 2 2

2

If y; < 0, then the maximal value is co. If y; = 0 and yo # 0, then the maximal value

is also co. If y1 > 0, the maximum is attained at zo = Z—f, and the corresponding

2
maximal value is 2@% Thus, the support function is given by
v5
e 120,
oc(y) =94 0, y1=y2=0,
oo else.

"Example 2.32 is from Rockafellar [108, p. 83].

8This fact can be shown by contradiction. If the maximum was attained at an interior point
of C, then the gradient of the objective function, meaning y, would be the zeros vector, which is
a contradiction to the assumption that y # 0.
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By Lemma 2.23, o¢ is closed and convex. However, it is not continuous at
2
(y1,y2) = (0,0). Indeed, taking for any o > 0 the path yi(t) = =, y2(t) = t(t > 0),
we obtain that
oc(yi(t), y2(t)) = a,

and hence the limit of o¢(y1(t), y2(t)) as t — 07 is «, which combined with the fact
that 0¢(0,0) = 0 implies the discontinuity of f at (0,0). The contour lines of o¢
are plotted in Figure 2.3. N

Figure 2.3. Contour lines of the closed, convez, and noncontinuous func-
tion from FExample 2.32.

An important property of support functions is that they are completely determined
by their underlying sets as long as these sets are closed and convex. The proof of
this result requires the strict separation theorem,® which is now recalled.

Theorem 2.33 (strict separation theorem). Let C C E be a nonempty closed
and convex set, and let'y ¢ C. Then there exist p € E*\{0} and o € R such that

P,y) >«

and
(p,x) < a for allx € C.

Lemma 2.34. Let A, B C E be nonempty closed and convex sets. Then A = B if
and only if o4 = 0p.

Proof. If A = B, then obviously o4 = og. Suppose now that o4 = og. We will
prove that A = B. Assume by contradiction that this is not the case, and without
loss of generality suppose that there exists y € A such thaty ¢ B. Sincey ¢ B and
B is nonempty closed and convex, by the strict separation theorem, there exists a

9The theorem and its proof can be found, for example, in [10, Theorem 10.1].
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hyperplane separating y from B, meaning that there exists p € E*\{0} and a > 0
such that
(p,x) < a < (p,y) for any x € B.

Taking the maximum over x € B, we conclude that op(p) < a < (p,y) < ca(y),
a contradiction to the assertion that the support functions are the same. 0O

A related result states that the support function stays the same under the
operations of closure and convex hull of the underlying set.

Lemma 2.35. Let A CE be nonempty. Then
(a) oA = 0c(a);

(b) oA = C’—conv(A)'

Proof. (a) Since A C cl(A),
oa(y) < oca)(y) for any y € E*. (2:20)

We will show the reverse inequality. Let y € E*. Then by the definition of the
support function, there exists a sequence {x*};>; C cl(A) such that

(y,xk> — 0c(a)(y) as k — oo. (2.21)

By the definition of the closure, it follows that there exists a sequence {z"};>1 C A
such that ||z* — x"|| < + for all k, and hence

z" —x¥ 5 0ask — oc. (2.22)

Now, since z* € A4,
oaly) = (v.2") = (y.x") + (y,2" — x").
Taking k£ — oo and using (2.21), (2.22), we obtain that
oa(y) = oaa)y(y) +0 = o) (y),

which combined with (2.20) yields the desired result o4 = 0c(a)-

(b) Since A C conv(A), we have that 04(y) < 0conv(a)(y) for any y € E*. We
will show the reverse inequality. Let y € E*. Then by the definition of the support
function, there exists a sequence {x*};>; C conv(A) such that

(v, x") = Geonv(a) (¥) as k — oc. (2.23)

By the definition of the convex hull, it follows that for any k, there exist vectors
z. 2k, ... 2% € A (ny is a positive integer) and A¥ € A,,, such that

» “ng
Nk
xF = E )\fzf.
i=1
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Now,
Nk Nk Mg
(y,x") = <y, ZAfZ?> =D Mly.z) <> Moaly) = oaly),
i=1 i=1 i=1

where the inequality follows by the fact that z¥ € A. Taking the limit as k — oo
and using (2.23), we obtain that ocony(a)(y) < oa(y). O

Example 2.36 (support of the unit simplex). Suppose that the underlying
space is R" and consider the unit simplex set A, = {x € R" : eTx = 1,x > 0}.
Since the unit simplex can be written as the convex hull of the standard basis of
R’ﬂ

A, = conv{ej,es,...,e,},

it follows by Lemma 2.35(b) that

Since we always assume (unless otherwise stated) that R™ is endowed with the dot
product, the support function is

oa, (y) = max{y1,y2, ..., yn}-

The table below summarizes the main support function computations that
were considered in this section.

c oc(y) Assumptions Reference
{b1,b2,...,bn} maxi—1,2,...,n{(bs,y) b; € E Example 2.25
K dreo(y) K—cone Example 2.26
RY orr (y) E=R" Example 2.27
A, max{y1,y2,.--,Yn} E=R" Example 2.36
{xeR": Ax <0} 6{ATA:>\€RKL}(y) ﬁmzxiRTﬂ A € | Example 2.29
{x € R":Bx =b} | (y,%0) + Srange®7)(y) | E = R", B € | Example 2.30
R™™ b €
R™. Bxo=b
By.10,1] Iyl - Example 2.31
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Chapter 3

Subgradients

3.1 Definitions and First Examples

Definition 3.1 (subgradient). Let f : E — (—o0,00] be a proper function and
let x € dom(f). A vector g € E* is called a subgradient of f at x if

fy) =2 f(x) + (g8, y —x) for ally € E. (3.1)

Recall (see Section 1.11) that we use in this book the convention that the
elements of E* are exactly the elements of E, whereas the asterisk just marks the
fact that the endowed norm on E* is the dual norm || - || rather than the endowed
norm || - || on E.

The inequality (3.1) is also called the subgradient inequality. It actually says
that each subgradient is associated with an underestimate affine function, which is
tangent to the surface of the function at x. Since the subgradient inequality (3.1)
is trivial for y ¢ dom(f), it is frequently restricted to points in dom(f) and is thus
written as

F(y) = f(x) + {g,y — x) for all y € dom(f).

Given a point x € dom(f), there might be more than one subgradient of f at
x, and the set of all subgradients is called the subdifferential.

Definition 3.2 (subdifferential). The set of all subgradients of f at x is called
the subdifferential of f at x and is denoted by Jf(x):

0f(x)={g€E": f(y) = f(x) + (g y —x) for all y € E}.

When x ¢ dom(f), we define 0f(x) = . Actually, for proper functions, this is
a direct consequence of the definition of the subdifferential set since the subgradient
inequality (3.1) does not hold for x ¢ domf and y € domf.

Example 3.3 (subdifferential of norms at 0). Let f : E — R be given by

f(x) = ||Ix||, where || -|| is the endowed norm on E. We will show that the subdiffer-
ential of f at x = 0 is the dual norm unit ball:

35
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df(0) = By.,[0,1] = {g € E* : [|g. < 1}. (3.2)

To show (3.2), note that g € df(0) if and only if

f(y) > f(0) + (g,y — 0) for all y € E,

which is the same as
[yl = (g, y) for all y € E. (3.3)

We will prove that the latter holds true if and only if ||g||. < 1. Indeed, if ||g||« < 1,
then by the generalized Cauchy—Schwarz inequality (Lemma 1.4),

(g,y) < llgllllyll < [lyll for any y € E,

implying (3.3). In the reverse direction, assume that (3.3) holds. Taking the maxi-
mum of both sides of (3.3) over all y satisfying ||y|| < 1, we get

lgll- = max (g,y) < max [y[| =1
y:lyll<1 y:lyll<1

We have thus established the equivalence between (3.3) and the inequality [|g||. < 1,
which is the same as the result (3.2). 1

Example 3.4 (subdifferential of the l;-norm at 0). Let f : R" — R be given
by f(x) = ||x|l1- Then, since this is a special case of Example 3.3 with |- || = - |1,
and since the [,.-norm is the dual of the [1-norm, it follows that

af(0) = BH~H0<>[07 1] =[-1,1]"

In particular, when n = 1, then f(z) = |z|, and we have
0f(0) =[-1,1].
The linear underestimators that correspond to —0.8, —0.3, and 0.7 € 9f(0), mean-
ing —0.82, —0.3z, and 0.7z, are described in Figure 3.1. W
For the next example, we need the definition of the normal cone. Given a set S C E
and a point x € S, the normal cone of S at x is defined as
Ng(x)={y €E": (y,z—x) <0 for any z € S}.

The normal cone, in addition to being a cone, is closed and convex as an intersection

of half-spaces. When x ¢ S, we define Ng(x) = 0.

Example 3.5 (subdifferential of indicator functions). Suppose that S C E
is nonempty and consider the indicator function dg. Then for any x € S, we have
that y € 90g(x) if and only if

ds(z) > ds(x) + (y,z—x) forall z € S,

which is the same as
(y,z—x)<0forallzes.

Therefore, we have that
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Figure 3.1. The linear underestimators of |x| corresponding to —0.8, —0.3,
0.7 € 9f(0); see Example 3.4.

005(x) = Ng(x) for all x € S. (3.4)

For x ¢ S, 9ds(x) = Ng(x) = () by convention, so we obtain that (3.4) holds also
forx¢s. 1

Example 3.6 (subdifferential of the indicator function of the unit ball).
As a special case of Example 3.5, let

S=B[0,]]={xcE: x| <1}.
Then 0ds(x) = Ng(x), where Ng(x) is given by
Ng(x)={y €E": (y,z—x) <0 forallze S}.

We will find a more explicit representation for Ng(x). If x ¢ S, then Ng(x) = 0.
Suppose that [|x|| < 1. A vector y € E* satisfies y € Ng(x) if and only if

(y,z — x) <0 for any z satisfying ||z|| <1,
which is the same as the inequality,

< .
Zm>§1<y,Z> <(y,x)

Using the definition of the dual norm, we obtain that the latter can be rewritten as

lyll« <y, %)

Therefore,
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{yeE |yl < (v;x}, [x[<1,

0, Ix|| > 1.

353[071] (x) = NBio,1) (x) =

Example 3.7 (subgradient of the dual function). Consider the minimization
problem
min{ f(x) : g(x) <0,x € X}, (3.5)

where D # X CE, f : E — R and g : E — R™ is a vector-valued function. The
Lagrangian dual objective function is given by

¢(A) = min {L(X; A= f(x)+ )\Tg(x)} )

xeX

The dual problem consists of maximizing ¢ on its effective domain, which is given
by
dom(—¢q) = {A € R} : ¢(A) > —o0}.

No matter whether the primal problem (3.5) is convex or not, the dual problem

){Ié%z(n{q( ) A€ dom(—q)}

is always convex, meaning that ¢ is a concave function and dom(—g¢) is a convex
set. Let Ag € dom(—¢) and assume that the minimum in the minimization problem
defining ¢(Ao),

a(ho) = min { f(x) + AT g(x)}
is attained at x¢ € X, that is,
L(x0; Xo) = f(x0) + Aj &(x0) = ¢(Ao)-

We seek to find a subgradient of the convex function —q at Ag. For that, note that
for any A € dom(—gq),

= mig /00 + X80}

< f(xo) + A g(x0)

= f(x0) + Ag 8(%0) + (A — Xo) g(x0)
= q(Xo) + 8(x0)" (A = Ao).

Thus,
—q(A) > —q(Xo) + (—g(x0))T (A = Xg) for any X € dom(—q),

concluding that

—g(x0) € 9(—q)(Xo)-
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Example 3.8 (subgradient of the maximum eigenvalue function). Consider
the function f : S"™ — R given by f(X) = Apax(X) (recall that S™ is the set of all
n X n symmetric matrices). Let X € S™ and let v be a normalized eigenvector of
X (Jlvllz = 1) associated with the maximum eigenvalue of X. We will establish the
relation

vl € af(X). (3.6)

To show this, note that for any Y € S”,
Amax(Y) = max{uTYu lualle =1}

> viYyv

=vIXv+vI(Y - X)v
Amax(X)[V]3 + TH(vE (Y = X))
= Amax (X) + Tr(vvT (Y — X))

= Amax (X) + (vvT, Y — X)),

establishing (3.6). W

There is an intrinsic difference between the results in Examples 3.7 and 3.8 and
the results in Examples 3.3, 3.4, 3.5, and 3.6. Only one subgradient is computed in
Examples 3.7 and 3.8; such results are referred to as weak results. On the other hand,
in Examples 3.3, 3.4, 3.5, and 3.6 the entire subdifferential set is characterized—such
results are called strong results.

3.2 Properties of the Subdifferential Set

Note that the subdifferential sets computed in the previous section are all closed
and convex. This is not a coincidence. Subdifferential sets are always closed and
convex.

Theorem 3.9 (closedness and convexity of the subdifferential set). Let
f:E — (—00,00] be a proper function. Then the set Of(x) is closed and convex for
any x € E.

Proof. For any x € E, the subdifferential set can be represented as
3f(x) = ﬂ HY7
y€eE
where Hy = {g € E*: f(y) > f(x) + (g,y — x)} . Since the sets H, are half-spaces

and, in particular, closed and convex, it follows that df(x) is closed and convex. 0O

The subdifferential set 0f(x) may be empty. When it is nonempty at a given
x € E, the function f is called subdifferentiable at x.

Definition 3.10 (subdifferentiability). A proper function f : E — (—o0, 0] is
called subdifferentiable at x € dom(f) if df(x) # 0.
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The collection of points of subdifferentiability is denoted by dom(df):
dom(df) ={x€E:0f(x) #0}.

We will now show that if a function is subdifferentiable at any point in its domain,
which is assumed to be convex, then it is necessarily convex.

Lemma 3.11 (nonemptiness of subdifferential sets = convexity). Let f :
E — (—o00,00] be a proper function and assume that dom(f) is convex. Suppose
that for any x € dom(f), the set Of(x) is nonempty. Then f is convez.

Proof. Let x,y € dom(f) and o € [0,1]. Define z, = (1 — a)x + ay. By the
convexity of dom(f), z, € dom(f), and hence there exists g € df(z,), which in
particular implies the following two inequalities:

f(y) = f(2a) +(8,Y — 2a) = f(2a) + (1 - a)(g,y — %),
f(x) = f(za) + (8, x — 24) = f(20) — alg,y —x).

Multiplying the first inequality by «, the second by 1 — «, and summing them yields

f(T=a)x+ay) = f(za) < (1 - a)f(x) + af(y).

Since the latter holds for any x,y € dom(f) with dom(f) being convex, it follows
that the function f is convex. [O

We have thus shown that if a function is subdifferentiable at any point in its
(assumed to be) convex domain, then it is convex. However, this does not mean
that the reverse direction is correct. The next example describes a convex function,
which is not subdifferentiable at one of the points in its domain.

Example 3.12. Consider the convex function f: R — (—o00, co] defined by

0, else.

The function is plotted in Figure 3.2. It is not subdifferentiable at = 0. To show
this, suppose by contradiction that there exists g € R such that g € 9f(0). Then

f(y) = f(0) +g(y — 0) for any y > 0,
which is the same as
— /Yy > gy for any y > 0. (3.7)

The above is impossible since substituting y = 1, we obtain that ¢ < —1 (and in
particular g < 0), while substituting y = # in (3.7) yields the inequality

—/1/(2¢%) > 1/(29),

which is equivalent to the impossible inequality (utilizing the fact that g < 0)

1 1

—<—. 1
2g% ~ 4g°



Downloaded 04/11/24 to 143.215.80.169 by Jacob Aguirre (jaguirre31@gatech.edu). Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

3.2. Properties of the Subdifferential Set 41

0.5r

f(x)

15 I . . .
-0.5 0 0.5 1 1.5 2

Figure 3.2. The function f(x) = —/z with dom(f) = R4. The function
is not subdifferentiable at x = 0.

Although, as demonstrated in Example 3.12, convex functions are not neces-
sarily subdifferentiable at any point in their domain, they must be subdifferentiable
at any point in the interior of their domain. This is stated in Theorem 3.14 below,
which also shows the boundedness of the subdifferential set in this setting. The
proof of the theorem strongly relies on the supporting hyperplane theorem stated
explicitly below.

Theorem 3.13 (supporting hyperplane theorem [29, Proposition 2.4.1]).
Let ) # C CE be a convez set, and let 'y ¢ int(C). Then there exists 0 # p € E*
such that

(p,x) < (p,y) for any x € C.

Theorem 3.14 (nonemptiness and boundedness of the subdifferential set
at interior points of the domain). Let f : E — (—o0,00] be a proper convex
function, and assume that X € int(dom(f)). Then Of(X) is nonempty and bounded.

Proof. Recall that the inner product in the product space E x R is defined as (see
Section 1.9)

(y1,51), (y2:52)) = (y1,¥2) + B1B2,  (¥1,P1), (y2,582) € E xR,

Since (X, f (X)) is on the boundary of epi(f) C ExR, it follows by the supporting hy-
perplane theorem (Theorem 3.13) that there exists a separating hyperplane between
(%, f(%X)) and epi(f), meaning that there exists a nonzero vector (p, —«) € E* x R
for which

(p,X) — af(x) > (p,x) — at for any (x,t) € epi(f). (3.8)

Note that a > 0 since (X, f(X) + 1) € epi(f), and hence plugging x = X and
t = f(x) + 1 into (3.8) yields
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implying that @ > 0. Since x € int(dom(f)), it follows by the local Lipschitz
continuity property of convex functions (Theorem 2.21) that there exist € > 0 and
L > 0 such that B[, e] € dom(f) and

|f(x) = f(X)| < L||x — x| for any x € By|[x,€]. (3.9)

Since By.[X, ] € dom(f), it follows that (x, f(x)) € epi(f) for any x € By [X, €].
Therefore, plugging ¢t = f(x) into (3.8), yields that

(p,x — %) < a(f(x) - f(x)) for any x € By [X,¢]. (3.10)
Combining (3.9) and (3.10), we obtain that for any x € B[, €],
(p,x =) < a(f(x) = f(x)) < aLllx—x|. (3.11)

Take p' € E satisfying (p, p') = ||p||« and ||p'|| = 1. Since x+ep' € By [x,¢], we
can plug x = x + ep' into (3.11) and obtain that

ellpll« = (p,p") < aLe|p'| = aLe.

Therefore, a > 0, since otherwise we would have o = 0 and p = 0, which is
impossible by the fact that the vector (p, ) is not the zeros vector. Taking ¢t = f(x)
in (3.8) and dividing by « yields

f(x) > f(%x) + (g,x — x) for all x € dom(f), (3.12)

where g = p/a. Thus, g € 9f(X), establishing the nonemptiness of f(x). To show
the boundedness of 9f (%), let g € df(X), meaning that (3.12) holds. Take gf € E
for which ||g||« = (g,g") and ||g'|| = 1. Then plugging x = x + eg’ in (3.12) yields
: ) _(39) )
ellgll« =g, 8" = (8x—%) < f(x) = f(X) < Lllx—x| = Le,
showing that 0f(x) C Bj..[0,L], and hence establishing the boundedness of
of(x). O

The result of Theorem 3.14 can be stated as the following inclusion relation:
int(dom(f)) C dom(9yf).

A direct consequence of Theorem 3.14 is that real-valued convex functions (namely,
convex functions f with dom(f) = E) are subdifferentiable at any point.

Corollary 3.15 (subdifferentiability of real-valued convex functions). Let
f:E =R be a convex function. Then f is subdifferentiable over E.

We can extend the boundedness result of Theorem 3.14 and show that sub-
gradients of points in a given compact set contained in the interior of the domain
are always bounded.

Theorem 3.16 (boundedness of subgradients over compact sets). Let f :
E — (—o00,00] be a proper convexr function, and assume that X C int(dom(f)) is
nonempty and compact. Then Y = J,c x 0f(x) is nonempty and bounded.
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Proof. The set Y is nonempty, since by Theorem 3.14 9f(x) # @ for any x € X.
To prove the boundedness, assume by contradiction that there exists a sequence
{xx}r>1 € X and g € Of(xx) such that ||gx|l+ — oo as k — oo. For any k,
let g;i be a vector satisfying (gk,g,b = |lgk||« and ||g,1|| = 1. Since X is compact,
(int(dom(f)))¢ (the complement of int(dom(f))) is closed, and X N(int(dom(f)))c =
(), it follows that the distance between the two sets is nonempty, meaning in partic-
ular that there exists an € > 0 for which!®

|x — y|| > ¢ for any x € X,y ¢ int(dom(f)). (3.13)

The relation gy, € 0f(x)) implies in particular that
€ €
7 (x+ 58L) = 60 = 5

(egl) = Sl (3.14)

where we used the fact that by (3.13), xx + %g,t € int(dom(f)). We will show
that the left-hand side of (3.14) is bounded. Suppose by contradiction that it is
not bounded. Then there exist subsequences {xy }rer, {gl}keT (T being the set of
indices of the subsequences) for which

f (xk + %g,i) — f(xg) > o0 ask L . (3.15)

Since both {xj }rer and {g};} reT are bounded, it follows that there exist convergent
subsequences {Xx }kes, {g,t}kes (S C T) whose limits will be denoted by x and g.

Consequently, xj + %g}; —X+ts5gask 5, 0. Since X, X + %gz,i + 58 are alltt
in int(dom(f)), it follows by the continuity of f over int(dom(f)) (Theorem 2.21)
that

f (x;.C + %g;‘c) —f(xk) — f (5{4— %gT) —f(x) as k 3, 00,

which is a contradiction of (3.15). We can thus conclude that the left-hand side of
(3.14) is bounded and hence that the right-hand side of (3.14) is also bounded, in
contradiction to our assumption that ||gx||« goes to co as k — co. 0O

Subdifferentiability can be guaranteed for points that are not necessarily in
the interior of the domain but are in the interior of the domain w.r.t. its affine hull.
This is the notion of relative interior that we now recall:

ri(S) = {x € aff(S) : B[x,e] Naff(S) C S for some £ > 0}.

One key property of the relative interior is that it is nonempty for convex sets.

Theorem 3.17 (nonemptiness of the relative interior [108, Theorem 6.2]).
Let C CE be a nonempty convex set. Then ri(C) is nonempty.

10The proof of (3.13) is simple. Suppose by contradiction that there exist sequences {xx}x>1 C
X and {yg}x>1 C (int(dom(f)))¢ satisfying ||x; —yx|| — 0 as k — co. Since {xj }x>1 is bounded,
there exists M > 0 for which ||xy|| < M for all k. Therefore, ||yk| < ||xrx — y&l + %l < ||xx —
vkl + M, and we can conclude by the boundedness of {||x; — yx||}x>1 that {yx}r>1 is bounded.
By the Bolzano—Weierstrass theorem, there exist convergent subsequences x5, — X, yr. — ¥, and
by the closedness of X and (int(dom(f)))¢, we have that x € X,y € (int(dom(f)))¢. The limit
||xk = Yk, || = 0 as j — oo now brings us to the impossible equality X = §y.

L'The fact that % + 5§ € int(dom(f)) follows by (3.13) and the relations X € X and ||g|| = 1.
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A well-known result is that a proper convex function is always subdifferentiable
at relative interior points of its domain. We state this result without a proof.

Theorem 3.18 (nonemptiness of the subdifferential set at relative interior
points [108, Theorem 23.4]). Let f : E — (—o0, 0] be a proper convex function,
and let x € ri(dom(f)). Then 0f(X) is nonempty.

The result stated in Theorem 3.18 can be written as the inclusion
ri(dom(f)) C dom(9f).

Since the relative interior of dom(f) is always nonempty (Theorem 3.17), we can
conclude that there always exists a point in the domain for which the subdifferential
set is nonempty.

Corollary 3.19. Let f : E — (—o0,00] be a proper convex function. Then there
exists x € dom(f) for which 0f(x) is nonempty.

One instance in which the subdifferential set 0f(x) is guaranteed to be un-
bounded is when the dimension of the domain of the function is strictly smaller than
the dimension of the underlying space E.

Theorem 3.20 (unboundedness of the subdifferential set when dim(dom(f))
< dim(E)). Let f : E — (—o0,00| be a proper convex function. Suppose that
dim(dom(f)) < dim(E) and let x € dom(f). If 8f(x) # 0, then 9f(x) is un-
bounded.

Proof. Let m be an arbitrary vector in df(x). The set'? V = aff(dom(f)) — {x} is
a vector space. The dimension condition translates to dim(V) < dim(E), which in
particular implies that there exists a nonzero vector v € E such that (v, w) = 0 for
any w € V. Take any 8 € R. For any y € dom(f),

fy) > f(x)+ny—x) = f(x)+n+pv,y —x),

where the equality is due to the fact that y — x € V. We thus obtained that
n + Bv € 0f(x) for any S, implying the unboundedness of df(x). 0O

3.3 Directional Derivatives

3.3.1 Definition and Basic Properties

Let f : E — (—o00,00] be a proper function and let x € int(dom(f)). The directional
derivative of f at x in a given direction d € E, if it exists, is defined by

f'(x;d) = lim flx+ad) —f(x).

a—0t «

A well-known result states that convex functions have directional derivatives in all
directions at points in the interior of their domains.

“_»

12Here the notation stands for the Minkowski difference.
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Theorem 3.21 ([108, Theorem 23.1]'3). Let f : E — (—o00,00] be a proper
convex function and let x € int(dom(f)). Then for any d € E, the directional
derivative f'(x;d) exists.

It is important to establish some basic properties of the function d — f'(x;d).
The next theorem shows that it is convex and homogeneous of degree 1.

Lemma 3.22 (convexity and homogeneity of d — f'(x;d)). Let f : E —
(=00, 0] be a proper convex function and let x € int(dom(f)). Then

(a) the function d — f'(x;d) is convex;

(b) for any A >0 and d € E, it holds that f'(x;Ad) = A\f'(x;d).

Proof. (a) To show that the function g(d) = f’(x;d) is convex, take dy,ds € E
and X € [0,1]. Then

fI(X; Ad; + (1 — )\)dg)
fx+aAdi + (1 = N)da]) — f(x)

= lim
:a;: f(A(x+ad1)+?1 C (x4 ads)) — F(x)
< o AT £ ) + (1 )G+ 0d) —
= 1:1; f(X+a<21) - f(X)a+ o) f(X+a<22) ~ f(x)

=M (xdi) + (1= M) f(x;d),

where the inequality follows from Jensen’s inequality for convex functions.
(b) If A =0, the claim is trivial. Take A > 0. Then

Flend) — i T 00 oA G0 g

a—0t « a—0t al

O

The next result highlights a connection between function values and directional
derivatives under a convexity assumption.

Lemma 3.23. Let f : E — (—o0,00] be a proper conver function, and let x €
int(dom(f)). Then

fy) = f(x) + f'(xy —x) for all’y € dom(f).

13See also [10, Theorem 7.37].
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Proof. By the definition of the directional derivative,
fx+aly —x)) - f(x)

f(xy —x) = lim

a—0t o

e H—a)xtay) - 1)
a—0t o

< o6 F0f)
a—0t o

= fly) = f(x),

where the inequality follows by Jensen’s inequality. O

A useful “calculus” rule for directional derivatives shows how to compute the
directional derivative of maximum of a finite collection of functions without any
convexity assumptions.

Theorem 3.24 (directional derivative of maximum of functions). Suppose

that f(x) = max{f1(x), f2(X), ..., fm(x)}, where f1, fa,..., fm : E = (—00, 0] are
proper functions. Let x € (-, int(dom(f;)) and d € E. Assume that f(x;d) ezist
for any i€ {1,2,...,m}. Then

b d) = max fi(x;d),
where I(x) = {i: fi(x) = f(x)}.

Proof. For any i € {1,2,...,m},

it td) — fix)
t

+ fi(x)| =0 f{(x;d) + fi(x) = fi(x).

(3.16)
By the definition of I(x), fi(x) > f;(x) for any ¢ € I(x),j ¢ I(x). Utilizing (3.16),
it follows that there exists an ¢ > 0 such that f;(x + td) > f;(x + td) for any
i€I(x),j ¢ I(x)andt e (0,e]. Therefore, for any ¢ € (0,¢],

f(x+td)= max fi(x+1td)= max fi(x+td).
i=1,2,...,m i€l (x)

li f td) = li
i, fioe o) = i,

Consequently, for any ¢ € (0, €],
fx+td) — f(x)  maXierx) fi(x +td) — f(x) filx +td) — fi(x)

= = max )
t t i€I(x) t

where the last equality follows from the fact that f(x) = f;(x) for any i € I(x).
Finally, taking ¢ — 0T, we obtain that

fx+id) - f(x)

"(x:d) = li
flosd) = fim ==
= lim max filx +td) — fi(x)
t—0+ i€I(x) t
= max lim filx +td) — fi(x)
i€I(x) t—0+ t
= ‘(x;d). 0O
Jnax fi(x;d)
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Note that an assumption of Theorem 3.24 is that the directional deriva-
tives f!(x;d) exist. This assumption is automatically satisfied when the functions
fi, f2,. .., fm are convex. We can thus write the next corollary that replaces the
condition on the existence of the directional derivatives by a convexity assumption.

Corollary 3.25 (directional derivative of maximum of functions—convex

case). Suppose that f(x) = max{fi(x), fo(X),..., fm(X)}, where f1, fo,..., fm :
E — (—o0, 00] are proper convex functions. Let x € (i~ int(dom(f;)) and d € E.

Then
f'(x;d) = max fi(x;d),

i€l (x)
where I(x) = {i: fi(x) = f(x)}.

3.3.2 The Max Formula

We will now prove an extremely important and useful result, known as the maz
formula, that connects subgradients and directional derivatives.

Theorem 3.26 (max formula). Let f : E — (—o00, 0] be a proper convex func-
tion. Then for any x € int(dom(f)) and d € E,

f'(x;d) = max {(g,d) : g € 0f(x)} . (3.17)

Proof. Let x € int(dom(f)) and d € E. By the subgradient inequality, we have
that for any g € 0f(x),

Fxid) = lim ~(f(x+ad) - f(x)) > lim (g,d) = (g.d) (3.18)

a—0t « a—0t

and, consequently,
f'(x;d) > max{(g,d) : g € 0f(x)}. (3.19)

All that is left is to show the reverse direction of the above inequality. For that,
define the function h(w) = f’(x;w). Then by Lemma 3.22(a), h is a real-valued
convex function and is thus subdifferentiable over E (Corollary 3.15). Let g € 0h(d).
Then for any v € E and « > 0, using the homogeneity of h (Lemma 3.22(b)),

af'(x;v) = f'(x;av) = h(av) > h(d) + (g,av — d) = f'(x;d) + (g, av — d).

Therefore,
a(f'(x;v) — (&, v)) = f(x;d) — (g, d). (3.20)
Since the above inequality holds for any a > 0, it follows that the coefficient of «

in the left-hand side expression is nonnegative (otherwise, inequality (3.20) would
be violated for large enough «), meaning that

fxv) > (g,v).
Thus, by Lemma 3.23, for any y € dom(f),

fy) > f(x) + flxy —x) > f(x) +(8,y — x),
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showing that g € df(x). Taking o = 0 in (3.20), we have that f'(x;d) < (g, d), so
that
f'(x;d) < (g,d) < max{(g,d) : g € f(x)},

establishing the desired result. 0O

Remark 3.27. The maz formula (3.17) can also be rewritten using the support
function notation as follows:

fl(x;d) = 0gf(x) (d).

3.3.3 Differentiability

Definition 3.28 (differentiability). Let f : E — (—o00, 0] and x € int(domf).
The function f is said to be differentiable at x if there exists g € E* such that

o T h) — £G0 — (g )
h—0 ]

— 0. (3.21)

The uniquet* vector g satisfying (3.21) is called the gradient of f at x and is
denoted by V f (x).

The above is actually a definition of Fréchet differentiability, which is the one
used in this book.

If f is differentiable at x € int(domf), then the directional derivative has a
simple formula.

Theorem 3.29 (directional derivatives at points of differentiability). Let
f:E — (—o0,00] be proper, and suppose that f is differentiable at x € int(domy).
Then for any d € E

f(x:d) = (Vf(x),d). (3.22)

Proof. The formula is obviously correct for d = 0. Suppose that d # 0. The
differentiability of f implies that

fx+ad) - f(x) = (Vi(x),ad)

0= lm lod]|
- iy [[EEod =100 (1600
a—0+ al|d|| d| '
Therefore,
o)ty 100509
. f(x+ad) - f(x) (Vf(x)d)
R ol et RO
— (Vf(x).d). O

4 The uniqueness can be shown by the following argument. Suppose that (3.21) is satisfied
by both g = g1 and g = g2. Then by subtracting the two limits, we obtain that limy_,o(g1 —
g2, h)/||h|| = 0, which immediately shows that g1 = go.
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Example 3.30 (directional derivative of maximum of differentiable func-
tions). Consider the function f(x) = max;=12, . m fi(X), where f; : E — (—00, 0]
are proper functions. Assume that f1, fo, ..., fin are differentiable at a given point
x € N7, int(dom(f;). Then by Theorem 3.29, for any d € E, f/(x;d) = (V fi(x),d).
Therefore, invoking Theorem 3.24,

f(x;d) = max f(x;d) = max (Vfi(x),d),
i€l(x) i€l(x)

where I(x) = {i: f;(x) = f(x)}. N

Example 3.31 (gradient of %d%(-)).15 Suppose that E is a Euclidean space,
and let C' C E be nonempty closed and convex set. Consider the function p¢ : E —
R given by pc(x) = 3d%(x) = 3||x — Pc(x)||?, where Pg is the so-called orthogonal
projection mapping defined by

Pc(x) = argming colly — x|

It is well known that Pr is well defined (exists and unique) when the underlying
set C' is nonempty, closed, and convex.!® We will show that for any x € E,

Voo (x) = x — Po(x). (3.23)

For that, fix x € E and define the function g« by

9x(d) = pe(x+d) = po(x) = (d, zx),

where zx = x— Po(x). By the definition of the gradient, to show (3.23), it is enough
to establish that
gx(d)

dl]

To prove (3.24), note that by the definition of the orthogonal projection, we have
for any d € E

—+0asd—0. (3.24)

I +d = Po(x +d)|I* < [lx +d - Pe(x)|,
which implies that for any d € E,

0uld) = x4 d— Polx+ ) — Llx— Po()]? — (d,7)
< gllx+d = Po(l? ~ llx— Po(ll? ~ (d,7)
= llx— Po(ll? + (d,x — Po() + 5l — Sllx— Po()l - (d,7)
= %Hdu?. (3.25)

In particular, we also have
1
gx(—d) < §||d|\2. (3.26)

15The proof in Example 3.31 follows Beck and Teboulle [20, proof of Theorem 4.1].
16See, for example, [10, Theorem 8.8]. In addition, see Section 6.4.
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Since @¢ is convex, so is gx. Therefore, by Jensen’s inequality, and noting that

9x(0) =0, d d )
0= x(0) = () < §0n(a) + () (3.27)
Combining (3.26) and (3.27), we get
() > —gu(~d) > — | (3.25)

Finally, by (3.25) and (3.28), it follows that |gx(d)| < 1/|d[/?, from which the limit
(3.24) follows and hence also the desired result (3.23). N

Remark 3.32 (what is the gradient?). We will now illustrate the fact that the
gradient depends on the choice of the inner product in the underlying space. Let
E = R"™ be endowed with the dot product. By Theorem 3.29 we know that when f is
differentiable at x, then

(VF(x))i = (Vf(x),ei) = f'(x;ei);

that is, in this case, the ith component of V f(x) is equal to gfi (x) = f'(x;e;)—the
ith partial derivative of f at x—so that V f(x) = D¢(x), where

Di(x) = : . (3.29)

e
%(x)
Note that the definition of the directional derivative does not depend on the choice
of the inner product in the underlying space, so we can arbitrarily choose the inner
product in the formula (3.22) as the dot product and obtain (recalling that in this
case Vf(x) = D¢(x))

of
6(&‘

f(x;d) = Dy(x)7d = Z (x)d;. (3.30)

Formula (3.30) holds for any choice of inner product in the space. However, V f(x)
is not necessarily equal to Dy(x) when the endowed inner product is not the dot
product. For example, suppose that the inner product is given by

(x,y) =x"Hy, (3.31)

where H is a given n X n positive definite matriz. In this case,

(Vf(x)i =Vf(x)"e;=Vf(x)"H(H 'e;)

=(Vf(x),H 'e;) [by (3.31)]
= f'(x;H te;) [by (3.22)]
= Ds(x)TH e;. [by (3.30)]



Downloaded 04/11/24 to 143.215.80.169 by Jacob Aguirre (jaguirre31@gatech.edu). Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

3.3. Directional Derivatives 51

Hence, we obtain that with respect to the inner product (3.31), the gradient is actu-
ally a “scaled” /“weighted” gradient:

Vf(x) =H 'Ds(x).

Now consider the space B = R™*™ of all m x n real-valued matrices with the dot
product as the endowed inner product:

(x,y) = Tr(xTy) for any x,y € R™*™,

Given a proper function f : R™*"™ — (—o00,00] and x € int(dom(f)), the gradient,
if it exists, is given by V f(x) = Dy (x), where Dy(x) is the m X n matriz

Dy = (1 (X))m'

8331'3‘

If the inner product is replaced by
(x,y) = Tr(x" Hy),

where H is a given m X m positive definite matriz, then a similar argument to the
one given previously shows that

Vf(x) =H 'Ds(x).

We will now show that when a convex function is differentiable at a point in
the interior of its domain, then the subdifferential set is the singleton (i.e., a set
containing a single vector) consisting of the gradient at the point. The reverse is
also correct in the sense that if the subdifferential set is a singleton {g}, then the
function is differentiable at the given point with g being its gradient.

Theorem 3.33 (the subdifferential at points of differentiability). Let
f i E — (—o0,00] be a proper convex function, and let x € int(dom(f)). If f
is differentiable at x, then 0f(x) = {V f(x)}. Conversely, if f has a unique subgra-
dient at x, then it is differentiable at x and 0f(x) = {V f(x)}.

Proof. Let x € int(dom(f)) and assume that f is differentiable at x. Then by
Theorem 3.29 it follows that for any d € E,

fl(x:d) = (Vf(x),d). (3.32)

Let g € 0f(x). We will show that g = Vf(x). Combining (3.32) with the max
formula (Theorem 3.26) we have

(Vi(x),d) = f'(x;d) = (g,d),

so that
<g - Vf(X), d> <0.

Taking the maximum over all d satisfying ||d|| < 1, we obtain that ||g—V f(x)]|« < 0
and consequently that Vf(x) = g. We have thus shown that the only possible
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subgradient in 0f (x) is V f(x). Combining this with the fact that the subdifferential
set is nonempty (Theorem 3.14) yields the desired result df(x) = {Vf(x)}.

For the reverse direction, suppose that f has a unique subgradient g at x €
int(dom(f)). Consider the convex function

h(u) = f(x+u) — f(x) — (g ).

We will show that
. h(u)
lim —=

u=0 |[uf

This will establish (by definition) that g = Vf(x). Obviously, 0 is the unique
subgradient of h at 0 and 0 € int(dom(h)), and hence by the max formula (Theorem
3.26), for any d € E,

=0.

W (0;d) = aan(y(d) = 0.
We can thus conclude that for any d € E,

h(ad) — h(0 h(ad
0= n(0;d) = lim Mo =hO) - hlad) (3.33)
a—0t [0} a—0t [0}
Let {v1,va,...,vi} be an orthonormal basis of E. Since 0 € int(dom(h)), there

exists € € (0,1) such that ev;, —ev; € dom(h) for any ¢ = 1,2,...,k. Therefore,
since dom(h) is convex, the set

D = conv ({Zev;}))

satisfies D C dom(h). Let || - || = v/(,-) be the Euclidean norm corresponding to
the endowed inner product on E. Note that Bj.;[0,7] € D, where v = . Indeed,
let w € Bj[0,7]. Then since {vi,Vva,...,vx} is an orthonormal basis of E, we
have
k
W = Z<W7 V1>Vz
i=1
as well as i
lwi* =D tw, vi)?. (3:34)
i=1
Since ||w||? < 42, it follows by (3.34) that |(w, v;)| < ~, and hence
r r [(w,v;)]| [(w,v;
- 1/ Vi —— 0 ’L ) 1- . ‘0 € D7
w ;<W Vi)V = ; 6 [sgn({w, v;))evy] ( Z )

where the membership in D follows by the fact that 0, £ev; € D and Zle |<w7€w>‘ <

%7 = 1. We have therefore established the inclusion B).;[0,7] € D. Denote the

2k vectors {£ev;}% | by z1,22,...,22,. Take 0 # u € B [0,7%]. We have that
”ym € By.1[0,7] € D, and hence there exists A € Agy such that




Downloaded 04/11/24 to 143.215.80.169 by Jacob Aguirre (jaguirre31@gatech.edu). Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

3.4. Computing Subgradients 53

Therefore,

[[ul] [[af [[ul]
2 (Jlu)z)
) Y -
2N
max M (3.35)
= i=1,2,...,2k lull ’

where the first inequality follows by the convexity of h and by the fact that ||u]
By [0,~7] € D C dom(h). By (3.33),

(e (L

T m —FFF——F =
u=0  lu| luf—o  |ull a0t

z;
,YE

which, combined with (3.35), implies that ﬁ — 0 as u — 0, proving the desired
result. 0O

Example 3.34 (subdifferential of the l2-norm). Let f : R™ — R be given by
f(x) = ||x||2. Then the subdifferential set of f at x = 0 was already computed in
Example 3.3. When x # 0, the function is differentiable with gradient m Thus,
using Theorem 3.33, we can summarize and write the subdifferential set as

In particular, when considering the case n = 1, we obtain that for the one-dimensional
function g(x) = |z|, we have

sgn(x)}, x F#0,
dg(z) = {sgn(z)}, = # X

[-1,1], xz=0.

3.4 Computing Subgradients

This section establishes several useful calculus rules for subgradients and subdiffer-
entials. Some of the results are “weak results” (rules for computing some of the
subgradients in the subdifferential set), and some are “strong” (full characterization
of the subdifferential set).
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3.4.1 Multiplication by a Positive Scalar

Theorem 3.35. Let f : E — (—o00,00] be a proper function and let o > 0. Then
for any x € dom(f)
Iaf)(x) = adf(x).

Proof. We have that g € 0f(x) if and only if

f(y) = f(x) +(g,y — x) for any y € dom(f).

Multiplying the inequality by a > 0, we can conclude that the above inequality
holds if and only if

af(y) > af(x) + (ag,y — x) for any y € dom(af), (3.36)

where we used the obvious fact that dom(af) = dom(f). The statement (3.36) is
equivalent to the relation ag € d(af)(x). 0O

3.4.2 Summation

The following result contains both weak and strong results on the subdifferential
set of a sum of functions. The weak result is also “weak” in the sense that its proof
only requires the definition of the subgradient. The strong result utilizes the max
formula.

Theorem 3.36. Let fi,f2 : E — (—o00,00] be proper convexr functions, and let
x € dom(f;) Ndom(fs).

(a) The following inclusion holds:
df1(x) + 0 f2(x) C O(f1+ f2)(x).
(b) If x € int(dom(f,)) Nint(dom(fs)), then
I(f1+ f2)(x) = 0f1(x) + 0fa(x).

Proof. (a) Let g € 0f1(x)+ 0f2(x). Then there exist g1 € 9f1(x) and g2 € Jf2(x)
such that g = g1 + g2. By the definition of g; and g, it follows that for any
y € dom(f;) Ndom(fs),

fily) = fix)
f2(y) = fa(x)

Summing the two inequalities, we obtain that for any y € dom(f1) N dom(f2),

(g81,y — x),

+
+ (g2, y — x).

AVANAY)

[1(y) + f2(y) = fi(x) + f2(x) + (g1 + 82,y — %),

that is, g = g1 + g2 € 9(f1 + f2)(x).
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(b) Let d € E and define f = f1 + fa. Then since x € int(dom(f)) =
int(dom(f1)) Nint(dom(f2)), it follows by the max formula (Theorem 3.26) that

Tofx)(d) = max{(g,d) : g € 0f(x)} = f'(x;d).

Using the additivity of the directional derivative and the max formula (again), we
also obtain

0af(x) (d) = f’(X; d)
= filx;d) + f3(x; d)
=max {(g1,d) : g1 € 0f1(x)} + max {(g2,d) : g2 € 0fa2(x)}
= max {(g1 + g2,d) : g1 € 0f1(x),82 € 0f2(x)}}
= 00f1(x)+0f2 (x)(d)'
By Theorems 3.9 and 3.14, 9 f(x), 0f1(x), and 9 f2(x) are nonempty compact convex
sets, which also implies (simple exercise) that Jf1(x) + 0f2(x) is nonempty com-

pact and convex. Finally, invoking Lemma 2.34, it follows that 0f(x) = df1(x) +
df2(x). 0O

Remark 3.37. Note that the proof of part (a) of Theorem 3.36 does not require a
convezity assumption on f1 and fa.

A simple induction argument can be used to generalize the last result to an
arbitrary number of functions.

Corollary 3.38. Let f1, fa,..., fm : E = (—00,00] be proper conver functions,
and let x € N dom( f;).

(a) (weak sum rule of subdifferential calculus) The following inclusion

holds:
Zafi(x) co <Z fi) (x).

(b) Ifx € N int(dom(f;)), then

0 (Z ﬂ-) (x) = Z Of:(x). (3.37)

Another direct consequence is that if f1, fa,..., f;n are real-valued, meaning
that their domain is the entire space E, then the sum formula (3.37) holds.

Corollary 3.39. Let fi1, fo,..., fm : E = R be real-valued convex functions. Then

for any x € E
d (Z fi> (x) =Y 0fi(x).
i=1

i=1
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A result with a less restrictive assumption than the one in Corollary 3.38(b)
states that if the intersection NI ;ri(dom(f;)) is nonempty, then the sum formula
is correct at any point. We state this result without a proof.

Theorem 3.40 (sum rule of subdifferential calculus [108, Theorem 23.8]).
Let f1,fo,..., fm : E = (—o00,00] be proper convexr functions, and assume that
Nie, ri(dom(f;)) # 0. Then for any x € E

9 <Z fi) (x) = Zafi(x)-

Example 3.41 (subdifferential set of the /;-norm function—strong result).
Consider the function f : R™ — R given by f(x) = ||x[i = > |zi]. Then
f =X, fi, where f;(x) = |x;|. We have (see also Example 3.34)

{sen(zi)ei}, = #0,

[_eive’i]a Tq = 0.

dfi(x) =

Thus, by Corollary 3.39,

016 =Y 0fix) = Y sgalweit Y [~eiel

i€l (x) i€lo(x)

where
Ie(x) = {i:@; # 0}, Io(x) = {i:z; =0},
and hence

Of(x) ={z € R" : z; = sgn(z;),i € [x(x),|z;| < 1,5 € Ip(x)}.

Example 3.42 (a subgradient of the l;-norm function—weak result). Using
the formula for the subdifferential set described in Example 3.41, we can readily
conclude that

sgn(x) € 9f(x).

3.4.3 Affine Transformation

The following theorem states strong and weak results on the subdifferential set of
a composition of a convex function with an affine transformation.

Theorem 3.43. Let f : E — (—o0, 0] be a proper convex function and A:V — E
be a linear transformation. Let h(x) = f(A(x) + b) with b € E. Assume that h is
proper, meaning that

dom(h) = {x € V: A(x) + b € dom(f)} # 0.
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(a) (weak affine transformation rule of subdifferential calculus) For any
x € dom(h),
AT (9f(A(x) + b)) C Oh(x).

(b) (affine transformation rule of subdifferential calculus) Ifx € int(dom(h))
and A(x) + b € int(dom(f)), then

Oh(x) = AT (0f(A(x) + b)).

Proof. (a) Let x € dom(h) and assume that g € AT (9f(A(x) +b)). Then there
exists d € E* for which g = AT (d), where

d € 0f(A(x) +b). (3.38)
For any y € dom(h), we have A(y) + b € dom(f), and hence, by (3.38),
f(A(y) +b) = f(AX) +b) + (d, A(y) + b — A(x) — b),
and therefore
h(y) > h(x) + (AT (d),y — x) for all y € dom(h).
Hence, g = AT (d) € dh(x), proving that AT (df(A(x) + b)) C dh(x).
(b) Since x € int(dom(h)), then for any d € V, by the max formula (Theorem

3.26),
W (x;d) = O08h(x) (d). (3.39)

In addition, by the definition of the directional derivative, we have

o = i, "
o J(AG) +b o+ aA(d) — f(AX) +b)
a—0t o

= ['(A(x) + b; A(d)),
which, combined with (3.39), yields
Tonx) (d) = '(A(x) + b; A(d)).

Therefore, using the max formula again and the assumption that A(x) + b €
int(dom(f)), we obtain that

Tonx) (d) = f'(A(x) + b; A(d))
= max {(g, A(d)) : g € Of(A(x) + b)}

= mgx{(AT(g),d> :g € 0f(A(x)+b)}
= max {(g,d) : g € AT(Of(A(x) + b))}

= OAT(9f(A(x)+b)) (d)-
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Since x € int(dom(h)), it follows by Theorems 3.9 and 3.14 that Oh(x) is nonempty
compact and convex. Similarly, since A(x)+b € int(dom(f)), the set 9f(A(x)+b)
is nonempty, compact, and convex, which implies that AT (9f(A(x) + b)) is also
nonempty, compact, and convex. Finally, invoking Lemma 2.34, we obtain that

On(x) = AT (Of(A(x) +b)). [

Example 3.44 (subdifferential of |Ax+b||1). Let f : R™ — R be the function
given by f(x) = ||Ax + bl|1, where A € R™*"™ b € R™. Then f(x) = g(Ax + b)
with g : R™ — R given by ¢(y) = |ly|l1- By the affine transformation rule of
subdifferential calculus (Theorem 3.43(b)), we have that

Of(x) = ATog(Ax + b). (3.40)
Denote the ith row of A by al and define
Is(x) = {i:al x4+ b; # 0},
Ip(x) = {i: al'x + b; = 0}.
In this terminology, by Example 3.41,

0g(Ax+b)= > sgn(a/x+ble;+ Y [—ei el
i€l (x) i€lo(x)
Thus, by (3.40),
of(x) = ATog(Ax + b)

= Z sgn(a;?rx—l—bi)ATei—i— Z [—ATei,ATei].
i€l (x) i€lo(x)

Using the relation A”e; = a;, we finally conclude that

of(x)= > sgn(ax+blai+ » [-aiai.

1€l (x) i€1o(x)

The above is a strong result characterizing the entire subdifferential set. A weak
result indicating one possible subgradient is

ATsgn(Ax+b)cof(x). N
Example 3.45 (subdifferential of |Ax+b||2). Let f : R™ — R be the function

f(x) = ||[Ax + b||2, where A € R™*" b € R™. Then f(x) = g(Ax + b) with
g :R™ — R given by ¢(y) = |ly|l2. By Example 3.34,

&7 Ax+b#0,
dg(Ax +b) = { [AxTpl: 7

B||||2[0, 1], Ax+b=0.

Thus, by the affine transformation rule of subdifferential calculus (Theorem 3.43(b)),
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M AX—I—b;EO
af(x) = ATog(Ax+b) = { [1AxFblz” ,
ATB|,[0,1], Ax+b=0.

Note that at a vector x satisfying Ax + b = 0, the subdifferential set can be
explicitly written as

af(x) = ATB),[0,1] = {ATy : [ly[> < 1}.

If a weak result is required, then since 0 € BH~H2[07 1], we can write 0 = AT0 €
0f(x) for any x satisfying Ax + b = 0.

3.4.4 Composition

The derivative of a composition of differentiable functions can be computed by using
the well-known chain rule. We recall here the classical result on the derivative of
the composition of two one-dimensional functions. The result is a small variation
of the result from [112, Theorem 5.5].

Theorem 3.46. Suppose that f is continuous on [a,b] (a < b) and that f! (a)
exists. Let g be a function defined on an open interval I which contains the range
of f, and assume that g is differentiable at f(a). Then the function

h(t) = g(f(t)) (a<t<b)
is right differentiable at t = a and

Wy (a) = g'(f(a))f}(a).

Proof.
o) = 1 U —0(5(@)
— tim WLORTN TOZTE _yisapria). o

We will now show how the one-dimensional chain rule can be used with the
help of the max formula (Theorem 3.26) to show a multidimensional version of the
chain rule.

Theorem 3.47 (chain rule of subdifferential calculus). Let f:E — R be a
conver function and g : R — R be a nondecreasing conver function. Let x € E, and
suppose that g is differentiable at the point f(x). Let h = go f. Then

Oh(x) = g'(f(x))0f (x)-

Proof. For any d € E, define the following one-dimensional functions:

fxalt) = f(x+1td), teR,
hxa(t) = h(x+td), teR.
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We have the following simple relation between fx 4 and hx q:
hxa(t) = h(x +td) = g(f(x+td)) = g(fx.a(t)), teER. (3.41)

The function f is convex by the premise of the theorem, and h is convex since it is a
composition of a nondecreasing convex function with a convex function. Therefore,
the directional derivatives of f and h exist in every direction (Theorem 3.21), and
we have by the definition of the directional derivative that

(fx.a)’ (0) = f'(x;d), (3.42)
(hx,a)(0) = W (x;d). (3.43)
Since hx.a = g o fx.a (by (3.41)), fx,a is right differentiable at 0, and g is differen-

tiable at fx,qa(0) = f(x), it follows by the chain rule for one-dimensional functions
(Theorem 3.46) that

(M)’ (0) = ¢'(f (%)) (fx:ia) (0).
Plugging (3.42) and (3.43) into the latter equality, we obtain
W (x;d) = g'(f(x))f'(x;d).

By the max formula (Theorem 3.26), since f and h are convex and x € int(dom(f)) =
int(dom(h)) = E,

P (x;d) = oanx)(d), f'(xd) = 05x)(d),

and hence

Tanx)(d) = 1 (x;d) = ¢'(f(x) f'(x;d) = ¢'(f(X))0a5x)(d) = 0g(rx))afx)(d),

where the last equality is due to Lemma 2.24(c) and the fact that ¢’(f(x)) > 0.
Finally, by Theorems 3.9 and 3.14 the sets Oh(x), 0 f(x) are nonempty, closed, and
convex, and thus by Lemma 2.34

Oh(x) = ¢'(f(x)0f(x). O

Example 3.48 (subdifferential of || - ||3). Consider the function h : R* — R
given by h(x) = [x||?, which can be written as the composition h = g o f, where
f(x) = |x||1 and g(t) = [t]2 = max{t,0}?. Both f and g are real-valued convex
functions, and g is nondecreasing and differentiable over R with derivative ¢'(t) =
2[t]4+. Therefore, by the chain rule of subdifferential calculus (Theorem 3.47), for
any x € R",

Oh(x) = ¢'(f(x))0f (x) = 2[lIxll1], 9f (x) = 2[|x[:0f (x).

Using the general form of 0f(x) as derived in Example 3.41, we can write 0h(x)
explicitly as follows:
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Oh(x) =2||x[[1 {z € R" : z; = sgn(x;),1 € Ix(x), |z;] < 1,7 € Ih(x)},
where I:(x) = {i:x; # 0}, Ip(x) = {i : z; = 0}.

Plugging x = 0 into the above formula, we obtain that
Oh(0) = {0}.

Since h has a unique subgradient at x = 0, it follows by Theorem 3.33 that & is
differentiable at x = 0 and VA(0) = 0. Note that the function is obviously not
differentiable over R™. For example, when n = 2, the nondifferentiability points are
{(21,0)T s 21 #0YU{(0,22)T : x5 # 0}, as illustrated in Figure 3.3. W

Figure 3.3. Surface plot of the function f(x1,x2) = (|z1| + |22])?.

Example 3.49 (subdifferential of dc(+)). Suppose that E is a Euclidean space,
and let C C E be a nonempty closed and convex set (see Example 2.20). The
distance function d¢ is convex. We will show that

x—Pc(x)
{ dcfx) } ’ x¢C,
No(x) N B[0,1], x¢eC.

ddc(x) =

By Example 3.31, we know that the function ¢¢(x) = 3dZ (x) is differentiable and
dpo(x) = {x— Po(x)} (3.44)

for any x € E. Note that ¢c = g o dc, where g(t) = %[t} is a nonincreasing
real-valued convex differentiable function. Then by the chain rule of subdifferential
calculus (Theorem 3.47),

dpc(x) = ¢'(do(x))0de (x) = [do(x)]4+0de(x) = do(x)0de (x). (3.45)
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If x ¢ C, then dc(x) # 0, and thus by (3.44) and (3.45),

x — Po(x)

dde(x) = { o

} for any x ¢ C.

Since dd¢(x) is a singleton for any x ¢ C, it follows in particular, by Theorem 3.33,
that d¢ is differentiable at points outside C.
Now assume that x € C'. We will show that

ddc(x) = Ne(x) N B[O, 1).
Indeed, if d € dd¢c(x), then
de(y) > (d,y —x) for any y € E. (3.46)
This means in particular that for any y € C
(d,y —x) <0,
that is, d € N¢(x). In addition, taking y = x + d in (3.46), we get
Id]f* = (d,x +d —x) < dc(x +d) < [lx+d - x| = [d],

which readily implies that ||d|| < 1. We conclude that ddc(x) € Ne(x) N B[O, 1].
To show the reverse direction, take d € No(x) N B[0,1]. Then for any y € E,

(d,y —x) =(d,y — Pc(y)) + (d, Po(y) — x). (3.47)

Since d € N¢(x) and Pe(y) € C, it follows by the definition of the normal cone that
(d, Po(y) — x) < 0, which, combined with (3.47), the Cauchy—Schwarz inequality,
and the assertion that ||d|| < 1, implies that for any y € E

(d,y —x) <(d,y — Pc(y)) < |ld[| - ly = Pe(¥)|| < [ly — Pe(y)ll = dc(y),

and hence d € ddc(x). W

3.4.5 Maximization

The following result shows how to compute the subdifferential set of a maximum of
a finite collection of convex functions.

Theorem 3.50 (max rule of subdifferential calculus). Let f1, fo,..., fm :
E — (—o00,00] be proper convex functions, and define

f(x) = max{f1(x), fa(x),. .., fm(x)}.
Let x € (-, int(dom(f;)). Then
df(x) = conv (Uierx)0fi(x)) »

where I(x) ={i € {1,2,...,m}: fi(x) = f(x)}.
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Proof. First note that f, as a maximum of convex functions, is convex (see Theorem
2.16(c)) and that by Corollary 3.25 for any d € E,

f'(x;d) = max fi(x;d).
i€l (x)

For the sake of simplicity of notation, we will assume that I(x) = {1,2,...,k} for

some k € {1,2,...,m}. Now, using the max formula (Theorem 3.26), we obtain
/(- _ e — .
fllad) = max fi(xd) i:gr};_%_’kgig%x)<gud>- (3.48)

Using the fact that for any aq,aq,...,ar € R the identity

k
max{ai,as,...,a} = max E Aia;
AEAg —1

holds, we can continue (3.48) and write

k
f'(x;d) = max {Z i max{(g;,d) : g; € 8fl(x)}}

XEA
R

k
= max{<z /\igi,d> 18 € afz(X),)\ S Ak}
=1

= max {(g,d) : g € conv (U, 8/i(x)) }
=oa(d),

where A = conv (UF_,0fi(x)). By the max formula (Theorem 3.26), since x €
int(dom(f)),
fl(x;d) = 0gf(x)(d),

and hence

oa(d) = 0ypx)(d) for any d € E. (3.49)
The set 0f(x) is closed and convex by Theorem 3.9, and since x € int(dom(f)), it
is also nonempty and bounded by Theorem 3.14. Similarly, 0f;(x),i = 1,2,...,k,
are nonempty and compact sets, and hence also is U¥_;df;(x). We can conclude
that the set A = conv(UF_,0f;(x)), as a convex hull of a nonempty compact set, is
also nonempty and compact.!” In addition, by the definition of the convex hull, A
is convex.

To conclude, both A and Jf(x) are nonempty closed and convex, and thus
(3.49) implies by Lemma 2.34 that

af (x) = A,
which is the desired result. 0

Example 3.51 (subdifferential of the max function). Let f : R” — R be given

by f(X) = max{xl,xg, s ,.’En}. ObViOHS]‘Yﬂ f(X) = max{fl(x), fQ(X)a R fn(x)}a
where f;(x) = z;, and hence df;(x) = {e;} for any i = 1,2,...,n. Denote

I(x)={i: f(x) =a;}.

L7 This follows by [10, Proposition 6.31].



Downloaded 04/11/24 to 143.215.80.169 by Jacob Aguirre (jaguirre31@gatech.edu). Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

64 Chapter 3. Subgradients

Then by the max rule of subdifferential calculus (Theorem 3.50),

0f(x) = conv(U;ec1(x)0.fi(x)) = conv(Usc r(x){€i}),

and hence

Bf(X): Z Ai€; : Z /\izl,/\jzo,jEI(X)

1€l(x) 1€l(x)

In particular,
Of(we) = A, foranya cR. 1

Example 3.52 (subdifferential of the loo-norm). Let f: R™ — R be given by
f(x) = ||x||c. There are two options. If x = 0, then by Example 3.3 9f(0) is the
dual-norm unit ball, and in this case,

9f(0) = By,[0,1] = {x e R" : [|x[}; < 1}.
Suppose that x # 0. Note that f(x) = max{f1(x), f2(x),..., fn(x)} with f;(x) =

|x;| and set
I(x) = {i: i = [Ix[[0}-
For any ¢ € I(x) we have x; # 0, and hence for any such i, 0f;(x) = {sgn(z;)e;}.
Thus, by the max rule of subdifferential calculus (Theorem 3.50),
df(x) = conv (Uier(x)0fi(x))
= conv (Ujer(x) {sgn(zi)e;})

= Z Aisgn(z;)e; : Z Ai=1,X>0,j€l(x)
i€I(x) icl(x)

To conclude,

BHAH1[0, 1], XZO,

i€I(x) i€l(x)

Example 3.53 (subdifferential of piecewise linear functions). Consider the
piecewise linear function f : R™ — R given by

f(x) = _Inax {al'x + b},
where a; € R"b; € R;i = 1,2,...,m. The function f can be written as f(x) =
max{ f1(x), f2(x), ..., fm(x)}, where fi(x) = alx+b;, i =1,2,...,m. Obviously,
dfi(x) = {a;}. Thus, by the max rule of subdifferential calculus (Theorem 3.50),
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8f(x): Z Aia; ¢ Z /\izl,)\jzo,jEI(X) ,

i€l (x) i€l (x)

where I(x) = {i: f(x) = al'x+ b;}.

Example 3.54 (subdifferential of ||Ax + bl||oo). Consider the function f :
R™ — R given by f(x) = ||AX + b|loc, where A € R™*™ and b € R™. Then
f(x) = g(Ax + b), where g : R™ — R is given by ¢(y) = ||¥|/c. By Example 3.52,
we have, for any y € R™,

B||.||1[0, 1], y=0,
dg(y) = .
Z Aisgn(y;)e; : Z Ai=1,X20,j€l(y)p, y#0,
iel(y) i€l(y)
where

Ily)={ie{l,2,....m}: |yil = [[ylloc}-

We can thus use the affine transformation rule of subdifferential calculus (Theorem
3.43(b)) to conclude that df(x) = ATdg(Ax + b) is given by

ATB“AHI[O, 1], Ax+b:0,
of(x) =
Z /\isgn(aiTx + bi)a; : Z Ai=1X>0j€lkp, Ax+b#0,
i€lx i€l

where al,al ... al are the rows of A and Iy = I(Ax+Db). &

When the index set is arbitrary (for example, infinite), it is still possible to
prove a weak subdifferential calculus rule.

Theorem 3.55 (weak maximum rule of subdifferential calculus). Let I
be an arbitrary set, and suppose that any i € I is associated with a proper conver
function f; : E — (—o0,00]. Let

f(x) = max fi(x). (3.50)
Then for any x € dom(f)
conv (UzEI(x)afl(x)) - 8f(X), (351)

where I(x) ={i € I: f(x) = fi(x)}.
Proof. Let x € dom(f). Then for any z € dom(f),i € I(x) and g € 9f;(x),

f(2) = fi(z) = fi(x) + (8,2 = x) = f(¥) + (8,2 — x), (3.52)
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where the first inequality follows from (3.50), the second inequality is the subgra-
dient inequality, and the equality is due to the assertion that ¢ € I(x). Since (3.52)
holds for any z € dom(f), we can conclude that g € df(x). Thus, 9f;(x) C df(x).
Finally, by the convexity of f(x) (Theorem 3.9), the result (3.51) follows. O

Example 3.56 (subgradient of Amax(Ao + Y 1oy TiA;)). Let Ag, Ay, ... A,
€ S™. Let A:R™ — S™ be the affine transformation given by

Ax) = Ao + Z z;A; for any x € R™.

i=1

Consider the function f : R™ — R given by f(Xx) = Amax(A(x)). Since for any
x € R™,
X)= m yTA(x)y, (3.53)

= ax
yER™ |lyll2=1

and since the function

fyx) =y AX)y =y " Aoy + > _(y" Aiy):
=1

is affine in x, and in particular convex in x, it follows by Theorem 2.16(c) that f
is convex. For a given x € R™, the maximum in (3.53) is attained at normalized
eigenvectors which correspond to the maximum eigenvalue of A(x). Let § be such a
normalized eigenvector. Then it follows by the weak maximum rule of subdifferential
calculus (Theorem 3.55) that a subgradient of the affine function fy at x is a
subgradient of f at x, that is,

AT, 7 Ay, .. ¥ ALY € 0f(x), (3.54)

where ¥ is a normalized eigenvector of A(x) corresponding to the maximum
eigenvalue.

It is interesting to note that the result (3.54) can also be deduced by the affine
transformation rule of subdifferential calculus (Theorem 3.43(b)). Indeed, let ¥ be
as defined above. The function f can be written as f(x) = g(B(x) + Ag), where
B(x)=>"", 2;A; and g(X) = Amax(X). Then by the affine transformation rule of
subdifferential calculus,

0f (x) = BT(9g(B(x) + Ao)). (3.55)
By Example 3.8, we know that yy7 € dg(B(x) + Ao), and hence, by (3.55),
BY(y5") € 0f (x).
The result now follows by noting that

BT (yy") = (Tr(A1337), Tr(A2yy™), ..., Tr(Anyy™)"
=FTAy, 7 Ay, 3 ALy
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3.5 The Value Function”

Consider the minimization problem

fopt = Irélg{f(x) 1gi(x) <0,i=1,2,...,m,Ax + b = 0}, (3.56)

where f,91,92,...,9m : E = (—00, 00] are extended real-valued functions, X C E
a nonempty set, A € RP*" and b € RP. We will define the vector-valued function
g:E—R™as

g(X) = (gl (X)v g2(X)a cee ,gm(X))T,

so that problem (3.56) can be rewritten more compactly as
nélg{f(x) :g(x) <0,Ax + b = 0}.
The walue function associated with problem (3.56) is the function v : R™ x
R? — [—00, 00| given by

v(u,t) = )r(%% {f(x):9(x) <u,Ax+b =1t}. (3.57)

The feasible set of the minimization problem in (3.57) will be denoted by
Cu,t) ={xe€ X :9(x) <u,Ax+ b =1t},
so that the value function can also be rewritten as v(u, t) = min{ f(x) : x € C(u, t)}.

By convention v(u,t) = oo if C(u,t) is empty. A simple property of the value
function v(+,-) is that it is monotone w.r.t. its first argument.

Lemma 3.57 (monotonicity of the value function). Let f,g1,92,...,9m : E —
(—00, 0] be extended real-valued functions, X C E a nonempty set, A € RP*"  and
b € RP. Let v be the value function given in (3.57). Then

v(u,t) > v(w,t) for any u,w € R™ t € R? satisfying u < w.

Proof. Follows by the obvious fact that C(u,t) C C(w,t) whenever u <w. 0O

From now on we will also assume in addition that f,g1,¢9o,...,9m, and X are
convex. With these additional assumptions, we now show that the value function
is convex as long as it is proper.

Lemma 3.58 (convexity of the value function). Let f,g1,92,...,9m : E —
(—o00,00] be conver functions, X C E a nonempty convexr set, A € RP*" and
b € RP. Suppose that the value function v given in (3.57) is proper. Then v is
convex over R™ x RP,

Proof. Let (u,t),(w,s) € dom(v) and A € [0,1]. Since v is proper, to prove the
convexity, we need to show that
v Au+ (I = Nw, At + (1 = N)s) < dw(u,t) + (1 — Nv(w,s).

18Section 3.5, excluding Theorem 3.60, follows Hiriart-Urruty and Lemaréchal [67, Section
VIL.3.3].
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By the definition of the value function v, there exist sequences {xy}tr>1, {¥k}r>1
satisfying

xi € C(u,t),yr € C(w,s), f(xx) — v(u,t), f(yr) = v(w,s) as k — oo.

Since x; € C(u,t) and yi € C(w,s), we have g(x;) < u,g(yx) < w. Therefore,
by the convexity of the components of g,

g(Axk + (1 = A)yw) < Ag(xk) + (1 = Nglyr) < Au+ (1 - Nw. (3.58)
Moreover,
AMxp +(1—=Nyr)+b=AAx; +b)+ (1 - A)(Ayr +b) = As+ (1 — N)t. (3.59)
Combining (3.58) and (3.59), we conclude that
Axi 4+ (1= Nyr € C(Au+ (1 — A)w, As + (1 — A)t). (3.60)
By the convexity of f,
FOxp+ (1= Nyr) < Af(xg) + 1 =N f(yr)- (3.61)
Since A\f(xi) + (1 — AN f(yr) — Av(u, t) + (1 — Mv(w,s) as k — oo, by (3.61) we
e 1ikn_1>i£f FOxe+ (1= Nyr) < dv(u,t) + (1 — Nv(w,s). (3.62)
Finally, since (3.60) holds, by the definition of v, for all k,
v Au+ (1 = Nw, At + (1 = N)s) < f(Axi + (1 — N)yw),
and hence

v(Au+ (1 = Nw, At + (1 — N)s) < likrgior.}ff()\xk + (1= Nyr),
which, combined with (3.62), yields the inequality
v Au+ (I = ANw, At + (1 = N)s) < dw(u,t) + (1 — Nv(w,s),
establishing the convexity of v. 0
The dual objective function ¢ : R x R — [—00,00) of problem (3.56) is

9(y,z) = min {L(x;y,2) = f(x) +y"'g(x) +2" (Ax+Db)},y € R],z € R”.

The dual problem consists of maximizing g on its effective domain given by
dom(—q) = {(y,z) € R x R”: q(y,z) > —o0}.
The dual problem

ax {q(y,z) : (y,z) € dom(—q)} (3.63)

Gopt = 1
PE T yeRT zere
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is convex in the sense that it consists of maximizing the concave function ¢ over
the convex feasible set dom(—¢). We are now ready to show the main result of this
section, which is a relation between the subdifferential set of the value function at
the zeros vector and the set of optimal solutions of the dual problem. The result
is established under the assumption that strong duality holds, meaning under the
assumptions that the optimal values of the primal and dual problems are finite and
equal (fopt = ¢opt) and the optimal set of the dual problem is nonempty. By the
strong duality theorem stated as Theorem A.1 in the appendix, it follows that these
assumptions are met if the optimal value of problem (3.56) is finite, and if there
exists a feasible solution x satisfying g(x) < 0 and a vector x € ri(X) satisfying
Ax+b=0.

Theorem 3.59 (characterization of the subdifferential of the value func-
tion at 0). Let f,g1,92,--.,9m : E = (—00,00] be convez functions, X C E a
nonempty convex set, A € RP*™ and b € RP. Let v be the value function given by
(3.57). Suppose that fopt = Gopt € (—00,00) and that the optimal set of the dual
problem is nonempty. Then

(a) v is proper and convex;

(b) (y,2) is an optimal solution of problem (3.63) if and only if —(y,z) € 0v(0,0).

Proof. Let (y,z) € dom(—q) be an optimal solution of the dual problem. Then
(recalling that v(0,0) = fopt)

L(x;y,z) > migl{ L(w;y,z) =q(y,2) = gopt = fopt = v(0,0) for all x € X.
we

Therefore, for any x € C(u,t),
v(0,0) —yTu—2z"t < L(x;y,2) —y'u—z"t
=/(x)+y"g(x) +2" (Ax+b) -y u—2z"t
= f(x) +y"(g(x) ~u) +2" (Ax+b 1)
< f(x),

where the last inequality follows from the facts that g(x) < u,y > 0, and Ax+b =
t. We thus obtained the bound

f(x) >v(0,0) —yTu—2z"t for any x € C(u, t).
Minimizing the left-hand side w.r.t. x € C(u,t) yields
v(u,t) > v(0,0) — y'u—z"t, (3.64)

which is equivalent to saying that —(y,z) € 9v(0,0). We actually showed one
direction of claim (b), as well as the properness of v since by (3.64), v(u,t) > —oo
for any (u,t) € R™ x RP, and by the premise of the theorem, v(0,0) = fopt < 0.
Invoking Lemma 3.58, it follows that v is convex, establishing claim (a).

All that is left is to show the reverse direction of claim (b). Assume that
—(y,z) € 0v(0,0), meaning that

v(u,t) > v(0,0) —y'u—2z"t for any (u,t) € R™ x RP. (3.65)
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Let x € X. Then

(3.65)
J(0) > v(g(x), Ax +b) > 0(0,0) — y"g(x) — 27 (Ax + b).

Therefore,
v(0,0) < f(x) +y'g(x) + 2" (Ax + b) = L(x;y, 2) for any x € X.
Minimizing the right-hand side w.r.t. x € X yields

v(0,0) < min L(x;y,z) = q(y, 2). (3.66)

Let j € {1,2,...,m}. Plugging u =e;,t = 0 into (3.65), we obtain
y; > v(0,0) — v(e;,0) >0,

where the second inequality follows from the monotonicity property of the value
function stated in Lemma 3.57. We thus obtained that y > 0, and we can conse-
quently write using (3.66)

Gopt = fopt = U(O, 0) S q(Y7Z) S Gopt s

showing that ¢(y,z) = gopt, meaning that (y,z) is an optimal solution of the dual
problem. 0O

Theorem 3.59 can be used to prove a result concerning an optimality measure
of problem (3.56). Consider the following expression:

D(x) = f(x) = fops + prlllg()] 4 [l2 + pol|Ax + bllo.

Now assume that
D(x) <4 (3.67)

for some x € X and a small ¢ > 0. The question that now arises is whether (3.67)
implies that the expressions f(X) — fopt as well as ||[g(X)]+]|2 and ||AX + b||2 are
also “small” in the sense that they are smaller than a constant times ¢. In general,
the answer is no. The vector x is not guaranteed to be feasible, and therefore,
in principle, f(X) — fopt might be very small (and negative), and ||[g(X)]+|]2 and
A% + b||2 can be very large. However, we will show in the next theorem that if
p1 and pso are chosen to be large enough, then under the setting of Theorem 3.59,
such a conclusion can be drawn.

Theorem 3.60.'° Let f,g1,92,...,9m : E — (—00,00] be convex functions, X C E
a nonempty convexr set, A € RP*"™ and b € RP. Let fopr and gopt be the optimal
values of the primal and dual problems (3.56) and (3.63), respectively. Suppose that
fopt = Qopt € (—00,00) and that the optimal set of the dual problem is nonempty.
Let (y*,z*) be an optimal solution of the dual problem. Assume that X € X satisfies

FX) = fopt + prlllgX)]+[l2 + p2l| Ax + bl|2 <6, (3.68)

9Theorem 3.60 is a slight extension of Lemma 6 from Lan [78].
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where 6 > 0 and p1, p2 are constants satisfying p1 > 2||y*||2, p2 > 2||2*||2. Then
f(i) - fopt < 5;

g )] |1> < p_21‘5’

25,

[Ax + bl|2
P2

IN

Proof. The inequality f(X) — fopt < 9 trivially follows from (3.68) and the fact
that the expressions pi]|[g(X)]+||2 and p2||AX + b||2 are nonnegative.
Define the function

v(u,t) = )I(Iél)r%{f(x) :g(x) <u,Ax+b =t}.

Since (y*,z*) is an optimal solution of the dual problem, it follows by Theorem 3.59
that (—y*, —2*) € 9v(0,0). Therefore, for any (u,t) € dom(v),

o(u,t) = 0(0,0) > (—y*, u) + (—a", t). (3.69)

Plugging u = @ = [g(X)]+ and t = t = Ax+b into (3.69), while using the inequality
v(a,t) < f(x) and the equality v(0,0) = fopt, we obtain
(o1 = Iy ll2)l[allz + (p2 = llz"[|l2)[tll2 = Iy ll2llall2 — |z |2l[tll2 + p1][@ll2 + p21t]]2

< (=y"a) + (=27, t) + palull2 + p2lt]l2

<o(u,t) —v(0,0) + p1f[allz + p2||t]2

< F(X) = fopt + pal[all2 + p2lt]l2

<.

Therefore, since both expressions (p; — ||y*[|2)||tl2 and (p2 — ||z*||]2)||t|2 are non-
negative, it follows that

(o1 = lly*ll2)l[all2 <6,
(2 = [I2"[l2)[[t]l2 < 6,

and hence, using the assumptions that p; > 2||y*||2 and pa > 2||t*||2,

1) 2
— < —,
pr—lly*llz = m

~ ~ 1) 2
|[AX +blly = [[t[|s < ———— < —4. O
p2 — llz*[l2 ~ p2

Ig(X)]+ll2 = [[all2 <

3.6 Lipschitz Continuity and Boundedness of
Subgradients

This section considers an important relation between Lipschitz continuity of a con-
vex function and boundedness of its subgradients.

Theorem 3.61 (Lipschitz continuity and boundedness of the subdifferen-
tial sets). Let f : E — (—o0,00] be a proper and convex function. Suppose that
X Cint(domf). Consider the following two claims:
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(i) [f(x) = fW)I < Llx =yl for any x,y € X.
(i) [Igll« < L for any g € 0f(x),x € X.
Then
(a) the implication (ii) = (i) holds;
(b) if X is open, then (i) holds if and only if (ii) holds.

Proof. (a) Suppose that (ii) is satisfied and let x,y € X. Let gx € 9f(x) and
gy € 0f(y). The existence of these subgradients is guaranteed by Theorem 3.14.
Then by the definitions of gy, gy and the generalized Cauchy-Schwarz inequality
(Lemma 1.4),

fx) = f(y) <(gx,x—y) < lgx|l«[x—yll < Lllx -y,
fly) = f(x) < (gy,y —x) < |lgyll«llx =yl < LIx -y,

showing the validity of (i).

(b) The implication (ii) = (i) was already shown. Now assume that (i) is
satisfied. Take x € X and g € 9f(x). We will show that ||g||. < L. Define g € E
as a vector that satisfies ||gf|| = 1, (g, g) = ||g||« (the existence of such a vector is
warranted by the definition of the dual norm). Take £ > 0 small enough such that
x +eg! € X. By the subgradient inequality we have

fix+egh) > f(x)+ (g,eg').
Thus,
ellglls = (g,eg’) < f(x+eg’) — f(x) < Llx +eg’ — x| = Le,

showing that ||g||« < L. O

Recall that by Theorem 3.16, the subgradients of a given convex function f are
bounded over compact sets contained in int(dom(f)). Combining this with Theorem
3.61, we can conclude that convex functions are always Lipschitz continuous over
compact sets contained in the interior of their domain.

Corollary 3.62 (Lipschitz continuity of convex functions over compact
domains). Let f : E — (—o0,00] be a proper and convex function. Suppose that
X Cint(dom(f)) is compact. Then there exists L > 0 for which

[f(x) = f(y)l < Llx =yl for any x,y € X.

3.7 Optimality Conditions
3.7.1 Fermat’s Optimality Condition

Subdifferential sets are extremely useful in characterizing minima points. Perhaps
the most basic optimality condition states that a point is a global minimum of a
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proper extended real-valued convex function if and only if 0 belongs to the subdiffer-
ential set at the point. In a sense, this is a generalization of Fermat’s optimality
condition at points of differentiability (“V f(x*) = 07). We will refer to this condi-
tion as Fermat’s optimality condition.

Theorem 3.63 (Fermat’s optimality condition). Let f:E — (—oo,00] be a
proper convex function. Then

x* € argmin{f(x) : x € E} (3.70)
if and only if 0 € Of (x*).

Proof. Follows by the definition of the subgradient. Indeed, (3.70) is satisfied if
and only if
f(x) > f(x*) 4+ (0,x — x*) for any x € dom(f),

which is the same as the inclusion 0 € 9f(x*). O

Example 3.64 (minimizing piecewise linear functions). Consider the prob-
lem

Inin [f(x) =, _max {alx+b;}], (3.71)
where a; € R, b; € R4 =1,2,..., m. Denote
Ix)={i: f(x) =ax+b}.

Then, by Example 3.53,

of(x)=1¢ > Nait ¥ Ai=1X>0j€I(x)

i€l (x) €I (x)

Therefore, since by Fermat’s optimality condition x* is an optimal solution of (3.71)
if and only if 0 € 9f(x*), it follows that x* is an optimal solution of problem (3.71)
if and only if there exists A € A,,, such that

0=> X\aj;and \; =0 for any j ¢ I(x"). (3.72)

=1

We can rewrite this condition in a more compact way by denoting A € R™*™ to
be the matrix whose rows are al,al ... al . Then the optimality condition (3.72)
can be written as

Ixe A, st. ATA =0 and Aj(a;‘rx* +b;— f(x*)=0,7=1,2,....m. &
Example 3.65 (medians). Suppose that we are given n different?® and ordered

numbers a1 < az < -+ < ap. Denote A = {ay,as,...,a,} C R. The median of A
is a number [ that satisfies

#{izai < By > 5 and #{ica; > B} > 5.

20The assumption that these are different and ordered numbers is not essential and is made for
the sake of simplicity of exposition.
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That is, a median of A is a number that satisfies that at least half of the numbers
in A are smaller or equal to it and that at least half are larger or equal. It is
not difficult to see that if A has an odd number of elements, then the median is
the middlemost number. For example, the median of {5,8,11,60,100} is 11. If
the number of elements in A is even, then there is no unique median. The set of
medians comprises all numbers between the two middle values. For example, if
A = {5,8,11,20,60,100}, then the set of medians of A is the interval [11,20]. In
general,

An+1, n odd,
median(A4) = 2
[az,an 1], n even.

From an optimization perspective, the set of possible medians is the optimal
solution set of the problem

min{f(gc) = Z|x—ai|} . (3.73)
i=1

To show this, denote f;(x) = |r — a;|, so that f(z) = fi(z) + fo(x) + -+ + fu(z),
and note that for any i € {1,2,...,n},

1, x> ag,
ofi(z) =4 -1, T < a;,
-1,1], == a,.
By the sum rule of subdifferential calculus (Theorem 3.40),
Of(x) = 0fi(x) + 0fa(x) + -+ + 0fn(x)
#{i:a; <z} —#{i:a; >z}, xé¢ A,
#ica, <z} —#{ira; >z} +[-1,1], z€ A

We can further elaborate and write

2i — n, x € (a, ait1),
2i—1—n+[-1,1], z=ua,

Of () = (3.74)
—n, r <aj,
n, xr > ap.

Let i € {1,2,...,n}. By (3.74), 0 € 9f(a;) if and only if |2i — 1 — n| < 1, which is
equivalent to & <7 < % + 1 and 0 € 9f(x) for some = € (a;,a;11) if and only if
i = 5. We can thus conclude that if n is odd, then the only optimal point is Gng1,
and when n is even, the optimal set is the interval [az,az 1], establishing the fact
that the optimal set of (3.73) is exactly the set of medians. W
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Example 3.66 (Fermat—Weber problem). Given m different points in R¢, A =

{a1,a2,...,a,}, and m positive weights wy,wa, . . . ,wm, the Fermat—Weber problem
is given by
m
FwW min X) = wil|lx —a; .
(FW) xERd{JT )=l z|2}

The Fermat—Weber problem is actually a weighted multidimensional version of the
median problem (3.73) discussed in the previous example and is therefore also re-
ferred to in the literature as the geometric median problem. Let us write explic-
itly the optimality conditions for problem (FW). Denote f;(x) = w;g;(x), where
gi(x) = ||x — a;||2. Then for any ¢ € {1,2,...,m}

Wi x:al ) X% a;,
Ofitx)=q P
B||_||2[O,wi], X = a;,

where here we used Theorems 3.35 (“multiplication by a positive scalar”), the affine
transformation rule of subdifferential calculus (Theorem 3.43(b)), and Example
3.34, in which the subdifferential set of the ls-norm was computed. Obviously,
f = X", fi, and hence, by the sum rule of subdifferential calculus (Theorem
3.4021), we obtain that

m —a;
2t WiTe—ars x ¢ A,
Z?;l’#jwiﬁ—i—B[O,wj], x=a;(j=1,2,...,m).

(x) =3 0filx) =
=1

Using Fermat’s optimality condition (Theorem 3.63), we can conclude that x* € RY
is an optimal solution of problem (FW) if and only if either

x* —a;

x* ¢ A and sz =0

* — a2

or for some j € {1,2,...,m}

N x* —a;
X =a; and Z leX* _a1|| Swj. |

i=1,i#j il2

3.7.2 Convex Constrained Optimization

Consider the constrained optimization problem
min{f(x) : x € C}, (3.75)

where f is an extended real-valued convex function and C' C E is a convex set. Using
Fermat’s optimality condition (Theorem 3.63) and the convexity assumptions, it is
easy to write a necessary and sufficient optimality condition for problem (3.75) in
terms of the subdifferential set of f and the normal cone of C.

2lor by Corollary 3.39
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Theorem 3.67 (necessary and sufficient optimality conditions for convex
constrained optimization). Let f : E — (—o00,00] be a proper and convex
function, and let C C E be a conver set for which ri(dom(f)) Nri(C) # 0. Then
x* € C is an optimal solution of (3.75) if and only if

there exists g € Of(x*) for which — g € No(x*). (3.76)

Proof. Problem (3.75) can be rewritten as
min f(x) + dc(x).

Since ri(dom(f)) Nri(C) # 0, it follows by the sum rule of subdifferential calculus
(Theorem 3.40) that for any x € C,

O(f + 0c)(x) = 0f(x) + 00c(x).
By Example 3.5, 9dc(x) = N¢(x), and consequently for any x € C,
Af +d0)(x) = 0f (%) + Ne(x).

Therefore, invoking Fermat’s optimality condition (Theorem 3.63), x* € C is an
optimal solution of (3.75) if and only if 0 € 9f(x*) + Nc(x*), that is, if and only if

(=0f(x")) N Ne(x7) # 0,
which is the same as condition (3.76). 0O

Using the definition of the normal cone, we can write the optimality condition
in a slightly more explicit manner.

Corollary 3.68 (necessary and sufficient optimality conditions for convex
constrained optimization—second version). Let f : E — (—o0, 0] be a proper
and convez function, and let C' be a convex set satisfying ri(dom(f)) Nri(C) # 0.
Then x* € C is an optimal solution of (3.75) if and only if

there exists g € Of(x™) for which (g,x — x*) >0 for any x € C. (3.77)

Condition (3.77) is not particularly explicit. We will show in the next example
how to write it in an explicit way for the case where C' = A,,.

Example 3.69 (optimality conditions over the unit simplex). Suppose that
the assumptions in Corollary 3.68 hold and that C' = A,,,E = R". Given x* € A,,,
we will show that the condition

M) gl (x—x")>0forallx € A,

is satisfied if and only if the following condition is satisfied:

=p, x>0,
(IT) there exist u € R such that g;

Z,Ma €L =
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Assume first that (II) is satisfied. Then for any x € A,,
g'(x—x") = gi(w; —a)
i=1
Z gi(zi —x7) + Z gi%i

iy >0 iy =0
> N plmi—a) Ap Y @
iy >0 iy =0
n
=py wi—p Yy, w=p—p=0,
=1 i:w:>0

proving that condition (I) is satisfied. To show the reverse direction, assume that
(I) is satisfied. Let i and j be two different indices for which z} > 0. Define the
vector x € A, as

g% k¢ {i.j},
k=1,
k=3
The inequality g7 (x — x*) > 0 then amounts to

* *

xX; xX;

which by the fact that 7 > 0 implies that
9i < gj- (3.78)

In particular, for any two indices ¢ # j for which 7,2} > 0, the two inequalities
gi < gj and g; < g; hold, and hence g; = g;. Therefore, all the components of
g corresponding to positive components of x* have the same value, which we will
denote by p. Let ¢ be any index for which 27 > 0. Then for any index j for which
x} = 0, the inequality (3.78) holds. Therefore, g; > u, and condition (II) is thus
established. W

We summarize the discussion in Example 3.69 with the following corollary.

Corollary 3.70 (necessary and sufficient optimality conditions for convex
problems over the unit simplex). Let f : E — (—o00, 00] be a proper and convex
function. Suppose that ri(A,) Nri(dom(f)) # 0. Then x* € A, is an optimal
solution of

min{f(x) : x € A,}
if and only if there exists g € 0f (x*) and u € R for which

=u, x >0,

>u, zr=0.



Downloaded 04/11/24 to 143.215.80.169 by Jacob Aguirre (jaguirre31@gatech.edu). Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

78 Chapter 3. Subgradients

The following example illustrates one instance in which the optimal solution
of a convex problem over the unit simplex can be found using Corollary 3.70.

Example 3.71. Consider the problem

min {Z x;logx; — Zyixi ixX € An} , (3.79)
i=1 i=1

where y € R" is a given vector. Problem (3.79) can be written as
min{f(x) : x € A},
where f: R™ — (—o00, 0] is given by

S ailogm — Y0 yiwi, x>0,

00 else.

fx) =

Let us assume that there exists an optimal solution?? x* satisfying x* > 0. Then
under this assumption, by Corollary 3.70 and the fact that f is differentiable at any
positive vector, it follows that there exists p € R such that for any 1, g—i(x*) = u,

which is the same as logx} + 1 — y; = p. Therefore, for any 4,
= et~ 1ty — e, i=1,2,....n
where a = e#~!. Since Y. |z =1, it follows that o = ﬁ Therefore,

eYi .
7 1=1,2,...,n.

*
C ZJ:l eyj’

This is indeed an optimal solution of problem (3.79) since it satisfies the conditions
of Corollary 3.70, which are (also) sufficient conditions for optimality. W

3.7.3 The Nonconvex Composite Model

It is also possible to write a necessary optimality condition for nonconvezr problems
in terms of subgradients. We will write such a condition for problems consisting
of minimizing a composite function f + g, where f possesses some differentiability
properties but is not assumed to be convex while g is convex but not assumed to
have any special differentiability properties.

Theorem 3.72 (optimality conditions for the composite problem). Let
f:E — (—o00,00] be a proper function, and let g : E — (—o0, 00] be a proper convex
function such that dom(g) C int(dom(f)). Consider the problem

(P) min f(x) +g(x).

221t is not difficult to show a priori that the problem has a unique solution.
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(a) (necessary condition) If x* € dom(g) is a local optimal solution of (P) and
f is differentiable at x*, then

— Vf(x*) € 0g(x*). (3.80)

(b) (necessary and sufficient condition for convex problems) Suppose that
f is convex. If f is differentiable at x* € dom(g), then x* is a global optimal
solution of (P) if and only if (3.80) is satisfied.

Proof. (a) Let y € dom(g). Then by the convexity of dom(g), for any A € (0,1),
the point x) = (1 — A\)x* + Ay is in dom(g), and by the local optimality of x*, it
follows that, for small enough A,

f(xa) +g(xn) > f(xF) +g(x").

That is,
JA=X)x" +Ay) +g((1 = N)x" + Ay) = f(x) + g(x7).

Using the convexity of g, it follows that
JIA=2)x" +Ay) + (1 = Ng(x") + Ag(y) = f(x7) + g(x"),

which is the same as

Taking A — 07 in the last inequality yields
fxy —x7) 2 g(x") — g(y),

where we used the fact that since f is differentiable at x*, its directional derivatives
exist. In fact, by Theorem 3.29, we have f'(x*;y —x*) = (Vf(x*),y — x*), and
hence for any y € dom(g),

9(y) 2 9(x") + (=Vf(x"),y —x7),

showing that indeed —V f(x*) € dg(x*).

(b) Suppose in addition that f is convex. If x* is an optimal solution of (P),
then we already proved in part (a) that (3.80) is satisfied. Suppose now that (3.80)
is satisfied. Then for any y € dom(g),

9(y) =2 g(x") + (=Vf(x"),y —x7). (3.81)
By the convexity of f, for any y € dom(g),
fy) =2 f) +(Vf(xT),y —x7). (3.82)

Adding (3.81) and (3.82), we obtain that

fy) +9ly) =2 f(x7) +9(x7)

for any y € dom(g), meaning that x* is an optimal solution of (P). 0O
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The condition (3.80) is an important optimality condition, and we will refer
to it as the “stationarity” condition.

Definition 3.73 (stationarity). Let f :E — (—o0, 0] be proper and let g : E —
(=00, 0] be a proper convex function such that dom(g) C int(dom(f)). Consider

the problem
(P)  min f(x) + ().

x€E

A point x* in which f is differentiable is called a stationary point of (P) if

—Vf(x") € 9g(x7).

Under the setting of Definition 3.73, x* is also called a stationary point of the
function f+g.

We have shown in Theorem 3.72 that stationarity is a necessary local opti-
mality condition for problem (P), and that if f is convex, then stationarity is a
necessary and sufficient global optimality condition. The case g = d¢ deserves a
separate discussion.

Example 3.74 (convex constrained nonconvex programming). When g =
dc for a nonempty convex set C' C E, problem (P) becomes

min{f(x) : x € C},

which is a problem consisting of minimizing a (possibly) nonconvex function over a
convex set. A point x* € C' in which f is differentiable is a stationary point of (P)
if and only if

— Vf(x*) € 9dc(x*) = No(x*), (3.83)

where the equality is due to Example 3.5. By the definition of the normal cone,
condition (3.83) can be rewritten as

(-Vf(x*),x—x") <0 for any x € C,
which is the same as
(Vf(x*),x—x*)>0foranyxeC. 1§
Example 3.75. Consider the problem

min f(x) + Allx]s, (3.84)

where f : R™ — (—o00,00] is an extended real-valued function. A point x* €
int(dom(f)) in which f is differentiable is a stationary point of (3.84) if

—Vf(x") € Adg(x"),

where g(-) = || - ||1. Using the expression for the subdifferential set of the I;-norm
given in Example 3.41, we obtain that x* is a stationary point of problem (3.84) if
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and only if
>0,

af(x") \
e =, zr <0, (3.85)

€=\, af=0.

By Theorem 3.72, condition (3.85) is a necessary condition for x* to be a local
minimum of problem (3.84). If f is also convex, then condition (3.85) is a nec-
essary and sufficient condition for x* to be a global optimal solution of problem

(3.84). 1

3.7.4 The KKT Conditions

In this section we will show that the KKT conditions for constrained convex prob-
lems can be directly deduced by Fermat’s optimality condition. For that, we begin
by establishing an equivalent reformulation of general inequality constrained prob-
lems.

Lemma 3.76. Let f,g1,92,-.-,9m : E = R be real-valued functions. Consider the
problem
min f(x
&) (3.86)
st gi(x) <0, i=1,2,...,m.

Assume that the minimum value of problem (3.86) is finite and equal to f. Define
the function

F(x) = max{f(x) = f,01(x),02(%), ..., gm (x)}. (3.87)

Then the optimal set of problem (3.86) is the same as the set of minimizers of F'.

Proof. Let X* be the optimal set of problem (3.86). To establish the result, we
will show that F' satisfies the following two properties:

(i) F(x)> 0 for any x ¢ X*.
(ii) F(x) =0 for any x € X*.

To prove property (i), let x ¢ X*. There are two options. Either x is not feasible,
meaning that g;(x) > 0 for some ¢, and hence by its definition F(x) > 0. If x is
feasible but not optimal, then g;(x) <0 for all i = 1,2,...,m and f(x) > f, which
also implies that F'(x) > 0. To prove (ii), suppose that x € X*. Then g¢;(x) < 0 for
alli=1,2,...,m and f(x) = f, implying that F(x) =0. 0O

Using Lemma 3.76, we can conclude that problem (3.86) reduces to

in F' 3.88

min F(x) (3.88)

in the sense that the optimal sets of the two problems are the same. Using this

equivalence, we can now establish under additional convexity assumptions the well-
known Fritz-John optimality conditions for problem (3.86).
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Theorem 3.77 (Fritz-John necessary optimality conditions). Consider the
minimization problem

min  f(x)
(3.89)
st gi(x) <0, i=1,2,...,m,
where f,g1,92,...,9m : E — R are real-valued convex functions. Let x* be an

optimal solution of (3.89). Then there exist Ao, A1,..., Am > 0, not all zeros, for
which

0 € \df(x") + i AiDgi (x*) (3.90)
=1

Aigi(x*) =0, i=1,2,...,m. (3.91)

Proof. Let x* be an optimal solution of problem (3.89). Denote the optimal value
of problem (3.89) by f = f(x*). Using Lemma 3.76, it follows that x* is an optimal
solution of the problem

min{ F(x) = max{go(<), 9109, - gm()}.
where go(x) = f(x) — f. Obviously, F(x*) = 0. Since F is a maximum of convex
functions, it is convex, and hence, using Fermat’s optimality condition (Theorem

3.63),
0 € OF(x"). (3.92)

By the max rule of subdifferential calculus (Theorem 3.50),
OF (x*) = conv ((Uier(x+)09:(x")) (3.93)

where I(x*) = {i € {0,1,...,m} : g;(x*) = 0}. Combining (3.92) and (3.93), we

can deduce that there exists A\; > 0,7 € I(x*), such that Ziel(x*) A; = 1 for which

0€ D Xdgi(x"). (3.94)
i€l (x*)

Since go(x*) = f(x*) — f = 0, it follows that 0 € I(x*), and hence (3.94) can be
rewritten as
0€XMIf(X)+ D Ndgi(x").
i€l (x*)\{0}
Defining \; = 0 for any i € {1,2,...,m}\ I(x*), we conclude that conditions (3.90)

and (3.91) are satisfied. Finally, not all the A;’s are zeros since 3 ;e iy A = 1. 0

We will now establish the KKT conditions, which are the same as the Fritz-
John conditions, but with Ay = 1. The necessity of these conditions requires the
following additional condition, which we refer to as Slater’s condition:

there exists x € E for which ¢;(x) <0, i=1,2,...,m. (3.95)
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The sufficiency of the KKT conditions does not require any additional assumptions
(besides convexity) and is actually easily derived without using the result on the
Fritz-John conditions.

Theorem 3.78 (KKT conditions). Consider the minimization problem

min f(x
&) (3.96)
st gi(x) <0, i=1,2,...,m,

where f,91,92,--.,9m : E — R are real-valued convex functions.

(a) Let x* be an optimal solution of (3.96), and assume that Slater’s condition
(3.95) is satisfied. Then there exist \1,..., A\ > 0 for which

0 € Of(x")+ ) Aidgi(x") (3.97)
=1
Aigi(x*) =0, i=1,2,...,m. (3.98)

(b) If x* € E satisfies conditions (3.97) and (3.98) for some A1, Aa,..., Am >0,
then it is an optimal solution of problem (3.96).

Proof. (a) By the Fritz-John conditions (Theorem 3.77) there exist Ag, A1, . . ., Ay >
0, not all zeros, for which

0 € Mdf(x") + f: 20gi (x7), (3.99)
=1

Xigi(x*) =0, i=1,2,...,m. (3.100)

We will show that Ao # 0. Assume by contradiction that Ag = 0. Then, by (3.99),
0¢ i Xidgi(x*);
that is, there exist &; € 0g;(x*),i =1,2,...,m, such that
i Aig; = 0. (3.101)

Let x be a point satisfying Slater’s condition (3.95). By the subgradient inequality
employed on the pair of points X, x* w.r.t. the functions g;,7 = 1,2,..., m, we have

gi(x*) + (€, x—x") < gi(x), 1=12,...,m.

Multiplying the ith inequality by X > 0 and summing over ¢ = 1,2,...,m yields
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Using (3.100) and (3.101), we obtain the inequality S/, X;g;(X) > 0, which is
impossible since X\ > 0 and 9i(X) < 0 for any ¢, and not all the \;’s are zeros.
Therefore, A\g > 0, and we can thus divide both the relation (3.99) and the equalities
(3.100) by o to obtain that (3.97) and (3.98) are satisfied with \; = ?—;,i =
1,2,...,m.

(b) Suppose then that x* satisfies (3.97) and (3.98) for some nonnegative

numbers A1, Ag,..., Ay, Let X € E be a feasible point of (3.96), meaning that
gi(%) <0,i=1,2,...,m. We will show that f(x) > f(x*). Define the function

h(x) = f(x) + Z Aigi(x).
i=1

The function h is convex, and the condition (3.97) along with the sum rule of
subdifferential calculus (Theorem 3.40) yields the relation

0 € Oh(x"),

which by Fermat’s optimality condition (Theorem 3.63) implies that x* is a mini-
mizer of h over E. Combining this fact with (3.98) implies that

FO) = F) + D Xigi(x) = h(x") < h(%) = f(R) + D Nigi(%) < f(%),
i=1 i=1

where the last inequality follows from the facts that A\; > 0 and g;(%) < 0 for
1 =1,2,...,m. We have thus proven that x* is an optimal solution of (3.96). O

3.8 Summary of Weak and Strong Subgradient
Calculus Results

This section contains a summary of most of the rules and results concerning the
computation of subdifferential sets (strong results), as well as rules for computing
specific subgradients in the subdifferential sets (weak results). Before that, we begin
by summarizing the rules of subdifferential calculus.

e Multiplication by a positive scalar
Iaf)(x) = adf(x).
Assumptions: f:E — (—oo, 0o] proper, @ > 0, x € dom(f). [Theorem 3.35]

¢ Differentiability
f is differentiable at x if and only if 9f(x) is a singleton, and in that case

0f(x) ={Vf(x)}.
Assumptions: f:E — (—oo, co] proper convex, x € int(dom(f)). [Theorem 3.33]
e Weak sum rule of subdifferential calculus

21 0fi(x) SO, fi)(%)-

Assumptions: fi, fa,..., fm : E = (—o00, 0o] proper convex. [Corollary 3.38(a)]
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e Sum rule of subdifferential calculus
(X s, fi)(x) = 200%, 0fi(x).
Assumptions: fi, f2,..., fm : E = (—o00, 00] proper convex, N ri(dom(f;)) # 0. [Theorem

results of subgradients computations.

3.40]

e Weak affine transformation rule of subdifferential calculus

AT(0f(A(x) + b)) C Oh(x)

(h(x) = f(A(x) +b)).

Assumptions: f,h:E — (—o0, o0] proper convex, x € dom(h). [Theorem 3.43(a)]
e Affine transformation rule of subdifferential calculus

Oh(x) = AT(9f(A(x) + b))

(h(x) = f(A(x) +b)).

Assumptions: f,h : E — (—oo,c0] proper convex, x € int(dom(h)), A(x) + b € int(dom(f)).
[Theorem 3.43(b)]

e Chain rule of subdifferential calculus

3.47

Oh(x) = ¢'(f(x))0f (x)

Assumptions: f:E — R convex, g : R — R nondecreasing, differentiable and convex. [Theorem

(h=gof).

e Max rule of subdifferential calculus

where

B(max(fl, fg, ..

I(x) = {i : fi(x) = max{ fy(x), fo(x), ..

.y fm))(x) = conv (Uiej(x)afi(x)),

s fn ()1}

Assumptions: f1, f2,..., fm proper, convex, x € NJ~,int(dom(f;)). [Theorem 3.50]

e Weak max rule of subdifferential calculus

conv (User)0fi(x)) € O(max f)(x),

where

Assumptions:

160) = {i € I+ fi(x) = max fi(0)}

Nierdom(f;). [Theorem 3.55]

I = arbitrary index set.

fi + E - (—o0,00] (i € I) proper, convex, x €

The table below contains the main examples from the chapter related to weak

m
i=1 x;Ay)

H Function Weak result Setting Reference
—q = neg- —g(x0) € 9(—q)(Ao) g(X) = mi)r% Fx)+ATg(x), f: | Example 3.7
?tive. dual E — R’,‘eg cE — R"L’ X9 =
unction a minimizer of f(x) + Af'g(x)

over X
f(X) = vl € 0f(X) f : S - R, v = normalized Example 3.8
Amax (X) maximum eigenvector of X €

Sn
f(x) = sgn(x) € 0f(x) E =R" Example 3.42
lIIl1
f(x) = FTA;3)™, € 9f(x) ¥y = normalized maximum | Example 3.56
Amax (Ao + eigenvector of Ag+> 1" | z; A
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The following table contains the main strong results of subdifferential sets
computations derived in this chapter.

J(x)

of(x)

Assumptions

Reference

[l

By...10,1]

Example 3.3

lIll1

{ D> sen(@iei+ Yy [—ei,ei]}

i€l 4 (x) i€lo(x)

Example 3.41

lIx[l2

x # 0,

], x=0.

{mit
01

By, [

Example 3.34

lIx[lo

D=1

i€l (x)
Ai>0

Z Aisgn(x;)e; :

i€l (x)

E = R*, I(x) =
{i s lxlloo = [l
x#0

—

Example 3.52

max(x)

{z e

i€l(x)

Z ,\izl,,\izo}

i€l(x)

E = R", I(x) =
{i: max(x) = x;}

Example 3.51

max(x)

An

E=R", x = ae for
some a € R

Example 3.51

ds(x)

Ng(x)

0#£SCE

Example 3.5

dB[0,1] (%)

y eE vl < (vsx)},
0, || > 1.

=l <1,

Example 3.6

[Ax + bl

Z sgn(aforbi)aiJr Z [—ai, a;]

iel#(x) i€1g(x)

A €
, b € R™,
I:((x)={i:alx+
bi # 0}, Io(x) =
{i:al'x+b; =0}

E = R,

RmMXn

Example 3.44

[lAx + b]|2

AT (Ax+b)
TAx+b]l2

ATB”.H2 [0,1],

Ax+b #0,
Ax+b=0.

E = R* A ¢
anxn’ b c R™

Example 3.45

[Ax+bleo

{

) o= 1
Z A’ngn(a?xﬁL bi)a; : ZIEIX v
e hx Xi >0

}

E = R* A €
anxn’ b c an,
Ix = {i : ||[Ax +
blloo = [afx+b;[},
Ax+b+#£0

Example 3.54

[Ax+bleo

ATBy.,[0,1]

same as above but
with Ax+b =0

Example 3.54

max;{al x+
b}

{Z Xiay :

i€l (x)

> )\,L-:l,)\i>0}

i€l(x)

E = R%a; € R",
b; € R, I(x) = {i:
f(x) =alx+b;}

Example 3.53

346(x)

{x = Pc(x)}

C = nonempty
closed and convex,
E = Euclidean

Example 3.31

dc(x)

{X—Pc(x) x¢C,

do (%) ’

Ne(x) N B[0,1] x € C.

C = nonempty
closed and convex,
E = Euclidean

Example 3.49
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Chapter 4

Conjugate Functions

4.1 Definition and Basic Properties

We begin with the definition of the conjugate function.

Definition 4.1 (conjugate functions). Let f : E — [—00,00] be an extended
real-valued function. The function f* : E* — [—o00, 00|, defined by

fy) = max{{y,x) - f(x)}, yeE,
is called the conjugate function of f.

Example 4.2 (conjugate of indicator functions). Let f = d¢, where C C E
is nonempty. Then for any y € E*

[ (y) = glggﬂy, X) —dc(x)} = I}glggw, x) =oc(y)-

That is, the conjugate of the indicator function is the support function of the same
underlying set:

Two fundamental properties of conjugate functions are their convexity and
closedness (regardless of whether the original function is closed or convex).

Theorem 4.3 (convexity and closedness of conjugate functions). Let f :
E — (—o00,00] be an extended real-valued function. Then the conjugate function f*
is closed and convex.

Proof. Note that f* is the pointwise maximum of affine functions, which are convex

and closed, and thus, invoking Theorems 2.16(c) and 2.7(c), it follows that f* is
closed and convex. O

87
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Example 4.4 (conjugate of 1| - ||? + d¢). Suppose that E is Euclidean and
that C C E is nonempty. Define f(x) = %||x||* + éc(x). Then by Example 2.17
(specifically, (2.6)), it follows that

a3 (y).

£y =5yl - 5

Note that while f is convex only if C' is convex, the convexity of f* is guaranteed
regardless of whether C' is convex or not. N

The next result states that the conjugate function of a proper convex function
is also proper.

Theorem 4.5 (properness of conjugate functions). Let f : E — (—o0, 0] be
a proper convez function. Then f* is proper.

Proof. Since f is proper, it follows that there exists x € E such that f(x) < oco.
By the definition of the conjugate function, for any y € E*,

[ (y) =y, %) — f(%),

and hence f*(y) > —oo. What remains in order to establish the properness of f*
is to show that there exists g € E* such that f*(g) < oo. By Corollary 3.19, there
exists x € dom(f) such that f(x) # 0. Take g € 8f(x). Then by the definition of
the subgradient, for any z € E,

f(z) = f(x) + (8,2 —x).

Hence,
f*(g) = max {(g.z) — f(2)} < (g,x) — f(x) < 0,

concluding that f* is a proper function. 0O

The following result, called Fenchel’s inequality, is a trivial implication of the
definition of conjugacy.

Theorem 4.6 (Fenchel’s inequality). Let f : E — (—o0,00] be an extended
real-valued proper function. Then for any x € E and y € E*,

fx)+f(y) = (y,x).

Proof. By the definition of the conjugate function we have that for any x € E and
y € E%,

[y =y, x) = f(x). (4.1)
Since f is proper, it follows that f(x), f*(y) > —oc. We can thus add f(x) to both
sides of (4.1) and obtain the desired result. O
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4.2 The Biconjugate

The conjugacy operation can be invoked twice resulting in the biconjugate opera-
tion. Specifically, for a function f : E — [—o0, 00] we define (recall that in this book
E and E** are considered to be identical)

[7x) = gle%>5{<x,y> - f*(y)}, x€E.

The biconjugate function is always a lower bound on the original function, as the
following result states.

Lemma 4.7 (f** < f). Let f: E — [—00, 00| be an extended real-valued function.
Then f(x) > f**(x) for any x € E.

Proof. By the definition of the conjugate function we have for any x € E and
y € E%,
[y =y, x) = f(x).
Thus,
fx) = (y.x) = [ (y),
implying that
f(x) =2 max{(y,x) — f*(y)} = f"(x). O

yeE~*

If we assume that f is proper closed and convex, then the biconjugate is not
just a lower bound on f—it is equal to f.

Theorem 4.8 (f = f** for proper closed convex functions). Let f: E —
(=00, 0] be a proper closed and convex function. Then f** = f.

Proof. By Lemma 4.7, f** < f. We thus need to show that f** > f. Suppose
by contradiction that for some x € E we have f**(x) < f(x). This means that
(%, f**(x)) ¢ epi(f) C ExR. We assume as usual that the product space V.=ExR
is endowed with the inner product ((u,s), (v,t))y = (u,v) + st, where (-,-) is the
inner product associated with E (see Section 1.9). Since f is proper closed and
convex, the set epi(f) is nonempty closed and convex, and hence, by the strict
separation theorem (Theorem 2.33), there exist a € E*, b, ¢1, ca € R such that

(a,z) +bs <1 < ca < (a,x) +bf*(x) for all (z,s) € epi(f).
We can thus conclude that
(a,z—x) +b(s — (%)) <1 —ca =c <0 for all (z,s) € epi(f). (4.2)

The scalar b must be nonpositive, since otherwise, if it was positive, the inequality
would have been violated by taking a fixed z and large enough s. We will now
consider two cases.

e If b < 0, then dividing (4.2) by —b and taking y = —%, we get

(y,z—x) — s+ f™(x) < _ib <0 for all (z,5) € epi(f).
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In particular, taking s = f(z) (which is possible since (z, f(z)) € epi(f)), we
obtain that

(v.2) = f(&) = (y,x) + /() < = <O forall z€ E.
Taking the maximum over z yields the inequality
JH ) = %)+ 17 () < 5 <0,
which is a contradiction of Fenchel’s inequality (Theorem 4.6).
If b = 0, then take some y € dom(f*). Such a vector exists since f* is proper

by the properness and convexity of f (Theorem 4.5). Let ¢ > 0 and define
a=a+ey and b = —e. Then for any z € dom(f),

(a2 —x) +b(f(2) — [7(x)) = (a2 —x) +e[(y,2) — f(2) + [ (x) — (§,%)]
<ctel(y,z) - flz) + /7 (x) - (3, %)]
Sctelf (¥) - (%) + &),

where the first inequality is due to (4.2) and the second by the definition of
f*(y) as the maximum of (y,z) — f(z) over all possible z € E. We thus
obtained the inequality

(8,2 —x) +b(f(z) - ["(x) <& (4.3)

where ¢ = ¢+ e[f*(y) — (¥,%x) + f**(x)]. Since ¢ < 0, we can pick ¢ > 0
small enough to ensure that ¢ < 0. At this point we employ exactly the same
argument used in the first case. Dividing (4.3) by —b and denoting y = —%é
yields the inequality

(¥.2) — f(z) — (¥,x) + [ (x) < —% < 0 for any z € dom(f).

Taking the maximum over z results in

fm—@mwﬁwwscfw,

which, again, is a contradiction of Fenchel’s inequality. 0O

Example 4.9 (conjugate of support functions). We will now show how to
exploit Theorem 4.8 in order to compute the conjugate of support functions. Sup-
pose that C' C E is a given nonempty set. Since cl(conv(C)) is closed and convex,
it follows that dci(conv(c)) is closed and convex, and hence, by Example 4.2 and
Theorem 4.8,

CT::Fl(conv(C)) = ((Sfl(conv(c))):k = 6:l*(conv(0)) = 5C1(COUV(C))' (44)

Finally, by Lemma 2.35,

0C = Ocl(conv(C))»

which, combined with (4.4), establishes the result
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Ué’ = 5CI(COHV(C)) .

Example 4.10 (conjugate of the max function). Consider the function f :
R™ — R given by f(x) = max{z1,2,...,2,}. Note that the following elementary
identity holds for any x € R™:
max{zy,Ts,...,T,} = max y’ x = oa, (X).
YEAL
Therefore, using Example 4.9, we can conclude, exploiting the convexity and closed-
ness of A,,, that

ff=0a,.

Example 4.11 (conjugate of %H -|I> = d%). Let E be Euclidean, and let C CE

be a nonempty closed and convex set. Define f(x) = 1||x|> — $d%(x). By Example
4.4, f = g*, where g(y) = 1|yl|* + éc(y). By the nonemptiness, closedness, and
convexity of C, it follows that ¢ is proper closed and convex, and hence, by Theorem

48,

) =0 () = 0(y) = 2lIyl1> + de ()

4.3 Conjugate Calculus Rules

In this section we present the basic calculus rules for computing conjugate functions.

We begin with a very simple rule for separable functions.
Theorem 4.12 (conjugate of separable functions). Letg:E; xEyx---xE, —

(—o00,00] be given by g(x1,X2,...,%Xp) = > oy fi(xi), where f; : E; — (—o00,00] is
a proper function for any i =1,2,...,p. Then

p
9*(}’1;)’%---;)’;)) :ij(}’z) fO?" any y; EE'T7 1= 1727"'7p'
i=1

Proof. For any (y1,y2,...,yp) € Ef x E5 x --- x Ej, it holds that

max {<(y13yQ7" '7YP)5 (X17X27" '7XP)> _g(XhXQa' "7XP)}

X1,X2,...,Xp

P P
- qu;??ix {Z<y“ Xi> - Z fl(xl)}
P i=1

=1

9 (y1,¥2,-- - ¥p)

= Zmax{(}’i,xi> — fi(x:)}

X

s
Il
-

= Zfi*(}’i)- a
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The next result shows how the conjugate operation is affected by invertible
affine change of variables as well as by addition of an affine function.

Theorem 4.13 (conjugate of f(A(x —a)) + (b,x) +¢). Let f : E — (—o0, 0]
be an extended real-valued function, and let A : V — E be an invertible linear
transformation, a € V, b € V*, and ¢ € R. Then the conjugate of the function
g(x) = f(A(x —a)) + (b,x) + ¢ is given by

g (y)=f (A") "y —=b)) + (a,y) —c— (a,b), yeV~

Proof. Making the change of variables z = A(x — a), which is equivalent to
x = A71(z) + a, we can write for any y € V*,

g*(y) = max{(y,x) — g(x)}
= max{(y,x) — f(A(x —a)) — (b,x) — ¢}
=max{(y, A7 (z) +a) — f(z) — (b, A" (2) +a) — c}
=max {(y —b, A7 (2)) - f(2) + (a.y) — (a,b) — ¢}
=max { (A7) (y = b),2) — f(2) + (a,y) — (a,b) — c}
= ((A") Yy = b)) + (ay) —c—(a,b),

where in the last equality we also used the fact that (A=1)T = (AT)~1. 0O

Theorem 4.14 (conjugate of af(:) and af(-/a)). Let f : E — (—o0, 0] be
an extended real-valued function and let o € Ry .

(a) The conjugate of the function g(x) = af(x) is given by
* _ * X *
o) =af (X)), yeE
(b) The conjugate of the function h(x) = af (g) is given by

h*(y) = af*(y), y€E"

Proof. For any y € E*,
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proving (a). The proof of (b) follows by the following chain of equalities:
hi(y) = max{{y,x) - h(x)}

w00 ()
= amp{ (051 (3)
“a amzax{<y,z> — f(2)}

= af(y). O

The table below summarizes the four calculus rules discussed in this section.

I a(x) | *(¥) | Reference ||
iy fi(xi) iy £ (yi) Theorem 4.12
af(x) (o> 0) af*(y/a) Theorem 4.14
af(x/a) (a>0) af*(y) Theorem 4.14
f(A(x—a))+ (b,x)+c | f*((AT)"1(y —b))+(a,y)—c—(a,b) | Theorem 4.13

4.4 Examples

In this section we compute the conjugate functions of several fundamental convex
functions. The first examples are one-dimensional, while the rest are multidimen-
sional.

4.4.1 Exponent
Let f: R — R be given by f(x) = e*. Then for any y € R,

£*(y) = max {zy — "} (4.5)

If y < 0, then the maximum value of the above problem is co (easily seen by taking
x — —o0). If y = 0, then obviously the maximal value (which is not attained)
is 0. If y > 0, the unique maximizer of (4.5) is x = & = logy. Consequently,
f*(y) = 3y — e¥ = ylogy — y for any y > 0. Using the convention 0log0 = 0, we
can finally deduce that

ylogy —y, y=>0,

[ y) =
00 else.
4.4.2 Negative Log
Let f: R — (—o0, 0] be given by
—log(z), x>0,
flx) =
00, xz <0.
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For any y € R,
F*(y) = max{zy — f(x)} = max{zy + log(x)}. (4.6)

If y > 0, then the maximum value of the above problem is oo (since the objective
function in (4.6) goes to co as * — o0). If y < 0, the unique optimal solution of
(4.6) is attained at & = —i, and hence for y < 0 we have f*(y) = Ty + log(z) =
—1 —log(—y). To conclude,

—1—log(—y), 0,
) = og(—y), y<

0, y > 0.

4.4.3 Hinge Loss

Consider the one-dimensional function f : R — R given by
f(z) = max{1 — z, 0}.
Then for any y € R,
ffly) = max [yx — max{1l — z,0}] = max [min {(1 4+ y)z — 1,yx}]. (4.7

The objective function in the above maximization problem can be rewritten as

14+yz—-1, =<1,
min{(1 +y)z —1,yz} =
Yy, x> 1.

Thus, the objective function is a continuous piecewise linear function comprising
two pieces: a line with slope 1+ y over (—oo, 1] and a line with slope y over [1, c0).
Therefore, a maximizer exists if the slope of the left line is nonnegative (1 +y > 0)
and the slope of the right line is nonpositive (y < 0). Consequently, a maximizer
exists for the problem in (4.7) if and only if y € [—1,0], and in that case it is
attained at x = 1, with y being the corresponding optimal value. To summarize,

") =y+o-19W), yeR

4.4.4 %| P (p>1)

Let f: R — R be given by f(z) = %|a:|p, where p > 1. For any y € R,

) = max {ey - Liap}. (438)

Since the problem in (4.8) consists of maximizing a differentiable concave function
over R, its optimal solutions are the points & in which the derivative vanishes:

y —sgn(7)|z[P~ = 0.
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Therefore, sgn(z) = sgn(y) and |Z|P~! = |y|, implying that ¥ = sgn(y)|y|ﬁ. Thus,

* ~ 1 ~ 1 1 _p 1 _p 1
Fry) =2y — —|3]P = |y|"T7T - —fy|7T = (1 - _> ly[7=t =yl
p p p q

where ¢ is the positive number satisfying % + % = 1. To summarize,

i} 1
f (y)=a|y|“, y €R.

_or
445 -2 (0<p<1)

Let f: R — (—o0, 0] be given by

For any y € R,

f(y) = max{zy — f(z)} = s {g(a:) =y %)} .

When y > 0, the value of the above problem is co since g(z) — oo as ¢ — oo. If
y < 0, then the derivative of g(z) vanishes at x = & = (—y)r’_il > 0, and since g is
concave, it follows that Z is a global maximizer of g. Therefore,

(—y)rtr = -9

P ) 1
p q

[ (y) =2y + - = —(—y)7T +

where ¢ is the negative number for which % + = = 1. To summarize,

1
q

(=y)?
* - Y < 07
[y = !

00, else.

4.4.6 Strictly Convex Quadratic Functions

Let f: R™ — R be given by f(x) = %XTAX—F b”x + ¢, where A € ST, b € R",
and ¢ € R. We use our convention that (unless otherwise stated) R™ is endowed
with the dot product, meaning that (x,y) = xTy. For any y € R",

F*(y) = max{y"x — f(x)}

1
= max {yTx — ixTAx —bTx— c}

= max{—%xTAx— b-y) x— c}.

X

The maximum in the above problem is attained at x = A~! (y — b), leading to the
following expression for the conjugate function:
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[y = %(y -b)"A ™ (y—b)—c.

4.4.7 Convex Quadratic Functions

Let f: R" — R be given by f(x) = sxT”Ax +bTx+c, where A € S, b € R" and
¢ € R. The only difference between this example and the previous one is the fact
that here A is not necessarily positive definite but is assumed to be only positive
semidefinite. For any y € R™,

) = maxlyx ~ 160} = max {90 =~ JxTAx + (v - b)Tx - e

Since g is concave and differentiable over R"™, it follows that the maximizers of the
above problem are the points for which the gradient vanishes, namely, points x
satisfying

Ax=y—b. (4.9)
This system has a solution if and only if y € b + Range(A), and in that case we
can choose one of the solutions to the system (4.9), for example, X = Af(y — b),
where AT is the Moore-Penrose pseudoinverse of A. We can now compute f*(y)
as follows:

fly) = —%NTAi— (b—y)'x—c

= (v~ D)ATAANy —b) — (b - y)"Al(y ~b) ¢
— Sy -b)TAy - b) ¢,

2

where we used the fact that the Moore-Penrose pseudoinverse of a symmetric matrix
is symmetric, as well as the known identity ATAAT = AT, We are left with the
case where y — b ¢ Range(A). We will show that in this case f*(y) = co. Indeed,
since Range(A) = Null(A)1, it follows that y — b ¢ Null(A)1, meaning that there
exists a vector v € Null(A) such that (y — b)Tv > 0. Note that for any o € R,

glav) =a(y —b)Tv —¢,

and hence g(av) — oo as « tends to oo, establishing the fact that f*(y) = oo
whenever y ¢ b + Range(A). To conclude,

£(y) 5(y —b)TAT(y —b) —¢, y € b+ Range(A),
y =

00 else.

4.4.8 Negative Entropy
Let f: R™ — (—o0, 0] be given by

Yo ailogz;, x>0,
f(x) =

00 else.
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Since the function is separable, it is enough to compute the conjugate of the scalar
function g defined by g(t) = tlogt for ¢t > 0 and oo for ¢t < 0. For any s € R,

g (s) = mtax{ts —g(t)} = 1{1;3{{2%5 —tlogt}.

The maximum of the above problem is attained at ¢t = e*~!, and hence the conjugate
is given by
g*(s) =se 7t — (s —1)ef7t =571

Since f(x) =Y., g(z;), it follows by Theorem 4.12 that for any y € R",

) => g"w)=> e
i=1

i=1

4.4.9 Negative Sum of Logs
Let f: R™ = (—o00, 0] be given by

> logwi, x>0,
f(x) =

00 else.

Note that f(x) = >, g(x;), where g(t) = —logt for ¢ > 0 and oo for ¢ < 0.
Therefore, invoking Theorem 4.12,

n

70 =3 g (@),

=1

By Section 4.4.2, g*(y) = —1 — log(—y) for y < 0 and oo otherwise. Therefore,

=) T Sorlog(—yi), y <O,

00 else.

4.4.10 Negative Entropy over the Unit Simplex
Let f: R™ — (—o00, 0] be given by

" xilogx;, X € Ay,
flg = s (4.10)

00 else.

For any y € R”,

n n n
ffly)= maX{Zyixi - Zwilogxi : Zwi =1,z1,22,...,%p > 0} .
i=1 i=1 i=1
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By Example 3.71, the optimal solution of the above maximization problem is

eYi
[ — 12172,...,71,

‘ Z?:l evi’

with a corresponding optimal value of

[ ly) = Zyla:f - ZT;* log ] = log Zeyi
i=1 i=1 =1

That is, the conjugate of the negative entropy is the log-sum-exp function.

4.4.11 log-sum-exp
Let g : R™ — R be given by

g(x) =log | "
J=1

By Section 4.4.10, g = f*, where f is the negative entropy over the unit simplex
given by (4.10). Since f is proper closed and convex, it follows by Theorem 4.8 that
f** = f, and hence

g ==,

meaning that

. S yilogyi, y € Ay,
g (y) =
00 else.

4412 Norms
Let f: E — R be given by f(x) = ||x||. Then, by Example 2.31,

f= OBy.y,10,1]»

where we used the fact that the bidual norm || - ||« is identical to the norm || - ||.
Hence, by Example 4.9,

[ = bc(conv(By. ., [0,1]))

but since By.|,[0,1] is closed and convex, cl(conv(Bj.,[0,1])) = Bj..[0,1], and
therefore for any y € E*,

fly)= 53“_“*[0,1](}’) =
oo else.
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4.4.13 Ball-Pen
Let f: E — (—o0, 0] be given by

-V 1- HXH27 ”X” < 17

00 else.

f(x) =

To compute the conjugate function, we begin by rewriting it in a double maximiza-
tion form:

£*y) = max { y, %) + /1= [x[? : x| < 1}

= max max {y,x + 1—a2}.
a€l0,1] x:||x||=a < >

By the definition of the dual norm, the optimal value of the inner maximization
problem is a|y||« + V1 — o2, and we can therefore write, for any y € E*,

7() = max {o(0) = allyll. + V1 -a?}. (4.11)

It is easy to see that the maximizer of g over [0, 1] is

lyll«
Viylz+1

Plugging o = & into (4.11), we finally obtain that for any y € E*,

) =Vlyl#+1

It is also possible to generalize the result to functions of the form

—vaZ —[x[%, x] < a

o0 else,

d:

fa(x) =

where o« € Ry y. In this notation, f = f;. To compute fX, note that f,(x) =
af (%), and hence by Theorem 4.14(b) it follows that for any y € E*,

fa(y) = af(y) = ay/T+ yI2.
4414 o2+

Consider the function g, : E — R given by go(x) = y/a? + ||x||2, where o > 0.
Then go(x) = ag (£), where g(x) = /1 + |x][2. By Section 4.4.13, it follows that
g = f*, where f is given by

—vi=lylz vl <1,

00 else.

fly) =
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Since f is proper closed and convex, it follows by Theorem 4.8 that
g* — f** — f.

Finally, invoking Theorem 4.14(b), we conclude that for any y € E*,

—ay1—lyllZ, llyll- <1,

00 else.

9a(y) =ag*(y) = af(y) =

4.4.15 Squared Norm
1

Let f : E — R be given by f(x) = 5||x||?, where ||| is the norm associated with the
space E. For any y € E*, we can write f*(y) as the optimal value of the following
double maximization problem:

o) = max {0 - 5l =max max {0 - o |

a>0 x:||x||=a 2
Using the definition of the dual norm, it follows that

max <Y7X> = a”YH*v
x€E:||x||=a

Hence,

1

* _ 1 2 _ 2
(5) = max {alyl. - 30} = 51y
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4.4.16 Summary of Conjugate Computations

The table below summarizes all the computations of conjugate functions described

in this chapter.

E Euclidean

f(x) dom(f) f* Assumptions Reference
et R ylogy —y (dom(f*) = - Section 4.4.1
Ry)
—logx Ryt —1—log(—y) (dom(f*) - Section 4.4.2
=R__)
max{l — =z, 0} R y+9-1,0/(%) - Section 4.4.3
3zl Iyl p> L1+ 1= | Section 4.4.4
- Ry — 2 (dom(f*) =|0<p<1, L4 | Section4a.45s
R__) 1_
q
I1xTAx + 1
2 R™ 5y — b)TA (y - AesS}, ,be Section 4.4.6
b x+c b)—c R",c € R
I1xTAx + 1
2 R™ E(Y_b)TAT (y=b)—c | A € 8}, b € Section 4.4.7
b x+c (dom(f*) = R",c € R
b + Range(A))
iy milogx; R} Sigevitt - Section 4.4.8
Yy zilogw; An log (37, e¥i) - Section 4.4.10
—> iy logw; RY —n — 37 log(—y:) - Section 4.4.9
(dom(f*) =R2_)
log (327, e™i) R™ i1 Yilogyi - Section 4.4.11
(dom (") = An)
max;{z; } R™ on, (y) - Example 4.10
dc(x) c ac(y) 0#CCE Example 4.2
oo (x) dom(o¢) 6cl(c0nv(C))(Y) 0#CCE Example 4.9
[Ixl E 6BH_“* [0,1] () - Section 4.4.12
—/a? —x[Z | BIO,q] a/[lylZ +1 a>0 Section 4.4.13
o + ||| E —ay/1—lyl2 a>0 Section 4.4.14
(domf* = By, [0,1])
3 lI| lyli2 - Section 4.4.15
%”X”2 +dc(x) c %HYHQ - %d%(y) 0 #C CE,E | Example4.4
Euclidean
3 lIx|1% = 1
2 E sllyll? +dc(y) 0 # C C E | Example 4.11
2d(x) closed convex.
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4.4.17 Fenchel’s Duality Theorem

Conjugate functions naturally appear in dual problems most prominently in the
celebrated Fenchel’s duality theorem, which we now recall. Consider the problem

(P) min f(x) +g(x).

We begin by rewriting the problem as
min {£(x) + g(z) : x = 7}
x,z€E

and then constructing the Lagrangian

L(x,z;y) = f(x) + 9(2) + (y, 2 = %) = = [{y,x) = f(x)] = [(~y,2) — 9(2)].

The dual objective function is computed by minimizing the Lagrangian w.r.t. the
primal variables x, z:

q(y) = min L(x,z;y) = = f*(y) — 9" (—y).

X,z

We thus obtain the following dual problem, which is also called Fenchel’s dual:

(D) max{—f*(y) —g"(-y)}-

yeE*

Fenchel’s duality theorem, which we recall below, provides conditions under which
strong duality holds for the pair of problems (P) and (D).

Theorem 4.15 (Fenchel’s duality theorem [108, Theorem 31.1]). Let f,g:
E — (—o0, 00| be proper convex functions. If ri(dom(f)) Nri(dom(g)) # 0, then

min{ f(x) +g(x)} = ;nef;Eﬁg{—f*(Y) -9 (=y)}

and the maximum in the right-hand problem is attained whenever it is finite.

4.5 Infimal Convolution and Conjugacy

We will now show that in some sense the operations of addition and infimal convo-
lution are dual to each other under the conjugacy operation. The first result holds
under the very mild condition of properness of the functions.

Theorem 4.16 (conjugate of infimal convolution). For two proper functions
hi,hy : E — (=00, 00] it holds that

(h1DOhy)* = b} + b3,
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Proof. For every y € E* one has

(h10h2)* (y) = max{(y,x) — (h10h2)(x)}

x€E >
= max{{y,x) — ﬂ£ﬂn@0+hx —u)}}
= maxmax{(y,x) — hi(u) — ha(x —u)}
= maxmax{{y,x — u) + (y,u) — h1(u) — ha(x — u)}
= maxmax{{y,x —u) + (y,u) — h1(u) — ha(x — u)}
= max{hy(y) + (y, u) — ha(u)}

=hi(y) +ha(y). O

The second “direction” is a much deeper result requiring additional assump-
tions like convexity of the functions under consideration.

Theorem 4.17 (conjugate of sum). Let hy : E — (—o00,00] be a proper convex
function and hs : E = R be a real-valued convex function. Then

(hl + hg)* = hTDh;

Proof. For any y € E*,
(1 + ha)* (y) = max {(y,%) = ha(x) = ha ()}
= —min {h1(x) + ha(x) = (3, %)}
= —min {h1(x) + g(0)} (4.12)
where g(x) = ha(x) — (v,x). Note that
ri(dom(hy)) N ri(dom(g)) = ri(dom(h1)) NE = ri(dom(h1)) # 0,

and we can thus employ Fenchel’s duality theorem (Theorem 4.15) and obtain the
following equality:

min {h(x) + g(x)} = max{~hi(z) - g"(~2)} = max{~hi(z) — hy(y —2)} .
(4.13)
Combining (4.12) and (4.13), we finally obtain that for any y € E*,

(h1 +h2)™(y) = min {hi(2) + hs(y — 2)} = (h1Uh3)(y),

establishing the desired result. 0O

Corollary 4.18. Let hy : E — (—o00,00] be a proper closed convex function and
ho : E — R be a real-valued convex function. Then

hi + hy = (RIORL)".
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Proof. The function hj + hs is obviously proper and is closed by the closedness of
hi,he (Theorem 2.7(b)). Therefore, by Theorem 4.8, (hq1 + ha)** = hy + ha, which,
combined with Theorem 4.17, yields

hi+ hy = (hy + he)™ = [(h1 + he)*]" = (R{OR3)*. O

The next result shows a representation of the infimal convolution in terms of
the corresponding conjugate functions.

Theorem 4.19 (representation of the infimal convolution by conjugates).
Let hy : E — (—o00,00] be a proper convexr function, and let ha : E — R be a
real-valued convex function. Suppose that hiho is a real-valued function. Then

hiOhy = (bt + h3)*. (4.14)

Proof. By Theorem 4.16,
(h1Bhe)* = h] + h3. (4.15)

Since h; is proper and convex and ho is real-valued and convex, it follows by The-
orem 2.19 that h10hsy is convex. Since hi[Jhs is real-valued, it is in particular
proper and closed. Therefore, by Theorem 4.8, (h10hs)** = h1Ohs. Hence, taking
the conjugate of both sides of (4.15), the identity (4.14) follows. O

4.6 Subdifferentials of Conjugate Functions

The main result concerning the subdifferential of a conjugate function is the so-
called conjugate subgradient theorem.

Theorem 4.20 (conjugate subgradient theorem). Let f : E — (—o0,00] be
proper and convex. The following two claims are equivalent for any x € E;y € E*:

(i) xy)=fx)+ )
(ii) y € 9f(x).

If in addition f is closed, then (i) and (ii) are equivalent to

(iil) x € 9f*(y).

Proof. The relation y € 0f(x) holds if and only if
f(2) > f(x) + (y,z —x) for all z € E,
which is the same as
(y,x) — f(x) = (y,2) — f(z) for all 2 € E. (4.16)
Taking the maximum over z, we obtain that (4.16) is the same as

(v,x) = f(x) > f*(y),
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which by Fenchel’s inequality (Theorem 4.6) is equivalent to the equality (x,y) =
f(x)+ f*(y). We have thus established the equivalence between (i) and (ii). Assume
now that in addition f is closed. Then by Theorem 4.8, f** = f, which in particular
implies that (i) is equivalent to

(x,y) =g(y) + 9" (%),

where g = f*. By the same equivalence that was already established between (i)
and (ii) (but here employed on g), we conclude that (i) is equivalent to x € dg(y) =

of*(y). O

By the definition of the conjugate function, claim (i) in Theorem 4.20 can be
rewritten as

X € argmaxgcg {y,x) - f(®)},

and, when f is closed, also as

y € argmaxgeg- {(x,¥) — f*(¥)}-

Equipped with the above observation, we can conclude that the conjugate subgra-
dient theorem, in the case where f is closed, can also be equivalently formulated as
follows.

Corollary 4.21 (conjugate subgradient theorem—second formulation).
Let f : E — (—o0,00] be a proper closed convex function. Then for any x €
EyeE*

0f(x) = argmaxyce- {(x,y) — " (¥)}

and
Of*(y) = argmaxgcg {(y, %) — f(X)} -
In particular, we can also conclude that for any proper closed convex function
I
0f(0) = argming .. f*(y)
and

0f"(0) = argmin, ¢ f (x).

Example 4.22. Let f : E — R be given by f(x) = ||x|. Obviously, f is proper,
closed, and convex. By Example 2.31, f = 0By, [0,1]- Therefore, by Example 4.9,
= 53“_“*[0)1]. We can now use the conjugate subgradient theorem (Corollary
4.21) and compute the subdifferential set of f at 0 as follows:

9f(0) = argming cg. f*(y) = argmingcz. 6, 10,1] = B, [0, 1].

This result was already established in Example 3.3. 1

A relation between Lipschitz continuity of a function and the boundedness
of its subgradients over a given set was established in Theorem 3.61. We end this
chapter with a related result showing that Lipschitz continuity over the entire space
is also equivalent to boundedness of the domain of the conjugate.
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Theorem 4.23 (Lipschitz continuity and boundedness of the domain of
the conjugate). Let f : E — R be convex. Then the following three claims are
equivalent for a given constant L > 0:

(©) [f(x) = F)I < Lllx —yl| for any x,y € E.
(ii) [lgll« < L for any g € 8f(x),x € E.

Proof. The equivalence between (i) and (ii) follows from Theorem 3.61. We will
show that (iii) implies (ii). Indeed, assume that (iii) holds, that is, dom(f*) C
Bj..[0,L]. Since by the conjugate subgradient theorem (Corollary 4.21) for any
x € E,

of (x) = argmaxycp- {(x,y) — f*(¥)},

it follows that 0 f(x) € dom(f*), and hence in particular df(x) C Bj.|. [0, L] for any
x € E, establishing (ii). In the reverse direction, we will show that the implication
(i) = (iii) holds. Suppose that (i) holds. Then in particular

f(x) = £(0) < |f(x) = f(0)] < L[],
and hence
—f(x) = —f(0) — L|x]|.
Therefore, for any y € E*,

F1(y) =max{(x,y) - f60} = max{(x,y) = f(0) ~ LIxll}.  (417)

To show (iii), we take y € E* that satisfies ||¥|l« > L and show that y ¢ dom(f*).
Take a vector y' € E satisfying ||y|| = 1 for which (y,y') = ||¥||« (such a vector
exists by the definition of the dual norm). Define C' = {ay' : a > 0} C E. We can
now continue (4.17) (with y = y) and write

1@z max{txy) - £0) - L}

> max{(x.3) - £(0) ~ Llx|}
max {(a.5') - £(0) - Lally|}
max {03 — 7(0) - Lo}
= max{a(l§ll. — L) - fO)}

191>

)

thus showing that y ¢ dom(f*), establishing claim (iii). O
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Chapter 5

Smoothness and Strong
Convexity

5.1 L-Smooth Functions
We begin with the definition of L-smoothness.

Definition 5.1 (L-smoothness). Let L > 0. A function f : E — (—o00,00] is
said to be L-smooth over a set D C E if it is differentiable over D and satisfies

IVf(x) =V Iyl < Llx =yl for allx,y € D.
The constant L is called the smoothness parameter.

Obviously, by the definition of differentiability, if f is L-smooth over a set
D C E, this means in particular that D C int(domf). If a function is L-smooth over
E, then we will just refer to it as L-smooth (without mentioning the entire space).
Another frequent terminology in the literature refers to an L-smooth function over
D as “a function with Lipschitz gradient with constant L.” The class of L-smooth
functions is denoted by Cfl(D). When D = E, the class is often denoted by Ci’l
instead of Cfl(E). The class of functions which are L-smooth for some L > 0 is
denoted by C1:1.

By the definition of L-smoothness, it is clear that if a function is Li-smooth,
then it is also La-smooth for any Lo > L;. It is therefore sometimes interesting to
discuss the value of the smallest possible smoothness parameter of a given function.

Example 5.2 (smoothness of quadratic functions). Consider the function
f:R™ = R given by f(x) = %XTAX—I— b”x + ¢, where A € S*,b € R", and ¢ € R.
We assume that R™ is endowed with the [,-norm (1 < p < o0). Then, for any
x,y € R",

IV f(x)— Vf(Y)Hq =||Ax — Aylq < ||A||p,q|

X — ynpv
where || - ||p,q is the induced norm given by (see also Section 1.8.2)

[Allp,q = max{[|Ax]lq : [[x][, <1},

107
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with ¢ € [1, oo] satisfying %—l—% = 1. We can thus conclude that f is ||A[|, q-smooth.
We will show that ||Al|,,q is the smallest smoothness parameter. For that, assume
that f is L-smooth. Take a vector X satisfying ||x|, = 1 and ||Ax|l; = ||A]|p,q- The
existence of such a vector is guaranteed by the definition the induced matrix norm.
Then

[Allpq = [AX][q = [IVf(%) = VF(0)]lq < Lllx — 0]}, = L.

We thus showed that if f is L-smooth, then L > ||A||, 4, proving that [|A],, is
indeed the smallest possible smoothness parameter.

Example 5.3 (0-smoothness of affine functions). Let f : E — R be given by
f(x) = (b,x) + ¢, where b € E* and ¢ € R. For any x,y € E,

IVF(x) = V)]« = [b=bll. =0 <0lx -yl

showing that affine functions are O-smooth. W

The next example will utilize a well-known result on the orthogonal projection
operator, which was introduced in Example 3.31. A more general result will be
shown later on in Theorem 6.42.

Theorem 5.4 (see [10, Theorem 9.9]). Let E be a Fuclidean space, and let
C CE be a nonempty closed and convex set. Then

(a) (firm nonexpansiveness) For any v,w € E,

(Po(v) = Po(w),v —w) 2 ||[Pc(v) — Pe(w)l*. (5.1)

(b) (nonexpansiveness) For any v,w € E,

[1Po(v) = Po(w)| < [lv—w]. (5:2)

Example 5.5 (1-smoothness of %dzc) Suppose that E is a Euclidean space, and
let C' C E be a nonempty closed and convex set. Consider the function ¢ (x) =
1d%(x). By Example 3.31, ¢c is differentiable over E and Vo (x) = x — Po(x).
We will show that ¢¢ is 1-smooth. Indeed, for any x,y € E,

IVec(x) = Vec)I* = Ix —y = Po(x) + Po(y)|?
Ix = ylI” = 2(Pc(x) = Po(y),x = y) + | Pe(x) = Pe(y)|?

—
*
—

< llx = y[?* = 2|Po(x) = Pe(y)|* + || Po(x) — Po(y)?
= [x=yl* = [[Pe(x) = Pe(y)l?
< lx -yl

where the inequality () follows by the firm nonexpansivity of the orthogonal pro-
jection operator (Theorem 5.4(a)). N

Example 5.6 (1-smoothness of 1| - |2 — 2d%). Suppose that E is a Euclidean
space, and let C' C E be a nonempty closed convex set. Consider the function
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Yo(x) = 1|x||> — 1d%(x). By Example 2.17, ¢¢ is convex.? We will now show

that it is 1-smooth. By Example 3.31, $d%(x) is differentiable over E, and its
gradient is given by x — Po(x). Therefore,

Vipo(x) = x — (x — Po(x)) = Po(x).

The 1-smoothness of ¥ now follows by the nonexpansivity of the projection oper-
ator (Theorem 5.4(b))—for any x,y € E,

Ve (x) = Ve )| = [I1Pe(x) = Pey) < Ix—y[. W

5.1.1 The Descent Lemma

An extremely useful result on L-smooth functions is the descent lemma, which states
that they can be upper bounded by a certain quadratic function.

Lemma 5.7 (descent lemma). Let f:E — (—o0,00] be an L-smooth function
(L > 0) over a given convex set D. Then for any x,y € D,

F¥) < FO) +{VFGy %)+ 5 x — v (53)

Proof. By the fundamental theorem of calculus,

1
f) — f(x) = /0 (V (x4 H(y — %)),y — x)dt.

Therefore,
1
) = 1) = (VF(x),y — %) + / (VF(x+Hy — %)) — VF(x),y — x)dt.
Thus,
F¥) = F(0) = (VF(x),y - x)| = \ / (VF(x+Hy — %)) — VF(x),y — x)dt
< / (V1% + ty — %)) — VF(x),y - x)|dt

(x) 1
< / IV (x + by — %)) — V- - ly — x]|dt

1
JRCEEERE
0

L 2
Slly =P,

IN

where in () we used the generalized Cauchy—Schwarz inequality (Lemma 1.4). O

23The convexity of 1¢ actually does not require the convexity of C; see Example 2.17.
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5.1.2 Characterizations of L-Smooth Functions

When f is convex, the next result gives several different and equivalent characteri-
zations of the L-smoothness property of f over the entire space. Note that property
(5.3) from the descent lemma is one of the mentioned equivalent properties.

Theorem 5.8 (characterizations of L-smoothness). Let f : E = R be a
conver function, differentiable over E, and let L > 0. Then the following claims are
equivalent:

(i) f is L-smooth.

F) < fx) +(Vf(x)y = %) + 5lx —y|? for all x,y € E.

Fly) = f(x) +(Vf(x),y = %) + 5 [Vf(x) = VF(y)|I2 for all x,y € E.
(VI(x) = V(). x—y) = £|Vf(x) = V)2 for all x,y € E.

FOx+ 1= Ny) 2 M (x) + (1 =Nf(¥) = ML= N)|x—y|? for any x,y € E
and X € [0,1].

(i

(iii

(iv

i)
)
)
(v)

Proof. (i) = (ii). The fact that (i) implies (ii) is just the descent lemma (Lemma
5.7).

(ii) = (iii). Suppose that (ii) is satisfied. We can assume that V f(x) # V f(y)
since otherwise the inequality (iii) is trivial by the convexity of f. For a fixed x € E
consider the function

9x(y) = f(y) = f(x) = (Vf(x),y —x), y€E.
The function gx also satisfies property (ii). Indeed, for any y,z € E,
9x(z) = f(z) — f(x) = (Vf(x),z — x)
< fly) +(Vfy)rz—y)+ gllz =yl = f(x) = (Vf(x),2 —x)

= J(¥) ~ J6) — (V) y —x) + (VS ()~ V()7 - y) + 2oyl
= 4uy) + (Vox(y). 7~ 3) + 2o~ I 6.4

where we used in the last equality the fact that Vgx(y) = Vf(y) — Vf(x) for any
y € E. In particular, Vgx(x) = 0, which by the convexity of gx implies that x is a
global minimizer of g, meaning that

9x(x) < gx(z) for all z € E. (5.5)

Let y € E, and let v € E be a vector satisfying ||v|]] = 1 and (Vgx(y),v) =
IVgx(y)|l«. Substituting

Vgx(¥)ll«
Vg L(y)ll v

0= gu(x) < g (y_ IIVng(Y)I*V)

imy- (5.6)

into (5.5) yields
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Combining the last inequality with (5.4) (using the specific choice of z given in
(5.6)), we obtain

VeIl

< gx(y) i3

(Vox(3) ) + 57 VeI - ]
= ox(y) — 57 IVoxy)]?
= ) = £~ (VS 6y = %) = 5= IV 569 = VI,

which is claim (iii).
(iii) = (iv). Writing the inequality (iii) for the two pairs (x,y), (y,x) yields

F¥) 2 F6) + (V5695 =)+ 52 IV 569~ VIO,
£ > F) + VI )x—¥) + 5 19560~ VI

Adding the two inequalities and rearranging terms results in (iv).
(iv) = (i). The Lipschitz condition

IVf(x) = Vi)l < Lilx -yl

is trivial when V f(x) = Vf(y). We will therefore assume that Vf(x) # Vf(y).
By (iv) and the generalized Cauchy—Schwarz inequality (Lemma 1.4) we have for
any x,y € E,

IVF(x) = VIO lIx =yl = (V%) = VIy),x—y) > %HVf(x) - Vi)l

Dividing by ||V f(x) — Vf(y)|« and multiplying by L, (i) is obtained.

We have just shown the equivalence between (i), (ii), (iii), and (iv). To prove
that (v) is also equivalent to each of these four claims, we will establish the equiv-
alence (ii) < (v).

(ii) = (v). Let x,y € E and A € [0,1]. Denote x5 = Ax + (1 — A)y. Then by
(i),

L 2
F&x) < flxx) +{V ), x = xa) + S llx = xx%
L
Fy) < FO0) + (V) y =xa) + Sy ==,

which is the same as

L(1—))?

_ 2
—Lx -yl

F) < F000) + (1= AT (k) %~ y) +
2
F(9) < 6) + MVF(62),y — %) + T x -y

Multiplying the first inequality by A and the second by 1— X and adding them yields
the inequality (iv).
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(v) = (ii). Rearranging terms in the inequality (v), we obtain that it is equiv-
alent to
fx+ A -My =%x) - f(®)
1-A
Taking A — 17, the last inequality becomes

Fy) < Fx) + + Ay

F(¥) < 60+ iy =) + 2 lx — v,

which, by the fact that f'(x;y — x) = (Vf(x),y — x) (see Theorem 3.29), implies
(i). O

Remark 5.9 (necessity of convexity in Theorem 5.8). The convezity assump-
tion in Theorem 5.8 is essential. Consider, for example, the function f : R™ — R
given by f(x) = —1||x||3, which is 1-smooth w.r.t. the la-norm but is not L-smooth
for L <1 (see Example 5.2). However, f is concave, and hence

fy) <) +(Vf(x),y —x),

which implies that property (ii) of Theorem 5.8 is satisfied with L = 0, although the
function is obviously not 0-smooth.

The next example will require the linear approximation theorem, which we
now recall.

Theorem 5.10 (linear approximation theorem, [10, Theorem 1.24], [101,
Fact 3.3.10]). Let f : U — R be a twice continuously differentiable function®*
over an open set U C R™, and let x € U,r > 0 satisfy B(x,r) C U. Then for any
y € B(x,r) there exists £ € [x,y] such that

F(¥) = £+ VI60T (v %) + 5y %) V2 FE)y — x).

Example 5.11 ((p — 1)-smoothness of the half-squared l,-norm func-
tion).2® Consider the convex function f : R™ — R given by

2
1 IR ’
F) = Slxlp =5 Do laal? )
2 2 p
where p € [2,00). We assume that R™ is endowed with the {,-norm and show that
fis (p — 1)-smooth w.r.t. the l,-norm. The result was already established for the
case p = 2 in Example 5.2, and we will henceforth assume that p > 2. We begin by
computing the partial derivatives:
|z |P
Bf Sgn(xi) =2, X 7é 0,
(x) = =I5
8xi

0, x =0,

24By “twice continuously differentiable over U,” we mean that the function has second-order
partial derivatives, which are continuous over U.

25The analysis in Example 5.11 follows the derivation of Ben-Tal, Margalit, and Nemirovski [24,
Appendix 1].



Downloaded 04/11/24 to 143.215.80.169 by Jacob Aguirre (jaguirre31@gatech.edu). Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

5.1. L-Smooth Functions 113

The partial derivatives are continuous over R™, and hence f is differentiable over
R™ (in the sense of Definition 3.28).25 The second-order partial derivatives exist for
any x # 0 and are given by

o |P 7 2, Pt . .

o f (2~ p)sgn(ai)sgn(a;) e —, i #
X) —

a 7]8 1 X p—2 g 2p—2 . .

20z (p— 1)—‘|‘x‘|‘572 +(2-p) ‘I‘x‘l‘g,,,z, i=j.

It is easy to see that the second-order partial derivatives are continuous for any
x # 0. We will show that property (ii) of Theorem 5.8 is satisfied with L = p — 1.
Let x,y € R™ be such that 0 ¢ [x,y]. Then by the linear approximation theorem
(Theorem 5.10)—taking U to be some open set containing [x, y] but not containing
0—there exists € € [x,y] for which

F¥) = F6) + V60Tl — %) + 5y~ VO %) ()
We will show that d"VZf(£)d < (p — 1)[|d]|2 for any d € R". Since V2f(t£) =

V2f(€) for any t € R, we can assume without loss of generality that |€]|, = 1.
Now, for any d € R",

n 2 n
A"V f(&)d = (2 - p)llgln " (Z |£1-|P—1sgn<fi)di> + = DIERPY 1l 2d?

i=1 i=1
<(p=Dlgly™ Y _lal2d:, (5.8)
i=1
where the last inequality follows by the fact that p > 2. Using the generalized
Cauchy-Schwarz inequality (Lemma 1.4) with || - || = - Hﬁ, we have
p=2 2
n n » P n » P
> olalrd; < (Z(|§z‘|p2)”2> <Z(df)2>
i=1 i=1 i=1
p=2 2
n P n P
= <Z|§z‘|p> <Z|di|p>
i=1 i=1
= [df;- (5.9)
Combining (5.8) and (5.9), we obtain that for any d € R™,
d'Vv?f(€)d < (p—-1)|ld]7,
and specifically, ford = x — y,
(y =)V —x) < (- Dx -yl
Plugging the above inequality into (5.7) implies the inequality
p—1
Fy) < F)+ V) (y = %) + ——x =yl (5.10)

26See, for example, [112, Theorem 9.21] for a precise statement of this result.
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The inequality (5.10) was proven for any x,y € R™ that satisfy 0 ¢ [x,y]. We can
show that it holds for any x,y € R™ using a continuity argument. Indeed, assume
that 0 € [x,y]. Then we can find a sequence {yj}r>0 converging to y for which
0 ¢ [x,yx]. Thus, by what was already proven, for any k > 0,

Flyi) < 700+ V7 vk~ %)+ B =yl

Taking £ — oo in the last inequality and using the continuity of f, we obtain that
(5.10) holds. To conclude, we established that (5.10) holds for any x,y € R™, and
thus by Theorem 5.8 (equivalence between properties (i) and (ii)) and the convexity
of f, it follows that f is (p — 1)-smooth w.r.t. the [,-norm.

5.1.3 Second-Order Characterization

We will now consider the space E = R"™ endowed with the [,-norm (p > 1). For
twice continuously differentiable functions, it is possible to fully characterize the
property of L-smoothness via the norm of the Hessian matrix.

Theorem 5.12 (L-smoothness and boundedness of the Hessian). Let f :
R™ — R be a twice continuously differentiable function over R™. Then for a given
L >0, the following two claims are equivalent:

(i) f is L-smooth w.r.t. the l,-norm (p € [1,]).
(ii) IV2f(%)|lp.g < L for any x € R™, where q € [1, 0] satisfies 1—1) + é =1.

Proof. (ii) = (i). Suppose that |[|[V2f(x)|l,.q < L for any x € R". Then by the
fundamental theorem of calculus, for all x,y € R™,

Vi(y) = V(x /v2 (x + t(y — x))(y — x)dt

— Vi + ( / V2 f(x 4ty - x>>dt) (y - %)

Then

195 - vre0ll = | ( V(i )t - (v =)

q

Iy —xllp

/v? (x + t{y — x))dt

(/ 1926+ oty =Xt ) Iy =)

< Ly = x|lp,

establishing (i).
(i) = (ii). Suppose now that f is L-smooth w.r.t. the {,-norm. Then by the
fundamental theorem of calculus, for any d € R and o > 0,

Vf(x+ad) - Vf(x / V2 f(x + td)ddt.
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Thus,

= [IVf(x+ad) = Vf(x)lly < aLld],.

q

H (/Oa Vif(x+ td)dt) d

Dividing by o and taking the limit o — 0%, we obtain

V2 ()d]|, < L|d], for any d € R™,
implying that [V?f(x)[lp, < L. O

A direct consequence is that for twice continuously differentiable convex func-
tions, L-smoothness w.r.t. the ls-norm is equivalent to the property that the maxi-
mum eigenvalue of the Hessian matrix is smaller than or equal to L.

Corollary 5.13. Let f : R™ — R be a twice continuously differentiable convex func-
tion over R™. Then f is L-smooth w.r.t. the la-norm if and only if Amax (V2 f(x)) <
L for any x € R™.

Proof. Since f is convex, it follows that V2f(x) = 0 for any x € R". Therefore,
in this case,

IV2£ () [l2.2 = VAmax (V2 £(%))2) = Amax (V2 £ (%)),
which, combined with Theorem 5.12, establishes the desired result. 0O

Example 5.14 (1-smoothness of \/1 + || - ||2 w.r.t. the l;-norm). Let f :
R™ — R be the convex function given by

Fx) =1+ [Ixl3.

We will show that f is 1-smooth w.r.t. the ls-norm. For any x € R”,

Ui — X
76 VI3 +1
and .
V2 f(x) = 1 I XX 1

=< I1<1
VKBTIl + 132 7 /i3 + 1

Therefore, Apax(V2f(x)) < 1 for all x € R", and hence by Corollary 5.13 it follows
that f is 1-smooth w.r.t. the lo-norm. N

Example 5.15 (1-smoothness of the log-sum-exp function w.r.t. the I3, lo
norms). Consider the log-sum-exp function f : R™ — R given by

f(x) =log (e + €2+ .- +€"™).

We will first show that it is 1-smooth w.r.t. the l3-norm. The partial derivatives of
f are
af evi

a.. =< L. .:]—727"'7 )
Ox; &) D ke €7 ' "
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and the second-order partial derivatives are

e”ie”i

a?f X): _( Z:1emk)§7 l#]?
8331'833j _ e%ieTi T

. ..
5 1= 1.
ST D> ST

We can thus write the Hessian matrix as

V2 f(x) = diag(w) — ww?,

e’i

where w; = D To show that f is 1-smooth w.r.t. the l3-norm, note that for
any x € R",
V2 f(x) = diag(w) — ww’ =< diag(w) <1,

and hence Apax (V2 f(x)) < 1 for any x € R™. Noting that the log-sum-exp function
is convex, we can invoke Corollary 5.13 and conclude that f is 1-smooth w.r.t. the
lo-norm.

We will show that f is 1-smooth also w.r.t. the [,-norm. For that, we begin
by proving that for any d € R™,

"V f(x)d < [|d]%. (5.11)

Indeed,

dTVv?f(x)d = d” (diag(w) — ww’)d = d” diag(w)d — (w?d)?
< d”diag(w)d

n
=S
=1
n
<2 wi
=1
= |||

Now, since f is twice continuously differentiable over R", it follows by the linear
approximation theorem (Theorem 5.10) that for any x,y € R™ there exists £ € [x,y]
for which

F3) = 100+ VIR (v~ %) + 5y~ 0 VO~ %), (512)
Combining (5.12) (taking d = y — x) and (5.11), we obtain the inequality
F(¥) < £+ VA" =)+ 5y — x.

which by Theorem 5.8 (equivalence between properties (i) and (ii)) implies the
1-smoothness of f w.r.t. the loc-norm. N
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5.1.4 Summary of Smoothness Parameter Computations

The table below summarizes the smoothness parameters of the functions discussed
in this section. The last function will only be discussed later on in Example 6.62.

f(x) dom(f) | Parameter Norm Reference

%xTAx—l—bTx—l—c R™ [|Allp,q Ip Example 5.2
(A eS™,beR" ceR)

(b,x) + ¢ E 0 any norm Example 5.3

(b € E*,c € R)
%HXHIQ,, p € [2,00) R"™ p—1 lp Example 5.11
1+ ||x||2 R™ 1 l2 Example 5.14
log(>-7 €%t) R™ 1 l2,loo Example 5.15
%dQC (%) E 1 Euclidean Example 5.5

(0 # C CE closed convex)

%HXHQ — %dQC (x) E 1 Euclidean Example 5.6

(0 # C CE closed convex)

H,(x) (p>0) E Euclidean Example 6.62

= [~

5.2 Strong Convexity

Definition 5.16 (strong convexity). A function f : E — (—o0,00] is called
o-strongly convex for a given o > 0 if dom(f) is conver and the following in-
equality holds for any x,y € dom(f) and X € [0,1]:

FOx+ (1= Ny) SA() + (1= Nf) - M= Nlx -y (5.13)

We will sometimes use the terminology “strongly convex with parameter ¢”
instead of “o-strongly convex.” It is important to note that the strong convexity
parameter o depends on the underlying norm, and we will therefore sometimes refer
to it as the “strong convexity parameter w.r.t. || - ||.” Obviously, strongly convex
functions are necessarily also convex since their domain is assumed to be convex
and inequality (5.13) implies that for any x,y € dom(f) and A € [0,1], Jensen’s
inequality is satisfied:

FOx+ (1 =Ny) SAfE) + 1 =) f(y)

When the underlying set E is Euclidean, meaning that ||x|| = 1/(x,x) for any x € E,
we can write a different and simple property that is equivalent to strong convexity.

Theorem 5.17. Let E be a Euclidean space. Then f:E — (—o00,00] is a o-strongly
convex function (o > 0) if and only if the function f(-) — || - ||* is convex.
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Proof. The function g(x) = f(x) — %|/x[|* is convex if and only if its domain
dom(g) = dom(f) is convex and for any x,y € dom(f) and X € [0, 1],

gAx 4+ (1= N)y) < Ag(x) + (1 = N)g(y).

The latter inequality is the same as

o

FOF(1=2)y) S A ) +(1=2) f(y)+5 (X + (1= Nyll* = Mlxll* = (1= 2)]ly[]*] -
(5.14)

Now, using the identity (which holds since the norm is assumed to be Euclidean)

1A+ (1= Nyll* = Mx]* = (1= Vlyl* = A1 = Nx -y,

combined with (5.14), we can conclude that the convexity of g is equivalent to the
convexity of dom(f) and the validity of the inequality

FOx+ (1 =Ny) SAf(x)+ 1 =) f(y) - %A(l = Nllx — yll?

for any x,y € dom(f) and A € [0, 1], namely, to the o-strong convexity of f. 0O

Remark 5.18. The assumption that the underlying space is Fuclidean is essential
in Theorem 5.17. As an example, consider the negative entropy function over the
unit simplex

S wilogz, x €A,
f(x) =

00 else.

We will later show (in Example 5.27) that f is a 1-strongly convex function with
respect to the l1-norm. Regardless of this fact, note that the function

9(x) = f(x) — allx[l}

is convex for any o > 0 since over the domain of f, we have that ||x|1 = 1.
Obviously, it is impossible that a function will be a-strongly convez for any o > 0.
Therefore, the characterization of strong convezity in Theorem 5.17 is not correct
for any norm.

Note that if a function f is o1-strongly convex (o1 > 0), then it is necessarily
also oo-strongly convex for any o9 € (0,01). An interesting problem is to find the
largest possible strong convexity parameter of a given function.

Example 5.19 (strong convexity of quadratic functions). Suppose that E =
R™ is endowed with the ls-norm, and consider the quadratic function f : R™ — R

given by
1
flx) = ngAx +bTx 4,
where A € S”, b € R”, and ¢ € R. Then by Theorem 5.17, f is strongly convex

with parameter o > 0 if and only if the function $x” (A — oI) x+bTx+c is convex,
which is equivalent to the matrix inequality A — oI > 0, namely, to the inequality
Amin(A) > 0. Thus, f is strongly convex if and only if A is positive definite, and

in that case, Amin(A) is its largest possible strong convexity parameter. H
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A simple result is that the sum of a strongly convex function and a convex function
is always a strongly convex function.

Lemma 5.20. Let f : E — (—o00,00] be a o-strongly conver function (o >0), and
let g : E — (—o0,00] be convex. Then f + g is o-strongly convez.

Proof. Follows directly from the definitions of strong convexity and convexity.
Since f and g are convex, both dom(f) and dom(g) are convex sets, and hence also
dom(f + ¢g) = dom(f) Ndom(g) is a convex set. Let x,y € dom(f) N dom(g) and
A € [0,1]. Then by the o-strong convexity of f,

fOx+ (1 =Ny) SAf(x)+ 1= Nfly) - %A(l = Nlx =yl
Since g is convex,
gAx+ (1= Ny) < Ag(x) + (1= Ng(y).
Adding the two inequalities, we obtain
(f+9)x+ 1 =Ny) SAMf+9)x)+ A =N(f+9)(y) - gk(l —Nlx -yl

showing that f + g is o-strongly convex. 0O

Example 5.21 (strong convexity of % I-]|24+3d¢c). Suppose that E is a Euclidean
space, and let C' C E be a nonempty convex set. The function ||x|[|? is 1-strongly
convex (Example 5.19), and by the convexity of C, ¢ is convex. Therefore, by
Lemma 5.20, the function 1||x||> + d¢(x) is 1-strongly convex. N

Theorem 5.24 below describes two properties that are equivalent to o-strong
convexity. The two properties are of a first-order nature in the sense that they are
written in terms of the function and its subgradients. The proof uses the following
version of the mean-value theorem for one-dimensional functions.

Lemma 5.22 (see [67, p. 26]). Let f : R — (—00, 00] be a closed convez: function,
and let [a,b] C dom(f)(a < b). Then

b
£0) - £(@) = [ no,
where h : (a,b) — R satisfies h(t) € Of(t) for any t € (a,b).

Another technical lemma that is being used in the proof is the so-called line
segment principle.

Lemma 5.23 (line segment principle [108, Theorem 6.1]). Let C be a convex
set. Suppose that x € ri(C),y € cl(C), and let X € (0,1]. Then Ax+(1-N)y € ri(C).

Theorem 5.24 (first-order characterizations of strong convexity). Let f :
E — (—o00,00] be a proper closed and convex function. Then for a given o > 0, the
following three claims are equivalent:
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(i) f is o-strongly convex.
(i )
F3) 2 FX) + &y = %) + 5 lly — x|
for any x € dom(9f),y € dom(f) and g € 9f(x).
(iii)
(gx — gy, x—y) > allx —yl (5.15)
for any x,y € dom(0f), and gx € 0f(x),8y € Of(y).

Proof. (ii) = (i). Assume that (ii) is satisfied. To show (i), take x,y € dom(f)
and A € (0,1). Take some z € ri(dom(f)). Then for any a € (0,1], by the line
segment principle (Lemma 5.23), the vector X = (1 — a)x + az is in ri(dom(f)).
At this point we fix a. Using the notation x) = Ax + (1 — A)y, we obtain that
x) € ri(dom(f)) for any A € (0,1), and hence, by Theorem 3.18, df(xy) # 0,
meaning that x) € dom(9f). Take g € df(xx). Then by (ii),

FR) 2 FG0) + (8% = x0) + Z %= a2

which is the same as

a(l—N)2

—Ly-x% (616)

F5) 2 fo) + (1= (g%~ ) +
Similarly, ,
F(9) 2 F0) + Mey — %) + 2 ly — % (517)

Multiplying (5.16) by A and (5.17) by 1—X and adding the two resulting inequalities,
we obtain that

oAl =X

FOX+ (1= Ny) SME) + 1= Nfly) - —5—Ix -yl
Plugging the expression for x in the above inequality, we obtain that
oA(1 =X
91(0) < Agole) + (- 0f) - 2N o poz -y, 5as)

where g1(a) = f(A1 — a)x + (1 — Ay + Aaz) and g2(a) = f((1 — a)x + az). The
functions g; and g, are one-dimensional proper closed and convex functions, and
consequently, by Theorem 2.22, they are also continuous over their domain. Thus,
taking o — 0% in (5.18), it follows that

oAl —X)
2
Finally, since ¢1(0) = f(Ax + (1 — A)y) and g2(0) = f(x), we obtain the inequality

oAl =X
2

91(0) < Ag2(0) + (1 =N f(y) — Ix — >

JOx+ (1 =Ny) SAf) + (1 =) f(y) - I — ylI,

establishing the o-strong convexity of f.
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(i) = (iii). Assume that (i) is satisfied. Let x,y € dom(9f) and gx €
0f(x),gy € 9f(y). We will show that inequality (5.15) is satisfied. Let A € [0,1)
and denote x) = Ax + (1 — A)y. By condition (i),

g

FGan) S Af(x) + (1= A)f(y) = A0 = Nfx — vl

which is the same as

o) =T < i) 60— Zalx I, (519)
Since gx € 9f(x),
f(Xi)__/\f(X) > <gx71X_)\;X> _ <gx7y N X>,
which, combined with (5.19), yields the inequality
(gey — %) < 1(y) — 1) = Dx — vl (520)

Inequality (5.20) holds for any A € [0,1). Taking the limit A — 17, we conclude
that

o
(Bey —%) < f(y) = f(x) = 5Ix—yI* (5.21)
Changing the roles of x and y yields the inequality
o
(By,x—y) < f(x) = f(y) = 5Ix=vI* (5.22)
Adding inequalities (5.21) and (5.22), we can finally conclude that
(8x — 8y x—y) = ollx—y]?
which is the desired inequality.
(iii) = (ii) Suppose that (iii) is satisfied, and let x € dom(9f),y € dom(f),
and g € 0f(x). Let z be any vector in ri(dom(f)), and define y = (1 —a)y + az for

some « € (0, 1), which at this point we fix. By the line segment principle (Lemma
5.23), y € ri(dom(f)). Consider now the one-dimensional function

p(A) = f(xr), A€0,1],
where x) = (1 — A)x + Ay. For any A € (0,1), let g\ € 0f(xx) (whose existence is

guaranteed since x € ri(dom(f)) by the line segment principle). Then (g, y—x) €
dp(N), and hence by the mean-value theorem (Lemma 5.22),

1
F§) - Fx) = p(1) - p(0) = / (87,5 — x)dA. (5.23)
Since g € 9f(x) and gy € df(xy), by property (iii),

(8r — 8 xx — X) > ollxx — x[?,
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which is equivalent to

(8, y —x) > (8.7 —x) + oAy — x|/,
Plugging the last inequality into (5.23), we obtain that

1

F6) = 16> [ (@5 =) + 0Ny —xl*] ay

g .
(8.5 —x)+ 5y - x|%.

Recalling the definition of ¥, we obtain that for any a € (0, 1),
F(1= )y +az) > f(x) + (g, (1 - )y +az —x) + Z|[(1 - a)y + az — x|*.

Taking o« — 07 and using the continuity of the one-dimensional function o
f(1 — @)y + az) over [0,1] (follows by invoking Theorem 2.22 and recalling that
the one-dimensional function is closed and convex), we obtain the desired result

J3) 2 F6) +{gy —x) + Gy —x[*. O

The next theorem states that a proper closed and strongly convex function
has a unique minimizer and that it satisfies a certain growth property around the
minimizer.

Theorem 5.25 (existence and uniqueness of a minimizer of closed strongly
convex functions). Let f : E — (—oo,o0] be a proper closed and o-strongly convex
function (o0 >0). Then

(a) f has a unique minimizer;

(b) f(x)— f(x*) > gllx —x*||* for all x € dom(f), where X* is the unique mini-
mizer of f.

Proof. (a) Since dom(f) is nonempty and convex, it follows that there exists
xg € ri(dom(f)) (Theorem 3.17), and consequently, by Theorem 3.18, df(xq) # 0.
Let g € 0f(x0). Then by the equivalence between o-strong convexity and property
(ii) of Theorem 5.24, it follows that

f(x) > f(x0) + (g, x — x0) + %HX—X()HQ for all x € E.

Since all norms in finite dimensional spaces are equivalent, there exists a constant
C > 0 such that

Iyl = VCyllas

where || -] = v/ (*, -) denotes the Euclidean norm associated with the inner product
of the space E (which might be different than the endowed norm || - ||). Therefore,

C
f(x) > f(xo) + (g, x — x0) + TUHx—onz for any x € E,
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which is the same as

2

C; for any x € E.

F69 2 Sx0) = 5oz +

1
x—(%- 58

a

In particular, it follows that

Lev(f. fxa)) € B, [0 - ot sl

Since f is closed, the above level set is closed (Theorem 2.6), and since it is contained
in a ball, it is also bounded. Therefore, Lev(f, f(x0)) is compact. We can thus
deduce that the optimal set of the problem of minimizing f over dom(f) is the same
as the optimal set of the problem of minimizing f over the nonempty compact set
Lev(f, f(x0)). Invoking Weierstrass theorem for closed functions (Theorem 2.12),
it follows that a minimizer exists. To show the uniqueness, assume that x and x
are minimizers of f. Then f(X) = f(X) = fopt, wWhere fop is the minimal value of
f. Then by the definition of o-strong convexity of f,

1. 1, 1. 1., o, . 0. .
o = 1 (354 3%) £ 5700+ 378 = TI%—%IP = fo - G 1%~ %I

implying that X = %X and hence establishing the uniqueness of the minimizer of f.

(b) Let x* be the unique minimizer of f. Then by Fermat’s optimality con-
dition (Theorem 3.63), 0 € 0f(x*) and hence by using the equivalence between
o-strong convexity and property (ii) of Theorem 5.24, it follows that

0 = f() 2 (0 x —x) + Sl = x| = Zx = x7|? (5.24)

for any x € E, establishing claim (b). 0O

5.3 Smoothness and Strong Convexity
Correspondence

5.3.1 The Conjugate Correspondence Theorem

An extremely useful connection between smoothness and strong convexity is given
in the conjugate correspondence theorem that, loosely speaking, states that f is
o-strongly convex if and only if f* is %—smooth.

Theorem 5.26 (conjugate correspondence theorem). Leto > 0. Then

(@) If f:E—>Risa %-smooth convex function, then f* is o-strongly convex

w.r.t. the dual norm || - ||«-

(b) If f : E — (—o0,00] is a proper closed o-strongly convex function, then f* :
E* - R is %—smooth.
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Proof. (a) Suppose that f : E - R is a %-smooth convex function. To prove
that f* is o-strongly convex, take y1,y2 € dom(9f*) and vi € 9f*(y1),v2 €
df*(y2). Then by the conjugate subgradient theorem (Theorem 4.20), using also
the properness closedness and convexity of f, it follows that y; € 9f(v1) and
y2 € 0f(va), which, by the differentiability of f, implies that y; = Vf(v1) and
y2 = Vf(v2) (see Theorem 3.33). By the equivalence between properties (i) and
(iv) in Theorem 5.8, we can write

(y1 —y2,v1 — va2) > ally1 — ya %

Since the last inequality holds for any y1,y2 € dom(9f*) and vy € 9f*(y1),va €
0f*(y2), it follows by the equivalence between o-strong convexity and property (iii)
of Theorem 5.24 that f* is a o-strongly convex function.

(b) Suppose that f is a proper closed o-strongly convex function. By the
conjugate subgradient theorem (Corollary 4.21),

Of*(y) = argmax, cg{(x,y) — f(x)} for any y € E".

Thus, by the strong convexity and closedness of f, along with Theorem 5.25(a), it
follows that df*(y) is a singleton for any y € E*. Therefore, by Theorem 3.33, f*
is differentiable over the entire dual space E*. To show the %—smoothness of f*,
take y1,y2 € E* and denote vi = Vf*(y1),va = Vf*(y2). These relations, by the
conjugate subgradient theorem (Theorem 4.20), are equivalent to y; € 9f(v1),y2 €
O0f(vz). Therefore, by Theorem 5.24 (equivalence between properties (i) and (iii)),

(y1 —y2,v1 — va) > ollvi — val?,

that is,
(Y1 = y2. Vf(y1) = VI (y2)) > oV (y1) = VI (y2)I

which, combined with the generalized Cauchy—Schwarz inequality (Lemma 1.4),
implies the inequality

195 (v0) = 95 (v2)ll < ~llys = vl

proving the %—smoothness of f*. O

5.3.2 Examples of Strongly Convex Functions

We can use the conjugate correspondence theorem (Theorem 5.26) to conclude
several results on the strong convexity of several important functions.

Example 5.27 (negative entropy over the unit simplex). Consider the func-
tion f: R™ — (—o0, 00] given by

E?:l T4 log T, XE&E An,
fx) =

00 else.
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Then, by Section 4.4.10, the conjugate of this function is the log-sum-exp function
f*(y) =log (3., €¥'), which, by Example 5.15, is a 1-smooth function w.r.t. both
the loo- and l3-norms. Consequently, by the conjugate correspondence theorem, f
is 1-strongly convex w.r.t. both the l1- and lo-norms. W

Example 5.28 (squared p-norm for p € (1,2]). Consider the function f :
R™ — R given by f(x) = 5[x[|2 (p € (1,2]). Then, by Section 4.4.15, f*(y) =
%HyHg, where ¢ > 2 is determined by the relation %—l—% = 1. By Example 5.11, f* is
a (g—1)-smooth function w.r.t. the [;-norm, which, by the conjugate correspondence
theorem, implies that the function f is qul-strongly convex w.r.t. the /,-norm. Since

qi—l = p— 1, we conclude that f is (p — 1)-strongly convex w.r.t. the [,-norm. W

Example 5.29 (I2 ball-pen function). Consider the ball-pen function f : R™ —
(=00, 0] given by

—V1I=xl3, lxl2 <1,

00 else.

fx) =

By Section 4.4.13, the conjugate of f is

F ) =yIylz+1,

which, by Example 5.14, is known to be 1-smooth w.r.t. the lo-norm, and hence,
by the conjugate correspondence theorem, f is 1-strongly convex w.r.t. the [s-
norm. N

The table below contains all the strongly convex functions described in this chapter.

f(x) dom(f) Strong Norm Reference
convexity
parameter
ix"Ax+2b"x + ¢ R™ Amin (A) Iy Example 5.19

(AeSt;,beR" ceR)

L1x[1? + dc (x) c 1 Euclidean | Example 5.21

(@ # C C E convex)
—/1—||x||? Bj.|,10,1] 1 l2 Example 5.29

sz (p € (1,2]) R" p—1 L Example 5.28

> wilogm JANS 1 I or 1y Example 5.27
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5.3.3 Smoothness and Differentiability of the Infimal
Convolution

We will now show that under appropriate conditions, the infimal convolution of a
convex function and an L-smooth convex function is also L-smooth; in addition, we
will derive an expression for the gradient. The proof of the result is based on the
conjugate correspondence theorem.

Theorem 5.30 (smoothness of the infimal convolution). Let f : E —
(—00, 0] be a proper closed and convex function, and let w : E — R be an L-smooth
convex function. Assume that fOw is real-valued. Then the following hold:

(a) fOw is L-smooth.

(b) Let x € E, and assume that u(x) is a minimizer of
min {f(u) + w(x —u)}. (5.25)

Then V(f0w)(x) = Vw(x — u(x)).

Proof. (a) By Theorem 4.19,
fOw = (f* +w)".

Since f and w are proper closed and convex, then so are f* w* (Theorems 4.3,
4.5). In addition, by the conjugate correspondence theorem (Theorem 5.26), w* is
%—strongly convex. Therefore, by Lemma 5.20, f* 4+ w* is %—strongly convex, and
it is also closed as a sum of closed functions; we will prove that it is also proper.
Indeed, by Theorem 4.16,

(fOw)* = f* + .

Since fOw is convex (by Theorem 2.19) and proper, it follows that f*+w* is proper
as a conjugate of a proper and convex function (Theorem 4.5). Thus, since f* + w*
is proper closed and %—strongly convex function, by the conjugate correspondence
theorem, it follows that flw = (f* + w*)* is L-smooth.

(b) Let x € E be such that u(x) is a minimizer of (5.25), namely,

(fHw)(x) = f(u(x)) + w(x - u(x)). (5.26)

For convenience, define z = Vw(x—u(x)). Our objective is to show that V(fOw)(x)
= z. This means that we have to show that for any & € E, lim¢)_,0 [¢(§)|/[|€]| = 0,
where ¢(&) = (f0w)(x + &) — (fOw)(x) — (€,2). By the definition of the infimal
convolution,

(fHw)(x+§) < fux)) + w(x+ £ —u(x)), (5.27)
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which, combined with (5.26), yields

$(§) = (fOw)(x + &) — (fw)(x) — (§,2)

Swx+€-ux) -wx-ux) - (¢ 2) [(5.26), (5.27)]
< (€, Vwx+€—ux))) — (&, 2), [gradient inequality for w]
= (£, Vw(x + £ —u(x)) — Vw(x — u(x))) [substitution of ]
<€l - IVw(x + € —u(x)) — Vw(x —u(x))|« [generalized Cauchy-Schwarz]

< L||g|> [L-smoothness of w]

To complete the proof, it is enough to show that we also have ¢(&) > —LJ||&||?.
Since fOw is convex, so is ¢, which, along the fact that ¢(0) = 0, implies that
?(&) > —¢(—€), and hence the desired result follows. 0O

Example 5.31 (revisiting the 1-smoothness of %d%) Suppose that E is a
FEuclidean space and let C' C E be a nonempty closed and convex set. Consider
the function ¢c(x) = $dZ(x). We have already shown in Example 5.5 that it is
1-smooth. We will provide here a second proof for this result, which is based on
Theorem 5.30. Note that ¢c = §cOh, where h(x) = £|/x||%. Since h is a real-valued
1-smooth convex function, and since d¢ is proper closed and convex, it follows by
Theorem 5.30 that ¢¢ is 1-smooth.
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Chapter 6

The Proximal Operator

Underlying Space: In this chapter E is a Euclidean space, meaning a finite
dimensional space endowed with an inner product (-,-) and the Euclidean norm

-1l = v/ ()

This chapter is devoted to the study of the proximal mapping, which will be fun-
damental in many of the algorithms that will be explored later in the book. The
operator and its properties were first studied by Moreau, and hence it is also referred
to as “Moreau’s proximal mapping.”

6.1 Definition, Existence, and Uniqueness

Definition 6.1 (proximal mapping). Given a function f : E — (—oo, 0], the
proximal mapping of f is the operator given by

1
prox;(x) = argmin, {f(u) + §||u — x||2} for any x € E.

We will often use the term “prox” instead of “proximal.” The mapping prox,
takes a vector x € E and maps it into a subset of E, which might be empty, a
singleton, or a set with multiple vectors as the following example illustrates.

Example 6.2. Consider the following three functions from R to R:

0,
0, x #£0,
-, =0,

91(2)
g2(z)

0, x#0,
g3() 7

A, =0,

129
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gZ gS

Figure 6.1. The left and right images are the plots of the functions g2 and
gs, respectively, with A = 0.5 from FExample 6.2.

where A > 0 is a given constant. The plots of the noncontinuous functions g and
gs are given in Figure 6.1. The prox of g; can computed as follows:

. 1 , 1
prox, (z) = argmin,cp {gl (u) + §(u — x)Q} = argmin, cp {§(u — 95)2} = {z}.
To compute the prox of g2, note that prox,, (z) = argmin, cgg2(u, z), where

2

“A+%5, u=0,
T(u—2)?, u#0.

92(u, ) = g2(u) + %(u —2)? =

For x # 0, the minimum of 3(u — x)? over R\ {0} is attained at u = (s 0) with
a minimal value of 0. Therefore, in this case, if 0 > —\ + %, then the unique
minimizer of go(-,z) is w = 0, and if 0 < —A + %, then v = x is the unique
minimizer of go(-, ); finally, if 0 = -\ + %, then 0 and z are the two minimizers
g2(,x). When z = 0, the minimizer of go(-,0) is u = 0. To conclude,

{0}, lal < Vv2A,
proxg, (z) =4 {a}, |z > V2A,
{0,2}, |z = V2,

Similar arguments show that

{z}, = #0,
0, z=0. 1

prox,, (z) =

The next theorem, called the first prox theorem, states that if f is proper closed
and convex, then prox, (x) is always a singleton, meaning that the prox exists and
is unique. This is the reason why in the last example only g1, which was proper
closed and convex, had a unique prox at any point.
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Theorem 6.3 (first prox theorem). Let f : E — (—o00,00] be a proper closed
and convex function. Then prox(x) is a singleton for any x € E.

Proof. For any x € E,
prox;(x) = argming . f (1, x), (6.1)

where f(u,x) = f(u) + 1|lu — x||%. The function f(-,x) is a closed and strongly
convex function as a sum of the closed and strongly convex function %H - —x]?
and the closed and convex function f (see Lemma 5.20 and Theorem 2.7(b)). The
properness of f (-, x) immediately follows from the properness of f. Therefore, by
Theorem 5.25(a), there exists a unique minimizer to the problem in (6.1). O

When f is proper closed and convex, the last result shows that prox; (x) is
a singleton for any x € E. In these cases, which will constitute the vast majority
of cases that will be discussed in this chapter, we will treat prox; as a single-
valued mapping from E to E, meaning that we will write prox;(x) = y and not
prox; (x) = {y}.

If we relax the assumptions in the first prox theorem and only require closed-
ness of the function, then it is possible to show under some coerciveness assumptions
that prox;(x) is never an empty set.

Theorem 6.4 (nonemptiness of the prox under closedness and coercive-
ness). Let f : E — (—o0,00] be a proper closed function, and assume that the
following condition is satisfied:

1
the function u— f(u) + §Hu —x||? is coercive for any x € E. (6.2)

Then prox;(x) is nonempty for any x € E.

Proof. For any x € E, the proper function h(u) = f(u) + %[lu — x||? is closed
as a sum of two closed functions. Since by the premise of the theorem it is also
coercive, it follows by Theorem 2.14 (with S = [E) that prox(x), which consists of
the minimizers of h, is nonempty. 0O

Example 6.2 actually gave an illustration of Theorem 6.4 since although both
g2 and g3 satisfy the coercivity assumption (6.2), only g2 was closed, and thus the
fact that prox,, (z) was empty for a certain value of x, as opposed to prox,, (),
which was never empty, is not surprising.

6.2 First Set of Examples of Proximal Mappings

Equipped just with the definition of the proximal mapping, we will now compute
the proximal mapping of several proper closed and convex functions.
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6.2.1 Constant

If f = c for some ¢ € R, then

: 1 2
prox(x) = argmin,cg { ¢ + §||u —x||*r =x.

Therefore,

prox;(x) = x

is the identity mapping.

6.2.2 Affine
Let f(x) = (a,x) + b, where a € E and b € R. Then
: 1 2
pros (x) = argmin, e § (a,uw) -+ 2 fu— x|

. 1 1
— orgmingcs { (%) 46— 5llall + g~ x - )]

=X —a.

Therefore,

proxs(x) =x —a

is a translation mapping.

6.2.3 Convex Quadratic

Let f : R" — R be given by f(x) = ixTAx+bTx + ¢, where A € §7,b € R", and
c € R. The vector prox(x) is the minimizer of the problem

1 1
min {guTAu—i— b u+c+ §||u - X||2} .

uck

The optimal solution of the last problem is attained when the gradient of the ob-
jective function vanishes:

Au+b4+u—x=0,

that is, when
(A+Tu=x—Db,

and hence

prox;(x) = (A + I)"'(x —b).
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6.2.4 One-Dimensional Examples

The following lemma contains several prox computations of one-dimensional func-
tions.

Lemma 6.5. The following are pairs of proper closed and convex functions and
their proxr mappings:

pxr, x>0,
g1 (x) = pI'OXgl (iC) = [iC - M]‘Fa
oo, x<0,
gZ(x) = )\|x|7 proxg2 (iC) = [|x| - /\]+sgn(x),
A3, x>0, 14y/T 20w
g3(z) = prox,, (z) = 6—)\[]*,
oo, x <0,
—Alogx, x>0,
g94(x) = prox,, (v) = TR
0, z <0,
g5(x) = 0[0,nrr (), prox,, (z) = min{max{z,0},n},

where A € Ry, n € [0,00], and p € R.

Proof. The proofs repeatedly use the following trivial arguments: (i) if f/(u) =0
for a convex function f, then w must be one of its minimizers; (ii) if a minimizer of
a convex function exists and is not attained at any point of differentiability, then it
must be attained at a point of nondifferentiability.

[prox of g1] By definition, prox,, (x) is the minimizer of the function

00, u < 0,
flu) =
fi(w), u>0,

where f1(u) = pu+ 3 (u—x)?. First note that f{(u) = 0 if and only if u = x — p. If
x > p, then f'(z—p) = fi(x—p) = 0, implying that in this case prox, (z) =z —p.
Otherwise, if x < pu, the minimizer of f is not attained at a point of differentiability,
meaning that it has to be attained at 0, which is the only point of nondifferentiability
in the domain of f, so that prox,, (z) = 0.

[prox of go] prox,, (=) is the minimizer of the function

hi(w) = u+L(u—2)2  u>0,
g | 0=
ho(u) = —du+ 2(u—=2)?, u<O0.

If the minimizer is attained at u > 0, then 0 = h(u) = A + u — z, meaning that
u=x — \. Therefore, if z > A, then prox,, (r) = z — A. The same argument shows
that if # < —A, then prox,, (z) =z + A. If || < A, then prox,, (z) must be the only
point of nondifferentiability of h, namely, 0.
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[prox of g3] prox,, (=) is the minimizer of the function

B+ Lu—2)?, u>0,
s(u) =
0, u < 0.

If the minimizer is positive, then @ = prox,, (z) satisfies s'(@) = 0, that is,
3M\a? + i —x = 0.

The above equation has a positive root if and only if z > 0, and in this case the

(unique) positive root is prox,, () = @ = =lbvi122e W. If 2 <0, the minimizer of s

is attained at the only point of nondifferentiability of s in its domain, that is, at 0.
[prox of g4] % = prox,, (z) is a minimizer over R of

1
t(u) = —Alogu + g(u — )2,

which is determined by the condition that the derivative vanishes:

A
_— i — :O
a+(u x) ,

that is,
@’ —ax—\=0.

Therefore (taking the positive root),

T+ Va2 44\

prox,, (r) =1 = 5

[prox of gs] We will first assume that 7 < oo. Note that & = prox,, () is the

minimizer of )
w(u) = i(u — )2

over [0,n]. The minimizer of w over R is u = x. Therefore, if 0 < z < n, then
@ =x. If x <0, then w is increasing over [0, 7], and hence @ = 0. Finally, if 2 > 7,
then w is decreasing over [0, 7], and thus @ = 1. To conclude,

z, 0<x<n,
prox, (2) =i=4 0, r<0, = min{max{z,0},n}.
n, x>,

For n = 00, g5(x) = 0[0,0c)(¥), and in this case, g5 is identical to g; with u = 0,
implying that prox,, (x) = [z]4, which can also be written as

prox,, (z) = min{max{z,0},0c0}. O



Downloaded 04/11/24 to 143.215.80.169 by Jacob Aguirre (jaguirre31@gatech.edu). Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

6.3. Prox Calculus Rules 135

6.3 Prox Calculus Rules

In this section we gather several important results on the calculus of proximal
mappings. Note that some of the results do not require any convexity/closedness
assumptions.

Theorem 6.6 (prox of separable functions). Suppose that f :E; x Eg X -+ x
E,, — (—00, 0] is given by

m

f(x1,Xa, ... X)) = Zfz(xz) forany x; € E;; i=1,2,...,m.
i=1

Then for any x; € E1,x9 € Eg, ..., Xy, € Epp,

Prox(X1,X2, . .., Xm) = Proxy, (x1) X proxg, (xz) X - -+ X proxy, (Xm). (6.3)

Proof. Formula (6.3) is a result of the following chain of equalities:

m

. 1
Prox;(X1,Xz, ..., Xp) = argming, . oy [§||Yi —xi||? + fi(yi):|
=1

= [ argminy, [§|Yi —xi*+ fi(yi):|
i=1

= Hproxfi (x;). O
i=1

Remark 6.7. If f : R™ — R s proper closed convex and separable,

n

Fx) = filx),

i=1

with f; being proper closed and conver univariate functions, then the result of The-
orem 6.6 can be rewritten as

proxs(x) = (proxy, (z;))i; -

Example 6.8 (I;-norm). Suppose that g : R® — R is given by g(x) = A||x]|1,
where A > 0. Then

n

9(x) = " pla). (6.4)

i=1
where ¢(t) = Alt|. By Lemma 6.5 (computation of prox, ), prox,(s) = Tx(s), where
Ty is defined as

y—- )\a ) Z /\7
Ta(y) = [lyl — Al+sgn(y) =1 0, ly| < A,

y+A y< =\
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0.5F

—05F

-1

Figure 6.2. The soft thresholding function Ty.

The function 7 is called the soft thresholding function, and its description is given
in Figure 6.2.
By Theorem 6.6,

proxy (x) = (Ta(z;))j=1-

We will expand the definition of the soft thresholding function for vectors by ap-
plying it componentwise, that is, for any x € R™,

Ta(x) = (Ta(25))j=1 = [Ix| — Aely © sgn(x).

In this notation,

prox, (x) = Tx(x).

Example 6.9 (negative sum of logs). Let g: R™ — (—o0, o0 be given by

- Z?Zl logz;, x>0,
g9(x) =
0 else,

where A > 0. Then g(x) = Y. ; ¢(z;), where

—Alogt, t>0,
o(t) =
00, t<O0.

By Lemma 6.5 (computation of prox, ),

s+ VsZ+ 4

prox,,(s) = 5

Thus, by Theorem 6.6,
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Example 6.10 (lp-norm). Let f : R™ — R be given by f(x) = A||x|g, where
A >0 and ||x|jo = #{i : 2; # 0} is the lp-norm discussed in Example 2.11. For any
x € R",

£ = 3 I(a),

where
A, t#0,
I(t) = #
0, t=0.
Note that I(-) = J(-) + A, where
0, t#0,
J(t) = 7
-\, t=0,
and that by Example 6.2,
{0}, sl < v2A,
prox;(s) = ¢ {s}, [s| > V2, (6.5)
{0,s}, |s| = V2.

We can write the above as prox;(s) = H s5x(s), where H, is the so-called hard
thresholding operator defined by

{0}7 Is| < a,
Hals) =9 {s}, [s| > a,
{0,s}, |s] =«

The operators prox; and prox; are the same since for any s € R,
. 1 2
prox;(s) = argmin, < I(t) + 5(75 —s)
. 1 2
= argmin, { J(¢) + A + §(t —5)

— argmin, {J(t) + %(t - 5)2}

= prox;(s).
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Thus, invoking Theorem 6.6, it follows that?”

prox,(x) = H gx(x1) X H gx(22) X - X H g5(T0).

Theorem 6.11 (scaling and translation). Let g : E — (—o0,00] be a proper
function. Let X\ # 0 and a € E. Define f(x) = g(Ax+a). Then

prox;(x) = % [proxyz,(Ax +a) —a] . (6.6)

Proof. By definition of the prox,

1
pros, () = argain { ) + 3 u — x|
: 1 2
= argmin, < g(Au+a) + §||u—x|| . (6.7)
Making the change of variables
z = Au+a, (6.8)

the objective function in the minimization problem (6.7) becomes

2

- {)\Qg(z)+%|z—()\x+a)|2 L (69)

The minimizer of (6.9) is z = prox,2,(Ax + a), and hence by (6.8), it follows that
(6.6) holds. 0O

Theorem 6.12 (prox of Ag(:/\)). Let g : E — (—o0, 0] be proper, and let A # 0.
Define f(x) = Ag(x/A). Then

prox(x) = Aprox,,,(x/A).

Proof. Note that
. 1 2 . u 1 9
prox;(x) = argmin,, q f(u) + §||u —x||* p = argmin, § Ag (X) + §||u x| ;.

27 Actually, prox, (x) should be a subset of R™, meaning the space of n-length column vectors,
but here we practice some abuse of notation and represent proxg(x) as a set of n-length row
vectors.
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Making the change of variables z = ¥, we can continue to write

prox;(x) = Aargmin,, {/\g —H)\z — x||2}
1 2
= Jdargmin, {/\2 [% 5 zZ— §H ]}
B 9(z) 1 x||2
= Aargmin, { X 2 z )\H
= Aprox,,,(x/A). O

Theorem 6.13 (quadratic perturbation). Let g : E — (—o0,o0] be proper, and
let f(x) = g(x) + §|Ix[|*> + (a,x) +, where ¢ > 0,a € E, and v € R. Then

Xx—a
prox;(x) = prox_i_, .

c+1

Proof. Follows by the following simple computation:
. 1 2
prox, (x) = axgmin,, { f(u) + 5ju x|

. c 1
—argain {g(w) + 5l + (o) 47+ 5 - xI?}
c+1 x—a\|
:argminu{g(u)—i- > Hu—<c+1> }
x—a
. a
(55)

Example 6.14. Consider the function f: R — (—oo, o0] given for any x € R by

= Prox_i
p c+1

where ;1 € R and a € [0,00]. To compute the prox of f, note first that f can be
represented as

f(x) = 6j0,a)nr(7) + p.

By Lemma 6.5 (computation of prox,, ), proxs,  _(¢) = min{max{z, 0}, a}. There-
fore, using Theorem 6.13 with ¢ = 0,a = u,y = 0, we obtain that for any = € R,

prox(z) = prox,(z — p) = min{max{z — p,0}, a}.
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Unfortunately, there is no useful calculus rule for computing the prox mapping
of a composition of a function with a general affine mapping. However, if the
associated linear transformation satisfies a certain orthogonality condition, such a
rule exists.

Theorem 6.15 (composition with an affine mapping). Let g : R™ —
(—o0, 0] be a proper closed convex function, and let f(x) = g(A(x) + b), where
b e R™ and A:V — R™ is a linear transformation satisfying®® Ao AT = oI for
some constant o > 0. Then for any x € V,

pro; () = x + - AT (prox,,, (A(x) +b) — A(x) ~ b).

Proof. By definition, prox(x) is the optimal solution of

min { £(w) + g - x1?}

cv

which can be rewritten as

iy {g(A(w) + b) + Gllu—xI?}.

ueV

The above problem can be formulated as the following constrained problem:

1
minuEV,zGRm g(Z) =+ _Hu - XH2
2 (6.10)

s.t. z = A(u) + b.

Denote the optimal solution of (6.10) by (z,0) (the existence and uniqueness of z
and u follow by the underlying assumption that g is proper closed and convex).
Note that u = prox; (x). Fixing z = z, we obtain that u is the optimal solution of

2
“flu—x

3 x| o1
s.t. A(u) =z —b.

minyev

Since strong duality holds for problem (6.11) (see Theorem A.1), by Theorem A.2,
it follows that there exists y € R™ for which

ue argminuev{%|u—x|2+<y,A(u) —i—l—b)} (6.12)
A(a) =z —Db. (6.13)

By (6.12),
a=x-AT(y). (6.14)

28The identity transformation Z was defined in Section 1.10.



Downloaded 04/11/24 to 143.215.80.169 by Jacob Aguirre (jaguirre31@gatech.edu). Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

6.3. Prox Calculus Rules 141

Substituting this expression of @ into (6.13), we obtain
Ax— AT (y) =2 Db,

and hence, using the assumption that Ao AT = aZ,

ay = A(x) +b -z,

which, combined with (6.14), yields an explicit expression for 1 = prox;(x) in terms
of z:
1
prox;(x) =ua=x+ EAT(Z—A(X) —b). (6.15)

Substituting u = @ in the minimization problem (6.10), we obtain that z is given

by
2}

X+ é.AT(Z —A(x)—b) —x

. 1
Z = argming,cpm {g(z) + 3

. 1
— argnin, e {0(2) + 5.5 147 (2~ AG) ~ B)IP
) . 1 2
= argmingcpm 3 og(z) + §||Z — A(x) — b||

= prox,,(A(x) +b),

where the equality (*) uses the assumption that A o AT = aZ. Plugging the
expression for z into (6.15) produces the desired result. 0O
Example 6.16. Let g : E — (—o0, 00] be proper closed and convex where E = R9,
and let f:E™ — (—o00, 00] be defined as

f(X17X2a~'-aXm) =g(x1 +X2+"'+Xm).

The above can be written as f(x1,X2,...,Xm) = g(A(x1,X2,...,Xm)), where A :
E™ — E is the linear transformation

A(XlaXQa- .o ,Xm) =X1 +Xo+ "+ Xpmp.
Obviously, the adjoint operator A7 : E — E™ is given by
AT(x) = (x,x%,...,X),

and for any x € E,
A(AT (%)) = mx.

Thus, the conditions of Theorem 6.15 are satisfied with @« = m and b = 0, and
consequently, for any (x1,Xa,...,X;,) € E™,
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1 m m .
ProxX;(X1,X2,. -, Xm); :Xj+E (proxmg <ZX1> —in , i=12,....,m.
i=1 i=1

Example 6.17. Let f : R® — R be given by f(x) = |aTx|, where a € R" \ {0}.
We can write f as f(x) = g(a”x), where g(t) = |t|. By Lemma 6.5 (prox,, com-
putation), prox,, = 7, with 7x(z) = [|z[ — A]+sgn(z) being the soft thresholding
operator defined in Example 6.8. Invoking Theorem 6.15 with a = ||a||?, b = 0,
and A defined as the transformation x — a’x, we obtain that

prox;(x) = x + ﬁ(ﬁauz (aTx) — aTx)a.

Theorem 6.18 (norm composition). Let f: E — R be given by f(x) = g(||x|]),
where g : R — (—o0,00] is a proper closed and conver function satisfying dom(g) C
[0,00). Then

prox,, (|[x[|) v x #£ 0,
e ) — Sl 010

{u€E: [Jul| = prox,(0)}, x=0.

Proof. By definition, prox;(0) is the set of minimizers of the problem

min { £(w) + 3l } =i {aal) + 5ll?}.

uck
Making the change of variables w = ||u]|, the problem reduces to (recalling that
dom(g) € [0, 00))
: 1 4
iy {a(w) + 3.

The optimal set of the above problem is prox,(0), and hence prox;(0) is the set
of vectors u satisfying ||ul| = prox,(0). We will now compute prox;(x) for x # 0.
The optimization problem associated with the prox computation can be rewritten
as the following double minimization problem:

1 1 1
win {g(lul) + = x| =iy {alhal) + Sl = )+ 117}

. . L, L2
= min min o)+ o —(u,x) + =||x .
min _min {of0) + 30 - tax) + el
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Using the Cauchy—Schwarz inequality, it is easy to see that the minimizer of the

inner minimization problem is
X

="

u=o (6.17)

and the corresponding optimal value is

1 1 1
9(a) + 50° — allx]| + 3 xI1* = gla) + 5 (a — Ix])*

Therefore, prox(x) is given by u in (6.17) with « given by

. 1
@ = argincx, { afe) + (0~ )

. 1
— argmin e { () + (o~ 1)
— pros, (x).

where the second equality is due to the assumption that dom(g) C [0,00). Thus,
prox(x) = prox,([[x[) - O

Example 6.19 (prox of Euclidean norm). Let f : E — R be given by f(x) =
Allx||, where A > 0 and || - || is the underlying Euclidean norm (recall that in this
section we assume that the underlying space is Euclidean). Then f(x) = g(||x]|),
where

M, t>0,
g(t) =
oo, t<0.
Then by Theorem 6.18, for any x € E,
prox, (|Ix]) =%r. x 0,

prox;(x) =
{u€E: [Jul| = prox,(0)}, x=0.

By Lemma 6.5 (computation of proxy, ), prox,(t) = [t — Al+. Thus, prox,(0) = 0
and prox, (||x[|) = [||x|| — Al+, and therefore

Il = Al %, x#0,
prox;(x) =
0, x =0.

Finally, we can write the above formula in the following compact form:

A
Proxy . (x) = (1 - m) B
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Example 6.20 (prox of cubic Euclidean norm). Let f(x) = A||x||?>, where
A > 0. Then f(x) = Ag(||x]|), where

3, t>0,
g(t) =
o0, t<0
Then by Theorem 6.18, for any x € R,
prox ([1x) X7 x # 0,

prox;(x) =
{u€E: [Jul| = prox,(0)}, x=0.

By Lemma 6.5 (computation of prox,, ), prox,(t) = VIRl Vlg;lm'. Therefore,
prox,(0) = 0 and
—1+/TH120[x]
o [P\ ma X 7é 0,
prox;(x) =
0, x =0,
and thus
) :
prox, .z (x) = X.
A-I® 1+ /1+ L2\]x]]
|

Example 6.21 (prox of negative Euclidean norm). Let f : E — R be given
by f(x) = —A||x]||, where A > 0. Since f is not convex, we do not expect the prox
to be a single-valued mapping. However, since f is closed, and since the function
u— f(u)+ 1|ju—x|? is coercive for any x € E, it follows by Theorem 6.4 that the
set prox;(x) is always nonempty. To compute the prox, note that f(x) = g(||xl|),
where

—At, t>0,
9(t) =
0, t <0.
By Theorem 6.18, for any x € R,
prox, (|Ix]) 7. x 0,

prox(x) =
{u€E: [Jul| = prox,(0)}, x=0.

By Lemma 6.5 (computation of prox,, ), prox,(t) = [t+A]}. Therefore, prox,(0) = A
and
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(1+ﬁ)x, x # 0,
{u:|ju)=2A}, x=0.

prox_xj. (x) =

Example 6.22 (prox of absolute value over symmetric intervals). Consider
the function f : R — (—o0, 00| given by

Alz], |z < e,
flz) =

00 else,

where A € [0,00) and « € [0,00]. Then f(x) = g(|z|), where

Thus, by Theorem 6.18, for any =z,

prox, (|z]) s x #0,
prox  (x) = e (6.18)
{u€eR: |u| = prox,(0)}, ==0.

By Example 6.14, prox,(z) = min{max{z — A, 0}, a}, which, combined with (6.18)
and the fact that il = sgn(x) for any x # 0, yields the formula

|z

POXA || 48 o (z) = min{max{|z| — A\, 0}, a}sgn(z).

Using the previous example, we can compute the prox of weighted /;-norms
over boxes.

Example 6.23 (prox of weighted l; over a box). Consider the function f :
R™ — R given by

for any x € R, where w € R” and o € [0,00]™. Then f =", f;, where

wilz|, —a; <x < ay,
fi(z) =

0, else.
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Using Example 6.22 and invoking Theorem 6.6, we finally obtain that

n
i=

proxf(x) = (min{max{|z;| — w;, 0}, a; }sgn(z;)),_; -

|
The table below summarizes the main prox calculus rules discussed in this
section.
H f(x) ‘ prox ¢ (x) ‘ Assumptions Reference H
Sy fi(xq) proxg (x1) X -+ X proxg (Xm) Theorem 6.6
g(Ax + a) % [proxkgg()\x +a)— a] A#0,a€E, g | Theorem 6.11
proper

Ag(x/N) Aprox y (x/A) A #0, g proper | Theorem 6.12
g(x)+ %HXHQ + prox;g(’;:l’) a€E ¢>0, | Theorem 6.13

(a,x) + v e v € R, g proper
g(A(x) + b) x + iAT(proxag(.A(x) +b)—A(x)—b) | b € R™, | Theorem 6.15

AV — R™,

g proper

closed convex,

Ao AT = al,

a>0
rox, (||x|]) 5, x#0

g(|IxI) proxy ([lx[) flxIl # g proper | Theorem 6.18

{u:[Jul| = prox,(0)}, x=0 closed convex,

dom(g) -

[0, 00)

6.4 Prox of Indicators—Orthogonal Projections
6.4.1 The First Projection Theorem

Let g : E — (—o0, 0] be given by g(x) = dc(x), where C' is a nonempty set. Then

: 1 :
prox,(x) = argmin,cg {6c(u) + §||u - X||2} = argmin, . |lu — x||* = Po(x).

Thus, the proximal mapping of the indicator function of a given set is the orthogonal
projection?’ operator onto the same set.

Theorem 6.24. Let C' C E be nonempty. Then prox, . (x) = Po(x) for any x € E.

If C is closed and convex, in addition to being nonempty, the indicator function
d¢ is proper closed and convex, and hence by the first prox theorem (Theorem 6.3),
the orthogonal projection mapping (which coincides with the proximal mapping)
exists and is unique. This is the first projection theorem.

29The orthogonal projection operator was introduced in Example 3.31.
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Theorem 6.25 (first projection theorem). Let C C E be a nonempty closed
convez set. Then Po(x) is a singleton for any x € E.

6.4.2 First Examples in R"

We begin by recalling®® several known expressions for the orthogonal projection
onto some basic subsets of R™. Since the assumption made throughout the book is
that (unless otherwise stated) R™ is endowed with the dot product, and since the
standing assumption in this chapter is that the underlying space is Euclidean, it
follows that the endowed norm is the ls-norm.

Lemma 6.26 (projection onto subsets of R™). Following are pairs of nonempty
closed and convex sets and their corresponding orthogonal projections:

nonnegative orthant Cy = R, x|+,

box Cy = Box[, u], (min{max{z;, {; },u; })"q,
affine set Cs={xeR": Ax=b}, x—- AT(AAT)"!(Ax —b),
12 ball C4:B||_||2[C,7°], C+m(){_c),
half-space Cs = {x:aTx < a}, X — %7]3“3,

where £ € [—00,00)",u € (—00,00]™ are such that £ < u, A € R™*" has full row
rank, b€ R™, c € R, r >0, ac R"\ {0}, and o € R.

Note that we extended the definition of box sets given in Section 1.7.1 to
include unbounded intervals, meaning that Box[£, u] is also defined when the com-
ponents of £ might also take the value —oo, and the components of u might take
the value co. However, boxes are always subsets of R", and the formula

Box[l,u] ={x e R": £ <x < u}

still holds. For example, Box[0, coe] = R’}

6.4.3 Projection onto the Intersection of a Hyperplane and a
Box

The next result develops an expression for the orthogonal projection onto another
subset of R”—the intersection of an hyperplane and a box.

Theorem 6.27 (projection onto the intersection of a hyperplane and a
box). Let C C R™ be given by

C = HapNBox[l,u] = {x cR" :a’x = b,£ < x < u},
where a € R"\ {0},b € R £ € [—00,00)",u € (—00,00]". Assume that C # 0. Then
PC(X) = PBox[l,u] (X - M*a)a

30The derivations of the orthogonal projection expressions in Lemma 6.26 can be found, for
example, in [10].
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where Box[l,u] = {y e R": {; <y; <wuyi=1,2,...,n} and p* is a solution of the
equation
aTPBox[Lu] (X - /La) =b. (619)

Proof. The orthogonal projection of x onto C' is the unique optimal solution of
1
min{§lly—x|§:aTy:b,e<y<u}. (6.20)
y
A Lagrangian of the problem is

1 1 w?
L(y;p) = §Ily—x||§+u(aTy—b) = glly—(x—ua)l\%—7Hal\%+u(aTx—b)- (6.21)

Since strong duality holds for problem (6.20) (see Theorem A.1), it follows by
Theorem A.2 that y* is an optimal solution of problem (6.20) if and only if there
exists pu* € R (which will actually be an optimal solution of the dual problem) for
which

y* € argming, o, L(y; 1), (6.22)
aly* =b. (6.23)

Using the expression of the Lagrangian given in (6.21), the relation (6.22) can be
equivalently written as

y* = PBox[l,u] (X - N*a)

The feasibility condition (6.23) can then be rewritten as

aTPBox[Lu] (X - ,u*a) =b. a

Remark 6.28. The projection onto the box Box[€,u] is extremely simple and is
done component-wise as described in Lemma 6.26. Note also that (6.19) actually
consists in finding a root of the nonincreasing function p(p) = a’ Pgox(x — pa) — b,
which is a task that can be performed efficiently even by simple procedures such as
bisection. The fact that ¢ is nonincreasing follows from the observation that p(u) =
S, a;min{max{xz; — pa;, ;},u;} — b and the fact that p — a; min{max{z; —
nagi, Ui}, ui} is a nonincreasing function for any i.

A direct consequence of Theorem 6.27 is an expression for the orthogonal
projection onto the unit simplex.

Corollary 6.29 (orthogonal projection onto the unit simplex). For any
x € R",

Pa,(x) = [x— el
where p* is a root of the equation
T

e [x—pely —1=0.
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Proof. Invoking Theorem 6.27 witha=e,b=1, ¢; = 0,u; = 00,1 =1,2,...,n,
and noting that in this case Ppoxfeu)(X) = [X]4, the result follows. O

In order to expend the variety of sets on which we will be able to find simple
expressions for the orthogonal projection mapping, in the next two subsections, we
will discuss how to project onto level sets and epigraphs.

6.4.4 Projection onto Level Sets

Theorem 6.30 (orthogonal projection onto level sets). Let C' = Lev(f,a) =
{x € E: f(x) < a}, where f : E — (—o0,00] is proper closed and convex, and
a € R. Assume that there exists x € B for which f(X) < «. Then

PC(X) _ Pdom(f) (X)7 f(Pdom(f) (X)) S a, (624)

prox,.s(x) else,
where \* is any positive root of the equation
p(A) = f(prox,;(x)) —a=0.

In addition, the function ¢ is nonincreasing.

Proof. The orthogonal projection of x onto C' is an optimal solution of the problem

. f1 2
v — . <
I;lelg{ZIy x|| f(y)cnyeX},

where X = dom(f). A Lagrangian of the problem is (A > 0)
1
Ly; A) = 5 lly = x|* + Af(y) — e (6.25)

Since the problem is convex and satisfies Slater’s condition, strong duality holds (see
Theorem A.1), and therefore it follows by the optimality conditions in Theorem A.2
that y* is an optimal solution of problem (6.25) if and only if there exists \* € Ry
for which

y" € argming .y L(y; \*), (6.26)
fy") <o, (6.27)
AM(f(y*) —a)=0. (6.28)

There are two cases. If Px(x) exists and f(Px(x)) < a, then y* = Px(x), and
A* =0 is a solution to the system (6.26), (6.27), (6.28). Otherwise, if Px(x) does
not exist or f(Px(x)) > «, then A* > 0, and in this case the system (6.26), (6.27),
(6.28) reduces to y* = prox,. ;(x) and f(prox,.;(x)) = a, which yields the formula
(6.24).

To prove that ¢ is nonincreasing, recall that

pros () = angminycx { 1y = X2 + AU - )}
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Take 0 < A1 < A2. Then denoting vi = prox,, ;(x) and vz = prox,, ;(x), we have

Sllve =Xl + dalf(v2) )
= %Hvz —x[IP+ A (f(va) —a) + (A2 = A)(f(v2) — @)
> %Hvl —x[IP+ A (f(v1) —a) + (A2 = A)(f(v2) — @)

= %Hvl =x[? 4+ X2 (f(v1) = @) + (A2 = M) (f(v2) — f(v1))

Y

SV =Xl 4 Xa(F(v2) = @) + Oz = M)(F(v2) — F(v2)):

Therefore, (A2 — A1)(f(v2) — f(v1)) < 0. Since Ay < A2, we can conclude that
f(v2) < f(v1). Finally,

P(A2) = f(v2) —a < f(v1) —a = (A1),

establishing the monotonicity of ¢. 0O

Remark 6.31. Note that in Theorem 6.30 f is assumed to be closed, but this
does not necessarily imply that dom(f) is closed. In cases where dom(f) is not
closed, it might happen that Pyom(f)(x) does not exist and formula (6.24) amounts
to Po(x) = proxy. ;(x).

Example 6.32 (projection onto the intersection of a half-space and a box).
Consider the set

C:H;bﬂBox[E,u]:{xeR":aTxgb,nggu},

where a € R"\ {0},b € R, £ € [—00,0)™ and u € (—o0, c0]™. Assume that C # {.
Then C = Lev(f,b), where f(x) = a’x + OBox[e,u](X). For any A > 0,

©)
ProX ;(X) = ProXaat ()4 sy () (X) = Proxs, . (x —Aa) = Ppoxjeu)(X — Aa),

where in the equality (%) we used Theorem 6.13. Invoking Theorem 6.30, we obtain
the following formula for the projection on C:

PBox[l,u] (X)a aTPBox[l,u] (X) S ba

PBox[l,u] (X - )\*a)a aTPBox[l,u] (X) > ba

Pc (X) =

where A* is any positive root of the nonincreasing function

SO()\) = aTPBox[Z,u] (X - /\a) —b.
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Example 6.33 (projection onto the I; ball). Let C = B|,[0,a] = {x € R":
Ix|l1 < a}, where @ > 0. Then C' = Lev(f,«) with f(x) = ||x||1. The prox of
Af = M| - |1 for any XA > 0 was computed in Example 6.8, where it was shown that

prox, ;(x) = Ty(x) for all x € R"

with 7 being the soft thresholding operator given by Tx(x) = [x — A\e];+ © sgn(x).
Invoking Theorem 6.30, we obtain that

X, X[l < o,
PBH'HI[O’O‘] (X) =
Th-(x), x> e

where \* is any positive root of the nonincreasing function

e(A) = [ITA(x)[l — .

The next example uses a generalization of the soft thresholding mapping,
which will be called the two-sided soft thresholding operator, and is defined for any
a,b € (—oo,00]™ as

Sab(x) = (min{max{|z;| — a;,0}, b; }sgn(z;))i,, x€R™

Obviously,
S)\e,ooe = 7—)\

Here oce is the n-dimensional column vector whose elements are all co. A plot of
the function ¢t — S1 2(t) is given in Figure 6.3.

Figure 6.3. The two-sided soft thresholding function t — Sia(t) =
min{max{|¢t| — 1,0}, 2}sgn(t).

Example 6.34 (projection onto the intersection of weighted l; ball and a
box). Let C' C R" be given by

C:{XER":Zwi|xi|<ﬁ,—a<x<a},

=1
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where w € R}, o € [0,00]", and € Ry ;. Then obviously C' = Lev(f, ), where

Z?:l wi|$i|7 —a<x< (e
f(X) = wT|X| —+ 5B0x[7o¢7a] (x) =
o0 else

for any x € R™. By Example 6.23, for any A > 0 and x € R",

prox, ;(x) = (min{max{|z;| — Aw;, 0}, a; }sgn(z;));; = Saw,a(X).

Therefore, invoking Theorem 6.30, we obtain that

PBox[—a,a] (X)a wT|PBox[—a,a] (X)| S ﬂa

S)\*wpc(x)a wT|PBox[—a,a] (X)| > f,

PC (X) =

where A* is any positive root of the nonincreasing function

p(A) = WT|S>\w7a(X)| - B.

As a final illustration of Theorem 6.30, we give an example in which the
domain of f is not closed.

Example 6.35. Let
C={xeR}, I z;>a},

where o > 0. The key property that will allow us to compute the orthogonal
projection onto C'is the fact that it can be rewritten as

C = {xeR’}rJr : —Zlogwi < —loga}.
i=1

Thus, C' = Lev(f, —loga), where f : R" — (—o00,00] is the negative sum of logs
function:
- loga;, xeR%,,
fx) =

00 else.

In Example 6.9 it was shown that for any x € R™,

zj + o fTF + 4N

prox, s (x) = D)

j=1
We can now invoke Theorem 6.30 to obtain a formula (up to a single parameter
that can be found by a one-dimensional search) for the projection onto C, but there
is one issue that needs to be treated delicately. If x ¢ R |, meaning that it has at
least one nonpositive element, then Prn  (x) does not exist. In this case only the
second part of (6.24) is relevant, meaning that Pc(x) = prox,. ¢(x). To conclude,
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X, x e C,
Peo(x) = 2ot S22 =\ "
(%W) CxécC
j=1

where \* is any positive root of the nonincreasing function

T 2
o) = — 3, log (*7“) T loga

6.4.5 Projection onto Epigraphs

We can use Theorem 6.30 to prove a theorem on the projection onto epigraphs of
convex functions.

Theorem 6.36 (orthogonal projection onto epigraphs). Let
C =epi(g) = {(x,t) e Ex R : g(x) < t},
where g : E — R is convex. Then

(x, ), 9(x) < s,

(prox,. 4(x),s +A*), g(x) > s,

Pe((x,s)) =

where \* is any positive root of the function
P(A) = g(proxy,(x)) — A —s.
In addition, v is nonincreasing.

Proof. Define f : ExR — R as f(x,t) = g(x) — t. By definition of the prox,
. 1 2, 1 2
prox, (x,5) = argminy,, § 2y — x| + 3t~ )7 + A7y, 1)
. 1 2, 1 2
= axgming  { 2lly — P+ 56— 5+ Agly) — M |
The above problem is separable in y and t, and thus
. 1 2 : 1 2
prox, ;(x, s) = | argmin,, EHy — x|+ Ag(y) ¢ , argmin, §(t —8)* =\t

= (prOX,\g (%), PfOX,\h(S)) )

where h(t) = —t. Since Ah is linear, then by Section 6.2.2, prox,,(z) = z + A for
any z € R. Thus,

proxy ;(x,s) = (prox,,(x),s + A).
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Since epi(g) = Lev(f,0), we can invoke Theorem 6.30 (noting that dom(f) = E)
and obtain that

(x,s), g(x) <s,

(prox)\*g(x)v s+ )\)a g(X) > s,

Fe((x,s)) =

where \* is any positive root of the function

Y(A) = g(prox,,(x)) = A — s,

which by Theorem 6.30 is nonincreasing. 0O

Example 6.37 (projection onto the Lorentz cone). Consider the Lorentz cone,
which is given by L™ = {(x,t) € R"” x R : ||x]|2 < t}. We will show that for any
(x,5) € R™ x R,

+ +
(et 2022 el > 1o,
PLn(X,S) = (070)7 s < ||X||2 < —s,
(x, 5), x[]2 < s.

To show the above,?! we invoke Theorem 6.36 to obtain the formula

(X, 5)7 HXH2 <s,
Prn((x,5)) =
(Proxy« ., (X), s + A%, [[x[]2 > s,

where A* is any positive root of the nonincreasing function
¢()\) = ||prOX>‘H'H2(X)H2 —A—s. (629)
Let (x,s) € R™ x R be such that ||x||2 > s. Recall that by Example 6.19,

A

— X.
max{|[x||2, A} ]

ProXy ., (%) =
Plugging the above into the expression of 1 in (6.29) yields

[xll2 =2X =5, A <|x]l2,
P(A) =

“A=s, A= Ix]l2.
The unique positive root A* of the piecewise linear function v is

A* — HXHTQ_Sv ||X||2 2 S,

—s, Ix]]2 < —s.

31 Actually, the formula for Po(x) when ||x||2 = s appears twice in the formula, but in both
cases it amounts to (x, s).
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Thus, in the case ||x|2 > s (noting that ||x||2 > —s corresponds to the case where
[Ix|l2 > A* and ||x||2 < —s corresponds to ||x[j2 < A*),

A*
1————— | x,5+X\"|,
<|: maX{HX”?v)‘*}]Jr )

(pI‘OX)\* -1l (X), s+ A*)

< H;anf %, ”x”22+8> Il = =,
Ix]l2 < —s.

( x, )y > s,

(o, > Iz < =s.

Recalling that [|x||2 > s, we have thus established that Pr»(x,s) = (0,0) when
s < ||x|l2 < —s and that whenever (x,s) satisfies ||x|l2 > s and ||x||2 > —s, the
formula

(6.30)

Puntn) = (Llztny o 2)

X,
2|x[|2 2
holds. The result now follows by noting that
{Gx8) 2 lIxll2 > [s[} = {(x,8) : Ix[|2 > s, [x[|l2 > —s} U{(x,5) : [Ix]|2 = s},

and that formula (6.30) is trivial for the case ||x||2 = s (amounts to Pr»(x,s) =

(x,s)). 1
Example 6.38 (projection onto the epigraph of the l;-norm). Let
C=A{{y,t) e R" xR: [[y[s < t}.

Invoking Theorem 6.36 and recalling that for any A > 0, prox, ., = 7x, where Ty
is the soft thresholding operator (see Example 6.8), it follows that

X, S), x||1 < s,
Py — 4 &) Il
(Ta=(x), s + A7), [Ix[[1 > s,

where A* is any positive root of the nonincreasing function

e(A) = ITa&)[[L = A —s.

6.4.6 Summary of Orthogonal Projection Computations

Table 6.1 describes all the examples of orthogonal projection computations onto
subsets of R™ and R™ x R that were discussed so far.
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Table 6.1. The following notation is used in the table. [x|; is the non-
negative part of x, Ta(y) = ([[yil — Al+sgn(y))iy, and Sap(x) = (min{max{|z,| -
a;, 0}, b; bsgn(x;))i .
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H set (C) ‘ Pc(x) ‘ Assumptions ‘ Reference ‘
R7Y [x]+ — Lemma 6.26
Box[¢, u] Pc(x); = min{max{xz;, {; },u; } £ <y Lemma 6.26
By, le;7] c+ W(x —c) ceR”,r>0 Lemma 6.26
{x: Ax =b} x — AT(AAT)"1(Ax — b) A € R™X7", Lemma 6.26
b € Rm™,
A full row rank
T a7 x—b]4
{x:a"x <b} X— —aE 2 0 # a ¢ Lemma 6.26
R™,beR
An [x — pn*e]+ where p* € R satisfies Corollary 6.29
oTlx— pely = 1
H, , N Box[£,u] Ppoxle,u)(x — p*a) where p* € R | a € R™\ {0}, | Theorem 6.27
satisfies aTPBOX[e’u] (x—p*a)=0b | bER
P X), alv, <b,
H_ , N Box[£,u] Boxte.u) () = a € R™\ {0}, | Example 6.32
PBox[Lu] (X - )‘*a)’ aTVX >b,| beR
Vx = PBox[l,u] (X),
aTPBox[e,u] (x—=X*a)=b,\* >0
x, lIxl < o,
By, 10,4 a>0 Example 6.33
Ta= (%), Ixl >«
T3 ()11 =, A >0
{x:wlx| < B, v, wlvs| < B,
w € RY, o € | Example 6.34
—a<x<a} Sr+ew,a (%), wTvx| > B, [0,00]", B €
Vx = PBox[—a,a](x)y Rt
w!Sxrw,a(x)] = 6,2 >0
X, x e C,
. . “\ 7
{x>0:1x; >a} ((pj+ /12?.‘.4)\ >  xéo a>0 Example 6.35
j=1
mr_, ((m]- +Ja2 + 4,\*)/2) -
a,A* >0
(“;\‘E\\ts& HXHQQLS> if [|x[l2 = |s]
{(x,8) « lIxll2 < s} (0,0) if s < |x|l2 < —s, Example 6.37
(x,s) if ||x]]2 < s.
(x,), lIxl[1 < s,
{(x,8) : [Ix]lx < s} Example 6.38
(Th=(x), s+ A7), Il > s,
[T ()11 — A* — 5 =0, A* > 0
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6.5 The Second Prox Theorem

We can use Fermat’s optimality condition (Theorem 3.63) in order to prove the
second prox theorem.

Theorem 6.39 (second prox theorem). Let f :E — (—o0,00| be a proper
closed and convex function. Then for any x,u € E, the following three claims are
equivalent:

(1) u= prox;(x).

(ii) x —u € df(u).

(iii) (x—u,y —u) < f(y) = f(u) for anyy € E.
Proof. By definition, u = prox;(x) if and only if u is the minimizer of the problem

. 1 2
min 4 f(v) + 5]v — [}
which, by Fermat’s optimality condition (Theorem 3.63) and the sum rule of sub-
differential calculus (Theorem 3.40), is equivalent to the relation
0c€df(u)+u-—x. (6.31)

We have thus shown the equivalence between claims (i) and (ii). Finally, by the
definition of the subgradient, the membership relation of claim (ii) is equivalent to
(ii). O

A direct consequence of the second prox theorem is that for a proper closed
and convex function, x = prox(x) if and only x is a minimizer of f.

Corollary 6.40. Let f be a proper closed and convexr function. Then x is a
minimizer of f if and only if x = prox(x).

Proof. x is a minimizer of f if and only if 0 € Jf(x), that is, if and only if
x—x € Jf(x), which by the second prox theorem (equivalence between (i) and (ii))
is the same as x = proxs(x). 0O

When f = 6¢, with C' being a nonempty closed and convex set, the equivalence
between claims (i) and (iii) in the second prox theorem amounts to the second
projection theorem.

Theorem 6.41 (second projection theorem). Let C C E be a nonempty
closed and convex set. Let u € C. Then u = Po(x) if and only if

(x —uw,y —u) <0 for anyy € C.

Another rather direct result of the second prox theorem is the firm nonexpan-
sivity of the prox operator.
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Theorem 6.42 (firm nonexpansivity of the prox operator). Let f be a proper
closed and convex function. Then for any x,y € E,

(a) (firm nonexpansivity)

(x —y, prox;(x) — prox;(y)) > [[prox;(x) — prox,(y)|*.

(b) (nonexpansivity)

[[prox; (x) — prox;(y)[| < [lx =y

Proof. (a) Denoting u = prox(x), v = prox;(y), by the equivalence of (i) and (ii)
in the second prox theorem (Theorem 6.39), it follows that

x—u€df(u),y —veaf(v).
Thus, by the subgradient inequality,

fv) =z flu) + (x—u,v —u),
fa) = f(v) +({y —v,u—v).
Summing the above two inequalities, we obtain
0>{y—x+u—v,u—v),
which is the same as
(x—y,u=v)>fu-v|?
that is,
(x —y, prox;(x) — prox;(y)) > |[prox;(x) — prox;(y)||*.

(b) If prox;(x) = prox;(y), then the inequality is obvious. Assume that
prox(x) # prox;(y). Using (a) and the Cauchy—Schwarz inequality, it follows that

[[prox (x) — prox;(y)||* < (prox;, (x) — prox, (y),x — y)
< [Iprox,,(x) — prox,, (y)| - [Ix — v/

Dividing by ||prox;,(x) — prox; (y)||, the desired result is established. O

The following result shows how to compute the prox of the distance function
to a nonempty closed and convex set. The proof is heavily based on the second
prox theorem.

Lemma 6.43 (prox of the distance function). Let C C E be a nonempty,
closed, and convex set. Let X > 0. Then for any x € E,

proxs g (%) = (1-0)x+0Pc(x), do(x)> A, (6.32)
Peo(x), do(x) < A,



Downloaded 04/11/24 to 143.215.80.169 by Jacob Aguirre (jaguirre31@gatech.edu). Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

6.5. The Second Prox Theorem 159

where®?

(6.33)

Proof. Let u = prox,,_(x). By the second prox theorem (Theorem 6.39),
x —u € \dd¢(u). (6.34)
We will split the analysis into two cases.

Case I. u ¢ C. By Example 3.49, (6.34) is the same as

u — Pc(u)

—u=A\
* do(u)

Denoting o = #(u), the last equality can be rewritten as

1 e
= P . 5
u oz+1x+oz+1 c(u) (6.35)

x — Po(u) = (a4 1)(u — Po(u)). (6.36)

By the second projection theorem (Theorem 6.41), in order to show that Po(u) =
Pc(x), it is enough to show that

(x — Po(u),y — Po(u)) <0 forany y € C. (6.37)
Using (6.36), we can deduce that (6.37) is equivalent to
(a+1){(u— Pc(u),y — Pc(u)) <0 for any y € C,

which is a valid inequality by the second projection theorem, and hence Po(u) =
P (x). Using this fact and taking the norm in both sides of (6.36), we obtain that

de(x) = (a+ 1)dc(u) = de(u) + A,
which also shows that in this case do(x) > A (since de(u) > 0) and that

1 de(u) de(x) = A
a+1l A+de(u)  do(x)

=1-6,

where 6 is given in (6.33). Therefore, (6.35) can also be written as (recalling also
that Pc(u) = Pc(X))

proxy gy, (x) = (1 — 0)x + 0Pc(x). (6.38)

Case II. If u € C, then u = Po(x). To show this, let v € C. Since u = prox, . (x),
it follows in particular that

1 1
Nc(w) + 3= x| < Ao (v) + 5Iv = x?,

32Since 6 is used only when x ¢ C, it follows that dc(x) > 0, so that @ is well defined.
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and hence, since d¢(u) = de(v) =0,
u—x|[ < v —x].

Therefore,
u = argmin, o ||v — x|| = Po(x).

By Example 3.49, the optimality condition (6.34) becomes

- P
Xfc(x) € Ne(u)n B[0, 1],
which in particular implies that
x — Po(x) <1
)\ — )

that is,
do(x) = [ Po(x) —x|| < A.

Since the first case in which (6.38) holds corresponds to vectors satisfying do(x) > A,
while the second case in which prox,,;, (x) = Pc(x) corresponds to vectors satisfying
deo(x) < A, the desired result (6.32) is established. 0O

6.6 Moreau Decomposition

A key property of the prox operator is the so-called Moreau decomposition theo-
rem, which connects the prox operator of proper closed convex functions and their
conjugates.

Theorem 6.44 (Moreau decomposition). Let f : E — (—o0,00] be proper
closed and convex. Then for any x € E,

prox;(x) + prox;.(x) = x.
Proof. Let x € E and denote u = prox; (x). Then by the equivalence between
claims (i) and (ii) in the second prox theorem (Theorem 6.39), it follows that x—u €
df(u), which by the conjugate subgradient theorem (Theorem 4.20) is equivalent

tou € 9f*(x—u). Using the second prox theorem again, we conclude that x —u =
prox;.(x). Therefore,

prox;(x) + prox;.(x) =u+ (x —u)=x. O

The next result is a useful extension of the Moreau decomposition theorem.

Theorem 6.45 (extended Moreau decomposition). Let f:E — (—o0,00] be
proper closed and convez, and let A > 0. Then for any x € E,

prox, ¢(x) + Aprox, -1 s (x/A) = x. (6.39)
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Proof. Using Moreau decomposition, for any x € E,
Prox, s (x) = x — prox, s)- (X) = X — prox, s« (./») (%), (6.40)
where the second equality follows by Theorem 4.14(a). By Theorem 6.12,
Prox, f+(. ) (X) = Aproxy—1 . (x/A),

which, combined with (6.40), yields (6.39). O

6.6.1 Support Functions

Using Moreau decomposition, we can develop a formula for computing the prox
of a support function of a given nonempty closed and convex set in terms of the
orthogonal projection operator.

Theorem 6.46 (prox of support functions). Let C C E be a nonempty closed
and convez set, and let A > 0. Then for any x € E,

proxy, . (x) = x — APo(x/A). (6.41)

Proof. A direct consequence of the extended Moreau decomposition formula (The-
orem 6.45) along with the fact that (c¢)* = d¢ (Example 4.9). 0O

Following are several examples of prox computations using formula (6.41).

Example 6.47 (prox of norms). Let f : E — R be given by f(x) = Al|x]|a,
where A > 0 and || - || is any norm on E. Note that || - || is not necessarily the
endowed norm on E, which is denoted by || - || and in this chapter is always assumed
to be the Euclidean norm. We know by Example 2.31 that

[X[lo = o0 (%),

where
C = B||_||W[0, 1]={x€eE:|x|

ax <1}

with || - |a,« being the dual norm of | - ||. Invoking Theorem 6.46, we obtain

proxy |, (X) =x = APg | j0,1](x/A).

Example 6.48 (prox of lo-norm). By Example 6.47 we have for all A > 0 and
x € R",

pI‘OX)\”_”m(X) =X — APBH'M[O’]'] (X/)\)
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The projection onto the I; unit ball can be easily computed by finding a root of a
nonincreasing one-dimensional function; see Example 6.33. H

Example 6.49 (prox of the max function). Consider the max function g :
R™ — R given by g(x) = max(x) = max{x,z2,...,2,}. It is easy to see that the
max function is actually the support function of the unit simplex:

max(x) = oa,, (X).

Therefore, by Theorem 6.46, for any A > 0 and x € R",

PIOX) max() (X) = X — APa, (x/A).

The projection onto the unit simplex can be efficiently computed by finding a root
of a nonincreasing one-dimensional function; see Corollary 6.29. N

Example 6.50 (prox of the sum-of-k-largest-values function). Let f : R™ —
R be given by

f(x) = wpy+wpg) + - 2,
where k € {1,2,...,n} and for any i, x[; denotes ith largest value in the vector x.
It is not difficult to show that f = o¢, where

C={yeR":ely=k0<y<e}.
Therefore, by Theorem 6.46,
prox, s (x) = x — APc(x/A).
That is, for any x € R™,

pI‘OX)\f(X) =X- )‘P{y:eTy:k,Ogyge} (X/)‘)

As in the previous examples, computing the projection onto C' amounts to finding
a root of a monotone one-dimensional function; see Theorem 6.27. N

Example 6.51 (prox of the sum-of-k-largest-absolute-values function). Let
f:R™ — R be given by

where k € {1,2,...,n} and x; is the component of x with the ith largest absolute
value, meaning in particular that x| > |z > -+ > |2(,)|. Then

flx)= maX{Zzixi Szl <k, —e<z< e} .
i=1
Therefore, f = o¢, where
C={zeR":|z|1 <k, —e<z<e},
and consequently, by Theorem 6.46,
prox, ¢(x) = x — APc(x/ ).
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That is, for any x € R™,

pI‘OXAf(X) =X — /\P{y:Hylhgk,feSySe} (X//\)

The orthogonal projection in the above formula amounts to finding a root of a
nonincreasing one-dimensional function; see Example 6.34. H

6.7 The Moreau Envelope

6.7.1 Definition and Basic Properties

Definition 6.52 (Moreau envelope). Given a proper closed convex function
f:E—= (—o00,00] and p > 0, the Moreau envelope of f is the function

ME(x) = in{f(u) + i”x—u”g}. (6.42)

uck

The parameter u is called the smoothing parameter. The explanation for this
terminology will be given in Section 6.7.2. By the first prox theorem (Theorem
6.3), the minimization problem in (6.42) has a unique solution, given by prox,, ;(x).
Therefore, M (x) is always a real number and

M (x) = f(prox,,(x)) + iux — prox, (%)%

Example 6.53 (Moreau envelope of indicators). Let f = d¢, where C C E is
a nonempty closed and convex set. By Theorem 6.24, prox,¢(x) = Pc(x). Thus,
for any x € E,

ME(x) = be(Po(x)) + inx — Pe)II%

and hence

The next example will show that the Moreau envelope of the (Euclidean) norm
is the so-called Huber function defined as

2 X 27 x|| < )
Mo | BRI T < 615

[l =5, x> p

The one-dimensional Huber function is plotted in Figure 6.4, where it is illustrated
that the function becomes smoother as p becomes larger.
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Figure 6.4. The Huber function with parameters p = 0.1,1,4. The func-
tion becomes smoother as u gets larger.

Example 6.54 (Huber function). Let f: E — R be given by f(x) = ||x||. Then
by Example 6.19, for any x € E and p > 0,

Therefore,

1 2
1 2_||X|| ) ”X” < H,
My (x) = [[prox, s (x)| + EHX —prox,;(x)|* =4

[l =5, x> p

Thus, for any u > 0,

b
Mj.y = Hy.

Note that the Moreau envelope function is actually a result of an infimal
convolution operation between the function f and the function

1 2
wy,(x) = —||x||”. 6.44
409 = 5l (6.44)
That is,
M{ = fOwy,.

One consequence of this observation is that by Theorem 2.19, if f is a proper closed?3?
and convex function, then M J’f is convex. We summarize the above discussion in
the following theorem.

33 Actually, closedness is not necessary in order to establish the convexity of the Moreau envelope.
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Theorem 6.55. Let f : E — (—o0,00] be a proper closed and convex function, and
let wy, be given in (6.44), where ;1 > 0. Then

(a) MJ’,‘ = fOwp;

(b) M{ :E — R is real-valued and convez.

We can immediately conclude from Theorem 6.55(a) along with the formula
for the conjugate of the infimal convolution (Theorem 4.16) an expression for the
conjugate of the Moreau envelope.

Corollary 6.56. Let f : E — (—o00,00] be a proper closed and convex function and
let w, be given in (6.44), where > 0. Then

HN* _ px
(Mf) =f +w%.

Another useful algebraic property of the Moreau envelope is described in the
following result.

Lemma 6.57. Let f : E — (—o00,00] be a proper closed and convex function, and
let \,u > 0. Then for any x € E,

AMY (x) = MY (x). (6.45)

Proof. For any x € E,

A0 = Amin { ) + = x|

= in {770 + 5. a7
= M{(x). O

A simple calculus rule states that the Moreau envelope of a separable sum of
functions is the sum of the corresponding Moreau envelopes.

Theorem 6.58 (Moreau envelope of separable functions). Suppose that
E=E; xEy x--- X E,, and let f: E — (—o0, 0] be given by

m

f(X17X27"'7Xm) :Zfi(xi)a X1 6E17X2 E]E27~'~7Xm E]Ema
i=1

with f; : E; = (—00,00] being a proper closed and convex function for any i. Then
giwen p > 0, for any x1 € E1,%x9 € Eo,...,xp, € Eppy,

M (x1,X2, ..., Xm) = ZMJ’,‘(Xl)
i=1
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Proof. For any x; € Eq1,x2 € Eo,...,x,, € E,,, denoting x = (x1,X2,...,Xm), we
have
M"Y (x) = min flug,ug,... um)—i—iH(ul s, ..., Uy) — x||?
f W EE; i=1,2,...,m PTE 2/ Ve
m 1 m
_ : (1 . 12
= uie]Ei’EIilerQ’““”m‘ {Zl fz(uz) + 2/}, Zl Huz X’LH }
1= 1=
m
= min { i) + 5w - xi1?)
=1
m
i=1

Example 6.59 (Moreau envelope of the l;-norm). Consider the function f :
R™ — R given by f(x) = ||x||1. Note that

76 = xll = 3" gl

where g(t) = [t|. By Example 6.54, M}' = H,. Thus, invoking Theorem 6.58, we
obtain that for any x € R”,

n n

ME(x) = MM (x;) = Hy(x;). B

i=1 i=1

6.7.2 Differentiability of the Moreau Envelope

The main differentiability properties of the Moreau envelope function are stated in
the next result.

Theorem 6.60 (smoothness of the Moreau envelope). Let f : E — (—o0, o0]

be a proper closed and convex function. Let > 0. Then MJ’,‘ 18 %-smooth over E,

and for any x € E,
1
VM (x) = m (x — prox,, ;(x)) .

|>. We can therefore

Proof. By Theorem 6.55(a), M}‘ = fOw,, where w, = i” .
invoke Theorem 5.30, whose assumptions are satisfied (taking w = w,, and L = i),
and conclude that M }‘ is %—smooth. In addition, since
. 1 2
pm&ﬂ@=ﬂ@mmwm,ﬂw+§jm—XH ,

it follows that the vector u(x) defined in Theorem 5.30 is equal to prox, ;(x) and
that

VMﬂ@:V%@—u@D:%@—mmM@» 0
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Example 6.61 (1-smoothness of % d ) Let C C E be a nonempty closed and

convex set. Recall that by Example 6. 53 d2 = Méo' Then by Theorem 6.60, %dz
is 1-smooth and

¥ (02) (0 = x — pross, (0 = x = P

Note that the above expression for the gradient was already derived in Example
3.31 and that the 1-smoothness of %dQC was already established twice in Examples
5.5and 5.31. N

Example 6.62 (smoothness of the Huber function). Recall that the Huber
function is given by

2 X ) X ,LL,
HH(::) =

[l =5, [l > g

By Example 6.54, H, = M}, where f(x) = |[x|. Then, by Theorem 6.60, H, is

i-smooth and

VH,(x)

|
—_— Tl Tl

(x — prox,, (x))

(1 ) )

Ly, x| < p,

—~
*
~

X
[k

[l > p,

where the equality () uses the expression for prox,; developed in Example 6.19.

6.7.3 Prox of the Moreau Envelope

An interesting and important result states that if we can compute the prox of a
proper closed and convex function f, then we can also compute the prox of its
Moreau envelope.

Theorem 6.63 (prox of Moreau envelope). Let f : E — (—o0, 00| be a proper
closed and convex function, and let pn > 0. Then for any x € E,

1
proxyu (X) = X + S (Pfox(uﬂ)f(x) - X) :

Proof. First note that

1 1 1
min {0 () + 5 =17 b = i {70) + - u = vIP+ Jlhu—xI2}
(6.46)
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Exchanging the order of minimizations, we obtain the following problem:
. 1 1
minnin { 1) + 5 =17 + 512} (6.47)
y u 2u 2

The optimal solution of the inner minimization problem in u is attained when the
gradient w.r.t. u vanishes:

%(u—y)—i—(u—x):O,

that is, when
_px+y
u:u# = .
u+1

Therefore, the optimal value of the inner minimization problem in (6.47) is

(6.48)

1 ,ux—uyZ 1 y—x2
2u 2

p+1 2| p+1

1 1
fly)+ ﬂ”uu =yIP + Sl = x* = fv) +

1 2
Zf(YH'mHX—YH .

Therefore, the optimal solution of (6.46) is given by (6.48), where y is the solution
of

min { £5) + oy I v17

that is, y = prox(,;1)y(x). To summarize,

1

= PES (,ux + prox(uﬂ)f(x)) . 0O

proXu (x)

Combining Theorem 6.63 with Lemma 6.57 leads to the following corollary.

Corollary 6.64. Let f : E — (—o00,00] be a proper closed and convex function,
and let A\, p > 0. Then for any x € E,

A
ProXart (x) =x+ Y (PTOX(qu/\)f(X) - X) .

Proof. Prox e (x) = PTOX) /. (x) =x+ ﬁ (prox(mLA)f(x) - x) . mO

Example 6.65 (prox of %dzc) Let C C E be a nonempty closed and convex set,

and let A > 0. Consider the function f = %d% Then, by Example 6.53, f = M;,
where g = dc. Recall that prox, = Pc. Therefore, invoking Corollary 6.64, we
obtain that for any x € E,

A A
prox, ¢(x) = ProX 1 (x) = X+)\—+1 (pI‘OX()\+1)g(X) - x) = x—l—)\—_’_1 (Po(x) — x).

To conclude,
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Proxa gz, (x) = ——

Example 6.66 (prox of the Huber function). Consider the function

f(X) = )\Hﬂ(x)a

where H,, is the Huber function with a smoothing parameter p > 0 given in (6.43).
By Example 6.54, H, = M", where g(x) = ||x||. Therefore, by Corollary 6.64, it

g )
follows that for any A > 0 and x € E (recalling the expression for the prox of the

Euclidean norm derived in Example 6.19),

_ _ A
Proxas, () = Proxaagg () = X+ 5 (Proxgun (9) — x)

s (4 st ) <)
pea \\ T w0 |

which, after some algebraic cancellations, reduces to

A
prox x)=|1- ) X.
.0 ( max{[Jx]], s+ A}

:X+

Similarly to the Moreau decomposition formula for the prox operator (Theo-
rem 6.45), we can obtain a decomposition formula for the Moreau envelope function.

Theorem 6.67 (Moreau envelope decomposition). Let f : E — (—oo, 0] be
a proper closed and conver function, and let n > 0. Then for any x € E,

1
MY (x) + M (x /) = ﬂnxn?.

Proof. Recall that for any x € E,
Bl
M () = min {7(w) + v (w)}
where ¥(u) = i lu — x||?. By Fenchel’s duality theorem (Theorem 4.15), we have
" _ _px LY — _ . * *(
ME() = max {~f°(v) — 9 (~¥)} = ~min {£*(v) + ¥*(~v)}
Denote ¢(-) = 3| - —x|[|%. Then

5 (v) = VI + )
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Since ¢ = i¢, it follows by Theorem 4.14 that

. L. 1
VW) = 26 () = IV + (e,
Therefore,
MY (x) = —min { /*(v) + SIVI? = (x.v) }
f veE 2 ’ ’
and hence

1 1
MO0 =~ {770+ §lv = s/l = g lxl? b = 5l - 272 e/,

establishing the desired result. 0O

6.8 Miscellaneous Prox Computations

In this section we gather several examples of prox computations that are not linked
to any specific result established in this chapter.

6.8.1 Norm of a Linear Transformation over R"

Lemma 6.68. Let f : R — R be given by f(x) = ||Ax||2, where A € R™*™ is
with full row rank, and let A > 0. Then

x — AT(AAT)1Ax, [(AAT)"LTAx|s < A,
profo(X) =
x — AT(AAT + ') 1Ax, [[(AAT)1Ax|y > A,

where o is the unique positive root of the decreasing function

g(a) = [(AAT +al) "' Ax| - A2,

Proof. The vector prox, f(x) is the unique optimal solution to

) 1 2
i {NAul + a3},
which can also be rewritten as

1
{§|u—x|§+)\|z|2 :Z:Au}. (6.49)

min
ueR” zeR™

To construct a Lagrangian dual problem, we first form the Lagrangian:

L(u,z;y)

1
5 llu = x5 + Allzl2 +y"(z — Au)

1
3l xI— (ATy)Tul + [zl + 7).
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Since the Lagrangian is separable w.r.t. u and z, the dual objective function can be
rewritten as

1
IEi;l L(u,z;y) = rnuin {§|u - (ATy)Tu} + mzin Mzl +y"z].  (6.50)

The minimizer of the minimization problem in u is t = x+ A7y with a correspond-
ing optimal value of

|1 1, . -
min |l = X[ ~ (ATy)7u] = - xl - (A7)

1
= —inAATy — (Ax)Ty. (6.51)
As for the second minimization problem, note that
min [A||zll2 +y"z] = — max[(—y)"z — A||zll2] = —g" (=),

where g(-) = Al - [|2. Since g*(w) = A, 10,11(W/A) = dp, ,0,n (see Section
4.4.12 and Theorem 4.14), we can conclude that

. 0, ||YH2 <A
min (A|zl2 +y'z] =
—o0, |[lyll2 > A

Combining this with (6.51), we obtain the following dual problem:

1
max {——yTAATy — (AX)Ty - Iyl < A} . (6.52)
yeR™ 2

Note that strong duality holds for the primal-dual pair of problems (6.49) and (6.52)
(see Theorem A.1). To solve problem (6.52), we will first rewrite it as a minimization
problem:

1
min {—yTAATy + (Ax) Ty |yl3 < /\2} . (6.53)
yeR™ 2

So far we have shown that
prox, ;(x) = x + ATy, (6.54)

where y is an optimal solution of problem (6.53). Since problem (6.53) is convex and
satisfies Slater’s condition, it follows by the KKT conditions that y is an optimal
solution of (6.53) if and only if there exists a* (optimal dual variable) for which

(AAT + o' T)y + Ax = 0, (6.55)
o (lyll3 =A%) =0, (6.56)

lyll5 < X2, (6.57)

o > 0. (6.58)

There are two options. In the first, o* = 0, and then by (6.55),

y = —(AAT)TAx. (6.59)
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Since (6.56) and (6.58) are automatically satisfied for a* = 0, we can conclude
that y given in (6.59) is the optimal solution of (6.53) if and only if (6.57) is
satisfied, meaning if and only if |[(AAT)"tAx||s < A. In this case, by (6.54),
prox, ;(x) = x — AT(AAT) ' Ax.

On the other hand, if [[(AAT)"1Ax|s > A, then a* > 0, and hence by the
complementary slackness condition (6.56),

Iyl3 = . (6.60)

By (6.55),
y = —(AAT 4 o*T)"1Ax.

Using (6.60), we can conclude that a* can be uniquely determined as the positive
root of the function

g(a) = H(AAT + aI)fleHg — )2

It is easy to see that g is strictly decreasing for o > 0, and therefore g has a unique
root. O

6.8.2 Squared l;-Norm

The prox of the l;-norm has a simple formula. In this section we will show how to
compute the prox of the squared [1-norm—a task that will prove itself to be much
more complicated. We will require the following lemma that expresses |x||? as the
optimal value of an optimization problem written in terms of the function

2

=, t>0,
p(s,t) =9 0, s=0,t=0, (6.61)
oo else.

By Example 2.32, ¢ is closed and convex (even though it is not continuous at

(s,t) = (0,0)).

Lemma 6.69 (variational representation of || - ||2). For any x € R" the
following holds:
oin e ) = Il (6.62)
j:

where ¢ is defined in (6.61). An optimal solution of the minimization problem in
(6.62) is given by

B || X#O
N =4 I Toi=1,2,....n (6.63)

x =0,

Proof. Since problem (6.62) consists of minimizing a closed and convex function
(by Example 2.32) over a compact set, then by the Weierstrass theorem for closed
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functions (Theorem 2.12), it possesses an optimal solution, which we denote by
A" € A,. Define

Iy={ie{1,2,...,n}: \] =0},
L ={ie{1,2,...,n}: A] > 0}.

By the definitions of Iy and I;, we have
= x=1 (6.64)
i€y =1

It holds that z; = 0 for any ¢ € Iy, since otherwise we will have that ¢ (z;, A}) = oo,
which is a clear contradiction to the optimality of A*. Therefore, using the Cauchy—

Schwarz inequality,
. (6.64)
DN =
Jj€h

2
Z|a:]|—2|a:g|— DR NI D SR
> . (6.65)

jen jen J jen 7

We can thus conclude that

Sl A = 3 gl an) = 30
j=1 j€h

Jj€h

>/|
STx oo

On the other hand, since A* is an optimal solution of the problem in (6.62),
Dl A)) <D elagn Ag) =[x, (6.66)

where X is given by (6.63). Combining (6.65) and (6.66), we finally conclude that
the optimal value of the minimization problem in (6.62) is ||x||? and that A is an
optimal solution. 0O

Lemma 6.70 (prox of || - ||3).3* Let f : R" — R be given by f(x) = ||x||3, and
let p> 0. Then

n
)\',1',
() . x#o0,

prox, ¢ (x) = i=1
0, x =0,
where \; = {% — Zp} with p* being any positive Toot of the nonincreasing
function +

1#(#):; [%—%L—l.

34The computation of the prox of the squared l1-norm is due to Evgeniou, Pontil, Spinellis, and
Nassuphis [54].



Downloaded 04/11/24 to 143.215.80.169 by Jacob Aguirre (jaguirre31@gatech.edu). Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

174 Chapter 6. The Proximal Operator

Proof. 1f x = 0, then obviously prox,;(x) = argmin, {3]lull3 + pllull}} = o.
Assume that x # 0. By Lemma 6.69, u = prox,;(x) if and only if it is the u-part
of the optimal solution of

) 1 ) n
s, {31t oot .

i=1
where ¢ is defined in (6.61). Minimizing first with respect to u, we obtain that

Uy = /\?fép, and the problem thus reduces to

(6.67)

By Theorem A.1, strong duality holds for problem (6.67) (taking the underlying set
as X = R7). Associating a Lagrange multiplier ;1 to the equality constraint, the

Lagrangian is
o) =30 (2
L(Xx;p) = < * +/\iﬂ>_ﬂ'
= Ai +2p

By Theorem A.2, A* is an optimal solution of (6.67) if and only if there exists p*
for which

A" € argminy 5o L(A; 1), (6.68)
e =1. (6.69)

Since the minimum in (6.68) is finite and attained, and since x # 0, it follows
that p* > 0 (otherwise, if p* = 0, the minimum in (6.68) would not be attained).
Exploiting the separability of the Lagrangian, it follows that (6.68) is the same as

A;:[%_mh

The dual optimal variable p* is chosen to satisfy (6.69):

i{%—zpth 0

=1

6.8.3 Projection onto the Set of s-Sparse Vectors
Let s € {1,2,...,n} and consider the set

Cs ={xeR":|x|o < s}.

The set C comprises all s-sparse vectors, meaning all vectors with at most s nonzero
elements. Obviously Cy is not convex; for example, for n = 2, (0,1)7, (1,0)T € Oy,
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but (0.5,0.5)7 = 0.5(0,1)7+0.5(1,0)” ¢ C;. The set C; is closed as a level set of the
closed function [|-[[o (see Example 2.11). Therefore, by Theorem 6.4, Pc, = prox;,,
is nonempty; however, the nonconvexity of Cs implies that Pc, (x) is not necessarily
a singleton.

The set Pc,(x) is described in Lemma 6.71 below. The description requires
some additional notation. For a vector x € R™ and a set of indices S C {1,2,...,n},
the vector xg is the subvector of x that corresponds to the indices in S. For example,
for n =4, if x = (4,3,5,—1)7, then X143y = (4, —1)T,x{273} = (3,5)T. For a given
indices set S C {1,2,...,n}, the matrix Ug is the submatrix of the identity matrix
I,, comprising the columns corresponding to the indices in S. For example, for

n =3,
1 0 0
Unsy=1|(0 0], U =11
0 1 0
For a given indices set S C {1,2,...,n}, the complement set S¢ is given by S¢ =
{1,2,...,n}\ S.
Finally, we recall our notation (that was also used in Example 6.51) that for
a given x € R", x(;y is the ith largest value among |z1|, |2, ..., |zs|. Therefore, in

particular, |zy| > |x@y| > -+ > |2(,)|. Lemma 6.71 shows that Pc, (x) comprises
all vectors consisting of the s components of x with the largest absolute values
and with zeros elsewhere. There may be several choices for the s components with
largest absolute values, and this is why Pg,(x) might consist of several vectors.
Note that in the statement of the lemma, we characterize the property of an index
set S to “comprise s indices corresponding to the s largest absolute values in x” by
the relation

SCiL2...n}, ISl=s S lal=lewl.
1

i€S i=
Lemma 6.71 (projection onto Cs). Let s € {1,2,...,n} and x € R™. Then

Peo, (x) = {sts 1Sl =s,8C {1,2,...,n},Z|xi| = le@)l}

i€S i=1

Proof. Since Cy consists of all s-sparse vectors, it can be represented as the fol-
lowing union:
Cs = U A57
SC{1,2,...,n},|S|=s

where Ag = {x € R" : xgc = 0}. Therefore,3”
Pe,(x) € U {Pas(x)}- (6.70)
SC{1,2,...,n},|S|=s

35Since Ag is convex, we treat Pag(x) as a vector and not as a singleton set. The inclusion
(6.70) holds since if By, Ba, ..., Bm are closed convex sets, then Pum g, (x) C U {Pp, (x)} for
any x.
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The vectors in Pg,(x) will be the vectors Pag(x) with the smallest possible
value of ||Pag(x) — x||2. The vector Pa,(x) is the optimal solution of the problem

. . 2 . .=
min {[ly - x|z : ys- =0},

which can be rewritten as
. 2 2
1 — c . c = 0 .
Jnin {llys = xsll3 + lIxs<ll5 : ys }

The optimal solution of the above problem is obviously given by ys = xg,ysc = 0,
that is, y = Ugxg, and the optimal value is ||xg:||3. The vectors in P, (x) will
therefore be of the form Ugxg, with indices sets S with cardinality s and with
minimal value ||xgc||3, which is equivalent to the condition that S consists of s
indices corresponding to the s largest absolute values in x. 0O

Example 6.72. Suppose that n = 4. Then

Pc,[(2,3,-2,1)T) = {(2,3,0,0)7,(0,3,-2,007}. 1
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6.9 Summary of Prox Computations

‘ ‘ f(x) ‘ dom(f) ‘ prox;(x) ‘ Assumptions Reference ‘ ‘
%xTAx + R"™ (A+I)"1(x—Db) A € ST, b e Section 6.2.3
bTx +¢ R", ceR
A3 Ry W A>0 Lemma 6.5
nx [0,a] NR min{max{z — p, 0}, a} nw € R, a € Example 6.14
[0, oc]
Allx]| E (1 — W) x ||-||—Euclidean | Example 6.19
norm, A > 0
14+ 2-) x, x # 0,
= X|Ix]| E ( fl>l ) 7 || -||—Euclidean | Example 6.21
{u:jull =2}, x=0. norm, A > 0
Allx])1 R"™ Ta(x) =[|x| — el @sgn(x) | A >0 Example 6.8
lw® x|1 Box[—a, a Sw,a(x) a € [0,00]", Example 6.23
w eRY
Al x| o R"™ x — )\PBH_Hl 10,11 (x/X) A>0 Example 6.48
Ax]la E X — APBH'H B (0,11 (x/X) [|%||a— Example 6.47
@ arbitrary
norm, A > 0
Allx|lo R™ Hoox(@1) x - x H gx(zn) | A>0 Example 6.10
A|x|® E %x || -||—Euclidean | Example 6.20
I+ 127 x| norm, A > 0,
n
n @4 [e24+4x
7)\2 log z; RY (J\/QJ> A>0 Example 6.9
j=1 .
ji=1
dc(x) Pc(x) 0#CCE Theorem 6.24
Aoc (x) x — APc(x/X) A >0, C # 0 | Theorem 6.46
closed convex
Amax{z;} R"™ X — APa,, (x/X) A>0 Example 6.49
A Z:;l (i) R™ x — APc(x/X), A>0 Example 6.50
C = H,,;; N Box|[0, €]
A Zle |2 ¢y | R™ x — APc(x/X), A>0 Example 6.51
C = BHHl[Ok] ﬂBox[—e,e]
)\1\4? (x) E x + A, p > 0, f | Corollary 6.64
A roper closed
- | prox, X) — X prop
2 (Prox(upn (o) = x) o
Adc (x) E x + 0 # C closed Lemma 6.43
min { dCA(x) , 1} (Po(x) — x) convex, A > 0
3d% (x) E %HPC(X) + %ﬂx 0 # C closed | Example 6.65
convex, A > 0
AH, (x) E (1 - W) x A, pu>0 Example 6.66
2 n vizg \" —
pllx|Ii R (7’1‘*'2")«;:17 v = p>0 Lemma 6.70
{ L£x| — Qp] efv=1(0
1 i
when x = 0)
AAx||2 R™ x — AT(AAT + o*'I)7'Ax, | A € R™X" Lemma 6.68
a® = 0 if ||vol]l2 < A; oth- | with full row
erwise, ||[vaxll2 = A; v = | rank, A >0

(AAT 4+ al)"tAX
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Chapter 7

Spectral Functions

In this chapter we will concentrate on spectral functions, which are functions of
matrices that depend only on their singular values or on their eigenvalues. The
underlying spaces in this chapter are all Euclidean. We start by defining the notion
of symmetry w.r.t. a given set of orthogonal matrices.

7.1 Symmetric Functions

7.1.1 Definition and Examples

Definition 7.1 (symmetric functions). Let A C Q" be a set of orthogonal
matrices. A proper function f:R"™ — (—o0, 0] is called symmetric w.r.t. A if

f(Ax) = f(x) forallx e R", A € A

The following are five types of symmetric functions, each one dictated by the
choice of orthogonal matrices in A.

Example 7.2 (even functions). If A = {-I}, then f : R" — (—o00,00] is
symmetric w.r.t. A if
f(x) = f(—x) for all x € R".

Such functions will be called even functions. N
Example 7.3 (absolutely symmetric functions). Take A = {Dy,D>,...,D,}
C R™" where D; is the diagonal matrix whose diagonal elements are all ones

except for the (i,7) component which is equal to —1. Then a proper function
f:R™ = (—00, 00| is symmetric w.r.t. A if and only if

f(x) = f(]x]) for all x € R".
We will call such a function an absolutely symmetric function. 1t is easy to show that

[ is absolutely symmetric if and only if there exists a function g : R} — (—o00, o0]
such that f(x) = g(|x|) for all x e R*. 1

179
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Example 7.4 (norm-dependent functions). A proper function f : R" —
(—00, 00] is symmetric w.r.t. A= O™ if and only if

f(x) = f(Ux) for all x € R", U € O".

The above holds if and only if there exists a proper function g : R — (—o0, 00| such
that
Fx) = g(||x||2) for all x € R™.

A function satisfying the above is called a norm-dependent function. N

We will require some additional notation before describing the next two ex-
amples. For a given vector x € R™, the vector x* is the vector x reordered nonin-
creasingly. For example, if x = (2, —9,2,10)7, then x* = (10,2,2, —9)7.

Definition 7.5 (permutation matrices). An n X n matriz is called a permuta-
tion matrix if all its components are either 0 or 1 and each row and each column
has ezxactly one nonzero element. The set of all n X n permutation matrices is
denoted by A,,.

Definition 7.6 (generalized permutation matrices). Annxn matriz is called
a generalized permutation matrix if all its components are either 0, 1, or —1
and each row and each column has exactly one nonzero element. The set of allnxn
generalized permutation matrices is denoted by AS.

Thus, for example,

01 0 0 -1 0
1 0 0] €Ans, 1 0 0 |€Af.
00 1 0 0 -1

By the definition of permutation and generalized permutation matrices, it is easy
to see that for any x € R"™ there exists a permutation matrix P € A, for which
Px = x* and a generalized permutation matrix Q € AS for which Qx = |x|*. It can
be readily verified that permutation matrices, as well as generalized permutation
matrices, are orthogonal.

Example 7.7 (permutation symmetric functions). A proper function f :
R™ — (—00, 00] is symmetric w.r.t. A, if and only if
f(x) = f(Px) for all x € R",P € A,,.

Such a function will be called a permutation symmetric function. It is easy to show
that f is permutation symmetric if and only if

f(x)=f(x*) forallx cR™. N

Example 7.8 (absolutely permutation symmetric functions). A proper
function f : R™ — (—o00,00] is symmetric w.r.t. AS if and only if

f(x) = f(Px) for all x ¢ R", P € AS.
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Such a function will be called an absolutely permutation symmetric function. It is
easy to show that f is absolutely permutation symmetric if and only if

f(x) = f(x|*) forallx e R™. N

7.1.2 The Symmetric Conjugate Theorem

We will now show that the conjugate of a symmetric function w.r.t. a set of orthog-
onal matrices is always symmetric w.r.t. the same set of matrices.

Theorem 7.9 (symmetric conjugate theorem).?6 Let f : R" — (—o0, 0] be
a proper function which is symmetric w.r.t. a set of orthogonal matrices A C Q™.
Then f* is symmetric w.r.t. A.

Proof. Let A € A. Then by the symmetry assumption, h = f, where h(x) =
f(Ax). Thus,
f*(y) =h*(y) for all y € R". (7.1)

By Theorem 4.13 and the orthogonality of A, for any y € R™,
W (y) = f*(AT)1y) = f*(Ay),
which, combined with (7.1), yields
f*(y) = f*(Ay) for all y € R".
Since the above holds for any A € A, it follows that f* is symmetric w.r.t. A. 0O

Example 7.10. In this example we will illustrate the symmetric conjugate theorem
by verifying that the types of symmetries satisfied by the functions in the table of
Section 4.4.16 also hold for their conjugates.

e even functions

f(x) dom(f) () Assumptions Reference

1 L1y)a 1,1 i

;|5’3|p R P |yl p>1,5+4+ =1 | Section 4.4.4
sxTAx+ec R™ syTA ly —c AeS?,, ceR | Section 4.4.6

e permutation symmetric functions

F(x) dom(f) *(y) Reference
Do i logx; R} Son jevitt Section 4.4.8
i wilog An log (3074 e¥i) Section 4.4.10
log (327, €i) R™ > iy vilogyi Section 4.4.11

(dom(f*) = An)
max;{z;} R™ on,, (¥) Example 4.10

36The symmetric conjugate theorem (Theorem 7.9) is from Rockafellar [108, Corollary 12.3.1].
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e absolutely permutation symmetric functions

F(x) dom(f) () Reference
[Ixlp R™ 6BHqu [0,1(¥) Section 4.4.12
I3 E slyll2 Section 4.4.15

where p, ¢ € [1, 0],
respectively).

1—17 + % = 1 (with the convention that if p = 1, 0o, then ¢ = o0, 1,

e norm-dependent functions

f dom(f) f* Reference

[Ix(l2 R™ 53“_“2[071] (y) Section 4.4.12

— 2 2
o= Ixl5 | g 10,a] ay/Ilyl2 + 1 Section 4.4.13
II-12 2
(a>0)

2 2
o + IIxllz R™ —ay/1 — Hy||§ Section 4.4.14
(0( > 0) (dOHlf* — B||H2[07 1])

%HXH% R™ %HyH% Section 4.4.15

7.2 Symmetric Spectral Functions over S™”

The main concern of this chapter are functions of matrices that are defined on
either the set of symmetric matrices S™ or the set of matrices R™*". We will deal
only with functions that depend either on the eigenvalues of their argument (if the
underlying space is S™) or on the singular values (if the underlying space is R™*™).
Such functions are called spectral functions. We first consider functions over S™.
Given a matrix X € S", its eigenvalues ordered nonincreasingly are denoted by

AL(X) > Aa(X) > - > A (X).
The eigenvalues function A : S™ — R" is defined as
AX) = (M(X), A2(X), ..., (X))

A key fact from linear algebra is that any symmetric matrix X € S™ has a spectral de-
composition, meaning an orthogonal matrix U € Q" for which X = Udiag(A(X))U7”.
We begin by formally defining the notion of spectral functions over S™.

Definition 7.11 (spectral functions over S™). A proper function g : S* —
(=00, 0] is called a spectral function over S™ if there exists a proper function

f:R™ = (—o00,00] for which g = fo .

37Sections 7.2 and 7.3, excluding the spectral proximal theorem, are based on the seminal papers
of Lewis [80, 81] on unitarily invariant functions. The spectral proximal formulas can be found in
Parikh and Boyd [102].
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7.2. Symmetric Spectral Functions over S™ 183

If g = f oA, we will refer to f (which is actually not necessarily unique) as
the associated function. Our main interest will be to study spectral functions whose
associated functions are permutation symmetric.

Definition 7.12 (symmetric spectral functions over S™). A proper function
f:S™ = (—o00,00] is called a symmetric spectral function over S™ if there
exists a proper permutation symmetric function f : R™ — (—oo,00] for which g =

foA

Example 7.13. Following is a list of permutation symmetric functions along with
their associated symmetric spectral functions.

4] 0 Jaomn ] FAX)) dom(7 o |
1 2is1 T R™ Tr(X) sn
2| pmex o R" Amax (X) s»
3 | allxllz2 (¢ €R) R™ alX|lF s
4 | alx|3 («€R) R™ ol X% s
5 | afxllec (o € R) R™ allX]2,2 sn
6 | alx[i (¢ €R) R™ a|X|s, sn
7| =i log(x) | RY, — log det(X) sn
8 | i @ilog(z;) | RY ™ (X) log(X (X)) sn
9 | ity wilog(ws) Ay ST Ai(X) log(Ai(X)) T,

The domain of the last function in the above table is the spectahedron set
given by
T, ={XeS}:Tr(X)=1}.

The norm used in the sixth function is the Schatten 1-norm whose expression for
symmetric matrices is given by

IXls, =D IN(X)], Xesm
=1

Schatten p-norms will be discussed in detail in Section 7.3 N

A fundamental inequality that will be a key argument in establishing the main
results of this section is the so-called Fan inequality stating that the inner product of
two symmetric matrices is upper bounded by the inner product of their eigenvalues
vectors and that equality holds if and only if the two matrices are simultaneously
orthogonally diagonalizable.

Theorem 7.14 (Fan’s Inequality [32, 119]). For any two symmetric matrices
X,Y € S" it holds that
Tr(XY) < (A(X), A(Y)),
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and equality holds if and only if there exists V. € Q™ for which

X = Vdiag(A\(X))V7T,
Y = Vdiag(\(Y))V7T.

7.2.1 The Spectral Conjugate Formula

A rather direct result of Fan’s inequality is the spectral conjugate formula that
shows how to compute the conjugate of a symmetric spectral function over S™ in
terms of the conjugate of its associated function.

Theorem 7.15 (spectral conjugate formula over S™). Let f: E — (—o00, 0]
be a permutation symmetric function. Then

(FoX) = f oA

Proof. Let Y € S™. Then

(£ o N (Y) = gax {Tx(XY) — f(A(X))}

< max {(A(X), A(Y)) — f(A(X))}

Xesn

< }I(ré%%ﬂx A(Y)) — f(x)}

= ([T (Y),

where Fan’s inequality (Theorem 7.14) was used in the first inequality. To show the
reverse inequality, take a spectral decomposition of Y:

Y = Udiag(A\(Y))UT (U € O™).
Then

(f o M(Y) = max{{x, A(Y)) = f(x)}

= max{Tr(diag(x)diag(A(Y)) — f(x)}

= max{Tr(diag(x)U"YU) — f(x*)}

= max{Tr(diag(x)U" YU) — f(A(Udiag(x)U"))}
(

xeR”
= max{Tr Udiag(x)U"Y) — f(A(Udiag(x)U"))}
< s (TH(ZY) ~ f(NZ)))
=(foA)*(Y). O

Example 7.16. Using the spectral conjugate formula, we can compute the conju-
gates of the functions from the table of Example 7.13. The conjugates appear in
the following table, which also includes references to the corresponding results for
functions over R™. The numbering is the same as in the table of Example 7.13.
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H # ‘ 9(X) ‘ dom(g) ‘ g*(Y) dom(g*) Reference H
1 Tr(X) Nl 3y (Y) {1} Section 4.4.7
2 )\max (X) Sn 5’1‘" (Y) Yn Example 4.10
3 o X||F (o> 0) sm 6BH~HF[0’°‘](Y) B »[0,a] | Section 4.4.12
4 al|X[|% (> 0) s Y% s Section 4.4.6
5 OZHXHQ’Q (> 0) Nig 53\\'\\5 [0,a] (Y) BH‘“Sl [0, q] Section 4.4.12
1

6 a||X||51 (a>0) N 53\\'\\2 2[070](Y) B“AH2’2[0,Q} Section 4.4.12
7 — log det(X) S —n — logdet(—-Y) sm Section 4.4.9
8 | D Ni(X)log(Xi(X)) s Dot sn Section 4.4.8
i=1 i=1
9 Z i (X) log(X: (X)) Tn log (3271, eti(Y)) Nl Section 4.4.10
i=1
|

The spectral conjugate formula has several important consequences, one of
which is the following theorem stating that a symmetric spectral function is closed
and convex if and only if its associated function is closed and convex.

Theorem 7.17 (closedness and convexity of symmetric spectral functions
over S™). Let F: S" — (—o00, 0] be given by F = f oA, where f : R™ — (—00, 00]
is a permutation symmetric proper function. Then F is closed and convex if and
only if f is closed and convex.

Proof. By the spectral conjugate formula (Theorem 7.15),
F*=(foA)" = fToA

Since by the symmetric conjugate theorem (Theorem 7.9) f* is permutation sym-
metric, we can invoke once again the spectral conjugate formula to obtain

F** =(f"oA)* = f" oA (7.2)
If f is closed and convex, then by Theorem 4.8 (taking also into account the proper-
ness of f), it follows that f** = f. Therefore, by (7.2),
F*™ =foA=F.
Thus, since F' is a conjugate of another function (F*), it follows by Theorem 4.3
that it is closed and convex. Now assume that F' is closed and convex. Since F is

in addition proper, it follows by Theorem 4.8 that F** = F', which, combined with
(7.2), yields the equality

foA=F=F"= f"oA.
Therefore, for any x € R"”
f(x) = f(A(diag(x))) = f**(A(diag(x))) = f*(x*).

By the permutation symmetry property of both f and f**, it follows that f(x') =
f(x) and f**(x%) = f**(x), and we thus obtained that f(x) = f**(x) for any
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x € R™, meaning that f = f**. Therefore, f, as a conjugate of another function
(f*) is closed and convex. O

7.2.2 The Proximal Operator of Symmetric Spectral Functions
over S"

The next result shows a simple formula for computing the prox operator of a sym-
metric spectral function over S™ which is also proper closed and convex. The prox
is expressed in terms of the spectral decomposition of the argument and the prox
operator of the associated function.

Theorem 7.18 (spectral prox formula over S™). Let F : S* — (—o00,00] be
given by F = f oA, where f : R" = (—o0,00] is a permutation symmetric proper
closed and convex function. Let X € S", and suppose that X = Udiag(A(X))U7,
where U € Q™. Then

proxz(X) = Udiag(proxf()\(X)))UT.
Proof. Recall that
proxp(X) = argmingg. {F(Z) + %HZ — X||%} . (7.3)
Denoting D = diag(A(X)), we note that for any Z € S™,
F(Z)+ 52~ X[} = F(2) + 1|2~ UDU" |} © F(UTZ0) + £ |UTZU - D}

where the transition (x) is due to the fact that F(Z) = f(A(Z)) = f(A(UTZU)) =
F(UTZU). Making the change of variables W = UTZU, we conclude that the
optimal solution of (7.3) is given by

Z =UW*UT, (7.4)
where W* € S§” is the unique optimal solution of
. _ 1 2
Jnin {G(W) =F(W) + §||W - D||F} . (7.5)

We will prove that W* is diagonal. Let i € {1,2,...,n}. Take V; to be the diagonal
matrix whose diagonal elements are all ones except for the (4,7)th component, which

is —1. Define Wi = ViW*V;‘F. Obviously, by the fact that V; € Q™,
F(V,W*V]) = f(AViW*V])) = f(A(W¥)) = F(W*),
and we thus obtain

G(W;)

__ 1 -
F(W;) + §||Wz' -D|%

1
F(ViW'V]) + 5[ ViW'V] - D|%
* 1 *
= F(W")+ [W" = VIDVi[|%

=) F(W) + S [W - DI,
= G(W7),
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where (**) follows from the fact that V,; and D are both diagonal, and hence
VIDV,; = VI'V,D = D. We conclude that W, is also an optimal solution, but
by the uniqueness of the optimal solution of problem (7.5), it follows that W* =
V,W*VT. Comparing the ith rows of the two matrices, we deduce that W5 =0
for any j # i. Since this argument is valid for any i € {1,2,...,n}, it follows that
W+ is a diagonal matrix, and consequently the optimal solution of (7.5) is given by
W* = diag(w*), where w* is the optimal solution of

min { F(diag(w) + g ding(w) ~ DI }.

Since F(diag(w)) = f(w') = f(w) and ||diag(w) — D||% = ||w — A(X)||3, it follows
that w* is given by

w = avgin, { F(9) + § I = AGOI | = prox, (A(X)),

Therefore, W* = diag(prox;(A(X))), which, along with (7.4), establishes the de-
sired result. O

Example 7.19. Using the spectral prox formula, we can compute the prox of
symmetric spectral functions in terms of the prox of their associated functions.
Using this observation, we present in the table below expressions of prox operators
of several functions. The parameter « is always assumed to be positive, and U is
assumed to be an orthogonal matrix satisfying X = Udiag(A(X))U?. The table
also includes references to the corresponding results for the associated functions,
which are always defined over R™.

H F(X) ‘ dom(F) ‘ prox g (X) ‘ Reference H
ol X% S ﬁx Section 6.2.3
o X||F S™ (1 — W) X Example 6.19
af|X||s, s Udiag(To (M(X)))UT Example 6.8
|| X|l2,2 Sm Udiag(A(X) — aPBH‘\h [0’1](}\(X)/o¢))UT Example 6.48
—alog det(X) Sty Udiag(w) ur Example 6.9
aXi (X) S Udiag(A(X) — aPa,, (A(X)/a))UT Example 6.49
o Zle Ai(X) Sm X — aUdiag(Po(A(X)/a))UT, Example 6.50
C = He j;; N Box|[0, €]

A set T C S™is called a symmetric spectral set in S™ if the indicator function dp
is a symmetric spectral function over S, meaning that it has the form é; = §c o A,
where d¢ is a permutation symmetric function. The set C' C R" is the associated
set. Since prox,;,. = Pr and proxs, = Pc, it follows by the spectral prox formula
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that if C' is nonempty closed and convex, then
Pr(X) = Udiag(Po(A(X)))UT, X e s™, (7.6)
where U is an orthogonal matrix satisfying X = Udiag(A(X))U7T.

Example 7.20. Using formula (7.6), we present in the following table expressions
for the orthogonal projection onto several symmetric spectral sets in S”. The table
also includes references to the corresponding results on orthogonal projections onto
the associated subsets of R™. The matrix U is assumed to be an orthogonal matrix
satisfying X = Udiag(A(X))UT.

H set (T) ‘ Pr(X) Assumptions Reference
st Udiag([A(X)]4+)UT - Lemma 6.26
{X: <X < ul} Udiag(v)U7, {<u Lemma 6.26

v; = min{max{\;(X), £}, u}

B 10,7] WX r>0 Lemma 6.26
_ ; T o, _ [TA) bl
{X: Tr(X) < b} Udiag(v)U", v = A(X) - ————=e beR Lemma 6.26
Tn Udiag(v)U7T, v = [A(X) — p*e]+ where - Corollary 6.29
u* € R satisfies €T [A(X) — p¥e]ls =1
X, IXlls; < a,
BH'HSl [0, a] - a>0 Example 6.33
Udiag(Tg« (A(X))U", [ X]ls; > a,

175+ AN =, % >0

7.3 Symmetric Spectral Functions over R"*"

Let m,n be two positive integers and r = min{m,n}. We will denote by o :
R™*™ — R" the singular values function that assigns to each matrix X € R™*"
the vector of singular values (o1 (X), 02(X),...,0.(X))T, where 01(X) > 02(X) >
-« > 0,(X) > 0. We will also require the following notation. For a vector v € R",
the matrix dg(v) is the m x n matrix defined by

Vi, 1= j7
dg(v)i,; =
0 else.

The operator dg(-) maps r-dimensional vectors to generalized®® m x n diagonal
matrices. The integers m and n (and hence also r) will be fixed throughout this
section, and hence there is no need to indicate their values in the operator dg. We
do not use the “diag” notation since it is reserved to square diagonal matrices.

It is well known (see Golub and Van Loan [60, Theorem 2.5.2]) that any matrix
X € R™*™ has a singular value decomposition, meaning matrices U € O™,V € Q"
for which X = Udg(o(X))VT.

38 A matrix X € R™X" is a generalized diagonal matriz if X;; =0 for any i # j.
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The analysis in this section uses very similar arguments to those used in the
previous section; however, for the sake of completeness we will provide the results
with their complete proofs.

We begin by formally defining the notion of spectral functions over R™*"™.

Definition 7.21 (spectral functions over R™*™). A proper function g :
R™*™ — (—o00,00] is called a spectral function over R™X™ if there exists a
proper function f : R" — (—o0,00] for which g = foo.

Similarly to the notation in Section 7.2, if g = f o o, we will refer to f (which
is actually not necessarily unique) as the associated function. Our main interest will
be with spectral functions whose associated functions are absolutely permutation
symmetric.

Definition 7.22 (symmetric spectral functions over R™*™). A proper func-
tion f : R™™ — (—00,00] is called a symmetric spectral function over
R™X™ 4f there exists a proper absolutely permutation symmetric function f : R" —

(—00, 0] for which g= foo.

Example 7.23 (Schatten p-norms). Let p € [1,00]. Then the Schatten p-norm
is the norm defined by

IXlls, = llo(X)[lp, X € R™*".

It is well known®® that |- ||s, is indeed a norm for any p € [1, oc]. Specific examples
are the following:

e trace-norm (Schatten 1-norm)—also called the nuclear norm:
Xlls, =D ou(X).
i=1

e spectral norm (Schatten oco-norm):

XI5, = 01(X) = [|X]|2,2.

e Frobenius norm (Schatten 2-norm):

1Xlls, =

The Schatten p-norm is a symmetric spectral function over R"*" whose associ-
ated function is the [,-norm on R", which is obviously an absolutely permutation
symmetric function. N

398ee, for example, Horn and Johnson [70].
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Example 7.24 (Ky Fan k-norms). Recall the notation from Example 6.51—
given a vector x € R", x(; is the component of x with the ith largest absolute
value, meaning in particular that

lzyl 2 |z 2 - = ol

The function fi(x) = Zle | ;)| is an absolutely permutation symmetric function.
The corresponding symmetric spectral function is the so-called Ky Fan k-norm

given by
X[y = fo(@(X)) = 0i(X).
i=1
Obviously, || - ||¢1y is the spectral norm, which is also the Schatten oo-norm; the
norm || - ||y is the trace-norm, which is also the Schatten 1-norm. W

A key inequality that is used in the analysis of spectral functions over R™*"
is an inequality bounding the inner product of two matrices via the inner product
of their singular vectors. The inequality, which is credited to von Neumann and is
in a sense the “R™*™-counterpart” of Fan’s inequality (Theorem 7.14).

Theorem 7.25 (von Neumann’s trace inequality [123]). For any two matrices
X, Y € R™*™ the inequality

(X,Y) < (o(X),0(Y))

holds. Equality holds if and only if there exists a simultaneous nonincreasing sin-
gular value decomposition of X, Y, meaning that there exist U € O™ and V € Q"
for which

X = Udg(a(X))V7,

Y = Udg(a(Y))VT.

7.3.1 The Spectral Conjugate Formula

A direct result of von Neumann’s trace inequality is the spectral conjugate formula
over R™X"™,

Theorem 7.26 (spectral conjugate formula over R™*™). Let f : E —
(=00, 0] be an absolutely permutation symmetric function. Then

(foo) =f o0

Proof. Let Y € R™*". Then

(foo) (Y) = max [Tx(XY)~ f(o(X)}

cax {o(X),o(Y)) - fle(X))}

max{(x,o(Y)) — f(x)}

xeR”

(f*oa)(Y),

IN A
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where Von Neumann’s trace inequality (Theorem 7.25) was used in the first in-
equality. To show the reverse inequality, take a singular value decomposition of
Y:

Y = Udg(a(Y)) VT (Uc O™ V cOn).

Then
(f*0o)(Y) = max{(x,o(Y)) — f(x)}
=maX{Tr(dg(X)T g(o(Y))) — f(x)}
= max{Tr(dg(x) " UTYV) - f(x})}
= max{ Tr(dg(x)

(x
(x)"UTYV) — f(o(Udg(x)VT))}
(

= max{Tr(Vdg(x)TUTY) — f(o(Udg(x)V"))}

< Zg]gﬂxxn{Tr(ZTY) f( (Z))}
=(foo)(Y). O

Example 7.27. Using the spectral conjugate formula over R™*™ we present below
expressions for the conjugate functions of several symmetric spectral functions over
R™*™ (all with full domain). The table also includes the references to the corre-
sponding results on functions over R". The constant « is assumed to be positive.

‘ ‘ g9(X) ‘ dom(g) ‘ g*(Y) dom(g*) Reference ‘ ‘
ao1(X) (a>0) | R™*™ 5BH-H51 10,0 (Y) B, [0,q] Section 4.4.12
o X||F (e > 0) RMXn (53“_“F[07a](Y) By [0,0] Section 4.4.12
al|X[|% (o> 0) RMX™ iHYH% RMX™ Section 4.4.6
al|X||ls, (>0) | Rm™*n 6BH‘HS (0,a](Y) By s [0,0] Section 4.4.12

The spectral conjugate formula can be used to show that a symmetric spectral
function over R™*™ is closed and convex if and only if its associated function is
closed and convex.

Theorem 7.28 (closedness and convexity of symmetric spectral functions
over R™X™), Let F : R™*"™ — (—o0, 0] be given by F = f oo, where f : R" —
(=00, 0] is an absolutely permutation symmetric proper function. Then F is closed
and convez if and only if f is closed and conver.

Proof. By the spectral conjugate formula (Theorem 7.26),
=(foo) ' =f"oo.

Since by the symmetric conjugate theorem (Theorem 7.9) f* is absolutely permuta-
tion symmetric, we can invoke once again the spectral conjugate formula to obtain

F**=(f*oo)" = f"oo0. (7.7)
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If f is closed and convex, then by Theorem 4.8 (taking also in account the properness
of f) it follows that f** = f. Therefore, by (7.7),

F*=foo=F

Thus, since F is a conjugate of another function (F*), it follows by Theorem 4.3
that it is closed and convex. Now assume that F' is closed and convex. Since F is
in addition proper, it follows by Theorem 4.8 that F** = F', which, combined with
(7.7), yields the equality

foo=F=F"=f"oo.
Therefore, for any x € R",

F(x[*) = flo(dg(x))) = f*(a(dg(x))) = f**(|x[*).
By the absolutely permutation symmetry property of both f and f**, it follows
that f(|x[*) = f(x) and f**(|x|¥) = f**(x), and therefore f(x) = f**(x) for any
x € R", meaning that f = f**. Therefore, f, as a conjugate of another function
(f*), is closed and convex. O

7.3.2 The Proximal Operator of Symmetric Spectral Functions
over R™X"™

The next result shows a simple formula for computing the prox operator of a sym-
metric spectral function over R™*™ which is also proper closed and convex. The
prox is expressed in terms of the singular value decomposition of the argument and
the prox operator of the associated function.

Theorem 7.29 (spectral prox formula over R™X™). Let F' : R™*" — (—00, 00]
be given by F = f oo, where f : R" — (—00,00] is an absolutely permutation
symmetric proper closed and convex function. Let X € R™ ™ and suppose that
X = Udg(a(X))VT, where U € O™,V € Q". Then

proxp(X) = Udg(prox (o (X)HNHVT.

Proof. Recall that
. 1
proxp(X) = argmingcgmx» {F(Z) + §||Z - X|%} . (7.8)

Denoting D = dg(o (X)), we note that for any Z € R™*"

1 1 * 1
F(Z)+ 52— X|[} = F(Z) + 5|2~ UDV” |} & F(U"ZV) + 5 U"ZV - D},
where the transition (x) is due to the fact that F(Z) = f(o(Z)) = f(e(UTZV)) =
F(UTZV). Making the change of variables W = UTZV, we conclude that the

unique optimal solution of (7.8) is given by

Z=UW*VT, (7.9)
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where W* is the unique optimal solution of

. _ 1 2
min {G(W) = F(W) + 5| W D|F}. (7.10)

We will prove that W* is a generalized diagonal matrix (meaning that all off-
diagonal components are zeros). Let i € {1,2,...,r}. Take 251) € R™*™ and
252) € R™™ "™ to be the m x m and n X n diagonal matrices whose diagonal ele-

ments are all ones except for the (i,4)th component, which is —1. Define W, =
MW s® . Obviously, by the fact that X € 0™, %{? € o,

FEPWSY) = (=W EP) = f(0(W*) = F(W?),

and we thus obtain
G(W;) = F(W,) + %HVA\E -D|%
— rMws®) + %IIE§1)W*E§2) - D%
— F(W*) + %HW* ~-sWpe® |2

* 1 *
— F(W") + 5[ W* - D3,
= G(W™).

Consequently, \7\71 is also an optimal solution of (7.10), but by the uniqueness
of the optimal solution of problem (7.10), we conclude that W* = El(-l)W*El(-Q).
Comparing the ith rows and columns of the two matrices we obtain that W, =0
and W} = 0 for any j # i. Since this argument is valid for any 7 € {1,2,...,7},
it follows that W* is a generalized diagonal matrix, and consequently the optimal
solution of (7.10) is given by W* = dg(w™), where w* is the optimal solution of

win { F(ag(w) + 5dg(w) - DI }.

Since F(dg(w)) = f(Iw|*) = f(w) and ||dg(w) — DI} = [w — o/(X)|3, it follows
that w* is given by

w* = argmin,, {f(w) + %HW — U(X)|§} = proxf(a(X)).

Therefore, W* = dg(prox (o (X))), which, along with (7.9), establishes the desired
result. 0O

Example 7.30. Using the spectral prox formula over R™*" we can compute
the prox of symmetric spectral functions in terms of the prox of their associated
functions. Using this observation, we present in the table below expressions of prox
operators of several functions. The parameter « is always assumed to be positive,
and U € O™,V € Q" are assumed to satisfy X = Udg(o(X))VT. The table also
includes a reference to the corresponding results for the associated functions, which
are always defined over R".
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H F(X) ‘ prox - (X) ‘ Reference H
ol X% ﬁx Section 6.2.3
o X|| g (1 — W) X Example 6.19
ol X|ls, Udg(Ta(a(X)))VT Example 6.8

al|X|lse, | X— aszg(PB“_“1 [0,1] (e(X)/a))VT | Example 6.48

ol X k) X — aUdg(Pc(o(X)/a))VT, Example 6.51

C=B),[0,k N By [0, 1]

Note that || X||s.. can be written as either o1(X) or [|X]|22. B

A set T C R™*™ is called a symmetric spectral set in R™*"™ if the indicator
function 7 is a symmetric spectral function over R™*" meaning that it has the
form dp = d¢ o o, where J¢ is an absolutely permutation symmetric function. The
set C' C R™*™ is the associated set. Since prox,s, = Pr and proxs_, = Pc, it follows
by the spectral prox formula that if C' is nonempty closed and convex, then

Pr(X) = Udg(Po(o(X))) VT, X € R™*™, (7.11)
where U € O™,V € O" are assumed to satisfy X = Udg(o(X))V7T.

Example 7.31. Using formula (7.11), we present in the following table expressions
for the orthogonal projection onto several symmetric spectral sets in R”*". The
table also includes references to the corresponding results on the orthogonal projec-
tion onto the associated subset of R". The matrices U € O™,V € Q" are assumed
to satisfy X = Udg(o(X))V7T.

H set (T) ‘ Pr(X) Assumptions Reference
B [0,0] Udg(v)V7T, v; = min{o;(X), a} a>0 Lemma 6.26
oo

By x[0,7] WX r>0 Lemma 6.26

X, IXlls; < a,
B“'Hsl [0, ] - a>0 Example 6.33

Udg(Ts= (e(X))V™, [ Xlls; > a,

17+ (X))l = o, B* >0
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Chapter 8

Primal and Dual
Projected Subgradient
Methods

Underlying Space: In this chapter E is a Euclidean space, meaning a finite
dimensional space endowed with an inner product (-,-) and the Euclidean norm

-1l = v/ ()

8.1 From Gradient Descent to Subgradient Descent

8.1.1 Descent Directions?

Consider the unconstrained problem
(P) min{f(x):x € E}.

If f is differentiable over E, then a well-known method for solving problem (P) is
the gradient method, also known as steepest descent, which takes the form

P = xF — 1, Vf(xF), (8.1)

where t; is an appropriately chosen stepsize. A key property of the direction of
the negative of the gradient is that it is a descent direction, a notion that is now
recalled.

Definition 8.1 (descent direction). Let f : E — (—o0, 0] be an extended real-
valued function, and let x € int(dom(f)). A vector 0 #d € E is called o descent
direction of f at x if the directional derivative f'(x;d) exists and is negative.

An important property of descent directions, which can be directly deduced
from their definition, is that taking small enough steps along these directions leads
to a decrease in function value.

Lemma 8.2 (descent property of descent directions [10, Lemma 4.2]). Let
f:E — (—o0,00] be an extended real-valued function. Let x € int(dom(f)), and
assume that 0 £ d € E is a descent direction of f at x. Then there exists € > 0
such that x 4+ td € dom(f) and

fx+1td) < f(x)
for any t € (0,¢].

195
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Coming back to the gradient method, we note that the directional derivative
of f at x* in the direction of —V f(x*) is negative as long as V f(x"*) # 0:

F18 =V M) = (VFR), -V (") = [V <0, (8.2)

where Theorem 3.29 was used in the first equality. We have thus shown that
—~V£(x*) is a descent direction of f at x*, which by Lemma 8.2 implies that there
exists ¢ > 0 such that f(x* —tVf(x¥)) < f(x*) for any t € (0,¢]. In particular,
this means that t; can always be chosen in a way that guarantees a decrease in the
function value from one iteration to the next. For example, one choice of stepsize
that guarantees descent is the exact line search strategy in which t; is chosen as

t; € argmintzof(xk — tVf(xM)).

If f is not differentiable, then scheme (8.1) is not well defined. Under our convexity
assumption, a natural generalization to the nonsmooth case will consist in replacing
the gradient by a subgradient (assuming that it exists):

x=xt —ngt, gfeaf(xh), (8.3)

where we assume that the choice of the subgradient from 9 f(x*) is arbitrary. The
scheme (8.3) is called the subgradient method. One substantial difference between
the gradient and subgradient methods is that the direction of minus the subgradient
is not necessarily a descent direction. This means that t; cannot be chosen in a
way that will guarantee a descent property in function values of the scheme (8.3).

Example 8.3 (non-descent subgradient direction).® Consider the function
f R xR — R given by f(z1,z2) = |z1| + 2|x2|. Then

0f(1,0) = {(1,2) : [«] <2}.
In particular, (1,2) € 9f(1,0). However, the direction —(1,2) is not a descent

direction. To show this, note that for any ¢ > 0,

1+3t, te(0,1],
g9(t) = f((1,0)-%(1,2)) = f(1—t,—2t) = [1—t[+4t = (8.4)
5t—1, t>1.

In particular,
f/((17 0)7 _(17 2)) - gg_(O) =3 > 0,

showing that —(1,2) is not a descent direction. It is also interesting to note that
by (8.4), it holds that

f((1,0) —¢(1,2)) > 1= f(1,0) for any ¢t > 0,

which actually shows that there is no point in the ray {(1,0) —¢(1,2) : t > 0} with
a smaller function value than (1,0). W

40Example 8.3 is taken from Vandenberghe’s lecture notes [122].
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8.1.2 Wolfe’'s Example

To better understand the effect of nonsmoothness, we recall a famous example of
Wolfe. The example deals with the gradient method employed on a nonsmooth
convex function with stepsizes chosen by exact line search. The function is dif-
ferentiable at all the iterate vectors generated by the method, which in particular
means that all the directions picked by the method are descent directions, and the
sequence of function values strictly decreases. However, although it seems that the
nonsmoothness is “bypassed,” this is hardly the case. The sequence generated by
the method converges to a nonoptimal point.
Let v > 1, and consider the function f: R x R — R given by

/2 2
JJ1—|—’)/JJ2, |$2|§[I}1,
f(x1,22) = (8.5)
z1ty|za| else.

V14+y

We begin by showing in Lemma 8.5 below that the function f is closed and convex
and describe its subdifferential set at any point in R xR. For that, we will prove that
f is actually a support function of a closed and convex set.*! The proof of Lemma
8.5 uses the following simple technical lemma, whose trivial proof is omitted.

Lemma 8.4. Consider the problem

(P) max{g(y): fi(y) <0, fo(y) <0},

where g : E — R is concave and f1, fa : E — R are convex. Assume that the
problem max{g(y) : f1(y) < 0} has a unique solution y. Let Y* be the optimal set
of problem (P). Then exactly one of the following two options holds:

(1) f2(¥) <0, and in this case Y* = {y}.
(i) f2(y) > 0, and in this case Y* = argmax{g(y) : f1(y) <0, f2(y) = 0}.

Lemma 8.5. Let f be given by (8.5). Then

(a) f=o¢c, where

2
Y3 1
C= y2) ERxR:yf + 2 <1,y > :
{(ylyz) it <l 1+7}

(b) f is closed and convex;
(c)
C, z =x2 =0,

(z1yma) o] < 21,21 # 0,

af(l'hiEQ) _ \/$§+Vx§7

1 3
( 1”77%))’ |z2| > 1,12 # 0,
1 5 5 B
{ 'Y+1} x |: 1+’ 1+'Y:| 5 T2 = 0,:(:1 < 0

41Recall that support functions of nonempty sets are always closed and convex (Lemma 2.23).
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Proof. By the definition of support functions,

2 1
oc(z1,m2) = ?%X {xlyl + Toya : YL + y72 <1l,y1 > 7} (8.6)
1,Y2

N

Note that if (z1,2z2) = (0,0), then oc(z1,22) =0 and

2 1
argmaxy, y, {$1y1 + Toy2 1 Y7 + Z{Y—Z <Ly 2 T +'y} =C

Assumze that (x1,22) # (0,0). Denoting g(yi,y2) = x1y1 + x2y2, fi1(y1,y2) =
Y2 + 972 —1and folyr,y2) = —y1 + ﬁ, problem (8.6) becomes

gll?gg{g(yl,yz) : filyr,y2) <0, fa(y1,y2) <0}

The assumptions made in Lemma 8.4 are all met: ¢ is concave, f1, fo are convex,
and the optimal solution of

max{g(y1,y2) : f1(y1,y2) <0}
Y1,Y2

is unique and equal to (91,%2) = \7#—:1)2 Thus, by Lemma 8.4, there are two
1 2

options:

X1 > 1
Veityed = VIHY
the last inequality is equivalent to the condition |z3| < 7. Under this condition,
(z1,7%2)
]

with a corresponding function value of o¢ (21, 22) = /23 + 3.

Case I: f3(91,92) < 0, meaning that . It can be easily seen that

by Lemma 8.4, (71, 72) = is the unique optimal solution of problem (8.6)

Case II: f2(g1,72) > 0, which is the same as z1 < |z2|. In this case, by Lemma
8.4, all the optimal solutions of problem (8.6) satisfy y; = ﬁ, and the problem

thus amounts to

1 72
y2 V147 1+~
The set of maximizers of the above problem is either {%} if 22 # 0 or
Tity|z2

Vity

max 1+ Tay2 : yg <

[— \/%, ﬁ} if 25 = 0. In both options, oc(z1, z2) =

To summarize, we have shown that

Vi +x3,  |ag] < @,

z1+7|Ta|

Wire else,

oc(z,22) =

establishing part (a), meaning that f = oc. Therefore, f, as a support function,
is a closed and convex function, and we have thus established part (b) as well. To
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prove part (c), note that we also showed that

argmax,,  {z1y1 + 2y2 : (y1,92) € C}

O, I :332:0,
(z1,7%2) <
_ ) Vet w2l < 21,21 70,
1
(mvv%ﬁ))a |$2|>$13$23&07
1 e S —
{\/W}X[ m,m}, 9 = 0,21 <0.

Combining this with the conjugate subgradient theorem (Corollary 4.21), as well as
Example 4.9 and the closedness and convexity of C, implies

Of(x1,x2) = doc (21, 22)
= argmax,, , {T1y1 + 22y2 — 05 (y1,92)}
= argmax,, , {T1y1 + Z2y2 — dc(y1,y2)}
= argmax,, , {T1y1 + T2y2 : (Y1,y2) € C}

C, x1 = x2 =0,

_ \7#—:2%7 lzo| < 21,71 # 0,
(\/11_?,7%)), |xa| > 1,22 # 0,
{\/%}x[—\/ﬁ?,\/ﬁ?], xa=0,2¢ <0. O

Note that a direct result of part (c) of Lemma 8.5 and Theorem 3.33 is that
f is not differentiable only at the nonpositive part of the x; axis.

In the next result we will show that the gradient method with exact line search
employed on f with a certain initialization converges to the nonoptimal point (0, 0)
even though all the points generated by the gradient method are points in which f
is differentiable.

Lemma 8.6. Let {(argk), xgk))}kzo be the sequence generated by the gradient method
with exact line search employed on f with initial point (29, 29) = (v, 1), where v > 1.
Then for any k > 0,

(a) f is differentiable at (argk),a:gk));

(b) 28] < 2 and 21" £ 0;
k & i\ k o\ k
© @04 = (2 () (22)).

Proof. We only need to show part (c¢) since part (b) follows directly from the expres-

sion of (a:gk) , a:ék)) given in (c), and part (a) is then a consequence of Lemma 8.5(c).
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We will prove part (c) by induction. The claim is obviously correct for k& = 0 by
the choice of initial point. Assume that the claim is correct for k, that is,

({'C(k) x(k)): ~ ’7—1 k _'7_1 k
rom2 v+1) '\ 41 '

We will prove that it is correct for k 4+ 1, meaning that

@ 28Y) = (Br, ), (8.7)
where
NS 1\ A+ N k+1
k=" + 1 y Yk = ~ T 1 .
Since |xék)| < xg ) and xl ) £ 0, we have f( (k)) = \/(95@)2 —l—v(gc;k))Q, and

by Lemma 8.5(c), f is differentiable at (a:gk),:rg )) with

(k) (k)Y _ 1 &) (k)
Vf(zi’, xy) (z1 7 yes ).
k k
%mﬁﬁ+wéhz

What is important in the above formula is that V f ( ol )) can be written in the

form

0]
~—

Vi 2 = aﬁﬁ%w?) (8.
for some positive constant ay. To show the validity of (8.7), we will define g(t)
f((xgk),a:gk)) t(x (k),*ya:g ))) and prove the following two statements:

(A) (Brom) = (@1, 289) — 25 (2 42,

8) ¢ () =0

(A) and (B) are enough to show (8.7) since g is strictly convex. The proof of (A)
follows by the computations below:

O BT (O B (O N B (ot k:7 vl k“:ﬁk
! 171t v+1 71 7+1 v+1 v+1 ’

(k) 2y a  —v+1l @  —v+1 y—1 k_ v—1 k“_
Ty =~ AT T T = - - = Tk-
v+1 v+1 v+1 7+1

To prove (B), note that
k k k k k k
g@zfaﬂ%ﬂh Hal? 7)) = £ = )2, (1= t)al?)
= \/ (@) + (1 = )2(28)2.

Therefore,
(t— 1)) +4%(yt = D(a)?

V= 02@P)2 441 = g2l

g'(t) =
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2

To prove that ¢’ (m

) = 0, it is enough to show that the nominator in the last

expression is equal to zero at t = % Indeed,
2 (k)y2 | .2 2 (k)2
- 1 R |
(’7‘1‘1 )(951)4‘7 v o (z37)
2k 2k
-(=1)2G) G) (55)
v+1 y+1 y+1 y+1
=0. 0O

Obviously, by Lemma 8.6, the sequence generated by the gradient method with
exact line search and initial point (v, 1) converges to (0,0), which is not a minimizer
of f since f is not bounded below (take z3 = 0 and x; — —00). Actually, (—1,0) is
a descent direction of f at (0,0). The contour lines of the function along with the
iterates of the gradient method are described in Figure 8.1.

Figure 8.1. Contour lines of Wolfe’s function with v = %6 along with the
iterates of the gradient method with exact line search.

8.2 The Projected Subgradient Method

The main model that will be discussed in this section is
min{f(x) : x € C}, (8.10)

where the following assumption will be made throughout this section.
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Assumption 8.7.
A) f:E — (—o0,00] is proper closed and convex.

B) C CE is nonempty closed and convez.

C) C Cint(dom(f)).

)
)
)
D)

(
(
(
(D) The optimal set of (8.10) is nonempty and denoted by X*. The optimal value
of the problem is denoted by fopt.

Remark 8.8 (subdifferentiability of f and closedness of X*). Since f is
convez and C' C int(dom(f)), it follows by Theorem 3.14 that f is subdifferentiable
over C. Also, since f is closed,

X* = CNLev(f, fopt)

is closed. This means in particular that for any x ¢ X* the distance dx~(x) is
positive.

From now on, we will use the following notation: f’(x) will denote a certain
subgradient of f at x, meaning a member in df(x). Thus, f’ is actually a function
from C to E*. The rule for choosing f/(x) out of the members of df(x) can be
arbitrary but has to be deterministic, meaning that if f'(x) is evaluated twice, the
results have to be the same.

Equipped with the observations of the previous section, we can speculate that
a method which utilizes subgradients rather than gradients will not necessarily be
a descent method and will not have to be based on a line search procedure for
choosing its stepsizes. We will see that this is indeed the case for the projected
subgradient method.

8.2.1 The Method

Each iteration of the projected subgradient method consists of a step taken toward
the negative of the chosen subgradient followed by an orthogonal projection onto
the underlying set C.

Projected Subgradient Method

Initialization: pick x° € C arbitrarily.
General step: for any £ =0,1,2, ... execute the following steps:

(a) pick a stepsize t; > 0 and a subgradient f’(x*) € df(x"*);
(b) set X]H_1 = PC (Xk — tkf’(xk)).

The sequence generated by the projected subgradient method is {x*}1>o0,
while the sequence of function values generated by the method is {f(x*)}r>0. As
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was already discussed, the sequence of function values is not necessarily monotone,
and we will be also interested in the sequence of best achieved function values, which
is defined by

fl]jcst = . min f(Xn) (811)
Obviously, the sequence {f{ . }1>0 is nonincreasing.

Remark 8.9 (stopping criterion for the projected subgradient method).
In actual implementations of the projected subgradient method, a stopping criterion
has to be incorporated, but as a rule, we will not deal in this book with stopping
criteria but rather concentrate on issues of convergence.

Remark 8.10 (zero subgradients). In the unlikely case where f'(x*) = 0 for
some k, then by Fermat’s optimality condition (Theorem 3.63), x* is a minimizer
of f over E, and since x* € C, it is also a minimizer of f over C. In this situation,
the method is “stuck” at the optimal solution x* from iteration k onward, meaning
that x™ = x* for alln > k.

The analysis of the projected subgradient method relies on the following simple
technical lemma.

Lemma 8.11 (fundamental inequality for projected subgradient). Suppose
that Assumption 8.7 holds. Let {x*};>0 be the sequence generated by the projected
subgradient method. Then for any x* € X* and k > 0,

o =2 < o 2 = 20 (£ — fope) T IS (812)

Proof.
=2 = [[Pe(et — 1 f () — o))

< I -t f(x) = x|
[x* = 312 = 2t (' (x7), x* — x*) + 7|1 £ (M)

(+%)
<P = P = 2t (F(6F) = fope) + I ()17,

where the inequality (%) is due to the nonexpansiveness of the orthogonal projection
operator (Theorem 6.42), and (xx) follows by the subgradient inequality. O

8.2.2 Convergence under Polyak’s Stepsize Rule

We will require an assumption in addition to Assumption 8.7 in order to prove con-
vergence of the sequence of function values generated by the projected subgradient
method.

Assumption 8.12. There exists a constant Ly > 0 for which ||g|| < Ly for all
gedf(x),xeC.
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Since C' C int(dom(f)) (Assumption 8.7(C)), it follows by Theorem 3.61 that
Assumption 8.12 implies that f is Lipschitz continuous over C' with constant L:

If(x) = f(y)] < Lyllx —yl| for all x,y € C.

In addition, since (again) C' C int(dom(f)), it follows by Theorem 3.16 that As-
sumption 8.12 holds if C' is assumed to be compact.

One natural way to choose the stepsize t; is by taking it as the minimizer of
the right-hand side of (8.12) over ¢ > 0:

f(Xk) — fopt
1))

When f/(x¥) = 0, the above formula is not defined, and by Remark 8.10, x* is
an optimal solution of (8.10). We will artificially define ¢, = 1 (any other positive
number could also have been chosen). The complete formula is therefore

tr =

J (%)= fops f/ Xk # 0
te = FHECOIR ( ) ’ (813)
1, f'(x*)=o0.

We will refer to this stepsize rule as Polyak’s stepsize rule.*?
The main convergence result of the projected subgradient method with Polyak’s
stepsize rule is given in the next theorem.

Theorem 8.13 (convergence of projected subgradient with Polyak’s step-
size). Suppose that Assumptions 8.7 and 8.12 hold. Let {xk}kzo be the sequence
generated by the projected subgradient method with Polyak’s stepsize rule (8.13).
Then

(a) ||xF+! —x*||? < ||xF — x*||? for any k > 0 and x* € X*;

(b) f(xk) — fopt as k — oo;

(¢) fE— fopt < %ﬁfo) for any k > 0.

Proof. Let n be a nonnegative integer and x* € X*. By Lemma 8.11,
" = x[|2 < [l = X7 = 2t (F(X) = fopt) + Rl F (x™)]1%. (8.14)

If f'(x") # 0, then by substituting t, = JE-1tet into (8.14), it follows that

(f(x") - ft)pt)2
[fr =)

42 As the name suggests, this stepsize was first suggested by Boris T. Polyak; see, for example,
[104].

[l — x| < flx" - x| -
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Using the bound || f/(x™)|| < Ly, we thus obtain

n * n * fxn _fO 2
a1 =2 <t 2 - SO S (815)
f

Inequality (8.15) also holds when f’(x™) = 0, since in this case f(x") = fopt and
x"tl = xn". A direct result of (8.15) is that

e N E

and part (a) is thus proved (by plugging n = k). Summing inequality (8.15) over
n=20,1,...,k, we obtain that

k
1
—QZ — fopt)? < [0 = x| = [xF T — x| 12,
f n=0

and thus i

D (") = fopr)® < L7l —x7|I%.

n=0

Since the above inequality holds for any x* € X*, it follows that

k

D (") = fopr)® < Lide (x°), (8.16)

n=0

which in particular implies that f(x™)— fopt — 0 as n — 0o, and the validity of (b) is
established. To prove part (c), note that since f(x") > fF . foranyn=0,1,...,k,
it follows that

k
D) = fope)® 2 (b 1) flost = fop)®,
n=0
which, combined with (8.16), yields

(k + 1)(fl])€cst - fOPt)Z S L?’d2 * (X0)7

and hence
Lydx-(x")

k
— fo <
fbest f pt = \/m

Remark 8.14. Note that in the convergence result of Theorem 8.13 we can replace
the constant Ly with maxp—o1,. . ||f'(x™)].

The property of the sequence generated by the projected subgradient method
described in part (a) of Theorem 8.13 is known as Fejér monotonicity.

Definition 8.15 (Fejér monotonicity). A sequence {x*};>0 C E is called Fejér
monotone w.r.t. a set S CE if

[+ — || < |x* = || for all k=0 and y € 5.
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Since Fejér monotonicity w.r.t. a set S implies that for all £ > 0 and any
y €5, [[x¥ —y| <|x°—y], it follows that Fejér monotone sequences are always
bounded. We will now prove that sequences which are Fejér monotone w.r.t. sets
containing their limit points are convergent.

Theorem 8.16 (convergence under Fejér monotonicity). Let {x"};>0 C E
be a sequence, and let S be a set satisfying D C S, where D is the set comprising
all the limit points of {x*}r>0. If {x*}k>0 is Fejér monotone w.r.t. S, then it
converges to a point in D.

Proof. Since {x*};>¢ is Fejér monotone, it is also bounded and hence has limit
points. Let x be a limit point of the sequence {xk}kzo, meaning that there exists a
subsequence {x*7},>¢ such that x* — %. Since x € D C S, it follows by the Fejér
monotonicity w.r.t. S that for any £ > 0,

" — x| < flx" = x]].

Thus, {||x* —%||}x>0 is a nonincreasing sequence which is bounded below (by zero)
and hence convergent. Since ||x* —%|| — 0 as j — oo, it follows that the whole se-
quence {||x* — x||}x>0 converges to zero, and consequently x* — X as k — co. O

Equipped with the last theorem, we can now prove convergence of the sequence
generated by the projected subgradient method with Polyak’s stepsize rule.

Theorem 8.17 (convergence of the sequence generated by projected sub-
gradient with Polyak’s stepsize rule). Suppose that Assumptions 8.7 and 8.12
hold. Let {x*}r>0 be the sequence generated by the projected subgradient method
with Polyak’s stepsize rule (8.13). Then {x*}1>0 converges to a point in X*.

Proof. By Theorem 8.13(a), the sequence is Fejér monotone w.r.t. X*. Therefore,
by Theorem 8.16, to show convergence to a point in X*, it is enough to show that
any limit point of the sequence is necessarily in X* (that is, an optimal solution
of the problem). Let then X be a limit point of the sequence. Then there exists a
subsequence {x%i} j>0 converging to X. By the closedness of C, x € C. By Theorem
8.13(b),

F(xM) = fops as j — oo, (8.17)

Since x € C C int(dom(f)), it follows by Theorem 2.21 that f is continuous at X,
which, combined with (8.17), implies that f(X) = fopt, meaning that x € X*. 0

Part (c) of Theorem 8.13 provides an upper bound on the rate of convergence
in which the sequence { fk]fest}kzo converges to fopt. Specifically, the result shows

that the distance of f,fest to fopt is bounded above by a constant factor of \/k;?

with k being the iteration index. We will sometimes refer to it as an “O(1/vVk) rate
of convergence result” with a slight abuse of the “big O” notation (which actually
refers to asymptotic results). We can also write the rate of convergence result as a
complezity result. For that, we first introduce the concept of an e-optimal solution.
A vector x € C is called an e-optimal solution of problem (8.10) if f(x) — fopt < €.
In complexity analysis, the following question is asked: how many iterations are
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required to obtain an e-optimal solution? That is, how many iterations are required
to obtain the condition

f}fest - fOpt < e? (818)
Using Theorem 8.13(c), it follows that a sufficient condition for (8.18) to hold is the
following inequality:

(8.19)

which is the same as

Therefore, an order of Eiz iterations is required to obtain an e-optimal solution. We
summarize the discussion in the following theorem.

Theorem 8.18 (complexity of projected subgradient with Polyak’s step-
size). Suppose that Assumptions 8.7 and 8.12 hold. Let {xk}kzo be the sequence
generated by the projected subgradient method with Polyak’s stepsize rule (8.13).
Then for any nonnegative integer k satisfying

L3d%. (%)
e

k>

it holds that
f}fest - fOPt S €.

Example 8.19. Consider the problem

min{ f(x1,z2) = |z1 + 2z2| + 321 + 422}

Z1,T2

Since in this chapter the underlying spaces are Euclidean, it follows that the under-
lying space in this example is R? endowed with the dot product and the ly-norm.
The optimal solution of the problem is (z1,22) = (0,0), and the optimal value is
fopt = 0. Clearly, both Assumptions 8.7 and 8.12 hold. Since f(x) = ||Ax||1, where
A= (; i), it follows that for any x € R?,

of(x) = AToh(Ax),
where h(x) = ||x||;. By Example 3.41, for any w € R?
Oh(w) = {z € R*: z; = sgn(w;),i € L+(W), |z;| < 1,5 € Io(w)},

where

In(w) = {i:w; =0}, [x(w) = {i: w; #0}.
Hence, if n € Oh(Ax), then n € [~1,1] x [~1,1], and, in particular, |92 < V2.
Therefore, since any g € 9f(x) can be written as g = ATn for some n € Oh(Ax),
we have

lgllz = 1A nll2 < [|AT[l22lnll2 < AT |22 - V2 = 7.7287.
We can thus choose Ly = 7.7287.
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The subgradient method update step takes the form

k+1
y " B af |zh + 225| + |32k + 42k . .
ka1 - k - HV(J:k xk)”Q V(x17x2)a
$2 x2 172 2

where we choose

sgn(z1 + 2x2) + 3sgn(3z1 + 4a2)
V((El,xg) = € 8f(x1,$2).
2sgn(x1 + 2x2) + 4sgn(3x; + 4x2)

Note that in the terminology of this book sgn(0) = 1 (see Section 1.7.2), which
dictates the choice of the subgradient among the vectors in the subdifferential set
in cases where f is not differentiable at the given point. We can immediately see that
there are actually only four possible choices of directions v(z1, z2) depending on the
two possible values of sgn(z; 4+ 2x2) and the two possible choices of sgn(3x; + 4x2).
The four possible directions are

—4 2 -2 4

By Remark 8.14, the constant Ly can be chosen as max;{||u;||2} = 7.2111, which is
a slightly better bound than 7.7287. The first 100 iterations of the method with a
starting point (1,2)7 are described in Figure 8.2. Note that the sequence of function
values is indeed not monotone (although convergence to fopt is quite apparent)
and that actually only two directions are being used by the method: (—2,—2)7,
4,6)". 1

8.2.3 The Convex Feasibility Problem
Let S1,55,...,5, C E be closed and convex sets. Assume that
S=(8:#0. (8.20)
i=1

The convex feasibility problem is the problem of finding a point x in the intersection
N~ Si. We can formulate the problem as the following minimization problem:

min {f(x) = _max s, (x)} . (8.21)

Since we assume that the intersection is nonempty, we have that f,,¢ = 0 and that
the optimal set is S. Another property of f is that it is Lipschitz continuous with
constant 1.

Lemma 8.20. Let S1,S3,...,5n be nonempty closed and convex sets. Then the
function f given in (8.21) is Lipschitz continuous with constant 1.
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Figure 8.2. First 100 iterations of the subgradient method applied to the
function f(x1,x2) = |x1+ 2x2|+|3x1 + 4| with Polyak’s stepsize rule and starting
point (1,2)T. The left image describes the function values at each iteration, and the
right image shows the contour lines along with the iterations.

Proof. Let i € {1,2,...,m}, and let x,y € E. Then

ds; (%) =[x = Ps, ()|
<x = Ps. (¥ [Ix = Ps, (x)|| = argmin, e, [x — v[]
<k =yl +lly = Ps,(y)ll [triangle inequality]

=[x =yl +ds;(y) [ds. (y) = lly — Ps.(y)ll]

Thus,
ds,(x) — ds,(y) < [x =y (8.22)

Replacing the roles of x and y, we obtain that
dsi (Y) - dsi (X) < ||X - Y||’

which, combined with (8.22), yields the inequality

|ds, (%) = ds, (y)| < [lx = yl|- (8.23)
Finally, for any x,y € E,
500~ f) = | _max ds,(0) — _max ds,(v)| = [Ivelloo ~ [Ivyllol . (8:20)
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where vy = (dg, (%)), € R™ and vy = (dg,(y))2; € R™. Using the triangle
inequality for norms, we can continue (8.24) and obtain

1f(x) = f] < velloo = vyl
< HVx_VyHoo

T 569 = s, )

< fx-yl- O

Let us write explicitly the projected subgradient method with Polyak’s stepsize
rule as applied to problem (8.21). The method starts with an arbitrary x° € E. If
the kth iteration satisfies x* € S, then we can pick f’(x*) = 0 and hence x**! = x*.
Otherwise, we take a step toward minus of the subgradient with Polyak’s stepsize.
By Theorem 3.50, to compute a subgradient of the objective function at the kth
iterate, we can use the following procedure:

(i) compute i), € argmax;_; 5 _,.ds, (x*);

(ii) take any g* € dds, (x*).

By Example 3.49, we can (and actually must) choose the subgradient in dds,, (xF)

k xP—Ps. (x*)

as g" = ds%&k)’ and in this case the update step becomes
ik

k+1l ok _ dsik (Xk) - fopt ) xF — PS'ik (Xk)
[l ds,, (x*)
xk — Ps, (x*)
dSik (Xk)

X

=xF - ds;, (x*)
= PS'ik (Xk)ﬂ

where we used in the above the facts that fop, = 0 and ||g¥|| = 1. What we actually
obtained is the greedy projection algorithm, which at each iteration projects the
current iterate x* onto the farthest set among Si,Ss,...,S,. The algorithm is
summarized below.

Greedy Projection Algorithm

Input: m nonempty closed and convex sets S1,S2, ..., Sm.
Initialization: pick x° € E.
General step: for any £ =0,1,2, ..., execute the step

Xk—i—l _ Psik (Xk),

where iy € argmax,_; 5 nds, (xF).
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We can invoke Theorems 8.13 and 8.17 to obtain the following convergence
result of the algorithm.

Theorem 8.21 (convergence of the greedy projection algorithm). Let
S1,82,...,8m C E be closed and convex sets such that S = (-, S; # 0. Let
{xk}kzo be the sequence generated by the greedy projection algorithm.

(a) For any k >0,

< ds (XO)

n=0,1,2,....k {i_l.z,...,md(x ’Si)} ~VE+1

(8.25)

(b) There exists x* € S such that x* — x* as k — oo.

Proof. To prove part (a), define f(x) = max;—12..md(x,5;) and C = E. Then
the optimal set of the problem

min{ f(x) : x € C'}

is X* = 5. Assumption 8.7 is satisfied since f is proper closed and convex and
C = E is obviously nonempty closed and convex and contained in int(dom(f)) = E.
The optimal set X* = S is nonempty by the assumption in the premise of the
theorem. Assumption 8.12 is satisfied with Ly = 1 by Lemma 8.20 and Theorem
3.61. Therefore, all the assumptions of Theorem 8.13 are satisfied, and hence,
since the greedy projection algorithm is the same as the projected subgradient
method with Polyak’s stepsize rule, the result (8.25) holds, as it is exactly part (c)
of Theorem 8.13. Part (b) follows by invoking Theorem 8.17. O

When m = 2, the algorithm amounts to the alternating projection method,
which is described below.

Alternating Projection Method

Input: two nonempty closed and convex sets S1, Sa.
Initialization: pick x° € Sy arbitrarily.
General step: for any £ =0,1,2, ..., execute the following step:

XkJrl = Psz (‘PSI (Xk))

If S NSy # 0, by Theorem 8.21, the sequence generated by the alternating
projection method converges to a point in S N Ss.

Corollary 8.22 (convergence of alternating projection). Let S1, Sy be closed
and conver sets such that S = S1 NSy # 0. Let {xk}kzo be the sequence generated
by the alternating projection method with initial point x° € So. Then
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(a) for any k >0,

gt AT S1) S T

(b) there exists x* € S such that x* — x* as k — oo.

Example 8.23 (solution of linear feasibility problems). Consider the follow-
ing system of linear equalities and inequalities:

Ax=b,x >0, (8.26)

where A € R™*™ has full row rank and b € R™. The system (8.26) is one of
the standard forms of feasible sets of linear programming problems. One way to
solve the problem of finding a solution to (8.26) is by employing the alternating
projection method. Define

S1={xeR":Ax=Db}, S;=R].
The projections on S; and S have analytic expressions (see Lemma 6.26):
Ps,(x) = x — AT(AAT) " (Ax — b), Ps,(x) = [x];.

The alternating projection method for finding a solution to (8.26) takes the following
form:

Algorithm 1
o Initialization: pick x° € R%.

e General step (k > 0): x"! = [x* - AT(AAT)"!(Ax" —b)]

e

The general step of the above scheme involves the computation of the expression
(AAT)~1(Ax* —b), which requires the computation of the matrix AAT, as well
as the solution of the linear system (AAT)z = Ax" — b. In cases when these
computations are too demanding (e.g., when the dimension is large), we can employ
a different projection algorithm that avoids the necessity of solving a linear system.
Specifically, denoting the ith row of A by al and defining

Ti:{XER";a?X:bZ‘},i:1,2,...,m, Terl:]Ria

we obtain that finding a solution to (8.26) is the same as finding a point in the
intersection ﬂf:{l T;. Note that (see Lemma 6.26)

T

a;x—b;

Pr(x) =x— iHa'HZ a;, 1=1,2,...,m.
ill2

Hence,
alx — by
llai ]2

We can now invoke the greedy projection method that has the following form:

dTi(X) = HX - PTq‘ (X)H =
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Algorithm 2
o Initialization: pick x° € E.

e General step (k =0,1,...):

. |a?xk—b1\
— compute 1 € argmax;_q 9 . Tz
. laT xF—b;, |
— if % > ||x* — [x¥] 4|2, then
llai, [l2
T k
a; x"—b;
Xl =xb — e kg,
llai, 113
else,
xk+1 — [Xk]Jr'

Algorithm 2 is simpler than Algorithm 1 in the sense that it requires much less
operations per iteration. However, simplicity has its cost. Consider, for example,
the instance
0 6 -7 1 0
A= , b=
-1 2 10 -1 10

Figure 8.3 shows the constraint violation of the two sequences generated by the two
algorithms initialized with the zeros vector in the first 20 iterations. Obviously, in
this case, Algorithm 1 (alternating projection) reached substantially better accura-
cies than Algorithm 2 (greedy projection). N

107 B
alternating
greedy

0 2 4 6 8 10 12 14 16 18 20

Figure 8.3. Constraints violation of alternating and greedy projec-

T T
tion methods. Here f(x) = max{‘aﬁ:lﬂjll, ‘aﬁ:zﬂfgl, Ix — [x]+|\2}, where al' =

(0,6,-7,1), al' = (—1,2,10, 1), and b = (0,10)7.

8.2.4 Projected Subgradient with Dynamic Stepsizes

Polyak’s stepsize is optimal in the sense that it minimizes the upper bound given
in the fundamental inequality (8.12). However, a major disadvantage of this rule
is that usually the optimal value fop¢ is unknown, and in these (frequent) cases,
the stepsize is incomputable. In this section we will show how to find computable
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stepsize rules that still maintain the O(1/vk) rate of convergence result of the
projected subgradient method. Theorem 8.25 below describes a simple condition
on the stepsizes under which convergence of f¥ . to fopt is guaranteed. The result
uses the following technical lemma.

Lemma 8.24. Suppose that Assumption 8.7 holds. Let {xk}kzo be the sequence
generated by the projected subgradient method with positive stepsizes {tx}r>0. Then
for any x* € X* and nonnegative integer k,

k

Do talf ") = fope) < Ll =2+ Zt [FRCI (8.27)

n=0

Proof. By Lemma 8.11, for any n > 0 and x* € X*,

§HX oxtP < §HX = X2 = ta(F(X™) = fopt) + 7||f’(x ).
Summing the above inequality over n = 0,1,...,k and arranging terms yields the

following inequality:

k

S tnlF)  fop) < 5l =72 = 54 XII2+Z"Hf P

n=0

N

1 *
CLE e B Zt [FACSOI

IN

Theorem 8.25 (stepsize conditions warranting convergence of projected
subgradient). Suppose that Assumptions 8.7 and 8.12 hold. Let {x*},>¢ be the se-
quence generated by the projected subgradient method with positive stepsizes {tx}r>0.

If
k 2
t
72220 % — 0 as k — oo, (8.28)
Zn:() tn
then
Fost = Fopt = 0 as k — oo, (8.29)

where { fF . Yr>o is the sequence of best achieved values defined in (8.11).

Proof. Let Ly be a constant for which ||g|| < Ly for any g € 0f(x),x € C whose
existence is warranted by Assumption 8.12. Employing Lemma 8.24 and using the
inequalities || f/(x")|| < Ly and f(x") > fk, for n <k, we obtain

k 1 L2 k
(Z%) (Fhest = Jopr) < 5" =2+ 5L 372,
n=0 n=0

Therefore,
1 HXO_X*”2 Zn =0 n

fl])gcst fOpt = T .
2 Zn O 2 Zn:O t”
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The result (8.29) now follows by (8.28), and the fact that (8.28) implies the limit

k
Yoneotn w00ask —oo. 0

By Theorem 8.25, we can pick, for example, the stepsizes as tj, = \/]j?, and

convergence of function values to fopt will be guaranteed since Zn o \/W is of the

order of vk and ano 7 is of the order of log(k). We will analyze the conver-
gence rate of the projected subgradient method when the stepsizes are chosen as
tr = W in Theorem 8.28 below. Note that in addition to proving the limit

[t — Jfopt, we will further show that the function values of a certain sequence
of averages also converges to the optimal value. Such a result is called an ergodic
convergence result.

To prove the result, we will be need to upper and lower bound sums of se-
quences of real numbers. For that, we will use the following technical lemma from
calculus.

Lemma 8.26. Let f : [a—1,b+ 1] = R be a continuous nonincreasing function
over [a — 1,b+ 1], where a and b are integer numbers satisfying a < b. Then

b+1
(0t < f(a) + fla+1)+ / £(0)

a

Using Lemma 8.26, we can prove the following lemma that will be useful in
proving Theorem 8.28, as well as additional results in what follows.

Lemma 8.27. Let D € R. Then

(a) for any k > 1,

D+Yr o7t D+1+loglk+1)
=0t o N = (8.30)
2on=0 VT
(b) for any k > 2,
D+YF e 4D +1
Dn=r/2) wrr _ 4D +log(3)) (8.31)

k 1 —
Don=k/2] VarT V2

Proof. (a) Using Lemma 8.26, we obtain the following inequalities:
o
=1 -
+ Z - /0 z+1

k
Z 1 > \/l_da: =wk+2-2>Vk+ (8.33)
"0 0

k

dr =1+log(k+1), (8.32)

where the last inequality holds for all £ > 1. The result (8.30) now follows imme-
diately from (8.32) and (8.33).
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(b) Using Lemma 8.26, we obtain the following inequalities for any k > 2:

r 1 ’“ dt
< —— =log(k+1)—1 k/2
3 n+1_/[km1t+1 og(k + 1) — log([k/2])

n—k/2]
ka1 kol 2
= [ < - e —
log ((o.mﬂ) < log ( 0.5k ) log (2 + k)
< log(3) (8.34)

and

k 1
> L E/H L:2¢k+2—2\/(k/2]+1

e k2] n+1 [k/2] Vt+1

Ak +2) — 4(0.5k + 2)
2VEk + 2+ 2v/0.5k + 2

>k +2-2k/2+2=

k k
pu— >
VE+2+V/05k+2  2vVE+2
1
> —VEk+ 2, (8.35)

S

where the last inequality holds since k > 2. The result (8.31) now follows by
combining (8.34) and (8.35). O

We are now ready to prove the convergence result.

Theorem 8.28 (O(log(k)/v'k) rate of convergence of projected subgradi-
ent). Suppose that Assumptions 8.7 and 8.12 hold. Let {Xk}k>0 be the sequence
genemted by the pmjected subgradient method with stepsizes ty, = Hf’(xk)llx/W if
f(xk)#£0 and t), = ~ ~ otherwise. Then

(a) for any k > 1,

Ly [|x° = x*|* + 1 4 log(k +1)

2 VEk+1 '

where { ff_Yk>o is the sequence of best achieved values defined in (8.11);

(b) for any k > 1,

k
fbest fopt <

Lf [x% —x*||? 4+ 1 +log(k + 1)

f(X(k)) - fopt >~ \/ﬁ 3

where

><

g >
Zn 0 ”n 0

Proof. Using (8.27) along with the inequality f(x™) > fF . foranyn =0,1,2,...,k,

we obtain
1JJx® —x*[|2 + S0 211 ()|
i k .
2 Zn:()tn

Fost = fopt < (8.36)
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Alternatively, by Jensen’s inequality

Fx™) tnf(x
Zn 0 ”11230

which, along with (8.27), yields

1 2+ n\ (|12
F) e < LK S B,
En Ot
Therefore, combining (8.36) and (8.37), we have

1HX — X2+ o L (x|
Zn OtL

By the definition of t,, 2| f'(x")[|* < —5 (satisfied as equality when f'(x") # 0
and as a strlct inequality when f/(x™) = ) in addition, since || f/(x™)|| < Ly, we
have t,, > T \/W Therefore,

(8.37)

max{ i — fopts f( ) fopt} <

k
Lf ||X X*H2 =+ Zn:O 77,—1Q—1

max{f{)ﬂost - foptv f(X(k)) f } < k 1
ZnZO \/ﬁ

(8.38)

Invoking Lemma 8.27(a) with D = ||x° — x*||? implies the inequality

Lf [x° — x*||2 + 1+ log(k + 1)
VE+1 ’

which is equivalent to the validity of the two claims (a) and (b). 0O

max{fl]jcst - fopt7 f(x(k)) f } <

Remark 8.29. The sequence of averages x%) as defined in Theorem 8.28 can be
computed in an adaptive way by noting that the following simple recursion relation

holds: T ;
k+1) _ Ak (k) E+1 41
X = —X"" 4+ X
Thy1 Tri1

)

where Ty, = EZ:O t, can be computed by the obvious recursion relation Tyi1 =

The O(log(k)/Vk) rate of convergence proven in Theorem 8.28 is worse than
the O(1/Vk) rate established in Theorem 8.13 for the version of the projected
subgradient method with Polyak’s stepsize. It is possible to prove an O(1/vk) rate
of convergence if we assume in addition that the feasible set C' is compact. Note
that by Theorem 3.16, the compactness of C implies the validity of Assumption
8.12, but we will nonetheless explicitly state it in the following result.

Theorem 8.30 (O(1/vk) rate of convergence of projected subgradient).
Suppose that Assumptions 8.7 and 8.12 hold and assume that C' is compact. Let ©
be an upper bound on the half-squared diameter of C':

1
O > max —||x — v/
_xrgexwl\x Ml
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Let {xk}kzo be the sequence generated by the projected subgradient method with
stepsizes chosen as either

Livk+1
or
i 1k
_ ) wesve F&)#0,
e /25 (8.40)
20 o
LyVk+1’ f'(x")=o0.
Then for all k > 2,
0L;v20

k
fbest - fopt <

VE+2'

where § = 2(1 +log(3)) and fF_, is the sequence of best achieved values defined in
(8.11).

Proof. By Lemma 8.11, for any n > 0,

Sl =[P < S =X (£ = fo) + LS

Summing the above inequality over n = [k/2], [k/2]+ 1,...,k, we obtain

k k

Z tn(f(x") = fopt) < §HXW2] - x| - §IIX’“+1 - x|+ Z gllf’(X )II”
n=[k/2] n=[k/2]

k t2

<O+ > gl\f’(X”)Il2
n=[k/2]
b 1

< e .
<0+0 ) —T (8.41)

n=[k/2]

where the last inequality is due to the fact that in either of the definitions of the

stepsizes (8.39), (8.40), t2||f'(x™)||* < nz—fl.

Since t, > % and f(x") > fk_ for all n <k, it follows that

k k
V20

Z tn(f(x") = fopt) = Z T
n—Tk/2] ey Lvnt+1

(flicest - fOPt)' (842)
Therefore, combining (8.41) and (8.42) yields

k
LivVO 1+ rh/o) w1
k 1
V2 v

f}fest - fopt S 5 (843)

which, combined with Lemma 8.27(b), yields the desired result. 0O
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8.2.5 The Strongly Convex Case”

We will now show that if f is in addition strongly convex, then the O(1/Vk) rate
of convergence result can be improved to a rate of O(1/k). The stepsizes used in
order to achieve this improved rate diminish at an order of 1/k. We will also use
the growth property of strongly convex functions described in Theorem 5.25(b) in
order to show a result on the rate of convergence of the sequence {x*};>0 to an
optimal solution.

Theorem 8.31 (O(1/k) rate of convergence of projected subgradient for
strongly convex functions). Suppose that Assumptions 8.7 and 8.12 hold. As-
sume in addition that f is o-strongly convex for some o > 0, and let x* be its
unique minimizer. Let {Xk}kzo be the sequence generated by the projected subgra-
dient method with stepsize ty = ﬁ

(a) Let {fF . }r>0 be the sequence of best achieved values defined in (8.11). Then

for any k > 0,
; < 2L; 8.44
fbest_foptfm' (8.44)
In addition,
» 2Ly
X% — X" < ————, 8.45
I = < — (5.45)
where iy, € argmini:mwwkf(xi),
(b) Define the sequence of averages:
k
xF) = Z aﬁx",
n=0
where o = k(iil). Then for all k > 0,
212
Ry — foop < ——L . 8.46
f(X ) .f0pt — U(k+ 1) ( )
In addition,
2L
[x®) — x*|| < S (8.47)

Proof. (a) Repeating the arguments in the proof of Lemma 8.11, we can write for
any n > 0

" — x| = [|[Po(x" — ta f'(x")) — Po(x")]?
< X" =t f'(x") — x|
= [x" =X = 2t (f (x"), x" = x) + I ()] (8.48)

43The analysis of the stochastic and deterministic projected subgradient method in the strongly
convex case is based on the work of Lacoste-Julien, Schmidt, and Bach [77].



Downloaded 04/11/24 to 143.215.80.169 by Jacob Aguirre (jaguirre31@gatech.edu). Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

220 Chapter 8. Primal and Dual Projected Subgradient Methods

Since f is o-strongly convex, it follows by Theorem 5.24 that

FOE) 2 Fx) + (£, x7 = x) 4 S lx = x|

That is,
n n * n o n *
(1) x" =x7) = (") = fope + 5 IX" —x 1%

Plugging the above into (8.48), we obtain that

[ =12 < (1= o) X" = X7* = 26 (") = fopr) + 10 /(™)1

Rearranging terms, dividing by 2t,,, and using the bound || f/'(x™)|| < L leads to
the following inequality:

1
f(x") - Jopt < 5(@:1

1 N t
gt " = x4+ L3

—o)llx" —x"||* -

Plugging t,, = into the latter inequality, we obtain

2
o(n+1)

o(n—1)

1 1
I O'(TL+ )HXnJrl —X*||2+ L2

no_ L *|[2 _
e =7 4 on+1) f

f (Xn) - f opt <
Multiplying the above by n yields the following inequality:

n O'TL(TL B 1) n * U(n + 1)” n * n
() = foe) < T et = = T et 2

Summing over n =0, 1, ..., k, we conclude that

k

DO nlFO") = fopt) < 0= Th(k+ D" x| +

n=0

Lftk
< (849)

S |&W

k
Therefore, using the inequality f(x") > fF . for alln =0,1,...,k, it follows that

L%k

k
(Z n) (fl]jest - fopt) S %7

n=0
which by the known identity Ei:o n= @ shows that

2
2L%

k
_ < 7
fbest fopt— U(k—Fl)’

(8.50)

meaning that (8.44) holds. To prove (8.45), note that ff . = f(x'), and hence by
Theorem 5.25(b) employed on the o-strongly convex function f + d¢ and (8.50),

2
2L%

Tlixie — x*|12 < £E < _27F
2||X X” 7fbest fopt—o,(k+1)7

which is the same as
[x* — x| <

“oVvkE+1
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. . . o ke(k+1
(b) To establish the ergodic convergence, we begin by dividing (8.49) by %

to obtain
k 2L2
k n f
E Oén(f(X )_fopt)S U(k+1)

n=0

By Jensen’s inequality (utilizing the fact that (af)k_, € Apiq),

212

f
f( — fopt = <Za ) Jopt <Za — fopt) < ma

meaning that (8.46) holds. The result (8.47) now follows by the same arguments
used to prove (8.45) in part (a). O

Remark 8.32. The sequence of averages x%) as defined in Theorem 8.31 can be
computed in an adaptive way by noting that the following simple recursion relation
holds:
k 2
<+ (k) 4 2 gkt

kr2 k2

The O(1/k) rate of convergence of the sequence of function values naturally
leads to the observation that to obtain an e-optimal solution, an order of 1/e it-
erations is required. The proof is trivial and follows the argument of the proof of
Theorem 8.18.

Theorem 8.33 (complexity of projected subgradient for strongly convex
functions). Under the setting and assumptions of Theorem 8.31, for any nonneg-
atie integer k satisfying

it holds that
f}fest - fOPt <e

and

f(X(k)) - fOpt <e.

8.3 The Stochastic Projected Subgradient Method
8.3.1 Setting and Method

In this section we still study the model (8.10) under Assumption 8.7. The main
difference will be that at each iteration we do not necessarily utilize a subgradient at
the current iterate x* as the update direction vector, but rather a random estimator
g" of a subgradient of f at x* (a precise characterization will be given in Assumption
8.34). The method is therefore given as follows.
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The Stochastic Projected Subgradient Method

Initialization: pick x° € C arbitrarily.
General step: for any £ =0,1,2, ... execute the following steps:

(A) pick a stepsize t; > 0 and a random vector g¥ € E;

(B) set xkt+l = Pc (Xk - tkgk).

Obviously, since the vectors gF are random vectors, so are the iterate vectors
x*. The exact assumptions on the random vectors g are given below.

Assumption 8.34.
(A) (unbiasedness) For any k > 0, E(g"|x*) € af(x").

(B) (boundedness) There exists a constant Ly > 0 such that for any k > 0,
E(llg*|I*x*) < LF.

Part (A) of the assumption says that g¥ is an unbiased estimator of a subgra-
dient at x*. This assumption can also be written as

f(z) > f(x*) + (E(g"[x"),z — x*) for all z € dom(f).

The constant L ¢ from part (B) of Assumption 8.34 is not necessarily a Lipschitz
constant of f as in the deterministic case.

8.3.2 Analysis

The analysis of the stochastic projected subgradient is almost identical to the anal-
ysis of the deterministic method. We gather the main results in the following
theorem.

Theorem 8.35 (convergence of stochastic projected gradient). Suppose
that Assumptions 8.7 and 8.34 hold. Let {x*};>0 be the sequence generated by
the stochastic projected subgradient method with positive stepsizes {ty}r>0, and let
{fE Ye>0 be the sequence of best achieved values defined in (8.11).
k 2
(a) If % — 0 as k — oo, then E(fF..) = fopt as k — o0.
(b) Assume that C' is compact. Let I:Jf be the positive constant defined in As-
sumption 8.34, and let © be an upper bound on the half-squared diameter of
C:
1
o> ~|lx -yl 8.51
> max ox—y| (8.51)

If ty = %, then for all k > 2,

6L\V/20

ko
E(fbest) fopt < \/k'——l—2 ’

where § = 2(1 + log(3)).
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Proof. We have for any n > 0,
E(lx" —x"|?x") = E(|Pc(x" —tag") — Po(x")|* x")

< E(Ix" — tag™ —x7|*[x")

= |x" = x| = 2t,E ((g", x" — x*) [x") + £7E (|lg"|* [x")
= [Ix" = x| - 2t (E(g"[x"), x" —x*) + 1 E (g x")
(%)

< X" = xP - 20 (E(g"x"), X" — x*) + 62 LT

(k%) . n -
< [x"—-x ”2 = 2tn (f(x") - fOpt) + tiLg,

where (x) follows by the nonexpansiveness property of the orthogonal projection
operator (Theorem 6.42), and (x*) and (s*x) follow by Assumption 8.34.
Taking expectation w.r.t. X", we obtain

E (It = x*|%) < E(Ix" —x"|1%) = 2t (E(f(x")) = fope) +tn L7,

Summing over n = m,m + 1,...,k (where m is an integer satisfying m < k),
k L
E (I —x|2) < E (™ = x7[2) =2 37 ta(E(F (") = fop) + 12 3 £2.
Therefore,

k k
S tn(E(FM) ~ o) < 5 [E (I =x"12) + 23 3 ti] ,

n=m

which implies

k 1 ~ k
(Ztn>( min E(f(xn))—fopt><§[E(IIX’”—X*|2)+L?Z’531'

= n=m,m+1,....k
Using the inequality**
Elh) SE(,_ min  JO0) < min  EGE),
we can conclude that

m * T k
Bl —x'[2) + 3T, 2 55
% . .
2En:m t”

E(fl]jcst) - fOpt <
Plugging m = 0 in (8.52), we obtain
« Zo —k
I — 2 + 13 5y 2

k
2 ZnZO tn
44The fact that for any p random variables E(min{X1, Xo,...,Xp}) < min;—12 ., E(X;) fol-

lows by the following argument: for any ¢ = 1,2, ..., p, the inequality min{Xj, X27,:-.-,. ,Xpt < X;
holds. Taking expectation leads to the inequality E(min{X1, X2,...,Xp}) < E(X;) for any ¢, from
which the desired inequality E(min{X1, X2,..., X,}) < min;—1 2 ... » E(X;) follows.

,,,,,

E(flfest) - fOPt <
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k 2
Therefore, if Z}C‘;‘)E" — 0, then E(fF.,) — fopt as k — oo, proving claim (a). To

show the validity of claim (b), use (8.52) with m = [k/2] and the bound (8.51) to
obtain -,

L k
O+ 5 ko th

z
D n=k/2] tn

E(ft]jcst) - fOpt <

Taking t,, = %, we get

- k
Lv20 1+ X _thjo) T

E(ft]jcst) - fOPt < 9

k 1
2on=k/2] VT
which, combined with Lemma 8.27(b), yields the desired result. 0O

Example 8.36 (minimization of sum of convex functions). Consider the
optimization model

(P) min {f(x) => filx):xe€ c} :
i=1

where f1, fa,..., fm : E = (—00, 00| are proper closed and convex functions. Sup-
pose that Assumption 8.7 holds and that C' is compact, which in particular implies
the validity of Assumption 8.12 with some constant Ly. By Theorem 3.61 Ly is a
Lipschitz constant of f over C. Let © be some upper bound on the half-squared
diameter of C: .

- —y|? <eo.

5 max [x -yl <
In addition, we will assume that for any i+ = 1,2,...,m, there exists a constant L,
for which

llgll < Ly, for all g € 9f;(x),x € C.

By Theorem 3.61, Ly, is a Lipschitz constant of f; over C. We can consider two
options for solving the main problem (P). The first is to employ the projected
subgradient method (we assume that f’(x*) # 0):

Algorithm 1
e Initialization: pick x° € C.

e General step (k > 0): choose f/(x*) € 0fi(x¥),i = 1,2,...,m, and
compute

Xlc+1_ xk_ \/% % {xk
‘PC< I FGR)IVE+1 ;“) '

By Theorem 8.30, the following efficiency estimate holds for any k& > 2:

SL;\/20
VE+2'

.f}fest - fOpt S (853)
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where 0 = 2(1+1og(3)). A direct consequence is that in order to obtain an e-optimal

solution,
252L?9
N; = max —2,2

2

iterations are sufficient. Since the computation of the subgradient of f at x* by
the formula 7", f/(x*) might be too expensive in cases where m is large, we can
alternatively employ the stochastic projected subgradient method where at iteration
k, we define the unbiased estimate of f'(x*) as

gk = mfz/k (Xk)v

where iy, is randomly picked from {1,2,...,m} via a uniform distribution. Obvi-

ously,
E(g"x") Z A AR e of(xb),
i=1 i=1

where the inclusion in df(x*) follows by the sum rule of subdifferential calculus
(Corollary 3.38). Also,

m

1 -
(g %) = — > m?| fi(x ||2<mZL _ i

i=1

The stochastic projected subgradient method employed on problem (P) therefore
takes the following form:

Algorithm 2
e Initialization: pick x° € C.
e General step (k> 0):

— pick i € {1,2,...,m} randomly via a uniform distribution and

1, (M) € 0fi, (x*);

— compute
_ k_ _V Om /
= PC ( Lf /—k T1 fzk( ) )

where Ly = \/my/>31% L3,

Invoking Theorem 8.35, we obtain that

Sy /S L2726
VE+2 '

E(fl]jcst) - fopt < (854)

In particular,

2

26°mO Y " L2
M:mw{ leﬂ—z%
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iterations are sufficient in order to ensure that an e-optimal solution in expectation is
reached. The natural question that arises is, s it possible to compare between the two
algorithms? The answer is actually not clear. We can compare the two quantities
N3 and Np, but there are two major flaws in such a comparison. First, in a sense
this is like comparing apples and oranges since N; considers a sequence of function
values, while N> refers to a sequence of expected function values. In addition, recall
that Ny and N7 only provide upper bounds on the amount of iterations required
to obtain an e-optimal solution (deterministically or in expectation). Comparison
of upper bounds might be influenced dramatically by the tightness of the upper
bounds. Disregarding these drawbacks, estimating the ratio between N, and Ny,
while neglecting the constant terms, which do not depend on ¢, we get

2 m 2
N, N 26 m@sz;i:l Ly, B mzzil Lgi B B
N 202L30© L?

£2

The value of 8 obviously depends on the specific problem at hand. Let us, for
example, consider the instance in which f;(x) = |aZTX +b;],i=1,2,...,m, where
a; € R",b; € R, and C = By.|,[0,1]. In this case,

f(x) = [[Ax+ Dby,

where A is the m x n matrix whose rows are al and b = (b;)",. Since

a;, alx +b; >0,
0fi(x) = —a;, a;frx +b; <0,
{€a; : ¢ € [-1,1]}, azTX_Fbi:Ov

it follows that we can choose Ly, = ||a;||2. To estimate Ly, note that by Example
3.44, any g € Of(x) has the form g = ATn for some n € [~1,1]™, which in
particular implies that ||7]l2 < +/m. Thus,

lgll2 = AT 72 < [|AT[l22]nll2 < Vml|AT |22,

where || - ||2,2 is the spectral norm. We can therefore choose Ly = /m||AT |2 .
Thus,
g mSI lailf _ ATIE | S, A(AAT)
m|AT|3, |AT]3,  maxi—12. . nAi(AAT)’

where A\; (AAT) > Mo (AAT) > ... > )\, (AAT) are the eigenvalues of AAT ordered
nonincreasingly. Using the fact that for any nonnegative numbers a1, as, ..., amn,
the inequalities

m

< < )

L DILE LS L

=
hold, we obtain that 1 < § < m. The extreme case § = m is actually quite logical in

the sense that the number of subgradient computations per iteration in Algorithm 1
is m times larger than what is required in Algorithm 2, and it is thus not surprising
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that the amount of iterations of Algorithm 2 might be m times larger than what is
required by Algorithm 1 to obtain the same level of accuracy. What is much less
intuitive is the case when f is close 1. In these instances, the two algorithms require
(modulo the faults of this comparison) the same order of iterations to obtain the
same order of accuracy. For example, when A “close” to be of rank one, then S will
be close to 1. In these cases, the two algorithms should perform similarly, although
Algorithm 2 is much less computationally demanding. We can explain this result
by the fact that in this instance the vectors a; are “almost” proportional to each
other, and thus all the subgradient directions f/(x*) are similar. B

8.3.3 Stochastic Projected Subgradient—The Strongly Convex
Case

The analysis of the stochastic projected subgradient method is almost identical to
the one presented for the deterministic case in Theorem 8.31, but for the sake of
completeness we present the result and its complete proof.

Theorem 8.37 (convergence of stochastic projected subgradient for
strongly convex functions). Suppose that Assumptions 8.7 and 8.34 hold. Let
f/f be the positive constant defined in Assumption 8.34. Assume in addition that f
is o-strongly convex for some o > 0. Let {xk}kzo be the sequence generated by the
stochastic projected subgradient method with stepsizes ty, = ﬁ

(a) Let {fk . }rx>0 be the sequence of best achieved values defined in (8.11). Then
for any k >0,

: .14
E(fpest) — fopt < D)

(b) Define the sequence of averages

k
xF) = Z aﬁx",

n=0
where of = k(zil). Then
2L3
E FYY — £, < i
() = fom <

Proof. (a) For any x* € X* and n > 0,
E (Il — x*2x) = E (| Po(x" — tug™) — Po(x")|2x")
<E(Jx" — tug" — x"[x")
" = x? — 2t (E(g7 X", X" — x°)
+HLE(g"[171x"). (8.55)
Since f is o-strongly convex and E(g"|x") € df(x™), it follows by Theorem 5.24(ii)

that o
FOT) 2 f(x") + (B(g"x"), x" = x") + S [Ix" — X2
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That is,
n _ X*||2.

(E(g" [x").x" =) > F(x") ~ fopr + I

Plugging the above into (8.55), we obtain that
E ("™ = x"|I°[x") < (1= ot) X" —x*[|* = 2, (f(x") = fope) + thE(ll"[*x").

Rearranging terms, dividing by 2t,, and using the bound E(||g"[|?|x") < f)? leads
to the following inequality:

1 1 tn =
FOC) — fom < 367 = )l = x| = S B = [P + 2 22,

Plugging t,, = ﬁ into the last inequality, we obtain
n O’(TL - 1) n * 12 O’(TL + 1) n+1 * 112 (<10 1 T2
F&) = fopr < ———[Ix" = x7|I° = ———"E(|lx""" — x7|"|x )"’mLf-

Multiplying the above by n and taking expectation w.r.t. x" yields the following
inequality:

n(EC6) — fope) < T Do — sy - T g et ey
2
(n+1)
Summing over n =0,1,...,k,
: n g k+1 E? : f’ k
DB~ ) <0 Ghlh+ DEGR =)+ 752 2o < T8
(8 56)

Therefore, using the inequality E(f(x")) > E(fF..,) for alln =0,1,...,k, it follows
that -
L%k

(Z TL) fbest fopt) S %7

which, by the identity ano n= k(k;l , implies that

: .14
E(fpest) — fopt < D)

(b) Divide (8.56) by X1 {4 obtain
b 2L7%
k ny\) < _ 7
Z an(E(f(X )) fopt) = O’(lﬂ ¥+ 1) .

n=0

By Jensen’s inequality (utilizing the fact that (af)k_, € A1), we finally obtain

k
E(f(x"))) = fops = E (f (Z aﬁx"» fopt < Z o, — fopt)
n=0
213
S cE+ 1)
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8.4 The Incremental Projected Subgradient Method

Consider the main model (8.10), where f has the form f(x) = >_!", fi(x). That is,
we consider the problem

min{f(x) => filx):xe€ c}. (8.57)
i=1

In addition to Assumption 8.7, we make the following assumption.

Assumption 8.38.
(a) fi is proper closed and convex for anyi=1,2,...,m.

(b) There exists L > 0 for which ||g|| < L for any g € 9fi(x),i = 1,2,...,m,
xeC.

In Example 8.36 the same model was also considered, and a projected sub-
gradient method that takes a step toward a direction of the form —f; (xF) was
analyzed. The index i, was chosen in Example 8.36 randomly by a uniform distri-
bution over the indices {1,2,...,m}, and the natural question that arises is whether
we can obtain similar convergence results when iy, is chosen in a deterministic man-
ner. We will consider the variant in which the indices are chosen in a deterministic
cyclic order. The resulting method is called the incremental projected subgradient
method. We will show that although the analysis is much more involved, it is still
possible to obtain similar rates of convergence (albeit with worse constants).

An iteration of the incremental projected subgradient method is divided into
subiterations. Let x* be the kth iterate vector. Then we define x*° = x* and pro-
duce m subiterations x®1,x%2, ... x¥™ by the rule that x®*1 = P, (xk’i —tkgk’i),
where g"? € 9f;11(x?) and t;, > 0 is a positive stepsize. Finally, the next iterate
is defined by x*+! = xkm,

The Incremental Projected Subgradient Method

Initialization: pick x° € C arbitrarily.
General step: for any £ =0,1,2, ... execute the following steps:

(a) set x¥9 = x* and pick a stepsize t;, > 0;
(b) for any i =0,1,...,m — 1 compute
xBit+ = P (xb — 4,gh),
where gh? € f;1(xM1);

(c) set xF+1 = xkm,

The fundamental inequality from which convergence results can be deduced is
proven in the following lemma. The result is similar to the result in Lemma 8.11,
but the proof is considerably more complicated.
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Lemma 8.39 (fundamental inequality for the incremental projected sub-
gradient method).*® Suppose that Assumptions 8.7 and 8.38 hold, and let {x*}1>0
be the sequence generated by the incremental projected subgradient method with pos-
itive stepsizes {tx}r>0. Then for any k>0,

I =t <l )P = 26 (f () = fope) + EmILA (8.58)

Proof. For any x* € X* k>0and i€ {0,1,...,m — 1},
ka,i+l _ X*HZ — ”Pc(xk,i _ tkgk,i) _ X*HZ
= [|Po(x"" —txg™") — Po(x")|?
W ki ki 2
2 e g x|

(%) . . .
< ”Xk,z _ X*”Q _ 2tk<gk’z,Xk’l _ X*> + tzLZ

<M = xF|? = 2t (figa (55) = fip (X)) + 61 L7,

where (%) follows by the nonexpansivity property of the orthogonal projection oper-
ator (Theorem 6.42(b)), (x*) by Assumption 8.38(b), and (xxx) by the subgradient
inequality. Summing the inequality over ¢ = 0,1,...,m — 1 and using the identities

xF0 = xk xkm = xk+1 e obtain that for any x* € X*,

m—1
x| < =P =2t 3 (o () — fia () + tEm?
=0

m—1
= |x* = x"||* — 2t (f(x’“) — fopr + Y (firn (x"7) = fi+1(x’“))> +timL®
=0
m—1 )
<" = x*)1? = 2t (F(x") = fopr) + 2t Y LIx™" = x"|| + timL?, (8.59)
=0

where in the last inequality we used the fact that by Assumptions 8.7 and 8.38,
C C int(dom(f)) C int(dom(f;41)) and ||g|| < L for all g € 0fiy1(x),x € C, and
thus, by Theorem 3.61, f; 11 is Lipschitz with constant L over C.

Now, using the nonexpansivity of the orthogonal projection operator,

"+t = xF|| = [ Po(x*0 — t1g"°) — Po(x")|| < tellg"|l < tiL.
Similarly,
%% = x*|| = [|Po(x™" = trgh!) — Pe(x®)|| < [Ix"! = x*|| + tillg™! ]| < 2t L.
In general, for any 1 =0,1,2,...,m —1,

HX]” — xk|| < tyilL,

and we can thus continue (8.59) and deduce that
m—1
I =P < =) = 200 (f(xF) — fope) + 2% D iL? + timL?
i=0
= ||x" = x*||2 = 25 (F(x") = fopt) + tim?L2. O

45The fundamental inequality for the incremental projected subgradient method is taken from
Nedi¢ and Bertsekas [89].
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From this point, equipped with Lemma 8.39, we can use the same techniques
used in the proofs of Theorems 8.25 and 8.30, for example, and establish the fol-
lowing result, whose proof is detailed here for the sake of completeness.

Theorem 8.40 (convergence of incremental projected subgradient). Sup-
pose that Assumptions 8.7 and 8.38 hold. Let {Xk}kzo be the sequence generated
by the incremental stochastic projected subgradient method with positive stepsizes
{ti}k>0, and let {fE . Yi>o0 be the sequence of best achieved values defined in (8.11).

()Ifﬁ;%@ as k — oo, thenfbest_)fopt as k — oo.

(b) Assume that C is compact. Let © be an upper bound on the half-squared
diameter of C':

1
e > —x = y|?.
> o ol =yl

If t), = Cm then for all k > 2,

dmILVO

k
- O < />
fbest f pt = \/m

where § = 2(2 + log(3)).
Proof. By Lemma 8.39, for any n > 0,

™ = X < = x7P = 260 (f(X7) = fope) + LPmPEh. (8.60)

Summing (8.60) over n =p,p+1,...,k, we obtain

[ e P 2Zt — fopt) + L?m QZt?
=p =p
Therefore,
k
2Zt s Y A
n=p n=p
and hence

||XP_X*||2—’_L2 2271 n
Fost = fopt < 3 P (8.61)
Yon_tn

Plugging p = 0 into (8.61), we obtain

H X||2+L2 2Zn0n
2211:0 n

Therefore, if %;‘ ot 5 (0 as k — oo, then fE — fopt as k — oo, proving claim
(a). To show the Vahdlty of claim (b), use (8.61) with p = Hc/ﬂ to obtain

k
fbest - fOpt <

fl]jcst - fopt <
2 En—mm tn
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__ Ve
Take t,, = T . Then we get

i

k
LmvO 2+ 32 T

k 1 ’
2 Ytk v

which, combined with Lemma 8.27(b) (with D = 2), yields the desired result. 0O

k
fbcst - fopt <

8.5 The Dual Projected Subgradient Method
8.5.1 The Dual Problem
Consider the problem
fopt = min  f(x)
st g(x) <0, (8.62)
x € X,

where the following assumptions are made.

Assumption 8.41.
A) X CE is convex.

B) f:E — R is convez.

(

(B)

©) g() = (1), 92(); - .-, gm ()T, where g1, 92, ..., gm : E— R are convez.
(D)

D) The problem has a finite optimal value denoted by fopt, and the optimal set,

denoted by X*, is nonempty.
(E) There exists x € X for which g(x) < 0.

(F) For any X € R, the problem minye x{ f(x) + A'g(x)} has an optimal solu-
tion.

The Lagrangian dual objective function of problem (8.62) is given by

q(A) = Hél)ré {L(X; A= f(x)+ )\Tg(x)} . (8.63)
By Assumption 8.41(F), the minimization problem in (8.63) possesses a solution,
and thus, in particular, ¢(A) is finite for any A € R. Recall that ¢ is concave over
R™" (as a minimum of affine and, in particular, concave functions), and hence the
dual problem, which is given by

Gopt = max{g(A) : A e R}, (8.64)

is a convex problem, as it consists of maximizing a concave function over a convex
set. We note that the dual problem is defined in the space R™, which we assume
in this context to be endowed with the dot product and the ly-norm.
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By Theorem A.1 and Assumption 8.41, it follows that strong duality holds for
the primal-dual pair of problems (8.62) and (8.64), namely,

fopt = {opt

and the optimal solution of the dual problem is attained. We will denote the optimal
set of the dual problem as A*.

An interesting property of the dual problem under the Slater-type assumption
(part (E) of Assumption 8.41) is that its superlevel sets are bounded.

Theorem 8.42 (boundedness of superlevel sets of the dual objective func-
tion).% Suppose that Assumption 8.41 holds. Let % € X be a point satisfying g(X) <
0 whose existence is warranted by Assumption 841(E). Let p € R. Then for any
Ae S, ={XeRY : q(A) > u},

fX)—u

minj—i 2 _m{—g;(X)}

[All2 <

Proof. Since A € S,,, we have
p< g\ < FR)+ATg®) = F(R)+ ) Ng(X).
j=1

Therefore,
=Y _Xigi(%) < f(%) — u,
j=1

which, by the facts that A\; > 0 and g¢;(X) < 0 for all j, implies that

% f(x) —p
E A <
=

minj—y o m{—g;(X)}

Finally, since A > 0, we have that [|A2 < 377", A;, and the desired result is
established. 0O

Taking 1t = fopt = gopt, we have S, = A*, and Theorem 8.42 amounts to the
following corollary describing a bound on the dual optimal set.

Corollary 8.43 (boundedness of the optimal dual set). Suppose that As-
sumption 8.41 holds, and let A* be the optimal set of the dual problem (8.64). Let
x € X be a point satisfying g(X) < 0 whose ezistence is warranted by Assumption
8.41(E). Then for any A € A*,

f(f() - fopt

minj—i 2 _m{—g;(X)}

[All2 <

46Theorem 8.42 is Lemma 1 from Nedié and Ozdaglar [90].
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8.5.2 The Dual Projected Subgradient Method

We begin by recalling how to compute a subgradient of minus of the dual objective
function. By Example 3.7, if for a given A € R’ the minimum of the problem
defining ¢(\) is attained at xx € X, meaning if g(A) = f(xx) + ATg(xx), then
—g(xx) € A(—=q)(A).

Using the above expression for the subgradient of —q, we can define the pro-
jected subgradient method employed on the dual problem.

The Dual Projected Subgradient Method

Initialization: pick A° € R’ arbitrarily.
General step: for any £k =0,1,2,... execute the following steps:

(a) pick a positive number ~yx;
(b) compute x* € argmin,. y {f(x) + ()\k)Tg(x)} ;

(c) if g(x*) = 0, then terminate with an output x”*; otherwise,

E+1 _ [ yk g(Xk)
A ‘[A ”’“ng(xk)nzL'

The stepsize —2%—— is similar in form to the normalized stepsizes considered in

llg(x*)ll2
Section 8.2.4. The fact that the condition g(x*) = 0 guarantees that x* is an

optimal solution of problem (8.62) is established in the following lemma.

Lemma 8.44. Suppose that Assumption 8.41 holds. Let X € R, and let x € X
be such that

X € argmin, .y {f(x) + S\Tg(x)} (8.65)

and g(x) = 0. Then X is an optimal solution of problem (8.62).

Proof. Let x be a feasible point of problem (8.62), meaning that x € X and
g(x) < 0. Then

Fx) > fx) +A"g(x) [g(x) <0,X>0]
> f(x)+ A" gx) [(8.69)]
= f(x), 9(x) = 0]

establishing the optimality of x. [

8.5.3 Convergence Analysis

Proving convergence of the dual objective function sequence {q()\k)}kzg under vari-
ous choices of the parameters {~yx}r>0 is an easy task since such results were already
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proven in the previous sections. The more interesting question is whether we can
prove convergence in some sense of a primal sequence. The answer is yes, but per-
haps quite surprisingly the sequence {x*};>¢ is not the “correct” primal sequence.
We will consider the following two possible definitions of the primal sequence that
involve averaging of the sequence {x*}>0.

e Full averaging sequence. In this option, we perform averaging of the entire
history of iterates:

k
x(F) = Z phxm (8.66)
n=0

with p* defined by

uﬁzw, n=0,1,...k (8.67)

Z’? S
J=0 [g(x9)]l2

e Partial averaging sequence. Here, at iteration k, we only perform averag-
ing of iterations [k/2], [k/2] +1,...,k:

k
x(F = Z nrx" (8.68)
n=k/2]
with n* defined by

K n/llg(x")ll
k

n

S . n=[k/2],.. k. (8.69)
j=[k/2] TeleTs

Our underlying assumption will be that the method did not terminate, meaning
that g(x*) # 0 for any k.

Lemma 8.45. Suppose that Assumption 8.41 holds, and assume further that there
exists L > 0 such that ||g(x)|l2 < L for anyx € X. Let p > 0 be some positive num-
ber, and let {x*} >0 and {N*}1>0 be the sequences generated by the dual projected
subgradient method. Then for any k > 2,

L )\0 2 k, 2
d (” ”2 + pk) + Zn_() ’777, (870)

)y (k)
f(X k ) fopt —|—p||[g(x F )]+||2 S 2 ano Yn

and

LUXF2 4 p)2 + 50000 72
FOEY = fope + pll [8(*)]4 ]2 < = LIKINLY

< - (8.71)
2 2 n=Tky2) Y

where x¥) and x*) are given in (8.66) and (8.68), respectively.
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Proof. Let A € R?'. Then for every n > 0,

2

[XUF% g(x") } 5

lee ), ~ M
2

A A3 =
2
g(x") Y

< = 7
- ‘ g(x™)ll2 2

n 3 2’}/71 n n 3
= —)\”%‘F’YZ‘Fmg(X )T(A™ = N),

where the inequality follows by the nonexpansivity of the orthogonal projection
operator (Theorem 6.42(b)). Let p € {0,1,2,...,k}. Summing the above inequality
forn=p,p+1,...,k, we obtain that

A"+

INEE = X3 < (12— AH2+Z%+2Z Wg(x")%"—»

= )2
Therefore,

k
22 Tt x" T8 KA =A™ <IN = A+ A2, (8.72)

n=p

To facilitate the proof of the lemma, we will define for any p € {0,1,...,k}

k
xFP = E akPxn, (8.73)
n—
where
Yn
kp _ lg(x™)[l2
On = ZI? v
i=p llg(x7)[2

In particular, the sequences {x"} o, {x®#/21}; 5, are the same as the sequences
{x®)} >0 and {x*)} >0, respectively. Using the above definition of a? and the
fact that ||g(x")|l2 < L, we conclude that (8.72) implies the following inequality:

LIA = X3+ 5542
Za Pe(x )\ A < _” ”: > =p .
2 En:p’yn

(8.74)

By the definition of x™, we have for any x* € X*,
fx*) = f(x*) + (A")Tg(x*) A" >0,g(x") < 0]
> f(x")+ (A" Tg(x").  [x" € argminge x {f(x) + (A")"g(x)}]

Thus,
—(AMTg(x") > f(X") = fopt,
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and hence
k k k
D anrg(x) (A - A") Z A Pg(x") A+ D ARt F(x") = Y Al fops
n=p n=p n=p
> ATg (xFP) + f (xFP) = fopt, (8.75)

where the last inequality follows by Jensen’s inequality (recalling that f and the
components of g are convex) and the definition (8.73) of x**. Combining (8.74)
and (8.75), while using the obvious inequality ||[AP — Alla < [|AP||2+ || A||2, we obtain

T LNl + [ A|2)2 + A2

F(xXPP) = fopt + A g(xFP) < 5 - (8.76)
E:n:pﬁh
Plugging
[g(<"P))4 k,
5_ ) PTeGeAL B0 £ 0,
0, [g(x"P)]4 =
into (8.76), we obtain the inequality
LUN2+p)2+3F_ A2
FOT) = o+l | < 2N LA H By g

k
E:n:pﬁh

Substituting p = 0 and p = [k/2] in (8.77) yields the inequalities (8.70) and (8.71),
respectively. 0O

Analysis of the Full Averaging Scheme

We begin by developing a convergence rate related to the sequence {x(k)}kzo given
by (8.66) Similarly to the analysis for the primal projected subgradient, choosing
Ve = \/k—T will imply that the right-hand side of (8.70) will converge to zero.
In principle, the fact that the left-hand side of (8.70) converges to zero does not
necessarily imply that both the expression for the distance to optimality in function
values f(x(*)) — fopt and the expression for the constraints violation ||[g(x*))]4 |2
converge to zero. However, using Theorem 3.60, we can show the convergence of
these terms as long as p is chosen appropriately.

Theorem 8.46 (O(log(k)/Vvk) rate of convergence of the full averaging
sequence). Suppose that Assumption 8.41 holds, and assume further that there
exists L > 0 for which ||g(x)||l2 < L for any x € X. Let {x*}xs0, and let {\*}150
be the sequences generated by the dual projected subgradient method with vy, = \/klﬁ
Then for any k > 1,

L (JA°l2 + 20)% + 1 + log(k + 1)

(R)y _

FE) = fope < 5 NEST , (8.78)
&) L (IANll2 +20)° +1 +log(k +1)

g™ 2 < 5~ NS : (8.79)
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where {x¥)} 150 is given in (8.66) and

f(f() - fopt

with X being a Slater point whose existence is guaranteed by Assumption 8.41(E).

Proof. Employing Lemma 8.45 with p = 2«, and substituting v, = \/%4-1’ we have

k
LNl +202 + TE 2

FEEY = fopr + 20 [g(xF)] 4 |2 < 5 S (8.80)
n=0 /n+1
Using Lemma 8.27(a), we have
k
(XN +200% + X iy (IA°ll2+20)? + 1+ log(k +1)
SF . = - k+1 ’
which, combined with (8.80), yields the inequality
L (A2 4 20)% 4+ 1 4 log(k + 1
F) = fops + 20 [glx ™)) [, < 2 UA T2+ 20) sEED (5

-2 VE+1 '

Since by Corollary 8.43 2« is an upper bound on twice the l3-norm of any dual
optimal solution, it follows by Theorem 3.60 that the inequality (8.81) implies the
two inequalities (8.78) and (8.79). O

Analysis of the Partial Averaging Scheme

We will now show an O(1/+v/k) rate of convergence in terms of function values as well
as constraint violation of the partial averaging sequence given in (8.68). The proof
is similar to the proof of Theorem 8.46 and utilizes inequality (8.71) but in addition
utilizes the boundedness of the sequence of dual variables—a fact established in the
next lemma.

Lemma 8.47.%7 Suppose that Assumption 8.41 holds and assume further that there
exists L > 0 for which ||g(x)|l2 < L for any x € X. Let {x*}1>0 and {X*}1>0
be the sequences generated by the dual projected subgradient method with positive
stepsizes vy satisfying v < vo for all k > 0. Then

A"l < M, (8.82)

where*s

10—t 208 5} (5.83)

4"Lemma 8.47 is Lemma 3 from Nedié¢ and Ozdaglar [90].
48Recall that in our setting gopt = fopt-

M = {||>\0||2 + 20,
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with
f(i) - fopt . -
R ) = min —g;(%)},
minj—y 2, m{—g;(X)} B j:172,...,m{ 9;(%)}

where X is a Slater point of problem (8.62) whose existence is guaranteed by As-
sumption 8.41(E).

Proof. Let A* be an optimal solution of the dual problem (8.64). We begin by
showing by induction on k that for any k& > 0,

. L
F®) —dopr | 2L A2 +70} (8.84)

A= N2 < A% — X
I8 = Lo < ma {0 - A, Pt 2

The inequality holds trivially for £k = 0. Assume that it holds for k, and we will
show that it holds for k£ + 1. We will consider two cases.

Case I. Assume that q()\k) > Gopt — % Then, by Theorem 8.42,

f(i) — Gopt + %
/8 )

A"l <
where 8 = min;—1 2. m{—gi(X)}. Therefore,

A Tk o(xk) - Af
R

<INl + I |2 +

%) — do I
<f(X) QPt+’Yk A 2 + 7

AR = Xy < }

2

- B 25
f(i) — Qopt *
< 7+—+II>\ ll2 + 0.
B 28
Case II. Now assume that q()\k) < gopt — &= In this case we can write

2

)\k+1 _ )\* 2 _ |:Ak + Yk Xk :| _ A*

2

P Tk o(xk
||g<xk>||2g( )

=[N =N E 42—
| I3+ 2[5,

S ‘

A= X)Tg(x") +17.  (8.85)

Since —g(x*) € A(—¢)(A¥) (Example 3.7), it follows by the subgradient inequality
that

—Gopt = —q(A") — g(x")T(A* = AP).
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Therefore, continuing (8.85),

INFFE — X2 <IN = )13+ 20— (g(A") = qopt) + 77

lg ( )||
< A= X3+ 2f(q()\k) — Gopt) + 77

% L
= 1A = X[+ 2 (4 g+ 257

< AT = AT,

where in the last inequality we used our assumption that q()\k ) < Gopt — &=. We
can now use the induction hypothesis and conclude that

* * X) — fe) L *
I A%y < max{nAO—A m% + 224 ||2+%}.

We have thus established the validity of (8.84) for all k& > 0. The result (8.82) now
follows by recalling that by Corollary 8.43, ||A\*|2 < «, and hence

X[z <IN = X[z + [|A*]2

. X) — o L X .
<max{|)\0—)\ |\2,%+ BEHIA |2+70}+|A B

e oL
M+—+2a+70} 0

< AV 2
max{| Il2 + 2a, 5 25

Equipped with the upper bound on the sequence of dual variables, we can
prove, using a similar argument to the one used in the proof of Theorem 8.46, an
o1/ \/E) rate of convergence related to the partial averaging sequence generated
by the dual projected subgradient method.

Theorem 8.48 (O(1/vk) rate of convergence of the partial averaging
sequence). Suppose that Assumption 8.41 holds, and assume further that there
exists L > 0 for which |g(x)||2 < L for any x € X. Let {x*}x>0, and let {\*}1>0
be the sequences generated by the dual projected subgradient method with vy, = \/klﬁ
Then for any k > 2,

2L((M + 2a)? 4 1og(3))

FEH) = fopt < N : (8.86)
o). o < 2L 2]+ 080D, (5.87)
where {x*) Y5 is given in (8.68), M in (8.83), and
_ f(%) = fopt
minj—1 2, m{—g;(X)}

with X being a Slater point whose existence is guaranteed by Assumption 8.41(E).



Downloaded 04/11/24 to 143.215.80.169 by Jacob Aguirre (jaguirre31@gatech.edu). Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

8.5. The Dual Projected Subgradient Method 241

Proof. Employing Lemma 8.45 with p = 2«, and substituting v, = \/%4-1’ we have

k
L (A2 g 4+ 2002 + 30y oy iy
k 1
2 2on=1k/2] VaFT
k
L (M +2a)* + D n=[k/2] n+r1
2 b)

k 1
2on=k/2] VarT

where in the last inequality we used the bound on the dual iterates given in Lemma
8.47. Now, using Lemma 8.27(b), we have

k
(M +20)* + 30, 101 77

k 1
2Don=k/2] VarT

IN

FOM) = fope + 20 [g(x ™) |2

(8.88)

which, combined with (8.88), yields the inequality

- 2L((M 4+ 2a)? 4 log(3))
2= VEk+2 '
Since, by Corollary 8.43, 2« is an upper bound on twice the ls-norm of any

dual optimal solution, it follows by Theorem 3.60 that the inequality (8.89) implies
the two inequalities (8.86) and (8.87). 0O

FEE) = fope + 20| [g(x*)] 4| (8.89)

To derive a complexity result for the dual projected subgradient method, we
should first note that the primal sequence is not feasible, as it does not necessarily
satisfy the inequality constraints g(x) < 0. Therefore, there is no point in asking
how many iterations are required to obtain an e-optimal solution. Instead, we will
consider the related concept of an e-optimal and feasible solution. A vector x € X
is called an e-optimal and feasible solution of problem (8.62) if f(x) — fopt < € and
llg(x)]+|l2 < e. Theorem 8.48 immediately implies a complexity result stating that
an order of Eiz iterations are required to obtain an e-optimal and feasible solution.

Corollary 8.49 (O(1/e?) complexity result for the dual projected subgra-
dient method). Under the setting of Theorem 8.48, if k > 2 satisfies

- 4L ((M + 2a)? + log(3))?
- min{a?,1}e?

k —9,

then

f(X<k>) - fopt <kg,
||[g(x<k>)]+||2 <e.

Example 8.50 (linear programming example). Consider the linear program-
ming problem

min ¢I'x

(LP) st. Ax < b,

X € A,,
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where ¢ € R*", A € R™*" and b € R™. We will consider the dual projected
subgradient method when the underlying set X is A, and g(x) = Ax — b. The
vector x* is calculated by the update rule x* € argming ., (c +ATA)Tx. It is
easy to see that an optimal solution of this subproblem is given by e;, where i is an

index for which (c+ATA"); is minimal. Therefore, the algorithm (with ~; = \/kl_-i-l)

takes the following form:

Dual Projected Subgradient for solving (LP)
e Initialization: pick A" € R7.
e General step (k > 0):

i € argmin,_, o ,Vj; V=C-+ ATNF

k
X = eik,

1 AxF —b

AL = |2k 4 :
VE+T1[Ax" —bl2]

Note that we make the implicit assumption that Ax* # b. The above descrip-
tion of the dual projected subgradient method illustrates the fact that the sequence
{x*} >0 is not the “correct” primal sequence. Indeed, in this case, the vectors x*
are always unit vectors, and there is no particular reason why the solution of (LP)
should be attained at a unit vector. As a specific example, consider the problem

min 1 + 3xo + 223
s.t.  3x1+ 229 —x3 <1,
213 < 2, (8.90)
T1 + a2+ a3 =1,

T1,T2,T3 > 07

which fits problem (LP) with

1
3.2 -1 1
A= , b= , = |3
00 -2 2
2

The optimal solution of problem (8.90) is (3,0, ). We employed the dual projected
subgradient method as described above with A° = 0 and compared the behavior of
the full and partial averaging schemes during the first 100 iterations. The results are
described in Figure 8.4. Obviously, the partial averaging scheme exhibits superior
behavior compared to the full averaging scheme. N
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Figure 8.4. First 100 iterations of the dual projected subgradient method
employed on problem (8.90). The y-axis describes (in log scale) the quantities
max{f(x®) = fopt, [[Ax*) — bl |2} and max{f(x*) — fope. [[[Ax* —b], |2}

8.5.4 Example—Network Utility Maximization

Consider a network that consists of a set S = {1,2,...,5} of sources and a set
L={1,2,..., L} of links, where a link ¢ has a capacity ¢,. For each source s € S,
we denote by L(s) C L the set of all links used by source s. Similarly, for a given
link ¢ € L, the set S(¢) C S comprises all sources that use link ¢. In particular, for
apair £ € £ and s € S, the relation s € S(¢) holds if and only if £ € L(s). Each
source s € S is associated with a concave utility function us : R — R, meaning that
if source s sends data at a rate x;, it gains a utility us(xs). We also assume that the
rate of source s is constrained to be in the interval I, = [0, M,], where My € Ry .
The goal of the network utility maximization problem (abbreviated NUM) is to
allocate the source rates as the optimal solution of the following convex problem:

max Z us(Ts)

seS

s.t. Z xs <cy, lLEL, (8.91)
seS(X)

rs€ly, s€S8.

Problem (8.91) in its minimization form is a convex problem and fits the main model
(8.62) with

gx)=| > z—a ;

seS (L) (=12, L
X=I xIs x---xIg,

S
Fx) == us(z).
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At iteration k, the vector x* is picked as an optimal solution of the problem
minyex {f(x) + (A")Tg(x)}, meaning

x Eargmmxex{ (x) + (AHT (X)}
s

L
= argmin, . Z“S Z)\f Z Ts — Cp
s=1 (=1 seS(£)
s
= argmin, . Z us(xs —|—Z Z /\[ T
s=1 =1 seS(¢)
= argmin, . ZUS (zs) —|—Z Z /\[ T
s=1 | teL(s)

The above minimization problem is separable w.r.t. the decision variables x1, x2, . . .,
rg. Therefore, the sth element of x* can be chosen via the update rule (returning
to the max form),

k
vy € argmax, o  Us(Ts) — E VAR
LeL(s)

The dual projected subgradient method employed on problem (8.91) with stepsizes
ay and initialization A” = 0 therefore takes the form below. Note that we do not
consider here a normalized stepsize (actually, in many practical scenarios, a constant
stepsize is used).

Dual Projected Subgradient Method for Solving the NUM Problem
(8.91)

Initialization: define )\2 =0forall /€ L.

(A) Source-rate update:

o¥ = argmax, o, < us(zs) — Z Milzsp, s€S. (8.92)
LeL(s)

(B) Link-price update:

MNP =N ta| DY ot - , [LeL.

seS(4) i

The multipliers /\i? can actually be seen as prices that are associated with the
links. The algorithm above can be implemented in a distributed manner in the
following sense:
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(a) Each source s needs to solve the optimization problem (8.92) involving only
its own utility function us and the multipliers (i.e., prices) associated with the
links that it uses, meaning \¥, ¢ € L(s).

(b) The price (i.e., multiplier) at each link ¢ is updated according to the rates of
the sources that use the link ¢, meaning z,, s € S(¥).

Therefore, the algorithm only requires local communication between sources and
links and can be implemented in a decentralized manner by letting both the sources
and the links cooperatively seek an optimal solution of the problem by following
the source-rate/price-link update scheme described above. This is one example of
a distributed optimization method.
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Chapter 9

Mirror Descent

This chapter is devoted to the study of the mirror descent method and some of its
variations. The method is essentially a generalization of the projected subgradient
method to the non-Euclidean setting. Therefore, naturally, we will not assume in
the chapter that the underlying space is Euclidean.

9.1 From Projected Subgradient to Mirror Descent
Consider the optimization problem
(P) min{f(x):x € C}, (9.1)

where we assume the following.%?

Assumption 9.1.

(A) f:E — (—o0,00] is proper closed and convex.
(B) C CE is nonempty closed and convex.

(C) C Cint(dom(f)).
(D)

D) The optimal set of (P) is nonempty and denoted by X*. The optimal value of

the problem is denoted by fopt.

The projected subgradient method for solving problem (P) was studied in
Chapter 8. One of the basic assumptions made in Chapter 8, which was used
throughout the analysis, is that the underlying space is Euclidean, meaning that
|-l = +/{,-). Recall that the general update step of the projected subgradient
method has the form

XM= Po(x* —trf'(x9)),  f'(x") € af(x), (9:2)

for an appropriately chosen stepsize t;. When the space is non-Euclidean, there is
actually a “philosophical” problem with the update rule (9.2)—the vectors x* and

49 Assumption 9.1 is the same as Assumption 8.7 from Chapter 8.

247



Downloaded 04/11/24 to 143.215.80.169 by Jacob Aguirre (jaguirre31@gatech.edu). Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

248 Chapter 9. Mirror Descent

f'(x*) are in different spaces; one is in E, while the other in E*. This issue is of
course not really problematic since we can use our convention that the vectors in
E and E* are the same, and the only difference is in the norm associated with each
of the spaces. Nonetheless, this issue is one of the motivations for seeking gener-
alizations of the projected subgradient method better suited to the non-Euclidean
setting.

To understand the role of the Euclidean norm in the definition of the projected
subgradient method, we will consider the following reformulation of the update step
(9.2):

xF1 = argmin, {f(xk) + (f'(x"),x — x*) + %HX - xk||2} , (9.3)
k

which actually shows that x**! is constructed by minimizing a linearization of the

objective function plus a quadratic proximity term. The equivalence between the
two forms (9.2) and (9.3) in the Euclidean case is evident by the following identity:

R+ (00 =) + g = g e B = e G 4 D

2t

where D is a constant (i.e., does not depend on x).

Coming back to the non-Euclidean case, the idea will be to replace the Eu-
clidean “distance” function 1||x —y]||? in (9.3) by a different distance, which is not
based on the Euclidean norm. The non-Euclidean distances that we will use are
Bregman distances.

Definition 9.2 (Bregman distance). Letw :E — (—o0, 00| be a proper closed
and convez function that is differentiable over dom(dw). The Bregman distance
associated with w is the function B, : dom(w) X dom(dw) — R given by

By (x,y) = w(x) —w(y) — (Vw(y),x —y).

The assumptions on w (given a set C') are gathered in the following.

Assumption 9.3 (properties of w).
e w is proper closed and convex.
o w is differentiable over dom(Ow).
e C Cdom(w).

o w+d¢ is o-strongly conver (o >0).

A Bregman distance is actually not necessarily a distance. It is nonnegative
and equal to zero if and only if its two arguments coincide, but other than that, in
general it is not symmetric and does not satisfy the triangle inequality. The prop-
erties of Bregman distances that do hold are summarized in the following lemma.
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Lemma 9.4 (basic properties of Bregman distances). Suppose that C CE is
nonempty closed and convexr and that w satisfies the properties in Assumption 9.3.
Let B, be the Bregman distance associated with w. Then

(a) Bu(x,y) > %|x —yl|]* for all x € C,y € C Ndom(dw).
(b) Letx € C andy € C Ndom(dw). Then

- BW(X7 y) > 0;
— B,(x,y)=0if and only if x =y.

Proof. Part (a) follows by the first-order characterization of strongly convex
functions described in Theorem 5.24(ii). Part (b) is a direct consequence of part
(a). 0O

Assume that x* € C' N dom(dw). Replacing the term % |x — x*||? in formula

(9.3) by a Bregman distance B, (x,x*) leads to the following update step:
X —argminge { F04) 4 (7/0)x x4 LB L 0
Omitting constant terms, (9.4) becomes
xF T = argmin, . ¢ {(f’(xk),x> + iBw (x, xk)} : (9.5)

Further simplification of the update formula can be achieved by noting the following
simple identity:

(6, %) + - Bl xb)
k
- % [(tef'(xF) — Vw(x"),x) + w(x)] —%W(Xk) + %<VW(Xk)an>-

constant

Therefore, the update formula in its most simplified form reads as
M = argmin, e { (tef'(x¥) — Vw(xF), x) + w(x)}.

We are now ready to define the mirror descent method.

The Mirror Descent Method

Initialization: pick x° € C'N dom(dw).
General step: for any £k =0,1,2,... execute the following steps:

(a) pick a stepsize t;, > 0 and a subgradient f'(x*) € 9f(x*);

(b) set
xF = argmin, e { (tr f/(x¥) — Vw(xF), x) + w(x)}. (9.6)




Downloaded 04/11/24 to 143.215.80.169 by Jacob Aguirre (jaguirre31@gatech.edu). Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

250 Chapter 9. Mirror Descent

Remark 9.5. Although (9.6) is the most simplified form of the update step of the
mirror descent method, the formula (9.5), which can also be written as

1 = argmingee {1l (%), %) + Bu(x,x")} (9.7)

will also prove itself to be useful.

Remark 9.6. Defining @ = w + 0¢, we can write the step (9.6) as

xF = argmin, o {(tef'(x") — Vw(x¥),x) + &(x)} . (9.8)
Since Vw(x*) € 00(x*), we can write it as &' (x*), so (9.8) becomes

xF = argmin, o { (e f/(x") — &' (xF), x) + ©(x)} . (9.9)

Finally, by the conjugate correspondence theorem (Theorem 5.26), whose assump-
tions hold (properness, closedness, and strong convexity of @), @* is differentiable,
which, combined with the conjugate subgradient theorem (Corollary 4.21), yields that
(9.9) is equivalent to the following known formula for the mirror descent method:

XM = Vo (@' (xF) -t f (x9)).

The basic step of the mirror descent method (9.6) is of the form

mig{(a, x) 4+ w(x)} (9.10)

x€E

for some a € E*. To show that the method is well defined, Theorem 9.8 below
establishes the fact that the minimum of problem (9.10) is uniquely attained at a
point in C' N dom(dw). The reason why it is important to show that the minimizer
is in dom(Jw) is that the method requires computing the gradient of w at the new
iterate vector (recall that w is assumed to be differentiable over dom(dw)). We will
prove a more general lemma that will also be useful in other contexts.

Lemma 9.7. Assume the following:

o w:E — (—o00,00] is a proper closed and convex function differentiable over
dom(Jw).

o :E — (—o00,00] is a proper closed and convex function satisfying dom(yp) C
dom(w).

® W+ Odom(y) 18 a-strongly convex (o >0).

Then the minimizer of the problem
min {1:(x) + w(x)} (9.11)
is uniquely attained at a point in dom(¢) N dom(Ow).

Proof. Problem (9.11) is the same as

min p(x), (9.12)
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where ¢ = 1) 4+w. The function ¢ is closed since both 1 and w are closed; it is proper
by the fact that dom(y) = dom(+)) # (. Since w + dqom(y) is o-strongly convex
and ¥ is convex, their sum ¢ + w + dgom(yp) = ¥ +w = p is o-strongly convex.
To conclude, ¢ is proper closed and o-strongly convex, and hence, by Theorem
5.25(a), problem (9.12) has a unique minimizer x* in dom(yp) = dom(%)). To show
that x* € dom(dw), note that by Fermat’s optimality condition (Theorem 3.63),
0 € Jp(x*), and in particular dp(x*) # (. Therefore, since by the sum rule of
subdifferential calculus (Theorem 3.40), Op(x*) = 9 (x*) + dw(x*), it follows in
particular that dw(x*) # @), meaning that x* € dom(dw). O

The fact that the mirror descent method is well defined can now be easily
deduced.

Theorem 9.8 (mirror descent is well defined). Suppose that Assumptions 9.1
and 9.3 hold. Let a € E*. Then the problem

min (a,%) + ()}
has a unique minimizer in C N dom(dw).
Proof. The proof follows by invoking Lemma 9.7 with ¢(x) = (a,x) + dc(x). 0O

Two very common choices of strongly convex functions are described below.

Example 9.9 (squared Euclidean norm). Suppose that Assumption 9.1 holds
and that E is Euclidean, meaning that its norm satisfies || - || = \/(-, ). Define

L2
wix) = 32
Then w obviously satisfies the properties listed in Assumption 9.3—it is proper
closed and 1-strongly convex. Since Vw(x) = x, then the general update step of
the mirror descent method reads as

1
<kl — argming . o {(tkf/(xk) — Xk,X> + §||X||2} )

which is the same as the projected subgradient update step: x**! = Pg(x¥ —
trf'(x*)). This is of course not a surprise since the method was constructed as a
generalization of the projected subgradient method. W

Example 9.10 (negative entropy over the unit simplex). Suppose that
Assumption 9.1 holds with E = R™ endowed with the /;-norm and C = A,,. We
will take w to be the negative entropy over the nonnegative orthant:

Yo wilogx;, x€RY,
wx) =
o0 else.

As usual, we use the convention that 0log0 = 0. By Example 5.27, w + da,, is
1-strongly convex w.r.t. the /;-norm. In this case,

dom(0w) = R’ |,
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on which w is indeed differentiable. Thus, all the properties of Assumption 9.3
hold. The associated Bregman distance is given for any x € A, and y € Al =
{xeR?, :eTx=1} by

n

Bu(x,y) =Y wilogzi — Y yilogyi — > _(log(ys) + 1)(w; — yi)
=1 =1

=1

= wilog(zi/yi) + Y _yi— Y i
=1 =1 =1

= le log(z;/v:), (9.13)
=1

which is the so-called Kullback-Leibler divergence distance measure. The general
update step of the mirror descent method has the form (f/(x*) is the ith component

of f'(x¥)),

S argmin, ¢z {Z(tkfz‘/(xk) — 1 —log(zF))z; + Z x; log xz} . (9.14)
i=1

i=1
By Example 3.71, the optimal solution of problem (9.14) is

k elog(zf)+1—tkf{(xk)
' S osl@) It G
=1 e J J

i=1,2,...,n,

which can be simplified into the following:

ram
‘,'E]_CJrl _ x,]fe_tqu'(x )

i n k—trfl(x*)?
Zj:l €rye J

i=1,2,...,n. 1

The natural question that arises is how to choose the stepsizes. The conver-
gence analysis that will be developed in the next section will reveal some possible
answers to this question.

9.2 Convergence Analysis
9.2.1 The Toolbox

The following identity, also known as the three-points lemma, is essential in the
analysis of the mirror descent lemma.

Lemma 9.11 (three-points lemma).’° Suppose that w : E — (—o0, 00| is proper
closed and convex. Suppose in addition that w is differentiable over dom(Ow). As-
sume that a,b € dom(0w) and ¢ € dom(w). Then the following equality holds:

(Vw(b) — Vw(a),c — a) = B, (c,a) + By(a,b) — B,(c,b).

50The three-points lemma was proven by Chen and Teboulle in [43].
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Proof. By definition of B,,

Hence,

B,(c,a) + B,(a,b) — B,(c,b) = —(Vw(a),c —a) — (Vw(b),a — b) + (Vw(b),c — b)

= (Vw(b) — Vw(a),c —a). 0O

Another key lemma is an extension of the second prox theorem (Theorem
6.39) to the case of non-Euclidean distances.

Theorem 9.12 (non-Euclidean second prox theorem). Let

e w:E — (—o0,00] be a proper closed and convex function differentiable over
dom(Ow);

e Y:E — (—o0,00] be a proper closed and convex function satisfying dom(¢p) C
dom(w);

® W+ ddgom(y) be o-strongly convex (o >0).

Assume that b € dom(0w), and let a be defined by
a = argmin, . {¥(x) + B (x,b)} . (9.15)
Then a € dom(dw) and for all u € dom()),

(Vw(b) — Vw(a),u —a) < ¢(u) — ¢(a). (9.16)

Proof. Using the definition of B, (9.15) can be rewritten as
a = argmin, e {1/(x) — (Veo(b), %) +w(x)} (9.17)

The fact that a € dom(dw) follows by invoking Lemma 9.7 with ¢ (x) — (Vw(b), x)
taking the role of 1(x). Using Fermat’s optimality condition (Theorem 3.63), it
follows by (9.17) that there exists ¢’(a) € dy(a) for which

Y'(a) + Vw(a) — Vw(b) = 0.
Hence, by the subgradient inequality, for any u € dom(v),
(Vao(b) — Veo(a),u — a) = (¥/(a), u — a) < (u) — ¥(a),
proving the desired result. 0O

Using the non-Euclidean second prox theorem and the three-points lemma,
we can now establish a fundamental inequality satisfied by the sequence generated
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by the mirror descent method. The inequality can be seen as a generalization of
Lemma 8.11.

Lemma 9.13 (fundamental inequality for mirror descent). Suppose that
Assumptions 9.1 and 9.3 hold. Let {Xk}kzo be the sequence generated by the mirror
descent method with positive stepsizes {ti}r>0. Then for any x* € X* and k > 0,

2
tk(f(xk) - fopt) < Bw(X*an) - Bw(X*anJrl) + ;—l;Hf/(Xk)Hz

Proof. By the update formula (9.7) for x**! and the non-Euclidean second prox
theorem (Theorem 9.12) invoked with b = x* and ¢(x) = t4(f'(x*),x) + dc(x)
(and hence a = x¥*1), we have for any u € C,

(Vw(xF) = Vw(xF 1) u — xF 1) <t (f/(x%), u — xFH). (9.18)
By the three-points lemma (with a = xFt1 b =x*, and ¢ = u),
(Vw(xF) — Vw(xF 1), u — xF1Y) = By (u, xF1) + By (x*1, x%) — B, (u,x%),
which, combined with (9.18), gives
B, (u, x"1) 4 By, (x", xF) — By (u, xF) < e (f/(xF), u — xF1).
Therefore,

te(f'(x%), x* — u)
< By (u,x*) = B (1, x"1) — By (M 28 1, (1 ("), % — )
)

< Bu(ux") = Bu(u,x ) - 2

= B ) = Bt = G2 (Do), Vet - )

12 o
[ — x|+ ﬁllf’(xk)llf + §HX’““ —x"|?

I — 52 ), xE — xEH

(%)

< By(u,x*) — B, (u,x*1) — 7

2
k Ra1y | T g oy 2
= Buo(u,x7) = Bo(u,x7) + 5~ ()5,
where the inequality (*) follows by Lemma 9.4(a) and (**) by Fenchel’s inequality

(Theorem 4.6) employed on the function 1|x||> (whose conjugate is ||y||2—see
Section 4.4.15). Plugging in u = x* and using the subgradient inequality, we obtain

2
() = fope) < Bl x8) = Bux', M) + 2L /)2

Under a boundedness assumption on B, (x,x") over C, we can deduce a useful
bound on the sequence of best achieved function values defined by

k — : n
foesy = _min | f(x"). (9.19)
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Lemma 9.14. Suppose that Assumptions 9.1 and 9.3 hold and that || f'(x)||« < Ly
for all x € C, where Ly > 0. Suppose that B, (x,x°) is bounded over C, and let
O(x%) satisfy

o(x%) > meaé(Bw(x,xo).

Let {x*};>0 be the sequence generated by the mirror descent method with positive
stepsizes {ty}k>0. Then for any N >0,

L2
O oL
fkj,\ést _ fopt S ( ) Zk 0 , (920)
Zk:o tk
where f{¥ . is defined in (9.19).
Proof. Let x* € X*. By Lemma 9.13 it follows that for any k£ > 0,
te(f(x") = fopt) < Bu(x*,x") = Bu(x", x"1) + ﬁl\f’(xk)l\i (9.21)

Summing (9.21) over £k =0,1,..., N, we obtain
Ztk = fopt) < Bu(x*,x%) = By, (x*,x") + Z 4 el PALES ] f
L2
0 f 2
+ % ]gotka

which, combined with the inequality (>_y_, tk)(fiis — fopt) < Zszo t(f(xF) —
fopt), yields the result (9.20). O

9.2.2 Fixed Number of lterations

Let us begin by fixing the number of iterations N and deduce what the “optimal”
stepsizes are in the sense that they bring the right-hand side of (9.20) to a minimum.
For that, we will prove the following technical lemma.

Lemma 9.15. The optimal solution of the problem

min % (9.22)
t1;~~~7t7n>0 Zk 1

where o, > 0, is given by ty, = /Bim’ k=1,2,...,m. The optimal value is 2\/0‘—77?,

Proof. Denote the objective function of (9.22) by

OH'ﬁZk 1 t

) =
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Note that ¢ is a permutation symmetric function, meaning that ¢(t) = ¢(Pt) for
any permutation matrix P € A,,. A consequence of this observation is that if
problem (9.22) has an optimal solution, then it necessarily has an optimal solution
in which all the variables are the same. To show this, take an arbitrary optimal
solution t* and a permutation matrix P € A,,. Since ¢(Pt*) = ¢(t*), it follows
that Pt* is also an optimal solution of (9.22). Therefore, since ¢ is convex over the
positive orthant,”' it follows that

eTt

1 1
— >, Pt'=—
m: PcAn, m
et
is also an optimal solution, showing that there always exists an optimal solution
with equal components. Problem (9.22) therefore reduces to (after substituting
t1:t2:"':tm:t)
. a+ Bmt?
min ————,
t>0 mt

whose optimal solution is ¢ =, /-, and thus an optimal solution of problem (9.22)

is given by t; = %, k=1,2,...,m. Substituting this value into ¢, we obtain

that the optimal value is 24/ %B O

2
Using Lemma 9.15 with a = ©(x°), 8 = % and m = N 41, we conclude that

the minimum of the right-hand side of (9.20) is attained at t; = Y721 The

O(1/v/N) rate of convergence follows immediately.

Theorem 9.16 (O(1/vN) rate of convergence of mirror descent with
fixed amount of iterations). Suppose that Assumptions 9.1 and 9.3 hold and
that ||f'(x)|[« < Lys for all x € C for some Ly > 0. Assume that B, (x,x°) is
bounded over C, and let ©(x°) satisfy

0 > 0).
O(x") > I)I(leaé(Bw(x,x )

Let N be a positive integer, and let {x*}>q be the sequence generated by the mirror
descent method with

tp= Y= k=0,1,...,N. (9.23)

Then
V20(x")Ly
VovN+1’7

N
fbcst - fopt <

where fiv . is defined in (9.19).

51See, for example, [10, Example 7.18].
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Proof. By Lemma 9.14,
L2 N
Ox") + 55 Yoo th
Eszo tk

Plugging the expression (9.23) for the stepsizes into the above inequality, the result
follows. O

N
fbest - fopt <

Example 9.17 (optimization over the unit simplex). Consider the problem
min{f(x) : x € A},

where f : R™ — (—o00, 00| is proper closed convex and satisfies A,, C int(dom(f)).
Consider two possible algorithms.

e Euclidean setting. We assume that the underlying norm on R” is the lo-
norm and w(x) = 1|/x||3, which is 1-strongly convex w.r.t. the lz-norm. In this
case, the mirror descent algorithm is the same as the projected subgradient

method:
xFH = Pa, (P =t f'(xM)).
We will assume that the method starts with the vector x° = %e. For this
choice,
2
1 1 1 1
max B, (x,x") = max = [|[x— —e|| ==(1-=),
x€A, ol ) x€A, 2 no|ly 2 ( n)

and we will take ©(x°) = 1. By Theorem 9.16, we have that given a positive
integer N, by appropriately choosing the stepsizes, we obtain that

V2L; o

N +1
——
cf

oot = fopt < : (9.24)

where Lo = maxxen, ||f/(%)]|2-

e Non-Euclidean setting. Here we assume that the underlying norm on R"™ is
the [1-norm and that the convex function w is chosen as the negative entropy
function

S wilog(z;), xeRY,,
wix) = { TR ** (9.25)
00 else.

By Example 5.27, w+da,, is 1-strongly convex w.r.t. the [;-norm. By Example
9.10, the mirror descent method takes the form

’ k
L — wfe i)

i no ko —tefi(xk)’
Zj:l rje

i=1,2,...,n.
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As in the Euclidean setting, we will also initialize the method with x° = %e.

For this choice, using the fact that the Bregman distance coincides with the
Kullback-Leibler divergence (see (9.13)), we obtain

1 n n
P (x ) = e B bonton) = o)+ e 3o
1= i=

= log(n).

We will thus take ©(x°) = log(n). By Theorem 9.16, we have that given a
positive integer N, by appropriately choosing the stepsizes, we obtain that

v2log(n)Ly oo (9.26)

N
—Jo < ’
fbcst f pt = N + 1
cle
where Ly o = maxxea,, ||f/(%X)]|oo-
The ratio of the two upper bounds in (9.24) and (9.26) is given by
7 Che _
cf

Ly oo

Lyo’

P log(n)
Whether or not pf is greater than 1 (superiority of the Euclidean setting) or smaller
than 1 (superiority of the non-Euclidean setting) depends on the properties of the
function f. In any case, since ||y|lcc < [|¥llz < vV7|y|loo for all y € R™, it follows
that

L i oy

vn = Ly

and hence that
1
%(n) < p! < /log(n).
y/log(n)

Therefore, the ratio between the efficiency estimates ranges between BV (superi-

ority of the non-Euclidean setting) and /log(n) (slight superiority of the Euclidean
setting). N

9.2.3 Dynamic Stepsize Rule

The constant stepsize rule is relatively easy to analyze but has the disadvantage of
requiring the a priori knowledge of the total number of iterations employed by the
method. In practical situations, the number of iterations is not fixed a priori, and a
stopping criteria different than merely fixing the total number of iterations is usually
imposed. This is why dynamic (namely, nonconstant) stepsize rules are important.
Similarly to the analysis in Chapter 8 for the projected subgradient method, it is
possible to use the fundamental inequality for the mirror descent method (Lemma
9.13) to establish convergence results under dynamic stepsize rules.

Theorem 9.18 (convergence of mirror descent with dynamic stepsizes).
Suppose that Assumptions 9.1 and 9.3 hold and that || f(x)||« < Lj for any x € C
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for some Ly > 0. Let {xk}kzo be the sequence generated by the mirror descent
method with positive stepsizes {t}r>0, and let {fF _ }i>0 be the sequence of best
achieved values defined in (9.19).

k 2
(a) If % — 0 as k — oo, then fE. . — fopr as k — oo.
n=0'tn

(b) Ifty is chosen as either (predefined diminishing stepsize)

V20
Lf\/k +1

tr =

or (adaptive stepsize)

V2o k
v () #0,

V20 kY —
Lf\/mv f/(x)_ov

tr =

then for all k > 1,
Li Bu,(x*,x%) 4+ 1+log(k+1)
V20 vk+1 '

k
fbcst - fopt <

Proof. By the fundamental inequality for mirror descent (Lemma 9.13), we have,
for all n > 0,

n * N E— t% n
b (F(X") = fopt) < Buo(x",x") = B (x",x" ) + 22| /(x| [2.

Summing the above inequality over n = 0,1,...,k gives

Zt — fopt) < Bu(x*,x°) = By (x*,x*t1) + ZtQHf "I

Using the inequalities B, (x*,x**1) > 0 and f(x") > fF . (n < k), we obtain

Bu(x",x°) + 55 Moo tall £ (")2
Sn=otn |

Fhiost = fopt < (9.27)

Since || f'(x™)||« < Ly, we can deduce that

B( )+2§Z710n
Zn Ot

k 2
Therefore, if Z;;:" z" — 0, then ff . — fopt as k — 0o, proving claim (a).
n=0"m
To show the validity of claim (b), note that for both stepsize rules we have

211 f(x™)]]? < n2_f1 and t, > f‘/\/T”_ Hence, by (9.27),

k
fbcst - fopt <

* k
Lf BUJ(X 7XO) + Zn:() nL-i-l
k 1 !

V2o 2in=0 Va7t

which, combined with Lemma 8.27(a), yields the desired result. 0O

k
fbcst - fopt <
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Example 9.19 (mirror descent vs. projected subgradient—numerical ex-
ample). Consider the problem

min {||Ax — bl : x € A, }, (9.28)

where A € R"*" and b € R™. Following Example 9.17, we consider two methods.
The first is the projected subgradient method where R™ is assumed to be endowed
with the Euclidean l3-norm. The update formula is given by

X" = Pa, (x =t f'(x1)),

with f/(x*) taken as ATsgn(Ax"* — b) and the stepsize t; chosen by the adaptive
stepsize rule (in practice, f’(x*) is never the zeros vector):

. V2
k= .
1) 2vE + 1
The second method is mirror descent in which the underlying norm on R" is the

l1-norm and w is chosen to be the negative entropy function given in (9.25). In this
case, the method has the form (see Example 9.17)

k
xiﬁe—tkf{(x )

k+1 _ -
;= 27-1 ot f ) 1=1,2,...,n,
J=1"7

where here we take

. V2
k= .

1/ (x*) loo VE + 1
Note that the strong convexity parameter is ¢ = 1 in both settings. We created
an instance of problem (9.28) with n = 100 by generating the components of A
and b independently via a standard normal distribution. The values of f(x*) —
fopt and fF_. — fopt for both methods are described in Figure 9.1. Evidently, the
non-Euclidean method, referred to as md, is superior to the Euclidean projected
subgradient method (ps). N

9.3 Mirror Descent for the Composite Model”

In this section we will consider a more general model than model (9.1), which was
discussed in Sections 9.1 and 9.2. Consider the problem

min{F(x) = f(x) + g(x)}, (9.29)

where the following set of assumptions is made on f and g.

Assumption 9.20 (properties of f and g).
(A) f,9:E — (—o0,00] are proper closed and convex.
(B) dom(g) C int(dom(7)).

52The analysis of the mirror-C method is based on the work of Duchi, Shalev-Shwartz, Singer,
and Tewari [49], where the algorithm is introduced in an online and stochastic setting.
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Figure 9.1. The values f(x*) — fopt and fE. . — fopt generated by the
marror descent and projected subgradient methods.

(O) If'&)]l« < Ly for any x € dom(g) (L; > 0).5

(D) The optimal set of (9.29) is nonempty and denoted by X*. The optimal value
of the problem is denoted by Fopy.

We will also assume, as usual, that we have at our disposal a convex function w
that satisfies the following properties, which are a slight adjustment of the properties
in Assumption 9.3.

Assumption 9.21 (properties of w).
e w is proper closed and convex.
o w is differentiable over dom(dw).
e dom(g) C dom(w).

o w+ 5dom(g) is o-strongly convex (o > 0).

We can obviously ignore the composite structure of problem (9.29) and just
try to employ the mirror descent method on the function F' = f 4 g with dom(g)
taking the role of C"

X = angmingee { (706 + /0% 4 L Buxx) b (030)

53Recall that we assume that f’ represents some rule that takes any x € dom(9f) to a vector

f'(x) € 0f(x).
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However, employing the above scheme might be problematic. First, we did not
assume that C' = dom(g) is closed, and thus the argmin in (9.30) might be empty.
Second, even if the update step is well defined, we did not assume that g is Lip-
schitz over C' like we did on f in Assumption 9.20(C); this is a key element in the
convergence analysis of the mirror descent method. Finally, even if g is Lipschitz
over C, it might be that the Lipschitz constant of the sum function F' = f + g is
much larger than the Lipschitz constant of f, and our objective will be to define a
method whose efficiency estimate will depend only on the Lipschitz constant of f
over dom(g).

Instead of linearizing both f and g, as is done in (9.30), we will linearize f
and keep g as it is. This leads to the following scheme:

1
= angin {(7/64),30 + 00+ L Buxxd) b (03D
k
which can also be written as

xF = argmin, { (t f'(x*) — Vw(x*),x) + trg(x) + w(x)} .

The algorithm that performs the above update step will be called the mirror-C
method.

The Mirror-C Method

Initialization: pick x° € dom(g) N dom(dw).
General step: for any £k =0,1,2,... execute the following steps:

(a) pick a stepsize t;, > 0 and a subgradient f’(x*) € 9f(x*);
(b) set

xF = argmin, { (t, f'(x*) — Vw(x"),x) + trg(x) + w(x)} . (9.32)

Remark 9.22. The update formula (9.32) can also be rewritten as

M = argmin, { (t f'(x"), x) + trg(x) + Bo(x,x")} . (9.33)

Remark 9.23 (Euclidean setting—proximal subgradient method). When
the underlying space E is Euclidean and w(x) = i||x||%, then the update formula
(9.33) reduces to

1
= angin { (7' (x). ) + g0 + g e -1

which, after some rearrangement of terms and removal of constant terms, takes the
form

xk+1 = argmin,, {tkg(x) + % [|x — [x* — t;@f/(xk)]H?} .
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By the definition of the prox operator (see Chapter 6), the last equation can be
rewritten as

xk+ = proxtkg(xk — tkf/(xk)).

Thus, at each iteration the method takes a step toward minus of the subgradient
followed by a prox step. The resulting method is called the proximal subgradient
method. The method will be discussed extensively in Chapter 10 in the case where
f possesses some differentiability properties.

Of course, the mirror-C method coincides with the mirror descent method
when taking g = d¢ with C' being a nonempty closed and convex set. We begin by
showing that the mirror-C method is well defined, meaning that the minimum in
(9.32) is uniquely attained at dom(g) N dom(dw).

Theorem 9.24 (mirror-C is well defined). Suppose that Assumptions 9.20 and
9.21 hold. Let a € E*. Then the problem

min{(a, x) + g(x) + w(x)}
has a unique minimizer in dom(g) N dom(Ow).
Proof. The proof follows by invoking Lemma 9.7 with ¢(x) = (a,x) + g(x). 0O

The analysis of the mirror-C method is based on arguments similar to those
used in Section 9.2 to analyze the mirror descent method. We begin by proving a
technical lemma establishing an inequality similar to the one derived in Lemma 9.14.
Note that in addition to our basic assumptions, we assume that g is a nonnegative
function and that the stepsizes are nonincreasing.

Lemma 9.25. Suppose that Assumptions 9.20 and 9.21 hold and that g is a non-
negative function. Let {Xk}kzo be the sequence generated by the mirror-C method
with positive nonincreasing stepsizes {txtx>0. Then for any x* € X* and k > 0,

t XO + B, X*,XO + 1 k, t2 (x™ 3
min  F(x") — Fope < 090D F B3 + 57 2o all I
n:O,L...,k Zn:O tn

(9.34)

Proof. By the update formula (9.33) and the non-Euclidean second prox theorem
(Theorem 9.12) invoked with b = x",a = x"*! and ¥(x) = t,(f(x"),x) + t,g(x),
we have

(Vw(x™) = Vw(x" ), u—x"") < t,(f (x"), u—x"")+t,g(u)—t,g(x" ). (9.35)

Invoking the three-points lemma (Lemma 9.11) with a = x"™! b = x", and ¢ = u
yields

(Vw(x™) — Vo), u —x") = B, (u,x" ™) + B, (x"™,x") — B, (u,x"),
which, combined with (9.35), gives

B, (u, x”"'l)—|—Bw (x”"'l, x") =B, (u, x™) <t (f'(x™), u—x”"’1>—|—tng(u)—tng(x”"'l).
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Therefore,
tn(f/(x"), X" — 1) + tag(x" ) — tg(u)
< Bw(u, Xn) _ Bw (u’xn—i—l) _ Bw(XnJ'_l,Xn) 4 tn<f/(Xn),Xn _ Xn+1>
< Bw(uv Xn) - Bw(uaxn—,—l) - %”Xn—H - Xn”2 =+ tn<f/(xn)axn - Xn+1>
tn
_ Bw(u, Xn) _ Bw(u’Xn—Q—l) _ g”Xn—Q—l _ Xn||2 + <ﬁf/(xn)a \/E(Xn _ Xn+1)>

o 2
< By(u,x") = By(u,x") — §IIX”+1 —x"|? + ﬁllf’(X”)Hi + ol - x|

2|

—(|X

2
n n+1 ti / ny\|2

:BW(U,X )_Bw(uax )+%Hf (X )”*

Plugging in u = x* and using the subgradient inequality, we obtain

n n * M * M t?L n
b [FO") + g™ T) = Fopt] < Bu(x",x™) = Bu (", ™) + [ £/ ()2

Summing the above over n =0,1,... k,

k
Yo tn [F") 4 g(x" ) = Fopy] < Bu(x",x%) = B (x", ") + Z tallF/(x™)|12.
n=0

Adding the term t5g(x°) — txg(x*T1) to both sides and using the nonnegativity of
the Bregman distance, we get

k
tO(F( - opt Z n.f + tn 19( ) - tnFopt]

k
1
< tog(x°) — trg () + Bux, %) + 5= 37276 2
g n=0

Using the fact that t,, <t,_; and the nonnegativity of g(x**1), we conclude that

k

Dt [F(x") = Fop] < tog(x”) + Bu(x",x° +—Zt £ (x™)IIE,

n=0

which, combined with the fact that

<Z t ) (n_mll’r.lﬂ’k F(x") - Fopt) < Z tn [F(X™) = Fopt] ,

n=0

implies the inequality (9.34). O

Using Lemma 9.25, it is now easy to derive a convergence result under the
assumption that the number of iterations is fixed.

Theorem 9.26 (O(1/v N) rate of convergence of mirror-C with fixed
amount of iterations). Suppose that Assumptions 9.20 and 9.21 hold and that
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g is nonnegative. Assume that B, (x,x°) is bounded above over dom(g), and let
O(x°) satisfy
O(x") > max B(x,x°).

x€dom(g)

Suppose that g(x°) = 0. Let N be a positive integer, and let {x*}>o be the sequence
generated by the mirror-C method with constant stepsize

_ V20()e (9.36)

ty = ———mm——.
"TULUN

\/20(x%)L
min _ F(x") — Fopy < &
n=0,1,...,.N—1 VoV N

Then

Proof. By Lemma 9.25, using the fact that g(x") = 0 and the inequalities
Ilf/(x™)|l« < Ly and B, (x*,x°) < O(x?), we have

O(x0) + L YN g2
min _ F(x") — Fopt < 20 n=0 n

_ = N—1
n=0,1,....N—1 ano tn

Plugging the expression (9.36) for the stepsizes into the above inequality, the result
follows. 0O

We can also establish a rate of convergence of the mirror-C method with a
dynamic stepsize rule.

Theorem 9.27 (O(logk/vk) rate of convergence of mirror-C with dy-
namic stepsizes). Suppose that Assumptions 9.20 and 9.21 hold and that g is
nonnegative. Let {xk}kzo be the sequence generated by the mirror-C method with

stepsizes {ty >0 chosen as
V2o

b Lf\/k‘f' 1
Then for all k > 1,

L; Bo(x*,x%) + ¥22g(x°) + 1+ log(k + 1)

min  F(x") — Fope < 9.37
n=0,1,....k ( ) pt = V20 vVk+1 ( )
Proof. By Lemma 9.25, taking into account the fact that ¢ty = ‘2—27‘7,
Bl (x*,x%) + 229(x%) + o Sp_o 2] £ (x™)|12
min F(x") — Fopt < b 2 0 . (9.38)
n=0,1,....k Zn:O tn
which, along with the relations 2] f'(x")||? < 2% and t, = Lf%, yields the
inequality

* Vzo k
) n Lf B, (X ’XO) + L2f g(XO) =+ En:O n—lﬁ—l
min  F(x") — fopt < k '
n=0,1,....k V20 > 1

n=0 /n+1

The result (9.37) now follows by invoking Lemma 8.27(a). O
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Example 9.28. Suppose that the underlying space is R" endowed with the Eu-
clidean l-norm. Let f: R™ — R be a convex function, which is Lipschitz over R™,
implying that there exists Ly > 0 for which ||f'(x)|l2 < Ly for all x € R". Now
consider the problem

min {F (x)

x€RY

f(x)+Z%}
i=1 """
1

with w chosen as w(x) = 3|x||3. In this case, the mirror descent and mirror-C
methods coincide with the projected subgradient and proximal subgradient meth-
ods, respectively. It is not possible to employ the projected subgradient method
on the problem—it is not even clear what is the feasible set C. If we take it as
the open set R, then projections onto C' will in general not be in C. In any
case, since F' is obviously not Lipschitz, no convergence is guaranteed. On the
other hand, employing the proximal subgradient method is definitely possible by
taking g(x) = >, w% + 5R1+. Both Assumptions 9.20 and 9.21 hold for f, g and
w(x) = 3[|x/|?, and in addition g is nonnegative. The resulting method is

xF = prox,, , (xk — tkf’(xk)) )
The computation of prox;, , amounts to solving n cubic scalar equations. |

Example 9.29 (projected subgradient vs. proximal subgradient). Suppose
that the underlying space is R” endowed with the Euclidean lo-norm and consider
the problem

min {F(x) = [ Ax — bl + A1} (9.39)

where A € R™*™ b € R™, and A > 0. We will consider two possible methods to
solve the problem:

e projected subgradient employed on problem (9.39), where here C' = R™.
The method takes the form (when making the choice of the subgradient of

Iyl as sgn(y))
xFM = xF — 1, (ATsgn(Ax" — b) 4 Asgn(x)).

The stepsize is chosen according to Theorem 8.28 as t; = W

e proximal subgradient, where we take f(x) = [|[Ax—Db||; and g(x) = A||x]|1,
so that F' = f + g. The method then takes the form

xP = proxskg(xk — 5, ATsgn(Ax" — b)).

Since g(x) = A[x[|1, it follows that prox,, , is a soft thresholding operator.
Specifically, by Example 6.8, prox,, , = Txs,, and hence the general update
rule becomes

XM = T, (x" — s, ATsgn(Ax* — b)).

The stepsize is chosen as s = W
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A priori it seems that the proximal subgradient method should have an advantage
over the projected subgradient method since the efficiency estimate bound of the
proximal subgradient method depends on Ly, while the corresponding constant
for the projected subgradient method depends on the larger constant L. This
observation is also quite apparent in practice. We created an instance of problem
(9.39) with m = 10, n = 15 by generating the components of A and b independently
via a standard normal distribution. The values of F/(x*)— F, for both methods are
described in Figure 9.2. Evidently, in this case, the proximal subgradient method
is better by orders of magnitude than the projected subgradient method. N

Figure 9.2. First 1000 iterations of the projected and proximal subgradient
methods employed on problem (9.39). The y-axis describes (in log scale) the quantity
F(Xk) — Fopt~
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Chapter 10

The Proximal Gradient
Method

Underlying Space: In this chapter, with the exception of Section 10.9, E is
a Euclidean space, meaning a finite dimensional space endowed with an inner
product (-,-) and the Euclidean norm || - || = y/(, ).

10.1 The Composite Model

In this chapter we will be mostly concerned with the composite model

min{F(x) = £(x) + 9(x)}, (10.1)

where we assume the following.

Assumption 10.1.
(A) g:E — (—o0,00] is proper closed and convex.

(B) f:E — (—o0, 0] is proper and closed, dom(f) is conver, dom(g) C int(dom(f)),
and f is L¢-smooth over int(dom(f)).

(C) The optimal set of problem (10.1) is nonempty and denoted by X*. The opti-
mal value of the problem is denoted by Fps.

Three special cases of the general model (10.1) are gathered in the following exam-
ple.

Example 10.2.

e Smooth unconstrained minimization. If ¢ = 0 and dom(f) = E, then
(10.1) reduces to the unconstrained smooth minimization problem

xcE

where f :E — R is an L g-smooth function.

269
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e Convex constrained smooth minimization. If ¢ = d¢, where C is a
nonempty closed and convex set, then (10.1) amounts to the problem of min-
imizing a differentiable function over a nonempty closed and convex set:

w6

where here f is Ly-smooth over int(dom(f)) and C' C int(dom(f)).

e [i-regularized minimization. Taking g(x) = A||x||; for some A > 0, (10.1)
amounts to the [;-regularized problem

min{ f(x) + Allx[l1}

with f being an Ls-smooth function over the entire space E. |

10.2 The Proximal Gradient Method

To understand the idea behind the method for solving (10.1) we are about to study,
we begin by revisiting the projected gradient method for solving (10.1) in the case
where g = d¢ with C' being a nonempty closed and convex set. In this case, the
problem takes the form

min{f(x) : x € C}. (10.2)

The general update step of the projected gradient method for solving (10.2) takes
the form
Xk—,—1 = Pc(Xk - thf(Xk)),

where tj is the stepsize at iteration k. It is easy to verify that the update step
can be also written as (see also Section 9.1 for a similar discussion on the projected
subgradient method)

. 1
xktl — argmin, .o {f(xk) + <Vf(xk),x — xk> + E”X - Xk”Q} .

That is, the next iterate is the minimizer over C' of the sum of the linearization of
the smooth part around the current iterate plus a quadratic prox term.

Back to the more general model (10.1), it is natural to generalize the above
idea and to define the next iterate as the minimizer of the sum of the linearization
of f around x¥, the nonsmooth function ¢, and a quadratic prox term:

X = angming s {£9) + (V0 x5 00 + e x4} (103

After some simple algebraic manipulation and cancellation of constant terms, we
obtain that (10.3) can be rewritten as

X" = argmin, {tkg(X) + % (S wf(x’“»HQ} ,

which by the definition of the proximal operator is the same as

xhl = proxtkg(xk — 1, V£(x")).
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The above method is called the prozimal gradient method, as it consists of a gradient
step followed by a proximal mapping. From now on, we will take the stepsizes as
ty = Lik, leading to the following description of the method.

The Proximal Gradient Method

Initialization: pick x° € int(dom(f)).
General step: for any £ =0,1,2, ... execute the following steps:

(a) pick Ly > 0;

(b) set xF*1 = PIOX i, (xk - L%Vf(xk)).

The general update step of the proximal gradient method can be compactly
written as

X =T (),
where Tg’g s int(dom(f)) — E (L > 0) is the so-called proz-grad operator defined
by

TLf’g(x) = proxi, (X - %Vf(x)) .

When the identities of f and g are clear from the context, we will often omit the
superscripts f, g and write T, (+) instead of TLf’g(-).

Later on, we will consider two stepsize strategies, constant and backtracking,
where the meaning of “backtracking” slightly changes under the different settings
that will be considered, and hence several backtracking procedures will be defined.

Example 10.3. The table below presents the explicit update step of the proximal
gradient method when applied to the three particular models discussed in Example
10.2.5% The exact assumptions on the models are described in Example 10.2.

Model Update step Name of method
mingeg f(x) xFH = xF — 1, Vf(xF) gradient
minyec f(x) xFl = Po(xF — t, Vf(x*)) | projected gradient

mineer{f(x) + Ax|[1} | x**! = T (X — t: VF(xY)) ISTA

The third method is known as the iterative shrinkage-thresholding algorithm
(ISTA) in the literature, since at each iteration a soft-thresholding operation (also

known as “shrinkage”) is performed. N
54Here we use the facts that prox,, oo = I,prox,, s, = Pc and prox,, 5., = Txt,, where
go(x) =0.
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10.3 Analysis of the Proximal Gradient Method—
The Nonconvex Case”

10.3.1 Sufficient Decrease

To establish the convergence of the proximal gradient method, we will prove a
sufficient decrease lemma for composite functions.

Lemma 10.4 (sufficient decrease lemma). Suppose that f and g satisfy prop-
erties (A) and (B) of Assumption 10.1. Let F' = f+ g and T, = TLf’g, Then for
any x € int(dom(f)) and L € (%, 00) the following inequality holds:

F(x) — F(Ty(x)) > L;T% HG{’Q(X)HQ, (10.4)

where G4 - int(dom(f)) — E is the operator defined by G4 (x) = L(x — Tr(x))
for all x € int(dom(f)).

Proof. For the sake of simplicity, we use the shorthand notation x* = T, (x). By
the descent lemma (Lemma 5.7), we have that

F) < 700 + (VA6 5 =) + x| (10.5

By the second prox theorem (Theorem 6.39), since x* = proxi, (x— 1Vf(x)), we
have

from which it follows that
(Vf(x),x" —x) < —L||x* — x|+ g(x) - g(x™),

which, combined with (10.5), yields

FOT) +9(c) < F () + g(x) + (—L+ %) =]

Hence, taking into account the definitions of x*, G3'(x) and the identities F(x) =
f(x) + g(x), F(xT) = f(x7) + g(x*), the desired result follows. O

10.3.2 The Gradient Mapping

The operator Gé’g that appears in the right-hand side of (10.4) is an important
mapping that can be seen as a generalization of the notion of the gradient.

Definition 10.5 (gradient mapping). Suppose that f and g satisfy properties
(A) and (B) of Assumption 10.1. Then the gradient mapping is the operator

55The analysis of the proximal gradient method in Sections 10.3 and 10.4 mostly follows the
presentation of Beck and Teboulle in [18] and [19].
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GH9 - int(dom(f)) = E defined by
GI9x) =L (x - T{’g(x))
for any x € int(dom(f)).

When the identities of f and g will be clear from the context, we will use the
notation G, instead of G{’g . With the terminology of the gradient mapping, the
update step of the proximal gradient method can be rewritten as

1
M =xk - — G, (x9).
Ly

In the special case where L = Ly, the sufficient decrease inequality (10.4) takes a
simpler form.

Corollary 10.6. Under the setting of Lemma 10.4, the following inequality holds
for any x € int(dom(f)):
1

F() = F(T1, (%) = 37 I”

Gz, ()

The next result shows that the gradient mapping is a generalization of the
“usual” gradient operator x — V f(x) in the sense that they coincide when g =0
and that, for a general g, the points in which the gradient mapping vanishes are
the stationary points of the problem of minimizing f + g. Recall (see Definition
3.73) that a point x* € dom(g) is a stationary point of problem (10.1) if and only if
—Vf(x*) € 9g(x*) and that this condition is a necessary optimality condition for
local optimal points (see Theorem 3.72).

Theorem 10.7. Let f and g satisfy properties (A) and (B) of Assumption 10.1
and let L > 0. Then

(a) Gé’go (x) = Vf(x) for any x € int(dom(f)), where go(x) = 0;
(b) for x* € int(dom(f)), it holds that G{’g(x*) = 0 if and only if X* is a sta-
tionary point of problem (10.1).

Proof. (a) Since prox, (y) =y for all y € E, it follows that
1
G{,go (x) = L(x — Tg’go (x))=1L (x — Proxig, <X — sz(x)))

1 (x (x- 19/)) = V100,

(b) GJ9(x*) = 0 if and only if x* = proxy, (x* — £ Vf(x*)). By the second
prox theorem (Theorem 6.39), the latter relation holds if and only if

x —EVf(x )—x" € L(’?g(x ),
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that is, if and only if
—V[f(x") € dg(x7),

which is exactly the condition for stationarity. 0O

If in addition f is convex, then stationarity is a necessary and sufficient opti-
mality condition (Theorem 3.72(b)), which leads to the following corollary.

Corollary 10.8 (necessary and sufficient optimality condition under con-
vexity). Let f and g satisfy properties (A) and (B) of Assumption 10.1, and let
L > 0. Suppose that in addition f is convex. Then for x* € dom(g), G{’g(x*) =0
if and only if x* is an optimal solution of problem (10.1).

We can think of the quantity |G (x)| as an “optimality measure” in the sense
that it is always nonnegative, and equal to zero if and only if x is a stationary point.
The next result establishes important monotonicity properties of |G, (x)|| w.r.t. the
parameter L.

Theorem 10.9 (monotonicity of the gradient mapping). Suppose that f and
g satisfy properties (A) and (B) of Assumption 10.1 and let G, = Gi’g. Suppose
that L1 > Lo > 0. Then

1GL, ()| = |G, (x)]] (10.6)

and

G, (| _ [1Gr. (Xl

10.7
Ly - Lo (10.7)

for any x € int(dom(f)).

Proof. Recall that by the second prox theorem (Theorem 6.39), for any v,w € E
and L > 0, the following inequality holds:

(v —proxa,(v),prox1,(v) —w) > %g (prox%g(v)) — —g(w).

L
Plugging L = L1,v = x — £V f(x), and w = pI‘OX%g(X - £V f(x) = Tr,(x)
2

1

into the last inequality, it follows that

<x — L VIG) = Ty (0, T, () TL2<X>> 2

or
1

<LilGL1<x> V60, 1O - L—IGL1<x>> > (T, ()~ 1-o(T ()

Exchanging the roles of L; and Lg yields the following inequality:

(£6160 = V160, 610 = 1-Gra()) = alT1alo) ~ Loo(T1 ()

Multiplying the first inequality by L; and the second by Lo and adding them, we
obtain

<GL1<x> - 00, 100 - LilGL1<x>> >0,
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which after some expansion of terms can be seen to be the same as

1 5 1 9 1 1
- - <|—+= .
GG+ G < (7 + 72 ) (61,(0.Gua)
Using the Cauchy—Schwarz inequality, we obtain that
! Gz, ()] + ! 1GL, (x| < S 1GL, X - [|GL, ()] (10.8)
— b'e — b'e — 4 — x)|| - x)||. :
L]_ Ly L2 Lo — L]_ L2 Ly Lo

Note that if Gr,(x) = 0, then by the last inequality, G, (x) = 0, implying that
in this case the inequalities (10.6) and (10.7) hold trivially. Assume then that

Gr,(x) # 0 and define ¢t = HgilgigH Then, by (10.8),
2

Ly L) e <o
L1 L1 L2 L27.

Since the roots of the quadratic function on the left-hand side of the above inequality

aret =1, f—;, we obtain that

showing that

162, G < 16, () < 2lG (). 0

A straightforward result of the nonexpansivity of the prox operator and the
L-smoothness of f over int(dom(f)) is that Gr(-) is Lipschitz continuous with
constant 2L + L. Indeed, for any x,y € int(dom(f)),

IGL(x) —GL(y)l| =L

X — Proxi, (x - %Vf(x)) — Yy tproxi, <y - %Vf(Y)> H

<L|x—y|+L

v (e ) e o210

<yt (x Loseo) - (5 tos)]

2L[x = y[[ + [V (x) = VI(y)ll

<
< 2L+ Ly)llx =yl

In particular, for L = Ly, we obtain the inequality

1GL, (x) = G, (¥) <3Lsllx =yl

The above discussion is summarized in the following lemma.

Lemma 10.10 (Lipschitz continuity of the gradient mapping). Let f and g
satisfy properties (A) and (B) of Assumption 10.1. Let Gy, = G{’g, Then

(a) [GL(x) = GLy)l < L+ Ly)l[x =yl for any x,y € int(dom(f));
(b) G, (%) = G, ()|l <3Lsl[x —yl| for any x,y € int(dom(f)).
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Lemma 10.11 below shows that when f is assumed to be convex and Lg-
smooth over the entire space, then the operator %G L, is firmly nonexpansive. A

direct consequence is that G, is Lipschitz continuous with constant 4LTf.

Lemma 10.11 (firm nonexpansivity of %GLJ,). Let f be a conver and Ly-

smooth function (Ly > 0), and let g : E — (—00,00] be a proper closed and convex
function. Then

(a) the gradient mapping Gr,, = Gi’fg satisfies the relation

3
<GLf(X) - GLf(Y)?X - Y> > m ||GLf(X) — GLf(y)||2 (10.9)
for any x,y € E;

() GL,(x) = Gr, W)l < Z-|x — vl for any x,y € E.

Proof. Part (b) is a direct consequence of (a) and the Cauchy—Schwarz inequality.
We will therefore prove (a). To simplify the presentation, we will use the notation
L = Ly. By the firm nonexpansivity of the prox operator (Theorem 6.42(a)), it
follows that for any x,y € E,

(10607 (x = £9709) = (v = L9 0) ) 2 172 (0 - Tu 0

where 17, = Tg’g is the prox-grad mapping. Since Ty, =7 — %G L, we obtain that

((x-16:0) = (v-76:0) . (x- 197 ) = (v- 1770 ) )

(x rert) - (v raw)|

which is the same as

((x-76160) = (v~ 761)) (6160 = V1) = (Guly) ~ VI ) > 0.

)

!

Therefore,
(G10) ~ Gy x ~y) 2 7 162 (x) ~ G| + (VI () = V(). x )

- % (GL(x) — GL(y). VF(x) - V(y))-

Since f is L-smooth, it follows from Theorem 5.8 (equivalence between (i) and (iv))
that

(V1) = Vi) x—¥) = 719500 - Vi
Consequently,

L{(GL(x) = Gr(y),x —y) > |GL(x) = GL@)|I” + IVf(x) — V£ (y)|*
—{(Gr(x) — GL(y), Vf(x) = Vf(y)).
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From the Cauchy—Schwarz inequality we get

L{(GL(x) = Gr(y),x —y) > |GL(x) = GL@)II” + IVf(x) — V£ (y)|*
—|GL(x) = GL) I Vf(x) = Vf(¥)]. (10.10)

By denoting a = |G, (x) — GL (y)| and 8 = ||V f(x) = V[ (y)||, the right-hand
side of (10.10) reads as o + % — af8 and satisfies
3 ! 23
2132 _ a8 =202 —_ > Za?,
a4 B —af 1% + (2 ﬁ) 1

which, combined with (10.10), yields the inequality

L(GL() ~ Crly)x—y) = 5 [Gu(x) ~ Guly)l.
Thus, (10.9) holds. O

The next result shows a different kind of a monotonicity property of the gra-
dient mapping norm under the setting of Lemma 10.11—the norm of the gradient
mapping does not increase if a prox-grad step is employed on its argument.

Lemma 10.12 (monotonicity of the norm of the gradient mapping w.r.t.
the prox-grad operator).’® Let f be a convex and L ¢-smooth function (Ly > 0),
and let g : E — (—o0,00] be a proper closed and convex function. Then for any
x ek,

”GLf(TLf(X))H < HGLf(X)Hﬂ
where G, = G{’f and Ty, = T{}g.

Proof. Let x € E. We will use the shorthand notation x* = 77, . (x). By Theorem
5.8 (equivalence between (i) and (iv)), it follows that

IVF(xF) = V)P < LV f(xT) = V(x),x" —x). (10.11)

Denoting a = Vf(x")— Vf(x) and b = xT —x, inequality (10.11) can be rewritten
as ||la||> < L¢(a,b), which is the same as

L L3
|- Lip| < e
and as
1 1 1
La- [ < b
Ly 2 2
Using the triangle inequality,
1
| Za-b] < |Za-v+ 50|+ 51 < p
Ly

56Lemma 10.12 is a minor variation of Lemma 2.4 from Necoara and Patrascu [88].



Downloaded 04/11/24 to 143.215.80.169 by Jacob Aguirre (jaguirre31@gatech.edu). Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

278 Chapter 10. The Proximal Gradient Method

Plugging the expressions for a and b into the above inequality, we obtain that

1 1
X — L—fo(X) —xtT+ L—fo(X+)

\ < lx* — x|

Combining the above inequality with the nonexpansivity of the prox operator (The-
orem 6.42(b)), we finally obtain

|G, (Te, )| = IGr, (x| = Lyllx" = Tp, ()| = Ly | T, (x) = Tr, (x7)]|
POX g <x - I%Vf(x)) ~ PrOX L <X+ - Lifo(er)) H

< Lyllx" — x|l = Ly | T1, (%) — x|| = |GL, (x|,

<Ly

1 1
X — L—fo(X) —xt 4+ L—fo(XJr)

which is the desired result. 0

10.3.3 Convergence of the Proximal Gradient Method—
The Nonconvex Case

We will now analyze the convergence of the proximal gradient method under the
validity of Assumption 10.1. Note that we do not assume at this stage that f
is convex. The two stepsize strategies that will be considered are constant and
backtracking.

e Constant. L, =L € (%, oo) for all k.

e Backtracking procedure B1l. The procedure requires three parame-
ters (s,7,n), where s > 0,y € (0,1), and n > 1. The choice of Ly, is done
as follows. First, Ly is set to be equal to the initial guess s. Then, while

F(x*) - F(Ty, (x")) < lenGLk(x’“)H?,

we set Ly := nLj. In other words, Ly is chosen as L, = sn’, where i,
is the smallest nonnegative integer for which the condition

5y
F(Xk) - F(Tsnik (Xk)) > Sﬁik HGsnik (Xk)”Q

is satisfied.

Remark 10.13. Note that the backtracking procedure is finite under Assumption
10.1. Indeed, plugging x = x* into (10.4), we obtain

Ly

[ — &
2 J6s6e)

I

F(x") — F(Tp(x*)) > (10.12)
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L

_Zf
If L > 2(1Lj»y)’ then & 2 >, and hence, by (10.12), the inequality

F(x*) = F(Ty(x")) > 711G (x")|?

b
L
holds, implying that the backtracking procedure must end when Ly > %

We can also compute an upper bound on Ly: either Ly is equal to s, or the
backtracking procedure is invoked, meaning that % did not satisfy the backtracking

Li__ so that L, <

condition, which by the above discussion implies that % < 59y

%. To summarize, in the backtracking procedure B1, the parameter Ly satisfies
nLy
Ly < max{s,i}. (10.13)
2(1=7)

The convergence of the proximal gradient method in the nonconvex case is
heavily based on the sufficient decrease lemma (Lemma 10.4). We begin with the
following lemma showing that consecutive function values of the sequence generated
by the proximal gradient method decrease by at least a constant times the squared
norm of the gradient mapping.

Lemma 10.14 (sufficient decrease of the proximal gradient method). Sup-
pose that Assumption 10.1 holds. Let {Xk}kzo be the sequence generated by the
prozimal gradient method for solving problem (10.1) with either a constant stepsize
defined by Ly, = L € (%, oo) or with a stepsize chosen by the backtracking procedure
B1 with parameters (s,~y,n), where s > 0,y € (0,1),n > 1. Then for any k > 0,

F(xF) = F(x*) > M||Ga(x")|?, (10.14)
where
ks
(E)% , constant stepsize,
M = (10.15)
T backtracking,
max{s,m
and

L, constant stepsize,
d= (10.16)

s, backtracking.

Proof. The result for the constant stepsize setting follows by plugging L = L and
x = x" into (10.4). As for the case where the backtracking procedure is used, by
its definition we have

v v
F(x*) = FxM) > — |G, (M)|)? 2 ————— G, ()%,
Ly, max { g ki }
?2(1—7)
where the last inequality follows from the upper bound on Ly given in (10.13).
The result for the case where the backtracking procedure is invoked now follows by
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the monotonicity property of the gradient mapping (Theorem 10.9) along with the
bound Ly > s, which imply the inequality |G, (x*)|| > ||Gs(xF)||. O

We are now ready to prove the convergence of the norm of the gradient map-
ping to zero and that limit points of the sequence generated by the method are
stationary points of problem (10.1).

Theorem 10.15 (convergence of the proximal gradient method—noncon-
vex case). Suppose that Assumption 10.1 holds and let {x*}r>o be the sequence
generated by the proximal gradient method for solving problem (10.1) either with a
constant stepsize defined by L, = L € (%,oo) or with a stepsize chosen by the
backtracking procedure Bl with parameters (s,v,n), where s > 0,v € (0,1), and
n>1. Then

(a) the sequence {F(x*)}r>o is nonincreasing. In addition, F(x*+1) < F(x¥) if
and only if x* is not a stationary point of (10.1);

(b) G4(x*) — 0 as k — oo, where d is given in (10.16);

()
F(XO) — Fopt

e <
min | [Gax)) < e

n=0,1,...,

, (10.17)

where M is given in (10.15);

(d) all limit points of the sequence {x*}1>0 are stationary points of problem (10.1).

Proof. (a) By Lemma 10.14 we have that
F(xF) — F(xF) > M[|Ga(x")|1%, (10.18)

from which it readily follows that F(x*¥) > F(x**!). If x* is not a stationary point
of problem (10.1), then G4(x*) # 0, and hence, by (10.18), F(x*) > F(x**1). If
x* is a stationary point of problem (10.1), then G, (x*) = 0, from which it follows
that x*1 = x¥ — LGy, (x*) = x¥, and consequently F(x*) = F(x**1).

(b) Since the sequence {F(x*)};>0 is nonincreasing and bounded below, it
converges. Thus, in particular, F(x*) — F(x*¥*1) — 0 as k — oo, which, combined
with (10.18), implies that ||G4(x*)|| — 0 as k — oo.

(¢) Summing the inequality
F(x") = F(x"™) > M||Ga(x")|?

overn=0,1,...,k, we obtain

k
0y _ k+1 ny||2 : ny|12
PO = FHY) 2 M3 IGa P = M(k+1) min[[Galx™)]2

n=0

Using the fact that F(x**1) > F,, the inequality (10.17) follows.
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(d) Let x be a limit point of {x*}4>¢. Then there exists a subsequence
{x*i},>0 converging to x. For any j > 0,

IGa®)I| < [Ga(x™) = Ga®)I + | Ga(x")|| < (2d + Ly) %" = x[| + | Ga(x")]],
(10.19)
where Lemma 10.10(a) was used in the second inequality. Since the right-hand side
of (10.19) goes to 0 as j — oo, it follows that G4(x) = 0, which by Theorem 10.7(b)
implies that X is a stationary point of problem (10.1). 0O

10.4 Analysis of the Proximal Gradient Method—
The Convex Case

10.4.1 The Fundamental Prox-Grad Inequality

The analysis of the proximal gradient method in the case where f is convex is based
on the following key inequality (which actually does not assume that f is convex).

Theorem 10.16 (fundamental prox-grad inequality). Suppose that f and g

satisfy properties (A) and (B) of Assumption 10.1. For any x € E, y € int(dom(f))
and L > 0 satisfying

FTely) < )+ (VIO Tely) ~y) + 2Tely) ~ % (10.20)
it holds that
L 2 L 2
FO) ~ F(T() > Zlx - TP - Sl -yl 4 £5xy), (1021)

where

ly(xy) = f(x) = fy) = (Vf(y),x—y).
Proof. Consider the function

pw) = F(y) + {VF(y).u— ) +g(u) + 5 Ju—y|*

Since ¢ is an L-strongly convex function and T7,(y) = argmin,cgp(u), it follows by
Theorem 5.25(b) that

P(x) ~ (T (y)) = 2~ o) (10.22)

Note that by (10.20),

e(To(y)) = f(y) +(Vf(¥): Tely) —y) + gHTL(Y) = yl* +9(TLy)
2 f(Te(y)) + 9(Te(y)) = F(Tw(y)),
and thus (10.22) implies that for any x € E,

o) ~ F(T1(y)) > 5 llx—To(y)|
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Plugging the expression for ¢(x) into the above inequality, we obtain

F) +(VH) %~ ¥+ 90 + 5 I~ yIP = FITL) 2 2 lx -~ Tu)I

which is the same as the desired result:

F) ~ F(TL(y) > 5lx = Tu(y)l? = 5 Ix -y
+f(x) = fly) = (Vi(y),x-y). O

Remark 10.17. Obviously, by the descent lemma, (10.20) is satisfied for L = Ly,
and hence, for any x € E and y € int(dom(f)), the inequality

L L
F(x) = F(T1, () 2 = lx = To, )1 = S Ix = yI* + €5(x.y)
holds.

A direct consequence of Theorem 10.16 is another version of the sufficient
decrease lemma (Lemma 10.4). This is accomplished by substituting y = x in the
fundamental prox-grad inequality.

Corollary 10.18 (sufficient decrease lemma—second version). Suppose that
f and g satisfy properties (A) and (B) of Assumption 10.1. For any x € int(dom(f))
for which

F(TL(x)) < f(x) + (VF(x), T (x) — x) + g”TL(X) - x|,

it holds that

F(x) = F(TL(x)) =

1 2
> ] Gr)|

10.4.2 Stepsize Strategies in the Convex Case

When f is also convex, we will consider, as in the nonconvex case, both constant and
backtracking stepsize strategies. The backtracking procedure, which we will refer to
as “backtracking procedure B2,” will be slightly different than the one considered
in the nonconvex case, and it will aim to find a constant Ly satisfying

Li

PO < FOR) + (WA, x5 =) + 5

= — x¥)2. (10.23)
In the special case where g = 0, the proximal gradient method reduces to the
gradient method x*+1 = x* — L%Vf(xk), and condition (10.23) reduces to

1
FP) = (=) > — [V (x5,
2Ly
which is similar to the sufficient decrease condition described in Lemma 10.4, and
this is why condition (10.23) can also be viewed as a “sufficient decrease condi-
tion.”
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e Constant. Lj = Ly for all k.

e Backtracking procedure B2. The procedure requires two parameters
(s,n), where s > 0 and n > 1. Define L_; = s. At iteration k (k > 0)
the choice of Ly is done as follows. First, Ly is set to be equal to Li_1.
Then, while

F(Tr, (x%) > f(x*) +(VF(x"), Tp, (x*) —x*) + %IITLk(X’“) - x"|?,

we set Ly := nL;. In other words, Ly is chosen as Ly = Lj_1n', where
ix is the smallest nonnegative integer for which the condition

ST i (39) < FEF) +(VFER), Ty, i (5F) = x5) +
Ly,

Ty () = %12

is satisfied.

Remark 10.19 (upper and lower bounds on Ly). Under Assumption 10.1 and
by the descent lemma (Lemma 5.7), it follows that both stepsize rules ensure that
the sufficient decrease condition (10.23) is satisfied at each iteration. In addition,
the constants Ly, that the backtracking procedure B2 produces satisfy the following
bounds for all k > 0:

s < Ly <max{nLy,s}. (10.24)

The inequality s < Ly, is obvious. To understand the inequality L, < max{nLy,s},
note that there are two options. Fither Ly = s or Ly > s, and in the latter case
there exists an index 0 < k' < k for which the inequality (10.23) is not satisfied with

k=F and % replacing Ly. By the descent lemma, this implies in particular that

% < Ly, and we have thus shown that Li, < max{nLy,s}. We also note that the
bounds on L can be rewritten as

BLf S Lk S OéLf,

where

1, constant, 1, constant,
a= 8= (10.25)

S

max {n, L—f} , backtracking, Lif, backtracking.

Remark 10.20 (monotonicity of the proximal gradient method). Since
condition (10.23) holds for both stepsize rules, for any k > 0, we can invoke the
fundamental proz-grad inequality (10.21) with y = x = x*, L = L, and obtain the
inequality

Ly,
F(Xk) _ F(XkJrl) > 7ka _ Xk+1||2,

which in particular implies that F(x*) > F(x**1), meaning that the method pro-
duces a nonincreasing sequence of function values.
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10.4.3 Convergence Analysis in the Convex Case

We will assume in addition to Assumption 10.1 that f is convex. We begin by
establishing an O(1/k) rate of convergence of the generated sequence of function
values to the optimal value. Such rate of convergence is called a sublinear rate.
This is of course an improvement over the O(1/vk) rate that was established for
the projected subgradient and mirror descent methods. It is also not particularly
surprising that an improved rate of convergence can be established since additional
properties are assumed on the objective function.

Theorem 10.21 (O(1/k) rate of convergence of proximal gradient). Sup-
pose that Assumption 10.1 holds and that in addition f is convex. Let {Xk}kzo be the
sequence generated by the prozimal gradient method for solving problem (10.1) with
either a constant stepsize rule in which Ly = Ly for all k > 0 or the backtracking
procedure B2. Then for any x* € X* and k > 0,

aLy|lx” —x*|?

F(xM - F <
(X) pt = 2]€ ’

(10.26)
where a = 1 in the constant stepsize setting and o = max {77, Lif} if the backtracking
rule is employed.

Proof. For any n > 0, substituting L = L,, x = x*, and y = x" in the fundamental
prox-grad inequality (10.21) and taking into account the fact that in both stepsize
rules condition (10.20) is satisfied, we obtain
2 * n+1 * n+1(2 * ni2 2 * n
7 (FO7) = FM)) 2 [l = 27 = [l = xP[|% + L (x7, x")

2 ||X* _ Xn+1H2 _ HX* _ X"HQ,

where the convexity of f was used in the last inequality. Summing the above
inequality over n =0,1,...,k —1 and using the bound L,, < aLy for all n > 0 (see
Remark 10.19), we obtain

k—1
2 * n * *
oy 2 (FO) = Fih) 2 [l =t = e’ — x|
n=0
Thus,

= aL alL aL
D () = Fop) < =" = x)? = =2 < = x.
n=0

By the monotonicity of {F(x")},>0 (see Remark 10.20), we can conclude that

k—1
ol
B(FP(F) = Fope) < 3 J(FM) = Fope) < =5 Ix" =0,

n=0

Consequently,
aLys|x* —x

0”2
2k '

F(Xk)_FoptS ad
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Remark 10.22. Note that we did not utilize in the proof of Theorem 10.21 the
fact that procedure B2 produces a nondecreasing sequence of constants {Lg}r>0-
This implies in particular that the monotonicity of this sequence of constants is not
essential, and we can actually prove the same convergence rate for any backtracking
procedure that guarantees the validity of condition (10.23) and the bound Ly < aLy.

We can also prove that the generated sequence is Fejér monotone, from which
convergence of the sequence to an optimal solution readily follows.

Theorem 10.23 (Fejér monotonicity of the sequence generated by the
proximal gradient method). Suppose that Assumption 10.1 holds and that in
addition f is convex. Let {xk}kzo be the sequence generated by the proximal gradient
method for solving problem (10.1) with either a constant stepsize rule in which L =
Ly for all k > 0 or the backtracking procedure B2. Then for any x* € X* and k > 0,

||xk"'1 —x"|| < ka — x| (10.27)

Proof. We will repeat some of the arguments used in the proof of Theorem 10.21.
Substituting L = L, x = x*, and y = x* in the fundamental prox-grad inequality
(10.21) and taking into account the fact that in both stepsize rules condition (10.20)
is satisfied, we obtain

2 2
—(F(x*) = F(x"1)) > [|lx* = x"112 — || = xF|)2 + = £(x",x")
Ly Ly,

> [la® = M2 — [lxt - X%,

where the convexity of f was used in the last inequality. The result (10.27) now
follows by the inequality F(x*) — F(x**!) <0. O

Thanks to the Fejér monotonicity property, we can now establish the conver-
gence of the sequence generated by the proximal gradient method.

Theorem 10.24 (convergence of the sequence generated by the proximal
gradient method). Suppose that Assumption 10.1 holds and that in addition f is
convex. Let {x"}>0 be the sequence generated by the prozimal gradient method for
solving problem (10.1) with either a constant stepsize rule in which Ly = Ly for all
k > 0 or the backtracking procedure B2. Then the sequence {xk}kzo converges to
an optimal solution of problem (10.1).

Proof. By Theorem 10.23, the sequence is Fejér monotone w.r.t. X*. Therefore,
by Theorem 8.16, to show convergence to a point in X*, it is enough to show that
any limit point of the sequence {x"*} k>0 is necessarily in X*. Let then x be a limit
point of the sequence. Then there exists a subsequence {x"s} j>0 converging to X.
By Theorem 10.21,

F(x") — Fop as j — oo, (10.28)

Since F is closed, it is also lower semicontinuous, and hence F (%) < lim;_,o, F(x*/)
= Fopt, implying that x € X*. 0O
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To derive a complexity result for the proximal gradient method, we will assume
that ||x° — x*|| < R for some x* € X* and some constant R > 0; for example, if
dom(g) is bounded, then R might be taken as its diameter. By inequality (10.26) it
follows that in order to obtain an e-optimal solution of problem (10.1), it is enough
to require that

OéLfR2
<eg,
2k~

which is the same as )
k> M_
- 2
Thus, to obtain an e-optimal solution, an order of % iterations is required, which
is an improvement of the result for the projected subgradient method in which an
1

order of = iterations is needed (see, for example, Theorem 8.18). We summarize

the above observations in the following theorem.

Theorem 10.25 (complexity of the proximal gradient method). Under the
setting of Theorem 10.21, for any k satisfying

2
k> [aLfR —‘ 7
2e

it holds that F(x*) — Fopt < &, where R is an upper bound on ||x* — x°|| for some
x*e X*.

In the nonconvex case (meaning when f is not necessarily convex), an O(1/vk)
rate of convergence of the norm of the gradient mapping was established in Theorem
10.15(c). We will now show that with the additional convexity assumption on f,
this rate can be improved to O(1/k).

Theorem 10.26 (O(1/k) rate of convergence of the minimal norm of the
gradient mapping). Suppose that Assumption 10.1 holds and that in addition f
is convex. Let {Xk}kzo be the sequence generated by the proximal gradient method
for solving problem (10.1) with either a constant stepsize rule in which Ly = Ly for
all k > 0 or the backtracking procedure B2. Then for any x* € X* and k > 1,

2015 x" — x*|

. ny|| < '
i | Gar, ()] < NG : (10.29)
where « = B = 1 in the constant stepsize setting and o = max {7], Lif},ﬁ = Lif if
the backtracking rule is employed.
Proof. By the sufficient decrease lemma (Corollary 10.18), for any n > 0,
1
F(x") = F(x"™) = F(x") = F(T1, (x")) > 571G, (x")|*. (10.30)

T 2Ly

By Theorem 10.9 and the fact that SLy < L,, < aLy (see Remark 10.19), it follows
that

Lo |GL, (I* ALy |Gar, "I _ B

=n — Ga n 2.
2 12~ 2 oL’ 2azp; Gt (X"l

(10.31)

1 n\|2 __
EHGLn(X )= =
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Therefore, combining (10.30) and (10.31),
n n ﬁ n
F(x") = Fopy > F(x"™') = Fope + mHGaLf(X )P (10.32)

Let p be a positive integer. Summing (10.32) over n = p,p+1,...,2p — 1 yields

2p—1
F(Xp) - Fopt 2 F(XQP) - opt + Z ||GaLf H2 (1033)

By Theorem 10.21, F(xP) — Fopy < %ﬁ)—x*“z, which, combined with the fact

that F(x?P) — Fope > 0 and (10.33), implies

2p—1 *[|2
Pp w2 o B e aLpx® — x|
< < —=ji= 20
202 L; no 0,  NGar, (M7 < 5021, nz:; |Gar, (x™)]? < 5
Thus,
=0,1,...2p—1 " S = ﬁpz
and also \ oo ,
G, Gy <« TR X (10.35)
n—071, L2 Rt = Bp?
We conclude that for any k£ > 1,
. s OSLA x| 103 L3 — x|
min  [|Gar, (x")[]7 < _ o

n=0,1,....k ~ Bmin{(k/2)2,((k+1)/2)2} Bk?

When we assume further that f is Ls-smooth over the entire space E, we can
use Lemma 10.12 to obtain an improved result in the case of a constant stepsize.

Theorem 10.27 (O(1/k) rate of convergence of the norm of the gradient
mapping under the constant stepsize rule). Suppose that Assumption 10.1
holds and that in addition f is convex and Lg-smooth over E. Let {x*};>0 be the
sequence generated by the prozimal gradient method for solving problem (10.1) with
a constant stepsize rule in which Ly = L for all k > 0. Then for any x* € X* and
k>0,

(a) IGL, (M) < 1GL, (P)I;
2L ¢ ||x°—x*
(b) |G, ()] < 2l
Proof. Invoking Lemma 10.12 with x = x*, we obtain (a). Part (b) now follows

by substituting a« = g = 1 in the result of Theorem 10.26 and noting that by part
(a), IGL, (x")I| = minp—o,1,...x [Gr, (x")]|. O
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10.5 The Proximal Point Method

Consider the problem

min g(x), (10.36)

where g : E — (—00, 0] is a proper closed and convex function. Problem (10.36)
is actually a special case of the composite problem (10.1) with f = 0. The update
step of the proximal gradient method in this case takes the form

k41 _ k
X" = pI‘OXL_lkg(X ).

Taking Ly, = % for some ¢ > 0, we obtain the prozrimal point method.

The Proximal Point Method

Initialization: pick x° € E and ¢ > 0.

General step (k > 0):

k+1

X" = prox,, (x*).

The proximal point method is actually not a practical algorithm since the
general step asks to minimize the function g(x) + £|x — x*||?, which in general is
as hard to accomplish as solving the original problem of minimizing ¢g. Since the
proximal point method is a special case of the proximal gradient method, we can
deduce its main convergence results from the corresponding results on the proximal
gradient method. Specifically, since the smooth part f = 0 is 0-smooth, we can
take any constant stepsize to guarantee convergence and Theorems 10.21 and 10.24
imply the following result.

Theorem 10.28 (convergence of the proximal point method). Let g : E —
(=00, 0] be a proper closed and convex function. Assume that problem

sl

has a nonempty optimal set X*, and let the optimal value be given by gopt. Let
{xk}kzo be the sequence generated by the proximal point method with parameter
c>0. Then

(a) g(x*) — gope < X222 for any x* € X* and k > 0;
opt < g y x and k > 0;

(b) the sequence {x*}r>o converges to some point in X*.

10.6 Convergence of the Proximal Gradient
Method—The Strongly Convex Case

In the case where f is assumed to be o-strongly convex for some o > 0, the sublinear
rate of convergence can be improved into a linear rate of convergence, meaning a
rate of the form O(¢"*) for some ¢ € (0,1). Throughout the analysis of the strongly
convex case we denote the unique optimal solution of problem (10.1) by x*.
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Theorem 10.29 (linear rate of convergence of the proximal gradient
method—strongly convex case). Suppose that Assumption 10.1 holds and that
in addition f is o-strongly convex (o0 > 0). Let {x*}r>0 be the sequence generated
by the prozimal gradient method for solving problem (10.1) with either a constant
stepsize rule in which Ly = Ly for all k > 0 or the backtracking procedure B2. Let

1, constant stepsize,
o =

max {7], Lif} , backtracking.
Then for any k > 0,

() 50 =72 < (1= 55 ) I = x|

k
(b) [Ix* x| < (1= 55 ) %0 = x|

k1 oLy o N\ 0 2
(0) Plx) = Fope < 5% (1587 ) I — x|

Proof. Plugging L = Ly, x = x*, and y = x* into the fundamental prox-grad
inequality (10.21) and taking into account the fact that in both stepsize rules con-
dition (10.20) is satisfied, we obtain

Ly,
2
Since f is o-strongly convex, it follows by Theorem 5.24(ii) that

C(x" x0) = f(x") = f(x") = (Vf(x"),x" —x*) > gllch —x"||?.

L
F(x") = F(x**) > {IIX* i e [ e A TC e

Thus,
Lk % Lk — 0 *
7||X — xk“H2 — T”X — kaz. (10.37)

Since x* is a minimizer of F, F(x*) — F(x**1) < 0, and hence, by (10.37) and the
fact that Ly < aLy (see Remark 10.19),

st < (1= )t < (1 2 )

establishing part (a). Part (b) follows immediately by (a). To prove (c), note that
by (10.37),

F(x*) — F(xF1) >

Ly—o . L X
FH) = Fopy < =5 [Ix" =2 = S5 — x|
L
< ST x|
L
N f N (S QN
2 aLf
k+1
L
<H(1-—F) K-x
2 aLf

where part (b) was used in the last inequality. 0O



Downloaded 04/11/24 to 143.215.80.169 by Jacob Aguirre (jaguirre31@gatech.edu). Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

290 Chapter 10. The Proximal Gradient Method

Theorem 10.29 immediately implies that in the strongly convex case, the prox-
imal gradient method requires an order of 1og(%) iterations to obtain an e-optimal
solution.

Theorem 10.30 (complexity of the proximal gradient method—The
strongly convex case). Under the setting of Theorem 10.29, for any k > 1

satisfying
1 L R?
k > akxlog <g> + akxlog (%) ,

it holds that F(x*)— F,p. < &, where R is an upper bound on |x° —x*|| and k = Ly

Proof. Let k > 1. By Theorem 10.29 and the definition of x, a sufficient condition
for the inequality F(x*) — Fypt < € to hold is that

k
a_l’f<1_i) R2§E,

2 ak

which is the same as

1 2¢e
k1 1—-— | <1 — . 10.
og( om) < Og(oszR2> (10.38)

Since log(l — z) < —z for any®” z < 1, it follows that a sufficient condition for
(10.38) to hold is that
1

2e
k<l o
ak — Og(oszR2>7
1 OéLfR2
k > axlog Z + aklog 5 . 0O

10.7 The Fast Proximal Gradient Method—FISTA
10.7.1 The Method

The proximal gradient method achieves an O(1/k) rate of convergence in func-
tion values to the optimal value. In this section we will show how to accelerate the
method in order to obtain a rate of O(1/k?) in function values. The method is known
as the “fast proximal gradient method,” but we will also refer to it as “FISTA,”
which is an acronym for “fast iterative shrinkage-thresholding algorithm”; see Ex-
ample 10.37 for further explanations. The method was devised and analyzed by
Beck and Teboulle in the paper [18], from which the convergence analysis is taken.

We will assume that f is convex and that it is Ls-smooth, meaning that it
is Lg-smooth over the entire space E. We gather all the required properties in the
following assumption.

namely, that

57The inequality also holds for z = 1 since in that case the left-hand side is —oco.
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Assumption 10.31.

(A) g:E — (—o0,00] is proper closed and convex.
(B) f:E — R is Ly-smooth and convex.

(C) The optimal set of problem (10.1) is nonempty and denoted by X*. The opti-
mal value of the problem is denoted by Fyps.

The description of FISTA now follows.

FISTA

Input: (f,g,x%), where f and g satisfy properties (A) and (B) in Assumption
10.31 and x° € E.

Initialization: set y? = x° and tg = 1.

General step: for any £ =0,1,2, ... execute the following steps:

(a) pick Ly > 0;
(b) set xF*+1 = ProX 1, (yk = L%Vf(yk));

144/14+487

(c) set tpy1 = —5—=;

(d) compute y**+! = xk+1 4 (%) (xFHL —xF).

As usual, we will consider two options for the choice of Li: constant and back-
tracking. The backtracking procedure for choosing the stepsize is referred to as
“backtracking procedure B3” and is identical to procedure B2 with the sole differ-

ence that it is invoked on the vector y* rather than on x*.

e Constant. L = Ly for all k.

e Backtracking procedure B3. The procedure requires two parameters
(s,n), where s > 0 and n > 1. Define L_; = s. At iteration k (k > 0)
the choice of Ly is done as follows: First, Ly is set to be equal to Ly_1.
Then, while (recall that T (y) = T 9(y) = prox1,(y — IVFy).

F(TL (") > f*) + (V") T %) = ¥*) + %IITLk(yk) - y*I

we set L :=nLy. In other words, the stepsize is chosen as Ly :Lk,lni’c,
where i is the smallest nonnegative integer for which the condition

FTo, i ) < FOF) +(VFP). To, i ) = ¥F)
L
+ fI\TLk_mik (y") = y"|I?

is satisfied.
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In both stepsize rules, the following inequality is satisfied for any k£ > O:

FTL, (") < F") + (VFF), T, (v") — y") + %HTLk(y’“) —y*|I>. (10.39)

Remark 10.32. Since the backtracking procedure B3 is identical to the B2 procedure
(only employed on y* ), the arguments of Remark 10.19 are still valid, and we have
that

BLy < Ly < aLy,
where a and ( are given in (10.25).

The next lemma shows an important lower bound on the sequence {tx}r>0
that will be used in the convergence proof.

Lemma 10.33. Let {t;}r>0 be the sequence defined by

1+ /14 4¢2
tozl,tkﬂ:%, k>0.
ThentkzL’;QforallkZO.

Proof. The proofis by induction on k. Obviously, for k =0,tg =1 > . Suppose
that the claim holds for k, meaning t; > % We will prove that t511 > % By
the recursive relation defining the sequence and the induction assumption,

1+ /1+4t2 - 1+ 1+ (k+2)? - 14/ (k+2)?
2 - 2 - 2

0+2
2

E+3

ad
2

th+1 =

10.7.2 Convergence Analysis of FISTA

Theorem 10.34 (O(1/k?) rate of convergence of FISTA). Suppose that As-
sumption 10.31 holds. Let {xk}kzo be the sequence generated by FISTA for solving
problem (10.1) with either a constant stepsize rule in which Ly, = Ly for all k > 0
or the backtracking procedure B3. Then for any x* € X* and k > 1,

2L ¢||x° — x*||?
F(xF) — F,, < =202 — =2 11
(X ) pt > (k+ 1)2 )

where a = 1 in the constant stepsize setting and o = max {7], Lif} if the backtracking
rule is employed.

Proof. Let k > 1. Substituting x = ¢, 'x* + (1 — ¢, )x*, y = y*, and L = L, in
the fundamental prox-grad inequality (10.21), taking into account that inequality
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(10.39) is satisfied and that f is convex, we obtain that
Ft'x" + (1 -t H)xF) — F(xF)

Ly 1 _ Ly, 1. _
> —ka“ — (= (A=t - THY ("% + (1=t )x")|?
L
=50 ||t;€x +1 — (%X + (tr — 1)><]’C)H2 2t2 ||t;€y — (x* + (tr — 1)x )||2 (10.40)
k

By the convexity of F,
Ft '+ (1=t )x) <t P + (1=t )P,
Therefore, using the notation v,, = F(x™) — Fop, for any n > 0,
Pty 'x" + (1=t 1)x") = M) < (1= ) (F() = F(x") = (F(xr41) = F(x"))
= (1=t vk — vkt (10.41)

On the other hand, using the relation y* = x* + (M) (xF — xk=1),

tey® = (" + (b = Dx")IP = [[tex" + (teo1 — D" =x"71) = (x" + (1 — 1)x")|?
g axt — (" (g — DX, (10.42)

Combining (10.40), (10.41), and (10.42), we obtain that

Ly, Ly,
(th — tr)vk — thvk1 > — H ut = Sl

where we use the notation u® =t,,_1x" — (x* + (tn-1— 1)x”‘1) for any n > 0. By
the update rule of t;41, we have t; — tx = t7_,, and hence

2 2
Tt = ot > a2
Since Ly > Lj_1, we can conclude that
2
mt%ilvk — L_ktzvk+l 2 H]-lk+1||2 - H]Jk”2
Thus,
2 2
o2 4 ot < o2 4+

and hence, for any k£ > 1,

2 2
|12 tiyvn < ull? + = tgor = [Ix! = x7[* + — (F(x") = Fope) (10.43)

u
| L "7 7 7 Lo Lo

Substituting x = x*,y = y", and L = L¢ in the fundamental prox-grad inequality
(10.21), taking into account the convexity of f yields

2 * * *

L—O(F(X ) = F(x')) > [lx! = x*|* = ly® — <%,

which, along with the fact that y° = x°, implies the bound

2
! — =% + L—O(F(Xl) = Fopt) < [Ix” — x7|%.
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Combining the last inequality with (10.43), we get

2
——tique < [[uf)? +

2o < |Ix°0 = x*|2.
Lk_l Lk_l k—1 || H

Thus, using the bound Lj_; < aly, the definition of v, and Lemma 10.33,

Li—1|x° —x*[|?2 _ 2aLg||x® — x*||?
F(xF - F,; < <
() = Fope < 22 = (k+1)2

Remark 10.35 (alternative choice for tx). A close inspection of the proof of
Theorem 10.34 reveals that the result is correct if {tx }x>0 is any sequence satisfying
the following two properties for any k > 0: (a) tj > %; (b) t%+1 —the1 < t3. The
choice t, = % also satisfies these two properties. The validity of (a) is obvious;
to show (b), note that

k+3 k+1 k*>+4k+3

i1 — thopr = tea1 (b — 1) =

2 2 4
2 2
< k +ik+4: (kzZ) s

Remark 10.36. Note that FISTA has an O(1/k?) rate of convergence in function
values, while the proximal gradient method has an O(1/k) rate of convergence. This
improvement was achieved despite the fact that the dominant computational steps
at each iteration of both methods are essentially the same: one gradient evaluation
and one pror computation.

10.7.3 Examples

Example 10.37. Consider the following model, which was already discussed in
Example 10.2:

Jmin f(x) + Aflxl1,

where A > 0 and f : R” — R is assumed to be convex and L-smooth. The update
formula of the proximal gradient method with constant stepsize Lif has the form

X =T (Xk — in(x’“)) .
Ly Lf

As was already noted in Example 10.3, since at each iteration one shrinkage/soft-
thresholding operation is performed, this method is also known as the iterative
shrinkage-thresholding algorithm (ISTA). The general update step of the accelerated
proximal gradient method discussed in this section takes the following form:

(a) set 1 = T (v = £VS6H));
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/ 2
(b) set tk-‘rl — w'

2 Y

(c) compute yk*tt = xk+1 4 (ﬁ) (xFHL —xF).

The above scheme truly deserves to be called “fast iterative shrinkage/thresholding
algorithm” (FISTA) since it is an accelerated method that performs at each iteration
a thresholding step. In this book we adopt the convention and use the acronym
FISTA as the name of the fast proximal gradient method for a general nonsmooth
part g. N

Example 10.38 (I;-regularized least squares). As a special instance of Exam-
ple 10.37, consider the problem

1
min o Ax = bj3 + Allx]h, (10.44)

where A € R™*" b € R™, and A > 0. The problem fits model (10.1) with
f(x) = 3[|[Ax — b||3 and g(x) = A|x[;. The function f is Lg-smooth with
Ly = ||A2TAH2 , = Amax(ATA) (see Example 5.2). The update step of FISTA
has the followin7g form:

(a) set xF+1 = Trxk (yl’C — LLkAT(Ayk — b));

/ 2
(b) set tk+1 — w

2 Y

(c) compute y*t! = xk+1 4 (ﬁ) (xFHL —xF).
The update step of the proximal gradient method, which in this case is the same as
ISTA, is
XM =T, (Xk - LAT(AXk — b)) .
L Ly
The stepsizes in both methods can be chosen to be the constant Ly = Apax(ATA).

To illustrate the difference in the actual performance of ISTA and FISTA, we
generated an instance of the problem with A = 1 and A € R!09%110  The com-
ponents of A were independently generated using a standard normal distribution.
The “true” vector is X¢ue = €3 — €7, and b was chosen as b = Axu.. We ran
200 iterations of ISTA and FISTA in order to solve problem (10.44) with initial
vector x = e, the vector of all ones. It is well known that the [;-norm element in
the objective function is a regularizer that promotes sparsity, and we thus expect
that the optimal solution of (10.44) will be close to the “true” sparse vector Xirye-
The distances to optimality in terms of function values of the sequences generated
by the two methods as a function of the iteration index are plotted in Figure 10.1,
where it is apparent that FISTA is far superior to ISTA.

In Figure 10.2 we plot the vectors that were obtained by the two methods.
Obviously, the solution produced by 200 iterations of FISTA is much closer to the
optimal solution (which is very close to es — e7) than the solution obtained after
200 iterations of ISTA. N
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0 50 100 150 200
k

Figure 10.1. Results of 200 iterations of ISTA and FISTA on an ;-
reqularized least squares problem.

ISTA FISTA

L L L L L L L L L L L L L L L L L L L L
0 10 20 30 40 50 60 70 80 90 100 110 0 10 20 30 40 50 60 70 80 90 100 110

Figure 10.2. Solutions obtained by ISTA (left) and FISTA (right).

10.7.4 MFISTA™

FISTA is not a monotone method, meaning that the sequence of function values
it produces is not necessarily nonincreasing. It is possible to define a monotone
version of FISTA, which we call MFISTA, which is a descent method and at the
same time preserves the same rate of convergence as FISTA.

58MFISTA and its convergence analysis are from the work of Beck and Teboulle [17].



Downloaded 04/11/24 to 143.215.80.169 by Jacob Aguirre (jaguirre31@gatech.edu). Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

10.7. The Fast Proximal Gradient Method—FISTA 297

MFISTA

Input: (f,g,x°), where f and g satisfy properties (A) and (B) in Assumption
10.31 and x° € E.

Initialization: set y° = x° and tg = 1.

General step: for any £k =0,1,2,... execute the following steps:

(a) pick Li > 0;
(b) set z*F = Prox.L ( k_ L%Vf(y’“));
(c) choose x**1 € E such that F(x**1) < min{F(z*), F(x*)};

/ 2
(d) set tk-‘rl — w~

2 )

(€) compute y*+ = x4 i (gh — xbH1) 4 (=) (bH —5cb)

Remark 10.39. The choice x*T! € argmin{F(x) : x = x*,z*} is a very simple
rule ensuring the condition F(x*1) < min{F(z*), F(x*)}. We also note that the
convergence established in Theorem 10.40 only requires the condition F(xF+1) <
F(z*).

The convergence result of MFISTA, whose proof is a minor adjustment of the
proof of Theorem 10.34, is given below.

Theorem 10.40 (O(1/k?) rate of convergence of MFISTA). Suppose that
Assumption 10.31 holds. Let {x*};>0 be the sequence generated by MFISTA for
solving problem (10.1) with either a constant stepsize rule in which Ly = Ly for all
k > 0 or the backtracking procedure B3. Then for any x* € X* and k > 1,
2L ¢||x° — x*|?
F(xM) — F, . < senfii =2
(%) = Fop < (k+12
where a = 1 in the constant stepsize setting and o = max {7], Lif} if the backtracking
rule is employed.

Proof. Let k > 1. Substituting x = t,;lx* +(1- t;l)xk, y=y* and L = L;, in
the fundamental prox-grad inequality (10.21), taking into account that inequality
(10.39) is satisfied and that f is convex, we obtain that

Ft'x* + (1 -t H)x") — F(2")

Ly 1« _ Ly, 1. _

> THZ’“ — (x4 (L=t x| - 7lly’“ — (x4 (L=t x|
L L .

= —];||tkzk — (x* + (tp — DxM)|% - —];||tkyk — (x* + (tp — Dx®)|%. (10.45)
22 22

By the convexity of F,
F(t'x* + (1 -t H)x") <t F(x*) + (1 — ;) F(xF).
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Therefore, using the notation v, = F(x™) — Fopy for any n > 0 and the fact that
F(xFt1) < F(z*), it follows that

F(t'x" + (L= t)x") = F(2") < (1 = ;) (F(x") = F(x")) = (F(x441) — F(x"))
= (L=t o — vk (10.46)

On the other hand, using the relation y* = x* + t’“t—;l(zk_1 —xF)+ (%) (xF —

xF~1), we have
tey® — (x* + (tp — DxP) =t 12" — (x* 4 (tp_1 — 1)x71). (10.47)
Combining (10.45), (10.46), and (10.47), we obtain that

Ly Ly,
(1 — tion — thonss = =5 a2 — 2 ub2,

where we use the notation u” = t, 12"~ — (x* + (t,—1 — 1)x"~!) for any n > 0.
By the update rule of t;1, we have t% —tr = t%qa and hence

2

2
L—kti_lvk - L—ktivkﬂ > a2 — (a2
Since Ly > Lj_1, we can conclude that
2
mti—lvk - L—ktivku > ([P — [ju)f.
Thus,
2 2
W2+ =t op < [Jub)? + th_ 10k,
Ly Ly

and hence, for any k > 1,

[u®)?+

2 2
thoyve < [ul]® + L—t3v1 = |l2° = x| + —(F(x") = Fopt). (10.48)
0

Ly Lo

Substituting x = x*,y = y°, and L = Lg in the fundamental prox-grad inequality
(10.21), taking into account the convexity of f, yields
2
Lo
which, along with the facts that y° = x° and F(x!) < F(z°), implies the bound

(F(x*) = F(2%) > [|2° = x"|* = Iy — x|,

* 2 *
I2° — x*[|* + L—O(F(Xl) = Fopt) < [[x° —x*||.

Combining the last inequality with (10.48), we get

thoqoe < JIx° —x|%.

2 2
——t; qoe < )P+
T S L s

Thus, using the bound Ly_; < aLy, the definition of v, and Lemma 10.33,

0 o2 0 ox||2
F(Xk) — Fopt < Ly—1|x X H < 2aLfHX x*||

|
ST SR CE SV
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10.7.5 Weighted FISTA

Consider the main composite model (10.1) under Assumption 10.31. Suppose that
E = R™. Recall that a standing assumption in this chapter is that the underlying
space is Euclidean, but this does not mean that the endowed inner product is the
dot product. Assume that the endowed inner product is the Q-inner product:
(x,y) = x'Qy, where Q € S%,. In this case, as explained in Remark 3.32, the
gradient is given by

Vf(x)=Q 'Dy(x),

where

612
Dy(x) = ,

)
ﬁ (x)

We will use a Lipschitz constant of V f w.r.t. the Q-norm, which we will denote by
L?. The constant is essentially defined by the relation

1Q'Ds(x) - Q' Ds(¥)llq < LPx — yllq for any x,y € R™.
The general update rule for FISTA in this case will have the following form:

(a) set xF+1 = proxL%g(yk - #Q_lDf(yk));
7

/ 2
(b) set tk+1 — w

2 )

(c) compute yktt = xk+1 4 (—i’;:) (xFHL —xF).

Obviously, the prox operator in step (a) is computed in terms of the Q-norm,
meaning that

1
prox,(x) = argming cpn {h(u) + §||u - x||2Q} .

The convergence result of Theorem 10.34 will also be written in terms of the Q-
norm: Q
2L7||x% — x*||2
FxM-F, <= —71Q
() P (k£ 1)2

10.7.6 Restarting FISTA in the Strongly Convex Case

We will now assume that in addition to Assumption 10.31, f is o-strongly convex
for some ¢ > 0. Recall that by Theorem 10.30, the proximal gradient method
attains an e-optimal solution after an order of O(rlog(1)) iterations (rk = %)
The natural question is obviously how the complexity result improves when using
FISTA instead of the proximal gradient method. Perhaps surprisingly, one option
for obtaining such an improved result is by considering a version of FISTA that
incorporates a restarting of the method after a constant amount of iterations.
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Restarted FISTA

Initialization: pick z~' € E and a positive integer N. Set z° = T, (z™!).
General step (kK > 0):

o run N iterations of FISTA with constant stepsize (Ly = Ly) and input
(f,g,2*) and obtain a sequence {x"}_:

o set zFt1 = xV.

The algorithm essentially consists of “outer” iterations, and each one employs N
iterations of FISTA. To avoid confusion, the outer iterations will be called cycles.
Theorem 10.41 below shows that an order of O(y/klog(1)) FISTA iterations are
enough to guarantee that an e-optimal solution is attained.

Theorem 10.41 (O(\/Elog(%)) complexity of restarted FISTA). Suppose

that Assumption 10.31 holds and that f is o-strongly convez (o > 0). Let {z"}>0 be
the sequence generated by the restarted FISTA method employed with N = [v/8x—1],
where Kk = % Let R be an upper bound on ||z=' — x*||, where x* is the unique

optimal solution of problem (10.1). Then®®

(a) for any k >0,
LiR* (1\*
F(Zk) - Fopt S f2 <§> )
(b) after k iterations of FISTA with k satisfying

log(1) = log(L;R?)
k> £
> Vo (ks )
an e-optimal solution is obtained at the end of the last completed cycle. That
18,

Fzl¥)) — F, <e.

Proof. (a) By Theorem 10.34, for any n > 0,

2L n _ *x||2
F(szrl) _ Fopt < f||Z X H

< =INTIP (10.49)

Since f is o-strongly convex, it follows by Theorem 5.25(b) that
o *
F(z") — Fopy > §Hz" —x*|?
which, combined with (10.49), yields (recalling that k = Lf/0)

n 4k(F(2") — F0pt)
F(z +1)—Fopt§ (N+1)2

(10.50)

59Note that the index k in part (a) stands for the number of cycles, while in part (b) it is the
number of FISTA iterations.
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Since N > +/8k — 1, it follows that (Ni—ﬂm < %, and hence by (10.50)

1
Pa"™) = Fop < 5(F(2") = Fopa).
Employing the above inequality for n = 0,1,...,k — 1, we conclude that
1\F
F(z") — Fop < (5) (F(2°) — Fopt). (10.51)

Note that z0 = T}, ; (z~1). Invoking the fundamental prox-grad inequality (10.21)
with x = x*,y = z7', L = Ly, and taking into account the convexity of f, we
obtain

L L
Fx*) = F(&") > ZHlx" —2°* = Fhlx 2|1

and hence

L;R?

L
F(2) = Fop < 3" —271* < =5

(10.52)

Combining (10.51) and (10.52), we obtain

2 k
F(z¥) — Fopy < Lf2R (%) .

b) If k iterations of FISTA were employed, then | £ | cycles were completed.
N
By part (a),

Therefore, a sufficient condition for the inequality F(ZL%J) — Fopt < € to hold is

that
1\~
LfR2 (5) < g,

which is equivalent to the inequality

log(2) 10g(LfR2)>
log(2) log(2)

The claim now follows by the fact that N = [v/8x — 1] < v/8k. [

=

10.7.7 The Strongly Convex Case (Once Again)—Variation on
FISTA

As in the previous section, we will assume that in addition to Assumption 10.31,
f is o-strongly convex for some o > 0. We will define a variant of FISTA, called
V-FISTA, that will exhibit the improved linear rate of convergence of the restarted
FISTA. This rate is established without any need of restarting of the method.
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V-FISTA

Input: (f,g,x°), where f and g satisfy properties (A) and (B) in Assumption
10.31, f is o-strongly convex (o > 0), and x° € E.

Initialization: set y* =x% tp =1 and x = %

General step: for any £ =0,1,2, ... execute the following steps:

(a) set x*+1 = prox,1, (v* - £ V6™

(b) compute y**+1 = xk+1 4 (%) (xFHL —xF).

The improved linear rate of convergence is established in the next result, whose
proof is a variation on the proof of the rate of convergence of FISTA for the non—
strongly convex case (Theorem 10.34).

Theorem 10.42 (O((1 — 1/+/K)*) rate of convergence of V-FISTA).50 Sup-
pose that Assumption 10.31 holds and that f is o-strongly convex (o > 0). Let
{x*}r>0 be the sequence generated by V-FISTA for solving problem (10.1). Then
for any x* € X* and k > 0,

F(xb) = Fope < (1 - %) (PO = Fope+ ZIKO=x"[2) . (10.53)

Ly

o °

where Kk =

Proof. By the fundamental prox-grad inequality (Theorem 10.16) and the o-strong
convexity of f (invoking Theorem 5.24), it follows that for any x,y € E,

F) ~ F(T, () 2 2= i) = Sl =yl 4 £) = £(3) — (V5 )%~ )
L L o
> Sl = To, WP = Sl = y11* + 5 Ix — ylI*

Therefore,

Ly—o
2

P(x) ~ F(T1, (v) 2 2 x— T2, () - Ix — vl (10.54)

Let k > 0 and t = /k = 4/ % Substituting x = ¢t~ 1x* + (1 — t~1)x* and
y = y" into (10.54), we obtain that
F(t x4+ (1 —t7H)xF) — F(xFH

L Ly—
st = (7 (1= )P - 2

lty® — (x* + (t — 1)x")|%.  (10.55)

Y

ly* = (' %" 4+ (1 —t")xM)|1
Ly—o
2t2

60The proof of Theorem 10.42 follows the proof of Theorem 4.10 from the review paper of
Chambolle and Pock [42].

L
= Sl = (" 4 (¢ = X))
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By the o-strong convexity of F,
Ft'x* 4+ (1 -t Hx") <t7'Fx") + (1 -t HFE) - gt*1(1 —t7h|IxF — x*|?.
Therefore, using the notation v, = F(x™) — Fop, for any n > 0,

Pt 'x* + (1 -t Hx") — F(x"T)

< (L=t (FE") = F(x*)) = (F(xkr1) = F(x*)) - gfl(l — ) x" - x*)?

- o - R
= (L=t —vepr — Gt A= TR - x|

which, combined with (10.55), yields the inequality

— O « U(t—].) *
lty™ = (" (= xP) ) = == %" = x|

> gy + —||txkJrl (x* + (t — 1)xM)|2. (10.56)

L
tt— 1o + f

We will use the following identity that holds for any a,b € E and 8 € [0, 1):

2
1 I5; 5

b|| — b|“.

U(t_? into the above inequality, we

la+b]* = Blla* = (1 - B)

Plugging a = x* —x*,b = t(y* —x*), and 8 =

obtain
L N o(t—1 ‘
Ty o) -2 - D e
L — . o(t—1 N
ST e YOS N A E i G
2 Lf—U
Li—o (Li—ot|l , . Li—o . l* ot=1 , .o
= — ¢ R S _
2 Lf—O’ X +Lf—0t (y ) Lf—O'tHX XH
Ly—oat] & * Ly—o k k 2
< 2 Tk ty* —
- 2 x x +Lf—0t (y X)

We can therefore conclude from the above inequality and (10.56) that

2

Ly —ot Ly—o

k
x Lf—Ut

—x* 4+

t(t — 1oy, + ty* —x")

L
> t2vpp + —||txk+1 (x* 4 (t — 1)x*)||%. (10.57)

If k > 1, then using the relations y* = x* + %_& (xF —xF 1) and t = \/k = /L
we obtain

Li—o Li—ot(t—1)
k * f k k k * f k k—1
_ _ "3 _ — _ _
* X+Lf—at(y xT) =x X+Lf—at 1t+1(X x)
-1 -1
ZXk—X*—I— K \/E(\/E )(Xk_xk—l)
k—+vk VE+1

— b (VR ()
=txP — (x* + (t — 1)x"7h),
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and obviously, for the case k = 0 (recalling that y* = x°),

Ls—
x? —x* + fiat(yo —x") =x" —x*.
Ly —ot

We can thus deduce that (10.57) can be rewritten as (after division by #? and using
again the definition of ¢t as t = \/%)

0 *
Vpy1 + §||ztx‘“+1 — (x* + (t—1)x")|2

(1= 2) [oe + gltx" = < + (¢t = Dx*"DIP], k=1,

(1=1) [vo + %IIx° —x*|1?] , k=0

We can thus conclude that for any k > 0,

1\* o
we (1 3) g )
which is the desired result (10.53). 0O

10.8 Smoothing”
10.8.1 Motivation

In Chapters 8 and 9 we considered methods for solving nonsmooth convex optimiza-
tion problems with complexity O(1/e?), meaning that an order of 1/e? iterations
were required in order to obtain an e-optimal solution. On the other hand, FISTA
requires O(1/4/¢) iterations in order to find an e-optimal solution of the composite
model

min f(x) + g(x), (10.58)

where f is L¢-smooth and convex and g is a proper closed and convex function. In
this section we will show how FISTA can be used to devise a method for more general
nonsmooth convex problems in an improved complexity of O(1/¢). In particular,
the model that will be considered includes an additional third term to (10.58):

min{ f(x) + h(x) + g(x) : x € E}. (10.59)

The function h will be assumed to be real-valued and convex; we will not assume
that it is easy to compute its prox operator (as is implicitly assumed on g), and
hence solving it directly using FISTA with smooth and nonsmooth parts taken as
(f,g + h) is not a practical solution approach. The idea will be to find a smooth
approximation of h, say h, and solve the problem via FISTA with smooth and
nonsmooth parts taken as (f + iL,g). This simple idea will be the basis for the
improved O(1/¢e) complexity. To be able to describe the method, we will need to
study in more detail the notions of smooth approximations and smoothability.
61The idea of producing an O(1/e) complexity result for nonsmooth problems by employing an
accelerated gradient method was first presented and developed by Nesterov in [95]. The extension
presented in Section 10.8 to the three-part composite model and to the setting of more general

smooth approximations was developed by Beck and Teboulle in [20], where additional results and
extensions can also be found.
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10.8.2 Smoothable Functions and Smooth Approximations

Definition 10.43 (smoothable functions). A convex function h : E — R is
called (o, B)-smoothable (o, 8 > 0) if for any p > 0 there exists a convex differ-
entiable function h, : E — R such that the following holds:

(a) hu(x) < h(x) < hu(x)+ B for allx € E.
(b) hy. is $-smooth.

The function h,, is called a %—smooth approximation of h with parameters («, ).

Example 10.44 (smooth approximation of ||x||2). Consider the function h :
R™ — R given by h(x) = ||x||2. For any p > 0, define h,(x) = /||x[|3 + p — u.
Then for any x € R™,

hu(x) = /x5 + 12 = p < |xll2 + o — o= [|x]l2 = h(x),
h(x) = |Ixll2 < \/lIx[I3 + #* = hu(x) + p,

showing that property (a) in the definition of smoothable functions holds with
B = 1. To show that property (b) holds with o = 1, note that by Example 5.14,

the function ¢(x) = /|x||3 + 1 is 1-smooth, and hence h,(x) = pwp(x/p) — p is
i-smooth. We conclude that h, is a i—smooth approximation of h with parameters

(1,1). In the terminology described in Definition 10.43, we showed that h is (1,1)-
smoothable. W

Example 10.45 (smooth approximation of max;{xz;}). Consider the function
h:R™ — R given by h(x) = max{x1,x2,...,2,}. Forany p > 0, define the function

hu(x) = plog (31, e®/1) — plogn.

Then for any x € R™,

hu(x) = plog (Z eg”/“) — plogn
i=1

< plog (nemaxf{zi}/”) — plogn = h(x), (10.60)

h(x) = max{z;} < plog <Z eg”/“) = h,(x) + plogn. (10.61)
’ i=1

n

By Example 5.15, the function p(x) = log(d_;_; ") is 1-smooth, and hence the
function h,(x) = pe(x/p) — plogn is %-smooth. Combining this with (10.60)
and (10.61), it follows that h, is a i—smooth approximation of A with parameters
(1,logn). We conclude in particular that h is (1,logn)-smoothable. W

The following result describes two important calculus rules of smooth approx-
imations.
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Theorem 10.46 (calculus of smooth approximations).

(a) Let h*,h? : E — R be convex functions, and let v1,v2 be nonnegative numbers.
Suppose that for a given u > 0, hfl s a %—smooth approzimation of h' with pa-
rameters (o, ;) fori=1,2. Then 'ylhi —|—'yzhi is a %—smooth approxrimation
of v1h! + y2h? with parameters (y1a1 + Yoz, V1581 + 7252).

(b) Let A:E — V be a linear transformation between the Euclidean spaces E and
V. Let h : V — R be a convex function and define

q(x) = h(A(x) +b),

where b € V. Suppose that for a given p >0, h, is a %-smooth approximation

of h with parameters (o, ). Then the function q,(x) = h,(A(x) +b) is a

%-smooth approzimation of q with parameters(al|A||?, B).

Proof. (a) By its definition, h!, (i = 1,2) is convex, <r-smooth and satisfies
hL (x) < hi(x) < hL (x)+ fB;p for any x € E. We can thus conclude that ~; hb +’72hi
is convex and that for any x,y € E,

Y1k, (x) + 72k (x) < y1ht(x) + 7287 (x) < b (%) + 20 (%) + (7161 + Y2 B2) 1,

as well as

V(b +2h2) (%) = Vbl +2h2) (9] < Ml VAL () — VAL
[V () = VRE(Y)]
(0% «
<n—lx =yl +y—x -yl
ju I
— DTNy —y)
/1/ k)

establishing the fact that v1h), +v2h? is a %—smooth approximation of 1A' 4 yoh?

with parameters (7101 + Yo, ¥151 + Y252).
(b) Since h, is a %—smooth approximation of h wi