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Preface to the Second Edition

Despite the addition of a significant amount of new material, our approach remains
“to be concise, precise, and integrated, leaving a lot of room for the instructor to
expand on areas of interest or importance to them” while still being “complete.” We
(and it now really is “we”) strive to present foundational ideas that are unlikely to
go out of date, while also providing tools for solving real problems.

We believe, now more than ever, that graduate students and many undergradu-
ates need to know how to program simulations in a general-purpose language, both
to facilitate complete control of the model and (sometimes) to be computationally
efficient. The first edition of the book employed VBA because it was and is widely
available, and it is an easy first programming language. The second edition shifts to
Python, which is free, relatively easy to learn, and extensively used in all sorts of ap-
plications. Rather than directly port VBASim to Python, we took care to rethink our
approach and to exploit useful features of Python (in particular its object-oriented
powers) without depending on many special-purpose libraries. Readers of the first
edition will recognize many aspects of VBASim in PythonSim, but will also see dis-
tinct differences. The philosophy of employing a compact collection of classes and
functions that capture the key features of discrete-event simulation, which can be
fully understood and easily modified or extended, and which support programming
realistic simulations, still holds.

Related to computation, a big change from when the first edition was published
in 2013, is the availability of cheap, high-performance, and increasingly easy-to-use
parallel computing. The first author has been known to say, “Anyone doing simula-
tion research or practice, who is not thinking about how it will parallelize, is missing
the point.” As a result, Chap. 5 was expanded from two views of simulation to three
with the third being simulation as computation. Then scattered throughout the book
are discussions about how parallelization affects various aspects simulation.

Chapter 5 also includes new material on large-deviations properties and Gaussian
processes, both critical to modern simulation research. Sensitivity analysis plays
an expanded role in the second edition, affecting both Chaps. 7 and 9. Chapter 9
results from splitting Chap. 8 from the first edition to accommodate new material
on simulation optimization (including Bayesian approaches and exploiting parallel
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viii Preface to the Second Edition

simulation), sensitivity analysis, and change of measure (which includes “impor-
tance sampling”). Chapter 10 (formerly Chap. 9) adds suggestions for creating re-
producible simulation results. And, of course, new exercises have been added to
many chapters. The book’s website is still at http://users.iems.northwestern.edu/
∼nelsonb/IEMS435/.

We thank David Eckman, Shane Henderson, Susan Hunter, and Chang-han Rhee
for advice, and the many folks who provided (always polite) feedback on the first
edition, as well as the stochastic simulation community in general that has supported
our efforts for many years.

Evanston, IL, USA Barry L. Nelson

Evanston, IL, USA Linda Pei

http://users.iems.northwestern.edu/~nelsonb/IEMS435/
http://users.iems.northwestern.edu/~nelsonb/IEMS435/


Preface to the First Edition

As is often the case, this book grew out of a course. The interesting part is that the
course grew out of this story: I was helping one of our graduate students, Viji Krish-
namurthy, whose research involved developing rules for the use of flexible workers
in a repair and maintenance environment (Iravani & Krishnamurthy, 2007). Using
Markov chain analysis, Viji had derived some optimal strategies for simple systems
and now wanted to test their robustness for more realistic problems. This is where
simulation came in. Viji had taken the typical first simulation modeling course that
used a commercial simulation product and an advanced course that focused only
on design and analysis, but not model building. She (and I) spent hours trying to
trick a commercial product into simulating the complex worker allocation rules that
she wanted to test. Commercial simulation environments make modeling easy by
including the sort of system features that users typically want. Unfortunately, mak-
ing it easy to model typical features can make it difficult to represent something
different, and research is always about something different.

Finally, in frustration, I handwrote three pages of pseudocode to simulate exactly
what Viji wanted, handed her the notes, and told her to code it up in C (which fortu-
nately she could do). She came back the next day excited: “Now I can test anything
I want, and it runs in seconds!” From this experience, IEMS 435 Introduction to
Stochastic Simulation—a required course for all of our Ph.D. students—was born.
IEMS 435 is not just about modeling and programming, however. Viji also needed to
run well-designed experiments on her model, experiments that could provide com-
pelling evidence for or against her analytically derived rules. So, experiment design
and analysis are also a part of the IEMS 435 course, which this book was written to
support.

The objectives of the book are as follows:

• To prepare students who have never had a discrete-event, stochastic simulation
course to build simulations in a lower-level programming language. I am con-
vinced that if they can do this, they can easily pick up higher-level simulation
modeling environments when they need them (maybe for teaching a course as
faculty).

ix



x Preface to the First Edition

• To prepare students to use simulation in their non-simulation research. This is
why I emphasize actually programming simulations—which provides the great-
est flexibility, control, and understanding—and experiment design and analysis.

• To prepare students to go into an advanced course on simulation methodology,
including independent studies directed by their advisers. The usual first course in
simulation emphasizes modeling and commercial software and is poor prepara-
tion for a research-oriented advanced course which may treat the simulation al-
most entirely as a mathematical object, breaking the critical connection between
modeling and analysis.

• To provide a solid mathematical/statistical grounding in simulation and some
(but not all) tools to solve actual problems.

The philosophy of the book is similar to Law (2007) in covering both simula-
tion modeling and analysis, but is different in that there is no attempt to be com-
prehensive or survey the field. The goal is to be concise, precise, and integrated,
leaving a lot of room for the instructor to expand on areas of interest or importance
to them. The hope is that an instructor will want students to read all of the book
to get a complete, coherent picture before jumping off into other reference texts
or journal papers. To that end, I provide pointers to relevant literature. However,
while not comprehensive, the book is complete; so, it is appropriate for students
or researchers who need to learn the basics of simulation on their own without the
benefit of a course. The book by Asmussen and Glynn (2007) shares some of the
same objectives as this book; it is an excellent introduction to advanced simulation
analysis and covers more of the topic than I do, but it does not address modeling or
programming to the same extent.

The material on simulation modeling and programming, which is isolated to two
chapters, uses Visual Basic for Applications (VBA) in Excel. This choice was driven
by the reality that fewer and fewer graduate students come to me with programming
experience. VBA/Excel is readily available, is easy to pick up quickly, and prepares
students to learn Java, C++, or any other programming language later. This part of
the book can be skipped for students who already know how to program simulations
without compromising the remainder. Both Java and Matlab versions of Chap. 4, all
of the software described in the book, and any data sets needed for exercises are
available for download at the book website:

http://users.iems.northwestern.edu/∼nelsonb/IEMS435/

The book should serve advanced undergraduates and graduate students. A prerequi-
site is a solid course in probability and statistics; statistics alone is not adequate. Al-
though the book uses tractable stochastic process models (e.g., Markovian queues)
as examples, the reader is not expected to have any background in these topics (in
fact, students may find the stochastic processes course more intuitive and meaning-
ful after having worked through this book). If students have had no experience with
programming computer algorithms—for instance, in Matlab or some other program-
ming language—then the instructor will have to supplement the book with more
programming practice. Being an accomplished, or even good, programmer is not
required, however.

http://users.iems.northwestern.edu/~nelsonb/IEMS435/
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Chapter 1 provides a concise summary of the book—except for programming—
through a simple reliability problem. Chapter 2 then fills that gap by giving a quick
start on simulation programming, using VBA. Chapter 3 introduces a number of
tractable examples that illustrate the key issues that arise in analyzing stochastic
systems via simulation; these examples recur throughout the book and so it is a
must-read chapter. VBASim, a collection of VBA subs and class modules devel-
oped to support the book, is covered in Chap. 4 and is skippable if some other pro-
gramming language or package will be used. Chapter 5 strengthens the connection
between simulation and mathematical/numerical analysis of stochastic processes; it
has the dual mission of setting up the design and analysis chapters that follow and
preparing the student for more advanced courses on simulation methodology. Chap-
ters 6–8 cover input modeling, output analysis, and experiment design, respectively,
and are largely independent of the programming approach actually used to construct
the simulation. The book concludes with Chap. 9, a guide to using simulation in re-
search as opposed to using simulation to solve systems analysis problems.

What is missing? The book does not touch on the computing environment, and
there are things you might want to do differently if you have, say, 500 CPUs avail-
able in a cloud computing cluster. I anticipate that by the time there is a need for a
second edition, it will be easier to leverage such an environment for discrete-event,
stochastic simulation, and I will add some general guidelines and recommendations.
And while there is a lot of material on simulation optimization, the text is light on
specific algorithms, reflecting the fact that there is no current agreement on baseline
methods for all types of problems. That too will change. Finally, beyond discussing
what it means, I did not do justice to the topic of validation of simulation models. A
number of students and colleagues contributed to the development of the program-
ming approach used in this book. IEMS 435 initially used Law & Kelton (2000) as
the text, and Dingxi Qiu spent a summer converting all of the C code in that book
into VBA. Christine Nguyen helped in the development of VBASim, the simula-
tion support library described in this book. Feng Yang worked on a research project
with me where we used VBA for simulation analysis. Lu Yu assisted with the de-
velopment of the solutions manual. The Java and Matlab versions of VBASim were
translated by Luis de la Torre and Weitao Duan, respectively.

I have gotten a lot of feedback. Students in IEMS 435 suffered through incom-
plete versions of the text, spotting errors and typos with glee. Larry Leemis provided
a thorough mark-up of an early draft, and Jason Merrick taught from it. It is good to
have friends, and a number of mine read and marked up sections of the nearly com-
plete book, including Christos Alexopoulos, Bahar Biller, John Carson, Xi Chen,
Ira Gerhardt, Jeff Hong, Sheldon Jacobson, Seong-Hee Kim, Jack Kleijnen, Jeremy
Staum, Laurel Travis, Feng Yang, Wei Xie, Jie Xu, and Enlu Zhou. Michael Fu
guided my thinking about how to develop the section on gradient estimation, and
Bruce Schmeiser did the same for error estimation. Seyed Iravani, Chuck Reilly,
and Ward Whitt made sure I did not mangle the message of their papers in Chap. 10.
In addition to those listed above, other people whose work influenced my think-
ing in this book include Sigrún Andradóttir, Russell Cheng, Dave Goldsman, Shane
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Henderson, David Kelton, Pierre L’Ecuyer, Lee Schruben, and Jim Wilson. Thank
you all.

Last, but not least, work on this book was partially supported by National Sci-
ence Foundation grant number CMMI-1068473. NSF does more with less than any
federal government agency I know; let’s keep it around.

Evanston, IL, USA Barry L. Nelson
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Chapter 1
Why Do We Simulate?

Stochastic simulation is a method for analyzing the performance of systems whose
behavior depends on the interaction of random processes, processes that can be fully
characterized by probability models. Stochastic simulation is a companion to mathe-
matical and numerical analysis of stochastic models (e.g., Nelson, 1995) and is often
employed when the desired performance measures are mathematically intractable or
there is no numerical approximation whose error can be bounded. Computers make
stochastic simulation practical, but the method can be described independently of
any computer implementation, which is what we do here.

1.1 An Example

We start with a simple, stylized example that nevertheless illustrates the key issues
that we address in this book.We will use such examples throughout the text, and they
have been carefully selected to exhibit the complexity of realistic problems, without
being complicated to analyze or simulate. In both teaching and research, examples
that illustrate complex behavior, but are not complicated to explain or analyze, are
very important: they build intuition and provide a way to think through new ideas
without obscuring things with a myriad of details. Realistic models may indeed
be complicated, having many inputs and outputs and requiring thousands of lines
of computer code to implement, so we also address modeling and programming
simulations in Chaps. 2–4.

Example 1.1 (System Time to Failure TTF). The TTF system we consider here con-
sists of two components that work as an active and a cold spare. The spare com-
ponent becomes the active component when the (currently) active component fails,
while the failed component immediately commences repair. The failed component
becomes the spare when its repair is completed. Only one component at a time can
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2 1 Why Do We Simulate?

be repaired, so the system fails if both components have failed, and it is opera-
tional as long as at least one of the components is functioning. The lifetime (time to
failure) of a component is equally likely to be 1, 2, 3, 4, 5, or 6 days, while repair
takes exactly 2.5 days. Further, a repaired component is as good as new.

If we were interested in such a system, then we would probably want to know
about its failure characteristics; for instance, its mean time to first system failure or
its long-run system availability. Notice that while the failure characteristics of the
components are completely specified (their lifetimes are equally likely to be from
1 to 6 days), the failure characteristics of the system as a whole—which depend
on the interaction of failure and repair—are not immediately apparent. In fact, as
simple as this system is it is difficult to derive these performance characteristics
mathematically, while it is easy to simulate them (as we show below). This is why
we simulate.

We will call those features of a system whose behavior is fully described by
a probability model, such as the time to failure of a component, inputs. Derived
quantities like the time of first system failure or system availability over some time
horizon we call outputs.

The stochastic simulation method consists of generating realizations of the inputs, executing
the system’s logic to produce outputs and estimating system performance characteristics
from the outputs.

Chapter 6 addresses representing and generating inputs; Chap. 7 covers analyzing
the outputs, and Chap. 8 is about designing the experiment.

Let the state of the TTF system at any point in time be the number of functional
components, 2,1, or 0. The events that can cause the state of the system to change
are the failure of a component and the completion of a repair. The current state, a
list of pending future events—called an event calendar—and a clock are adequate
to simulate sample paths of system behavior, provided we have a source of ran-
domness to generate realizations of the inputs (time to failure of a component in this
example). Here we will use a physical mechanism, a fair six-sided die, as our source
of randomness.

Table 1.1 shows the sample path that would occur if the first four rolls of the die
were 5,3,6,1 and we stopped at the time of the first system failure (when the state
reaches 0, meaning no functional components); each roll is enclosed in a box, so
6 represents a roll of the die yielding 6. The path was generated by executing the
generic simulation algorithm shown in Fig. 1.1, noting that when a failure occurs
the state decreases by one, while a repair increases it by one.

The approach illustrated in Table 1.1 often seems unnatural at first. For instance,
why do we only keep track of the Next Failure when it is easy to figure out when
each of the components will fail? And why not put the Next Repair on the calendar
at time 0 since we can easily see it will be at time 7.5? The reason is the

Lazy simulator’s rule: Schedule a future event only if not doing so could cause events to
occur out of chronological order.

For instance, although we could figure out when both components will fail, we are
not forced to schedule the failure of the spare until that moment when the active
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Table 1.1 Simulation of the TTF system until the first system failure

System Event calendar
Clock state Next failure Next repair Comment

0 2 0+ 5 = 5 ∞ Initialize fully operational

5 1 5+ 3 = 8 5+2.5= 7.5 One active, one under repair

7.5 2 8 ∞ Next Failure remains on calendar

8 1 8+ 6 = 14 8+2.5= 10.5 One active, one under repair

10.5 2 14 ∞ Fully functional again

14 1 14+ 1 = 15 14+2.5= 16.5 Active fails quickly

15 0 ∞ 16.5 System failure

Initialize: Set the initial values of the clock and system state, and put at least one
future event on the event calendar.

Advance time: Update the clock to the time of the next pending event (and remove
that event from the calendar).

Update: Update the state as appropriate for the current event and schedule any new
future events to occur at the current clock time plus a time increment.

Terminate: If a termination condition has occurred, then stop; otherwise go to
Advance time.

Fig. 1.1 Generic simulation algorithm

component has failed. Similarly, we do not have to schedule a repair to occur until
a component actually fails, even if we could work it out. On the other hand, at
time 8 we must schedule both the Next Failure and Next Repair events because the
evolution of the system from that point on depends on which of them occurs first.
This rule turns out to be essential when programming complicated simulations that
can have many types of events on the calendar simultaneously; in particular it avoids
the need to cancel future events that become irrelevant because of another event that
occurs first.

Here are some characteristics of the TTF example that are common to (nearly
all) the stochastic simulations in this book:

• Simulated time (the simulation clock) jumps from event time to event time, rather
than updating continuously; for this reason we call such simulations discrete-
event simulations.

• The clock, the current state of the system, the list of future events, and the event
logic are all we need to advance the simulation to the next state change.

• The simulation ends when a particular system state is reached, at a fixed simula-
tion time, or when a particular event occurs.
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1.2 Formalizing the Analysis

Table 1.1 shows one sample path of the TTF system. Let the time of first system
failure be denoted by Y , and the number of functional components at time t by S(t).
One sample path provides one observation of Y , but S(t) is a function whose value
evolves over the course of the simulation. If we are interested in the average number
of functional components over some simulated time horizon T , denoted by S(T ),
then it is a time average because S(t) has a value at all points in time. Thus,

S̄(T ) =
1
T

∫ T

0
S(t)dt =

1
eN − e0

N

∑
i=1

S(ei−1)× (ei − ei−1),

where 0 = e0 ≤ e1 ≤ ·· · ≤ eN = T are the event times in the sample path. A char-
acteristic of continuous-time outputs, like S(t), in a discrete-event simulation is that
they are piecewise-constant, since they can only change values at event times.

For the simulation in Table 1.1, the observed value of Y is 15, and the observed
value of S̄(T ) at T = 15 is

1
15−0

[
2(5−0)+1(7.5−5)+2(8−7.5)+1(10.5−8)+2(14−10.5)

+1(15−14)
]
=

24
15

.

Of course, this is only one possible pair of outputs (Y,S(Y )). Replications are sta-
tistically independent repetitions of the same model, and we will often make mul-
tiple replications to improve our estimates of system performance. An important
distinction is between within-replication and across-replication output data. Both
Y and S(t) are within-replication outputs. The times of system failure Y1,Y2, . . . ,Yn,
and the average number of functional components, S̄1(T ), S̄2(T ), . . . , S̄n(T ), from n
different replications are across-replication outputs. Results across replications are
naturally i.i.d. They are independent because we roll the die anew on each replica-
tion, and identically distributed because we apply the same initial conditions and
model logic to those rolls of the die.

We run simulations to estimate system performance, often to compare alterna-
tive designs for a system. We can justify using simulation-based estimators when
they satisfy some version of the strong law of large numbers (SLLN), a topic we ad-
dress more formally in Chap. 5. Two versions of the SLLN are relevant to stochastic
simulation:

1. As the number of replications n increases, it may be that

lim
n→∞

1
n

n

∑
i=1

Yi = μ

(with probability 1), where μ can be interpreted as the the mean time to first
system failure in the TTF example.
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2. As the length of the replication T goes to infinity (which would make sense if we
did not stop the simulation at the time of first system failure), it may be that

lim
T→∞

1
T

∫ T

0
S(t)dt = θ

(with probability 1), where θ can be interpreted as the long-run average number
of functional components in the TTF example.

The message is that as simulation effort increases (number of replications, length
of replication, or perhaps both), the simulation estimators converge in a very strong
sense to some useful system performance measures. This is comforting, but in prac-
tice we stop well short of infinity and thus do not fully converge. Therefore, an
important topic is measuring the remaining error when we do stop; a strength of
stochastic simulation is that we can do just that by using statistical inference.

1.3 Issues and Extensions

The TTF example illustrates the basics of stochastic simulation, but not all of the
problems that can arise. Consider the following:

• Suppose that the repair times are not precisely 2.5 days, but instead are 1 day
with probability 1/2, and 3 days with probability 1/2. A fair coin is all we need
to generate repair times, but what if a failure and repair are scheduled to occur
at the same time (which now can clearly happen)? Is it a system failure? Does
the order in which we execute the event logic matter? Can we define a sensible
tie-breaking rule?

• Suppose that there are three components rather than two. Is our definition of
system state still adequate? What if more than one component can be repaired at
a time? Do we need additional events?

• The long-run average number of functional components is not really “system
availability.” Instead, we want the long-run fraction of time that at least one
component is functional. How do we extract this performance measure from Ta-
ble 1.1? How large should T be to get a good estimate of long-run availability?

Exercises

1. Have each member of the class simulate the TTF example independently until
the time of first system failure. Estimate E(Y ), the expected value of the time
to first system failure and also a standard error or confidence interval on this
estimate. Notice that this is a type of parallel simulation since sample paths are
being created simultaneously by each class member. Parallel simulation on a
computer will be discussed in later chapters.
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2. Simulate the TTF example to the time of first system failure with three (one
active, two spares) components rather than two.

3. Simulate the TTF example until time T = 30 and compute the average number
of functional components and average system availability. Unless you are lucky,
time 30 will not correspond to a failure or repair event time, so how can you stop
the simulation right at time T = 30? Hint: The system is available if S(t) > 0.
Average availability is the fraction of time the system is available from t = 0 to
t = T .

4. For the TTF example, suppose that the repair times are not precisely 2.5 days,
but instead are 1 day with probability 1/2, and 3 days with probability 1/2. Use
a fair coin to generate repair times. Decide on a sensible tie-breaking rule and
simulate until the time of the first system failure.

5. If in the TTF example the time to component failure and time to repair a com-
ponent are exponentially distributed, then the TTF system is a continuous-time
Markov chain for which the mean time to first failure and long-run system avail-
ability can be derived mathematically. If you know how, do this.

6. Write, in words, the logic for the two system events in the TTF example. Be
sure to include updating the value of the state and scheduling any future events.

7. Add to Table 1.1 a column that updates the area ∑ j
i=1 S(ei−1)× (ei −ei−1) when

the jth event executes. Notice that by keeping this running total we can instantly
calculate S̄(e j) at any event time e j.

8. Add to Table 1.1 a column that updates the area ∑ j
i=1 I{S(ei−1) = 2}× (ei −

ei−1) when the jth event executes, where I is the indicator function. Use this to
compute the fraction of time that the system is fully functional (no component
is in a failed state).

9. Consider a modified TTF system that works as follows. Simulate this system by
hand (using dice) until the time of first system failure.

• There are three components (one active, two spares, but still only one can be
repaired at a time); repair time is 3.5 days.

• In addition, each component is actually made up of two subcomponents, each
subcomponent with a time to failure that is equally likely to be 1,2, . . . ,6 days.

• A component fails when the first subcomponent fails. In other words, to simu-
late the time to failure of a component, roll the die twice and take the smaller
number.

10. For your simulation in Exercise 9, add a column that updates the area
∑ j

i=1 S(ei−1)×(ei−ei−1) when the jth event executes, where S(t) is the number
of functional components at time t. Use it to calculate the average number of
functional components.



Chapter 2
Simulation Programming: Quick Start

As a first step toward more sophisticated simulation programming, this chapter
presents a Python simulation of the TTF example in Chap. 1. It also provides a
gentle introduction to some important simulation concepts, and a brief overview of
Python, leaving the details to Chap. 4. All readers should go through this chapter,
even if they will not ultimately program their simulations in Python. The focus here
is on basic discrete-event simulation programming principles without using any spe-
cial simulation support functions or objects. These principles form the core ideas for
more sophisticated and scalable programming.

2.1 A TTF Simulation Program

In this section, we show a simple Python implementation of the TTF simulation.
Our goal is to demonstrate some key simulation principles that are independent of
programming language, and also hint at the more in-depth discussion of Python and
PythonSim in later Sects. 4.1 and 4.1.6. For simplicity, this section’s implemen-
tation does not define user functions or utilize object-oriented programming, but
Sect. 4.1.6 provides a (better) version that does both.

We begin by addressing the crucial constituents of a discrete-event simulation.
We first discuss these concepts generally, and then apply them to the TTF problem
specifically. A discrete-event simulation model represents a system that is character-
ized by “states.” The system state only changes at discrete points in time, and these
points are characterized by “events.” The simulation advances time on a “clock,”
moving from event to event in chronological order, and executing a series of actions
depending on what type of event just occurred. Event management is usually han-
dled by an “event calendar” that stores upcoming events in chronological order of
their occurrence.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
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8 2 Simulation Programming: Quick Start

# Imports
import random
import math

# Initialize simulation variables for statistics
# S: number of currently functional components (current state)
# SLast: number of functional components at last event
# (previous state)
# Clock: tracks time in the simulation
# TLast: time of the last event (previous state change)
# Area: sum of states weighted by how much time
# the simulation was in that state --
# Area/Clock gives the average number of functional
# components over the simulation run length
S = 2
SLast = 2
Clock = 0.0
TLast = 0.0
Area = 0.0

# Set random seed
random.seed(1234)

Fig. 2.1 Initialization for the TTF problem

The dynamic and flexible nature of discrete-event simulation makes it a powerful
and elegant tool for modeling very large and complicated systems with complex
logic and many types of events. When using an event-driven simulation approach,
we do not need to know or code the exact sequences and occurrences of all events in
a simulation run ahead of time. We only need to schedule at least one event up front
in each simulation replication, which sets the simulation loop logic in motion. After
the initial event, the simulation dynamically generates, schedules, and actualizes
a sample path of events driven by the stochastic forces in the simulation. From
replication to replication, we generally expect these sample paths to be different
because each simulation replication has randomness.

When an event happens, three types of actions may occur:

1. The system state is updated;
2. Future events are scheduled; and
3. Statistics are computed or accumulated.

The specific actions generally depend on the type of event that occurs.
Now we explain the TTF simulation and its key concepts. In the TTF simulation,

the simulation state is the number of currently functioning components. There are
two types of events: failure events and repair events. The state only changes at the
occurrence of one of these events. The key variables responsible for the logic in the
TTF simulation are S, representing the number of functioning components, Clock,
the current time on the simulation clock, NextEvent, which stores the next event’s
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type, NextFailure, which holds the time of the next pending component failure,
and NextRepair, the time of the next component repair.

These key variables are initialized in Fig. 2.1. We briefly note that the import
statements at the beginning of the code refer to two built-in Python modules that
provide additional functions for us to call. The math module allows us to use
∞ and the random module allows us to set a seed for random generation, which
we do with the line random.seed(1234). Later on, we discuss these modules
and other imports in greater detail in Sect. 4.1. We discuss setting random seeds in
Sect. 2.2.

As shown at the beginning of Fig. 2.2, we initialize NextEvent,
NextFailure, and NextRepair. We need to schedule at least one event to
start the simulation. Since the TTF simulation starts with both components being
functional, the only possible next event is a failure, so we randomly generate a time
until the next failure and assign this value to NextFailure. Because at this time,
a repair event is impossible, we set NextRepair to math.inf. This does not
mean that a repair event will never occur in the simulation run, only that at the cur-
rent simulation time (time 0 since Clock = 0), a repair event is not on the event
calendar.

The function random.random() generates a random value that is approxi-
mately uniformly distributed between 0 and 1. Multiplying this number by 6 yields
a value between 0 and 6; the math.ceiling function rounds this up to an integer.
In Sect. 2.2 we explain why this procedure successfully generates a value uniformly
at random from {1,2,3,4,5,6}.

We also note that there is at most one pending failure event and at most one pend-
ing repair event. Because of this simplicity, we do not need to code an actual event
calendar. For more complicated problems, only keeping track of NextEvent,
NextFailure, and NextRepair is insufficient and an event calendar is needed.
One can imagine a variant of the TTF problem with 3 components rather than 2
and the ability to repair more than 1 component at a time. In this case, there can
be up to two pending repair events, which cannot be captured by our current event
management approach.

Since the system fails when there are no more functional components, the simu-
lation loop runs while S > 0. The loop has a clear structure: in each iteration, we
determine the next event and advance the clock, then take actions according to the
type of event occurring. For example, if NextFailure < NextRepair, then
the next event is a failure event, and we update NextEvent accordingly as well as
move Clock to this new event time.We set NextFailure to math.inf because
we have already incorporated its previous value, and we will randomly generate a
new failure time later in the loop. The logic is analogous when the next event is a
repair event instead.

Recall that when an event occurs, these actions may follow: the system state is
updated, future events are scheduled, and statistics are updated. At a failure event,
we update the system state by decreasing the number of functioning components S
by 1. If this leaves the system with only one functional component (S = 1), then
just prior to this event there were no failed components nor any component under
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repair. Therefore, we schedule future events: we schedule the failure time of the
spare component that has just became active and schedule the repair completion for
the active component that has just failed. Events are always scheduled at the current
Clock time plus an increment into the future. The time to failure of a component is
random, but repairs deterministically take 2.5 days, so NextRepair = Clock
+ 2.5. At a repair event, we update the system state by increasing the number of
functioning components S by 1. If this leaves the system with only one functional
component (S = 1), then we schedule the next failure and repair event, just as in
the if NextEvent == "Failure" case.

The last part of each event routine, for both a failure and a repair event, is statis-
tics updating. Recall that we show in Chap. 1 that the time average number of func-
tional components can be expressed as

S̄(T ) =
1
T

∫ T

0
S(t)dt =

1
eN − e0

N

∑
i=1

S(ei−1)× (ei − ei−1),

where ei are the event times. To avoid having to save all of the event times and
values taken by the state variable, a standard trick is to keep a running sum of the
area under the curve, updating it each time an event is executed. Specifically,

S(ei−1)× (ei − ei−1) = Slast * (Clock - Tlast)

so that Clock is the time of the current event (ei), Tlast is the time of the most
recent prior event (ei−1), and Slast is the value of S(t) just before the change.

The final section of the main program reports two output results: the time of
system failure and the average number of functional components from time 0 until
the system first fails. Notice that since the simulation ends as soon as S = 0, the
simulation Clock is also the time of system failure. And since we have been ac-
cumulating the area under the S(t) curve in the variable Area, Area/Clock is the
average value of S(t) up to that time.

Running Figs. 2.1 and 2.2 in Python produces 1.65 for Area/Clock (average
number of functional components) and 10 for Clock (time of system failure). We
note that this code only simulates 1 replication. We demonstrate how to run multiple
replications in Sect. 2.4.

2.2 Random-Variate Generation

In this section, we discuss how to generate random variates. A stochastic simulation
is driven by fully characterized probability models which generate realizations. We
use the term “realization” to mean specific, usually numerical, outcomes, and we
call the process of creating these realizations random-variate generation. The most
basic probability models we need are i.i.d. random variables X1,X2, . . . with known
distribution FX . Because our simulations are built from random variables, our anal-
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# Initialize first event
NextEvent = ""
NextFailure = math.ceil(6*random.random())
NextRepair = math.inf

# Main simulation loop
while S > 0:

# Determine what type of event is next
# and advance time to this event time
if NextFailure < NextRepair:

NextEvent = "Failure"
Clock = NextFailure
NextFailure = math.inf

elif NextFailure >= NextRepair:
NextEvent = "Repair"
Clock = NextRepair
NextRepair = math.inf

# Update S and upcoming events based
# on event type
# If next event is a failure,
# number of functional components decreases by 1.
# If there is 1 functional component,
# schedule the next failure and repair times.
if NextEvent == "Failure":

S = S - 1
if S == 1:

NextFailure = Clock + math.ceil(6*random.random())
NextRepair = Clock + 2.5

# If next event is a repair,
# number of functional components increases by 1.
elif NextEvent == "Repair":

S = S + 1
if S == 1:

NextFailure = Clock + math.ceil(6*random.random())
NextRepair = Clock + 2.5

# Update variables for computing the
# time-average number of functional components.
Area = Area + SLast * (Clock - TLast)
TLast = Clock
SLast = S

print(Area/Clock)
print(Clock)

Fig. 2.2 Main simulation loop and results printing for the TTF problem
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ysis is ultimately statistical rather than mathematical, and we estimate performance
measures of interest from simulated data.

Suppose we have an algorithm called algorithm, which takes a single numer-
ical input u and produces a single numerical output x; that is

x = algorithm(u).

Here algorithm is typically some computer code, but the important point is that
it is a deterministic input–output transformation. For instance, if algorithm(0.3)
returns the value x = 2, then algorithm(0.3) always returns the same value of 2
each time it is called with 0.3 as its argument.

Suppose that the input u is not a specified constant, but instead is a random vari-
able, say U , with a known probability distribution FU . Then algorithm defines a
random variable

X = algorithm(U)

and it makes perfect sense to talk about probabilistic quantities such as Pr{X ≤ 20},
E(X), or the distribution FX . The important concept here is that algorithm, which
is a recipe that takes a numerical input and yields a numerical output, can also be
thought of as a way to transform a random variable U with some distribution into a
random variable X with a different distribution.

Now that we have introduced the concept of algorithm with random input U ,
we introduce the very important case in which FU is the uniform distribution on the
interval [0,1]. This distribution is often denoted U(0,1) and is defined as

FU (u) = Pr{U ≤ u}=

⎧⎨
⎩

0, u < 0
u, 0≤ u < 1
1, 1≤ u.

(2.1)

U(0,1) random variables are fundamental elements in random-variate generation,
as demonstrated in the example below.

Example 2.1. We show how to use a uniform random variable to generate
a realization of an exponential random variable with mean 1. Suppose that
algorithm(u)=− ln(1−u), where ln is the natural logarithm. LetU ∼U(0,1).
Then we have

Pr{algorithm(U)≤ x} = Pr{− ln(1−U)≤ x}
= Pr{1−U ≥ e−x}
= Pr{U ≤ 1− e−x}
= 1− e−x, x ≥ 0. (2.2)

The last step follows because Pr{U ≤ u}= u for 0≤ u ≤ 1. Expression (2.2) is the
cumulative distribution function (cdf) of the exponential distribution with mean 1,
showing that we have an algorithmic description of this random variable. Thus, if
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we had a way to produce realizations of U , we could then generate realizations of
the exponential with mean 1; this is random-variate generation.

Next we show how to construct algorithm so that X has a distribution FX that
we desire, rather than wondering what FX we get when we apply some algorithm
to U . Being able to do this is essential to stochastic simulation.

To start off, consider the case in which the cdf FX is a continuous, increasing
function for all x such that 0 < FX (x) < 1; this is true for the exponential, normal,
lognormal, Weibull, uniform, and many other well-known distributions. Under these
conditions the equation u = FX (x) has a unique solution which we denote by x =
F−1

X (u), the inverse cdf. Then for U ∼ U(0,1), define the random variable X by
X = F−1

X (U). We can immediately show that

Pr{X ≤ x} = Pr{F−1
X (U)≤ x}

= Pr{U ≤ FX (x)}
= FX (x).

This is the same logic behind the derivation in Expression (2.2) for the exponential
distribution with mean 1 for which F−1

X (u) =− ln(1−u).
Even when F−1

X is not available in closed form, as it is for the exponential, the
cdf can be inverted numerically using a root-finding algorithm. Thus, the inverse cdf
method is a general-purpose method for distributions with continuous, increasing
cdfs.

Now consider the more general case in which we have a random variable with a
cdf FX which is not necessarily continuous or increasing. We can define the inverse
generally to work for any random variable:

F−1
X (u) =min{x : FX (x)≥ u}. (2.3)

This formula handles the case in which FX is continuous and increasing, but also
works more broadly, for example, for cdfs which contain jumps. Using Equa-
tion (2.3), we can generate any random variable X with cdf FX by using X =
F−1

X (U), where U ∼U(0,1).
In the following examples, we apply our inverse cdf technique to discrete dis-

tributions. In Chap. 3 we introduce examples requiring other probability models,
including the exponential distribution.

Example 2.2. Consider random-variate generation for a discrete distribution. Sup-
pose that random variable X can take values x1 < x2 < x3 < · · · with corresponding
probabilities p1, p2, p3, . . . , where ∑i pi = 1. For the time to component failure in
the TTF system, we have xi = i and pi = 1/6 for i = 1,2, . . . ,6. We apply Defini-
tion (2.3) and verify that

Pr{X = x j} = Pr{F−1
X (U) = x j}

= Pr{FX (x j)≥U > FX (x j−1)}
= Pr{FX (x j−1)<U ≤ FX (x j)} (2.4)
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= Pr{U ≤ FX (x j)}−Pr{U ≤ FX (x j−1)}
= FX (x j)−FX (x j−1)

=
j

∑
i=1

pi −
j−1

∑
i=1

pi

= p j (2.5)

as desired. Expression (2.4) provides the basic algorithm for discrete distributions:
given U , find the smallest j such that ∑ j

i=1 pi ≥U and return x j.

Example 2.3. In the TTF simulation (see Fig. 2.2), we need to generate component
failure times that are i.i.d. with a discrete uniform distribution on {1,2, . . . ,6}.
The possible realizations are xi = i with respective probabilities pi = 1/6 for
i = 1,2, . . . ,6. For a general discrete uniform distribution on {1,2, . . . ,k}, we have
xi = i and pi = 1/k for i = 1,2, . . . ,k. The TTF component failure times come from
a specific case of k = 6.

Expression (2.4) implies we need to find j such that

j−1
k

<U ≤ j
k
. (2.6)

The end-of-chapter exercises include showing that this equation leads to the formula
X = �Uk�, where �·� is the ceiling function that returns the smallest integer that is
greater than or equal to its argument.

We say that a random-variate generation algorithm is exact if, under the assumption
of U(0,1) variates as input, and infinite precision for the numerical variables and functions
that make up algorithm, algorithm implies the desired distribution using an argument
such as (2.2).

Our algorithms for the exponential distribution and discrete uniform distribution in
Examples (2.2–2.3) are exact.

In practice there are compromises. First, computer implementation of functions
such as ln do not work perfectly, if for no other reason than the computer representa-
tion of numbers is finite. This is an issue in all numerical programming. The second
compromise is more central to simulation and has to do with generating realizations
of U , and this is the next topic of discussion.

2.3 Random-Number Generation

Producing realizations of U is called random-number generation. The definition
of exact random-variate generation for X requires that U ∼ U(0,1); therefore, an
exact method to generate X1,X2, . . . which are i.i.d. FX requiresU1,U2, . . . which are
i.i.d. U(0,1). Because of the finite representation of numbers in a computer, this
is not strictly possible. Further, even if possible, it is still a bad idea, since it leads
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to simulation results that are not reproducible. A replication of a simulation using
truly random numbers produces different output each time, even if nothing in the
simulation has changed.

Therefore, instead of using truly random numbers, stochastic simulations use
pseudorandom numbers. Consider a large, ordered list of numbers between 0 and 1:

U1,U2,U3, . . . ,Ui,Ui+1, . . . ,UP−1,UP,U1,U2, . . . .

The list needs to be quite long (about two billion in older simulation programs,
much, much longer in newer ones). There may be repeats in this list, but when the
end of the list is reached it starts over from the beginning; for this reason P is called
the period of the pseudorandom numbers. A good list of pseudorandom numbers
appears to be statistically indistinguishable from random numbers, provided that
the count of random numbers that a simulation uses is significantly less than P.

Pseudorandom numbers are not random in any sense—they are a predetermined,
finite list that eventually repeats. Consider the following Python code snippet

import random
random.seed(1234)
random.random()

We import the module random, which implements pseudorandom-number genera-
tion. The line random.seed(1234) seeds the starting point in the pseudorandom-
number list, and the function random.random() draws pseudorandom numbers
out in order from that starting point. This code snippet returns the same result each
time it is run. Similarly, because we set random.seed(1234) at the beginning
of the TTF simulation (see Fig. 2.1), running the TTF simulation (see Fig. 2.2) also
returns the same result each time it is run. If 1234 is replaced by a different inte-
ger, then the pseudorandom numbers are drawn starting from a different place in the
list and thus the result would be different (we invite the reader to test this fact for
themselves).

Storing an actual list of pseudorandom numbers would be cumbersome at best,
and impossible if P is large enough. Therefore, the pseudorandom numbers in simu-
lation software are produced by a recursive algorithm; we describe the construction
of such pseudorandom-number generators in Chap. 6, but the list representation is
conceptually correct. Using a pseudorandom-number generator, rather than random
numbers, is an important practical compromise. The full implications of this com-
promise are discussed throughout the book.

2.4 Replications

As discussed in Chap. 1, one justification for using simulation-based estimators is
that as the number of replications increases, the sample average across replications
converges (with probability 1) to the true long-run average. In this section we intro-
duce the key ideas behind programming replications.
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To be concrete, once again consider the TTF example. LetY be a random variable
representing time to system failure and let S̄(Y ) be the average number of functional
components up to time Y . Suppose we want to simulate 100 i.i.d. replications, save
the results of Y and S̄(Y ) from each replication, and report each statistic’s overall
average across the replications. Specifically, we want

Ȳ =
1
100

100

∑
i=1

Yi

S̄ =
1
100

100

∑
i=1

S̄i(Yi),

where the subscript i represents the results from the ith replication.
To achieve good estimation, we want eachYi and S̄i to be i.i.d. for i= 1,2, . . . ,100.

Identically distributed observations require that the simulation logic, including the
initial conditions, are the same on each replication. The assumption of independent
observations means that the component failure times on any replication are statisti-
cally independent of the failure times on any other replication.

We can achieve (approximately) i.i.d. replications and thus i.i.d. Yi and S̄i pro-
vided that we do not reset the pseudorandom-number generator between replica-
tions, but do reset everything else. This is because the sequence of random numbers
that dictate failure times are produced by a pseudorandom-number generator ap-
proximating i.i.d. behavior, provided we just let the generator keep running between
replications and do not start over.

Figure 2.3 shows a modification of the TTF simulation’s main program to imple-
ment replications. The initialization part is the same as in Fig. 2.1. Notice that the
code within the while S > 0 loop is unchanged from Fig. 2.2. Since that code
section is unchanged, code comments are removed for readability. The “while” loop
is nested within a “for” loop that cycles through NumReps replications, where we
set NumReps = 100.

The pseudorandom-number generator is initialized once outside the replication
loop, in Fig. 2.1. The simulation variables S, SLast, Clock, TLast, Area are re-
initialized inside the replication loop, meaning that they are reset at the beginning of
each replication. The variables S and SLast are both reset to 2 since each replica-
tion commences with 2 functional components, Clock resets to 0, and TLast and
Area, which are used to compute the average number of functional components in
a replication, start over at 0. The initial failure and repair events are reset inside the
replication loop as well. In this way, we achieve (approximately) i.i.d. results.

A key to simulation experiment design is choosing the number of replications
large enough so that where we start the pseudorandom-number generator does not
matter.

Notice how at the end of each replication we update sums of the average num-
ber of functional components and the time of system failure, so that when all of
the replications are complete, we can easily compute the across-replication aver-
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# Specify number of replications
NumReps = 100

# Initialize additional simulation variables for
# across-replication statistics
# SumS: sum of average number of functional components
# in each replication
# SumY: sum of time-to-failure in each replication
SumS = 0.0
SumY = 0.0

# Main simulation loop
for rep in range(NumReps):

NextEvent = ""
NextFailure = math.ceil(6*random.random())
NextRepair = math.inf
S = 2
SLast = 2
Clock = 0.0
TLast = 0.0
Area = 0.0

while S > 0:
if NextFailure < NextRepair:

NextEvent = "Failure"
Clock = NextFailure
NextFailure = math.inf

elif NextFailure >= NextRepair:
NextEvent = "Repair"
Clock = NextRepair
NextRepair = math.inf

if NextEvent == "Failure":
S = S - 1
if S == 1:

NextFailure = Clock + math.ceil(6*random.random())
NextRepair = Clock + 2.5

elif NextEvent == "Repair":
S = S + 1
if S == 1:

NextFailure = Clock + math.ceil(6*random.random())
NextRepair = Clock + 2.5

Area = Area + SLast * (Clock - TLast)
TLast = Clock
SLast = S

SumS += Area / Clock
SumY += Clock

print(SumS / NumReps)
print(SumY / NumReps)

Fig. 2.3 Main simulation loop and results printing for the TTF problem with replications
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ages. Updating the variables SumS and SumY occurs outside of the “while” loop but
within the replication loop, after the simulation run finishes, as shown in Fig. 2.3.

Tracking cumulative sums is an alternative to saving each replication’s results
and computing the overall average later. The cumulative sum approach has the ad-
vantage of saving memory. On the other hand, if each replication’s results are not
saved, it may be impossible to compute new statistics afterwards, if the necessary
data for these statistics are not available.

Running the code in Figs. 2.1 and 2.3 gives an average of 1.57 functional com-
ponents and an average of 13.3 days until system failure, based on 100 replications.

Exercises

1. Modify the TTF simulation so that it can have any number of components, not
just 2. Assume that components can still be repaired only one at a time.

2. Simulate the TTF example until time T = 1000 and report the average num-
ber of functional components. Create a variable NextEndSimulation and
set its value to 1000. Then the possible types of events are NextFailure,
NextRepair and NextEndSimulation. Code the additional logic nec-
essary to get the simulation to stop at time 1000. Why is this a more effective
approach than changing the loop condition to while S > 0 and Clock
< NextEndSimulation?

3. For the TTF simulation, suppose that the repair times are not precisely 2.5 days,
but instead are 1 day with probability 1/2, and 3 days with probability 1/2.
Decide on a sensible tie-breaking rule, modify the simulation and simulate until
the time of the first system failure.

4. The TTF system is available provided there is at least one functional compo-
nent. Define a variable A(t) that takes the value 1 when the system is available,
and is 0 otherwise. Then

Ā(T ) =
1
T

∫ T

0
A(t)dt

is the average system availability from time 0 to T . Modify the simulation cre-
ated for Exercise 2 to also report average system availability.

5. For each of the exercises above, add the capability to do replications. Using 100
replications, estimate the expected value of each output and a 95% confidence
interval on it.

6. Show that (2.6) implies that X = �Uk� is the inverse cdf for the discrete uniform
distribution on {1,2, . . . ,k}.

7. An alternative to using X = �Uk� to generate variates from a discrete uni-
form distribution on {1,2, . . . ,k} is X = �Uk+ 1	. Both methods have a flaw
if it is possible for U = 0 or U = 1. What is it? For this reason (and others)
pseudorandom-number generators are designed so that they do not generate ex-
actly 0 or 1.
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8. Derive a method for generating a discrete uniform distribution on {a,a+1,a+
2, . . . ,b} where a and b are integers with a < b.

9. Modify the Python code for the TTF simulation with replications to match the
description from Exercise 9 of Chap. 1 to obtain the average number of func-
tional components and the time to failure from each replication. Using 100
replications, estimate the expected value of each performance measure and a
95% confidence interval on it.

10. A very simple inventory system works as follows. At time 0 it has 50 items
in stock. Each day there is a demand for items which is equally likely to be
1,2, . . . ,9 items. The system satisfies as much of the demand as possible, but
if it does not have enough items in stock then the excess demand is lost. When
the stock reaches or goes below ReorderPoint, an order is placed for 50
additional items; it takes 1,2, or 3 days for the order to arrive, equally likely.
There can only be one pending order at a time, meaning that if an order has
been placed and has not yet arrived then another order cannot be placed. Orders
arrive before demands each day, and the planning horizon is 365 days. Build
a simulation model of this system, and use it to find the smallest value of
ReorderPoint that guarantees that there are no items in stock less than 5%
of the time. Also estimate the mean stock level for your policy. Put a 95% con-
fidence interval around your estimate. Start with 100 replications, but increase
this as necessary to be sure of your recommendation.



Chapter 3
Examples

None of the examples in this chapter need to be simulated; they can all be analyzed
by mathematical/numerical analysis. But thinking about how to simulate them will
help us understand what works, and why, for systems we do need to simulate. These
examples also provide a test bed for evaluating new ideas in simulation design and
analysis. You may have encountered these models in other classes, but it is neither
necessary to have seen them before, nor to know how the results are derived, to use
them throughout the book.

3.1 M(t)/M/∞ Queue

This example is based on Nelson (1995, Chap. 8).

Example 3.1 (The Parking Lot). Prior to building a large shopping mall, the mall
designers must decide how large a parking garage is needed. The arrival rate of cars
will undoubtedly vary over time of day, and even day of year. Some patrons will visit
the mall for a brief time, while others may stay all day. Once the garage is built, the
mall may open and close floors depending on the load, but the first question is, what
should the maximum capacity of the garage be?

Since the mall developers would like virtually everyone to be able to have a
parking space, a standard modeling trick is to pretend that the parking garage is
infinitely large and then evaluate the probability distribution of the number of spaces
actually used. If the capacity of the garage is set to a level that would rarely be
exceeded in an infinitely large garage, then that should be adequate in practice.
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Fig. 3.1 Plot of λ (t) = 1000+100sin(πt/12) (bottom) and m(t) (top) when τ = 2, and the Poisson
distribution of number of cars in the garage with mean m� (top left)

The M(t)/M/∞ queue is a service system in which customers arrive according
to a nonstationary Poisson arrival process with time-varying arrival rate λ (t) cus-
tomers/time,1 the service time is exponentially distributed with mean τ , and there
are an infinite number of servers. In Example 3.1 the customers are cars arriving at a
rate of λ (t) per hour, a “service time” is the time spent occupying a space with mean
τ hours, and we pretend that there are infinitely many spaces. A good reference for
using queueing models to address the design of service systems like call centers or
the parking lot is Whitt (2007).

Let N(t) be the number of cars in the parking garage at time t ≥ 0. Then it is
known that N(t) has a Poisson distribution with mean m(t), where m(t) solves the
differential equation

d
dt

m(t) = λ (t)− m(t)
τ

(3.1)

with an appropriate initial condition, say, m(0) = 0 if the garage starts empty (see
Nelson and Taaffe, 2004). One way to set the capacity of the parking garage is to
solve (or numerically integrate over time) Eq. (3.1) to find the largest value attained

1 A stationary Poisson arrival process has independent times between arrivals that are exponentially
distributed with mean 1/λ or equivalently arrival rate λ . The nonstationary Poisson process is a
generalization that allows the arrival rate to change over time; it is covered in detail in Chap. 6.
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by m(t), say m�. Then at its most congested, the distribution of the number of cars
in the garage is Poisson with mean m�, which implies that

Pr{number of cars in the garage ≤ c}=
c

∑
n=0

e−m�
(m�)n

n!
. (3.2)

Thus, c can be adjusted until this probability is sufficiently close to 1 (e.g., 0.99).
Figure 3.1 shows a plot of the arrival rate to the garage, λ (t), the mean number of
cars in the garage, m(t), and the probability distribution of the number of cars in
the garage at time t� when the mean number is m�. (Note: The Poisson is a discrete
distribution, but is plotted as a continuous curve here.)

Although there is no need to simulate an M(t)/M/∞ queue to design the garage,
only slightly enriching the model would make it mathematically intractable. For
instance, in a large garage it might be important to account for drivers who have
difficulty finding a space, or to include drivers who occupy multiple spaces to protect
their cars and employees who also park in the garage but stay 8 h. These changes
and others could necessitate simulation; however, the behavior would be similar to
the M(t)/M/∞ results.

If we needed to solve the parking lot problem via simulation, what issues would
arise that we did not see in the TTF problem?

• Like the TTF problem, the system state will include (at least) the number of cars
currently in the garage, and the events will include car arrivals and departures,
similar to the failure and repair events in the TTF simulation. However, a single
“Next Departure” event will not be sufficient;2 in fact, there will need to be one
pending departure event for each car currently in the garage. Effective ways to
program simulations that do not have a small, fixed number of events are covered
in Chap. 4.

• To build the simulation we need the facility to model and simulate a time-varying,
stochastic arrival process and random parking times. Chapter 2 hinted at how we
generate random variates, but what is needed here is clearly another level of
sophistication. Methods for fitting and simulating input processes are covered in
Chap. 6.

• We need to track N(t), the number of cars in the garage, over some relevant time
horizon. Unlike the average system availability in the TTF problem, the average
number of cars in the infinite-sized garage is not relevant unless we are satisfied
with having many cars turned away. The maximum observed value of N(t)might
seem better, but in a simulation we could, by chance, observe a one-in-a-million
event; do we want to size the garage to protect against something that rare? How
can we estimate something like (3.2) using simulation? These issues are covered
in Chap. 7.

2 In the special case of exponentially distributed parking times one departure event is adequate due
to the memorylessness property of the distribution; however, this will not be the case generally.
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3.2 M/G/1 Queue

Example 3.2 (Hospital Reception). The receptionist in a medium-sized hospital
helps direct entering patients and visitors to the relevant floor or wing of the build-
ing. Under discussion is replacing the human receptionist with an electronic kiosk
with a touch screen that might be a bit slower, or more variable, for patients and
visitors who are less comfortable interacting with a touch screen. The hospital
management engineers want to evaluate how much additional delay that this might
cause.

For a rough-cut analysis of the situation the management engineers could use
hospital records to estimate an overall arrival rate of patients and visitors to the
reception desk and collect data on people interacting with the kiosk from a trial
study with the vendor. Pretending that the characteristics of any system are un-
changing over time is always an approximation, but such approximations often lead
to useful and mathematically tractable models. Such is the case for the M/G/1
queue, a single-server queueing system to which customers arrive according to a
Poisson process with rate λ customers/time, and whose service times are i.i.d. ran-
dom variables with mean τ and standard deviation σ time units. The M/G/1 model
is mathematically tractable, and illustrates several important ideas for computer sim-
ulation.

Let A1,A2, . . . be a sequence of i.i.d. random variables with mean 1/λ represent-
ing the interarrival times between customers (where A1 is the actual time of the first
arrival). Similarly, let X1,X2, . . . be the i.i.d. service times of successive customers
with mean τ and standard deviation σ . Then if Y1,Y2, . . . are the successive wait-
ing times in queue (i.e., the time from customer arrival until service begins), a little
thought reveals that

Yi =max{0,Yi−1+Xi−1−Ai}, i = 1,2, . . . , (3.3)

where we need to define Y0 = X0 = 0 to make the recursion work. This is known as
Lindley’s equation (Gross et al., 2008, p. 14), which not only is a convenient way
to simulate the M/G/1 waiting-time process, but also provides a number of insights
about many simulation output processes:3

• The successive waiting times are dependent, since Yi clearly depends on Yi−1

(if the customer in front of me waited a long time, I probably will too, unless I
arrive well after her).

• The outputs are not identically distributed. Clearly Y1 = 0 (the first customer
arrives to an empty system and does not wait), but the other Yi’s are not certain
to be 0.

3 Lindley’s equation makes queueing simulation look deceptively easy. However, if there are ten
servers instead of one, or if customers are served in some priority order, or if we are interested in
the number of customers in the queue rather than the waiting time, then an event-based simulation
is typically required. Exercise 4 asks you to develop such a simulation; see also Chap. 4.
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• No matter how many customers we simulate (i → ∞), the waiting times remain
random variables.

This sounds like a difficult system to analyze, since the data are neither indepen-
dent nor identically distributed, and they do not converge to some constant that we
might use to summarize the system. What we might hope, however, is that there is
a more complicated, but still useful, limiting behavior.

Provided λ <∞ (customers do not arrive infinitely fast), ρ = λτ < 1 (on average
we can serve customers at least a little faster than they arrive), and σ < ∞, then a
number of things happen as i → ∞:

1. The outputs Y1,Y2, . . . converge in distribution4 to a random variable Y whose
distribution is not a function of the customer number i. That is, even though
customer waiting times are always random variables, the distribution of those
random variables is no longer changing. This makes the distribution of Y a nice
summary of long-run performance, but it is not clear how to simulate it.

2. The sample mean Y (m) = m−1∑m
i=1Yi converges with probability 1 to a constant

μ which we can interpret as the long-run average waiting time. This is less
descriptive than the distribution ofY , but is still a useful summary measure. More
importantly, it is easy to see how to estimate μ via simulation: Take the average
of a very large number of simulated waiting times generated by using (3.3).

3. The E(Y ) and μ are equal, and are given by the Pollaczek–Khinchine formula
(Gross et al., 2008, Sect. 5.1.1)

μ = E(Y ) =
λ (σ2+ τ2)
2(1−λτ) . (3.4)

Using this formula the management engineers can evaluate the impact of an in-
creased mean service time (τ) and increased variability (σ2) without the need
to simulate. Unfortunately, as in the parking lot example, relatively small en-
hancements of the model to make it more realistic also make it mathematically
intractable. However, (3.4) still provides insight about how arrival rates, mean
service times, and service variability affect queueing performance: As ρ = λτ
approaches 1 the mean waiting time increases explosively, while it increases lin-
early in the variance of the service times.

Suppose we used the natural estimator Y (m) to estimate μ via simulation. Ob-
viously we have to choose the number of patients and visitors to simulate m < ∞
because we have to stop the simulation to obtain our estimate. How many patients
and visitors are enough? One way to answer that question is by picking m large

enough so that the standard error of Y (m), which is
√
Var

(
Y (m)

)
, is small enough.

The standard error can be interpreted as the “average error” in Y (m) and often ap-
pears in confidence intervals.

4 The various modes of convergence (in distribution, with probability 1, and others) are defined in
Chap. 5.
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In Chap. 5 we will discuss the fact that for certain types of simulation output
processes the limit

γ2 = lim
m→∞

mVar
(
Y (m)

)
(3.5)

exists, even though the output data Y1,Y2, . . . are not i.i.d. (it is easy to show that
this limit exists when the data are i.i.d.). We call γ2 the asymptotic variance, and it

suggests that for m large enough,
√

Var
(
Y (m)

)
≈ γ/√m.

In the special case of an M/M/1 queue (which means the service time is expo-
nentially distributed) and with τ = 1, it can be shown that

γ2 =
ρ(2+5ρ−4ρ2+ρ3)

(1−ρ)4 ≈ 4ρ
(1−ρ)4

(Whitt, 1989), so that

√
Var

(
Y (m)

)
≈ 2

√ρ/(1−ρ)2√
m

. (3.6)

Notice that how much simulation effort is required depends dramatically on how
close the system is to its capacity (i.e., how close ρ is to 1): For instance, m needs to
be about 1000 times larger to obtain the same standard error at ρ = 0.9 as at ρ = 0.5
(verify this for yourself using Eq. (3.6)). This is a feature of simulations that involve
queues or networks of queues. Determination of the run length m, and estimation of
γ2, are topics of Chap. 8.

3.3 The AR(1) Surrogate Model

The examples in this chapter are simplified, and therefore tractable, versions of real-
istic models that we might actually simulate. The lone exception is the AR(1) model
presented here.

AR(1) is an abbreviation for “autoregressive order-1”; it is a model that arises
naturally in time series forecasting (e.g., Chatfield, 2004). Here we use it as a stand-
in, or surrogate, for output from a stochastic simulation experiment because it shares
the properties of many simulation output processes, but is very readily analyzed.

The AR(1) model for the ith simulation output (within a single replication) is

Yi = μ+ϕ(Yi−1−μ)+Xi, i = 1,2, . . . (3.7)

with the following conditions:

• X1,X2, . . . are i.i.d. random variables with mean 0 and finite variance σ2; thus,
the X’s represent the stochastic nature of the simulation output.

• |ϕ| < 1; thus, ϕ controls the strength of dependence among successive outputs,
with ϕ = 0 corresponding to i.i.d. output, 0 < ϕ < 1 corresponding to positive
dependence, and −1< ϕ < 0 corresponding to negative dependence.
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• μ is a constant; thus, μ is the long-run average, which is often the performance
measure of interest.

• The distribution of Y0 is given (including the typical case where it is a constant)
and independent of the X’s; thus, Y0 represents the initial condition at the begin-
ning of the simulation which clearly has an impact on the outputs that follow.

The similarity of the AR(1) model to Lindley’s equation (3.3) for the M/G/1
queue

Yi =max{0,Yi−1+Xi−1−Ai}, i = 1,2, . . .

is apparent, but the absence of the max operator makes the AR(1) easier to analyze.
In particular, we can use induction to show that

Yi = μ+ϕ i(Y0−μ)+
i−1

∑
j=0
ϕ jXi− j. (3.8)

From Eq. (3.8) we can derive several properties of AR(1) output immediately:

E(Yi) = μ+ϕ i (E(Y0)−μ) i→∞−→ μ (3.9)

Var(Yi) = ϕ2iVar(Y0)+σ2
i−1

∑
j=0
ϕ2 j i→∞−→ σ2

1−ϕ2 . (3.10)

It can also be shown that Corr(Yi,Yi+ j)
i→∞→ ϕ j, implying that the correlation between

outputs is geometrically decreasing with the number of observations (called the
“lag”) between them.

Now suppose that the X’s are normally distributed, and Y0 is a constant. Then
since Yi is the sum of normally distributed random variables by (3.8), it is also nor-
mally distributed. And since a normally distributed random variable is completely
characterized by its mean and variance, the limits in (3.9) and (3.10) show that as i
increases (the length of the replication becomes longer) the distribution of the AR(1)
output becomes independent of i, and specifically converges to a random variable
Y ∼N

(
μ ,σ2/(1−ϕ2)

)
. This illustrates the concept of convergence in distribution,

introduced for the M/G/1 queue in Sect. 3.2.
As compared to Lindley’s equation, the AR(1) model is particularly useful for

mathematically evaluating the features of simulation output that impact output anal-
ysis because the key factors that might be important can be individually controlled:
variability through σ2, dependence through ϕ , and initialization through Y0.

3.4 A Stochastic Activity Network

This example is based on Burt and Garman (1971) and Henderson and Nelson
(2006, Chap. 1, Sect. 2.2).



28 3 Examples

Example 3.3 (Construction Project). A construction project consists of a large
number of activities. Some of these can be completed in parallel (drywall can be
ordered while the foundation is being poured), while some cannot commence until
others are completed (the roof cannot be constructed until the framing is finished).
Since the durations of the activities are not precisely predictable, the project plan-
ners would like to take into account this variability when bidding the project because
there will be penalties for completing the project after the contract date.

a

c

b

d

X1

X2

X3

X5

X4

Fig. 3.2 A small stochastic activity network

Project planning problems such as Example 3.3 can sometimes be modeled as
stochastic activity networks (SANs); a small instance—which will be used for illus-
tration here—is shown in Fig. 3.2. The nodes (circles) represent project milestones,
and the arcs (arrows) are activities. The project starts with all activities emanating
from the source (first) node and is completed when the sink (last) node is reached.
The rule is that all outgoing activities from a node commence when all of the in-
coming activities to that node are completed. The duration of the �th activity is a
random variable X�. Thus, the time to complete the project will be the longest path
through the network:

Y =max{X1+X4,X1+X3+X5,X2+X5}. (3.11)

The project planners are interested in information about the distribution of Y , for
instance, θ = Pr{Y > tp}, where tp is the quoted duration of the project.

Now if it happens that the activity durations are independent, and have common
exponential distribution with mean 1, then a sequence of careful conditioning argu-
ments gives (Burt & Garman, 1971)

Pr{Y ≤ tp}=
(
1
2

t2p −3tp −3

)
e−2tp +

(
−1
2

t2p −3tp +3

)
e−tp +1−e−3tp . (3.12)
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However, the problem quickly becomes intractable if some or all of the distribu-
tions are not exponential, or if X1,X2, . . . ,X5 are not independent. Then simulation
is required. The following simulation could be used to estimate θ :

1. set s = 0
2. repeat n times:

a. generate X1,X2, . . . ,X5

b. set Y =max{X1+X4,X1+X3+X5,X2+X5}
c. if Y > tp then set s = s+1

3. estimate θ by θ̂ = s/n

Let Y1,Y2, . . . ,Yn be the n project completion times generated by this simulation.
Assuming the X’s are generated independently on each trial, then the Y ’s are natu-
rally i.i.d. and classical statistical analysis applies.

Like some earlier examples, an event-based simulation is not required for this
small problem; however, in a project with a realistic number of activities (perhaps
numbering in the hundreds) it may be prohibitively difficult to explicitly identify
all of the paths through the network, but relatively easy to treat the completion of
activities as events that may trigger the release of milestones. In this case an event-
based simulation represents these paths implicitly, but is far easier to construct.

Let I ( j) be the set of inbound activities to node j; for instance, I (c) = {2,3}
for the example in Fig. 3.2. Similarly, let O( j) be the outgoing activities from node
j; thus, O(c) = {5}. Finally, let D(�) be the destination node for activity �, so that
D(5) = d. All of these sets would have to be known to construct the SAN, or could
easily be extracted from a graphical representation. Now only a single type of event,
which we call “milestone,” is required to simulate the SAN. The milestone event
has as arguments a target node j and an activity � that is inbound to that node.
It removes the completed activity from the set of inbound activities to that node,
I ( j), and when that set becomes empty it schedules all of the node’s outbound
activities O( j) to begin. In pseudocode, the event is as follows:

event milestone (activity � inbound to node j)
I ( j) = I ( j)− �
if I ( j) = /0 then

for each activity i ∈ O( j)
schedule milestone(activity i inbound to node D(i) to occur Xi time later)

end if

This representation makes it much easier to program a stochastic activity network
simulation, but actually increases the computer effort required to simulate it due to
the need to manage an event calendar and execute the events.

Another feature of this example is that the goal is to estimate a probability θ =
Pr{Y > tp}. If tp is large, such occurrences may be so rare that (say) n = 1000
replications might not generate even a single project that completes after tp. Later in
the book we will look for ways to make this simulation more statistically efficient,



30 3 Examples

meaning that fewer replications will be needed to obtain the desired precision of the
simulation estimate or higher precision will be obtained from the same number of
replications.

3.5 Asian Option

A “call” option is a contract giving the holder the right to purchase a stock for a
fixed “strike price” at some time in the future. If the stock’s value increases well
above the strike price, then the option is a good deal provided the purchase price for
the option was not too high. If offered a call option with strike price K and maturity
T on a stock that is currently trading at X(0), how much should one be willing to
pay for this option?

Valuing, pricing, and creating financial instruments that serve various needs are
the purview of the field of financial engineering (FE). FE often requires stochastic
simulation. The critical issue in FE relative to the other examples in this chapter is
the need for highly precise estimates. A 5% error may be tolerable in estimating
customer delay in queue, but entirely out of the question in pricing a financial prod-
uct that may be sold in millions of units. The development in this section is based
on Glasserman (2004, Chap. 1), an excellent text on simulation and FE.

The value of the asset on which the option is written (e.g., stock) is often modeled
as a continuous-time stochastic process {X(t),0≤ t ≤ T}. In the standard European
option the payoff to the contract holder is

(X(T )−K)+ =max{0,X(T )−K}.

That is, if the value of the stock at maturity, X(T ), is greater than the strike price
K then the owner can exercise the option—purchase the stock at price K—and im-
mediately sell it for a profit of X(T )−K. Of course, if X(T ) ≤ K, then the owner
might as well just buy the stock on the open market and the option is worthless.

If the stochastic process {X(t),0≤ t ≤ T} is geometric Brownian motion (GBM,
see Glasserman, 2004, Sect. 3.2), then the value of a European option can easily
be computed using the celebrated Black–Scholes formula (e.g., Glasserman, 2004,
Sect. 1.1). For the purpose of this book the important thing to know about GBM is
that it is a continuous-time, continuous-state stochastic process; that is, {X(t),0 ≤
t ≤ T} has a value at all times t and X(t) ∈ ℜ. This will cause some problems for
simulation.

Since the European option can be valued without simulation, we take as our
example a more difficult case:

Example 3.4 (Asian Option). Suppose we are offered an “Asian” option, which
means that the payoff is

(
X(T )−K

)+
, where X(T ) is an average of the stock’s

value over 0 ≤ t ≤ T (from now until maturity). Given the stock’s current value
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X(0), a maturity T , a risk-free interest rate r (at which we could invest our money
instead of buying the option), and a strike price K, the value of this option is

ν = E
[
e−rT (X(T )−K

)+]
,

where the multiplier e−rT discounts the value at time T back to time 0 (now). How
can we use simulation to evaluate it?

This would appear to be the easiest example introduced in this chapter, since the
following algorithm does it:

1. set s = 0
2. repeat n times:

a. generate X(T )
b. set Y = e−rT max{0,X(T )−K}
c. set s = s+Y

3. estimate ν by ν̂ = s/n

The difficulty comes in Step 2a. We have not (yet) been precise about what is
meant by X(T ). Probably the most natural definition is

X(T ) =
1
T

∫ T

0
X(t)dt. (3.13)

We have seen time averages before (e.g., Sect. 1.2), but this one is different: X(t)
does not just change at discrete points in time, it changes continuously. Thus, if we
wanted to try to schedule events at which the state of X(t) changes, there would
be an uncountably infinite number of them, even on a finite time interval [0,T ].
This issue arises in many FE simulations because continuous-time, continuous-state
stochastic processes are often used to represent the values of underlying financial
assets, such as stocks, over time.

A natural approximation for (3.13) is to take the interval [0,T ], divide it up into
m steps of size Δ t = T/m and use

X̂(T ) =
1
m

m

∑
i=1

X(iΔ t)

the average value of the stock at a set of monitoring times Δ t,2Δ t, . . . ,mΔ t.5 This
introduces discretization error, of course, but not much if Δ t is not too large. On the
other hand, if Δ t is too small, then numerical round-off error can accumulate and
the simulation can become quite slow. Thus, discrete approximations to continuous
processes cannot be done without thought; see Sect. 5.3.

5 Many Asian options are actually defined in this way with the time steps specified as part of the
contract. For the discussion here we will assume that the time average X(T ) is what is actually
desired, however.
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Suppose that we want to do a discrete approximation. If X(t) is described by
GBM with drift r (the risk-free interest rate) and volatility σ2 (a measure of the
variability of the asset’s value), then it can be shown that for 0= t0 < t1 < t2 < · · ·<
tm = T ,

X(ti+1) = X(ti)exp

{(
r− 1

2
σ2
)
(ti+1− ti)+σ

√
ti+1− ti Zi+1

}
, (3.14)

where Z1,Z2, . . . ,Zm are i.i.d. N(0,1). We will use this fact to simulate the Asian
option in Chap. 4.

Exercises

1. Show that the limit (3.5) exists, and precisely what it is, if Y1,Y2, . . . are i.i.d. with
finite variance ς2.

2. For the M/M/1 queue, make a plot that shows the relative effort required (value

of m) to obtain equal standard error
√
Var

(
Y (m)

)
for 0.5≤ ρ ≤ 0.99. Note that

for the M/M/1 queue Eq. (3.4) simplifies because σ = τ for the exponential
distribution.

3. Instead of trying to obtain the same standard error
√

Var
(
Y (m)

)
for 0.5 ≤ ρ ≤

0.99, we could instead try to obtain the same relative error

√
Var

(
Y (m)

)
E(Y )

for 0.5≤ ρ ≤ 0.99. Make a plot similar to Exercise 2 for relative error.
4. Develop an event-based simulation of the M/G/1 queue similar to the TTF ex-

ample. Keep track of the number of customers in the system.
5. Derive (3.8) via induction.
6. Show how to represent the simulation of the SAN in Fig. 3.2 using an event-based

approach.
7. Sketch out the event logic you would use to simulate the M(t)/M/∞ queue to

keep track of both the average number of cars in the parking lot and the maximum
number in the lot for a 24-h period. Do not be concerned with how to simulate
the car arrival process, just assume that you have a method for generating the
interarrival times between cars.

8. Using (3.14), add details to the algorithm for simulating an Asian option in
Sect. 3.5 to produce a discrete approximation. Let m, the number of steps, be
an input.

9. For the SAN example in Sect. 3.4, how many replications are needed to estimate
θ with relative error 1% if tp = 5?



Chapter 4
Simulation Programming with PythonSim

This chapter shows how simulations of some of the examples in Chap. 3 can be
programmed in PythonSim. The goals of the chapter are to introduce PythonSim
and to hint at the experiment design and analysis issues that will be covered in later
chapters. This chapter can be skipped without loss of continuity. A complete listing
of the PythonSim source code can be found at the book website.

4.1 A Python Primer

We present a brief primer on the basic Python programming language concepts nec-
essary to use PythonSim, which is a simple Python module with objects and func-
tions for object-oriented discrete-event simulation. This primer is a quick and infor-
mal introduction to coding with PythonSim; a thorough and comprehensive tutorial
on Python is beyond the scope of this book. Our PythonSim implementation uses
Python 3.

Python can be installed from source at http://www.python.org, and this installa-
tion also includes the commonly used Python package manager called pip. The
ubiquitously used numpy and pandas packages, which we utilize in PythonSim,
can be installed with pip. There are many package managers and integrated de-
velopment environments (IDEs) or editors for Python, as well as multiple ways to
run Python code, but these are not discussed in this primer. We recommend more
complete tutorials, such as the guides on http://www.python.org for those unfamiliar
with programming languages or Python.

We use Python due to its simplicity and popularity. Python is a high-level lan-
guage and an interpreted rather than compiled language. Python is widely regarded
as easy to learn due to its simple syntax, and Python programs are generally consid-
ered shorter and more readable than C, C++, or Java counterparts because Python
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does not require variable or argument declarations, and it uses indentation rather
than brackets. This simplicity is ideal for our goal of teaching the fundamentals of
programming a simulation, rather than teaching professional coding practices. Ad-
ditionally, Python has many popular libraries, some of which support integration
with other languages such as C or C++. Python is widely used in applications such
as machine learning, data science, finance, and scientific computing, and many of
the Python principles we discuss in the context of PythonSim are useful in these
applications as well.

4.1.1 Variables and Data Types

Python variable names are case-sensitive, can only use alphanumeric characters and
underscores, and cannot start with a number. Variables are assigned values using the
assignment operator =, e.g., x = 5 creates a variable x with the value 5. This x is
an integer (type int) variable. Assigning x = 5.0 rather than x = 5 results in
x being a float (type float). When working with numbers, the arithmetic opera-
tors +, -, *, /, %, and ** for addition, subtraction, multiplication, division,
modulus, and exponentiation, respectively, behave in the usual way. Specifically, in
Python 3, / is for float division (returns a float) and // is for integer division or
floor division (returns the closest integer less than or equal to the expression). We
also sometimes use n += 1 as a compact way of incrementing a variable, and this
expression performs the same action as n = n + 1.

In addition to integers and floats, Python uses other data types such as strings
(type str), Booleans (type bool), and lists (type list). This is not an exhaustive
list of data types. Notice that if x is a defined variable, then type(x) returns the
Python type of x. Python strings are enclosed in single or double quotations. Each
character in a string is from the unicode character set, and strings can be empty (e.g.,
"") and can also contain spaces (e.g., "Hello there?").

Strings are concatenated (joined together) with the + operator and can be re-
peated using the * operator, as we show in the code snippet below. Notice that at-
tempting to “add” variables or values of different types, such as 2 + "banana",
does not work. The code snippet also demonstrates the print() function in
Python, which takes any object and converts it into a string before writing it to
the screen. Notice that we can also pass an expression (e.g., s1 + s2) as an ar-
gument to print() and Python evaluates the expression for us, as is the case for
Python functions in general. The result of s1 + s2 is "Hello, world!" and
s3 holds the string "abcdabcd", i.e., "abcd" repeated twice.

s1 = "Hello, "

s2 = ""
s2 += "world!"

s3 = "abcd" * 2
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print(s1 + s2)
print(s3)

The built-in Python data type lists stores multiple items, which can be of dif-
ferent types, and separates the items with commas. [] is an empty list. An element
of a list can also be a list. If ls is a list, then ls.append(x) appends the object x
to the end of the list ls, modifying ls in place. For lists, the + and * operators can
be used to join and multiply lists, working just as they do for strings. The following
three code snippets result in the same value of the ls variable.

# Code Snippet 1
ls = []
ls.append(1)
ls.append("two")

# Code Snippet 2
ls = [1, "two"]

# Code Snippet 3
ls = [1] + ["two"]

Notice that ls is a list of both integer and string types. The code above also shows
comments in Python. Lines starting with a # are ignored by the interpreter and do
not affect the program. If ls is a list, then ls.pop() both removes and returns
the last element of the list. The code below results in ls having value [1,2] and
x having value 3.

ls = [1,2,3]
x = ls.pop()

The built-in function len() can act on both strings and lists and returns the
length of the argument, i.e., the number of characters in a string or the number of
items in a list. Empty strings and empty lists have length 0.

Next, we discuss indexing and slicing. We focus on lists, but the indexing and
slicing syntax and logic work analogously for strings and some other Python data
types as well. In Python, we start indexing the number of items in a list at 0, so
that the first item has index 0. If ls is a list and i is a nonnegative integer, then
ls[i] returns the item in the list at index i, provided that i is strictly less than
the length of the list ls. Notice that ls[len(s)] throws an out of range error,
since ls[len(s)-1] is actually the last character, due to indexing starting at 0.
Python supports negative indexing, which indexes a list from the end, starting with
index -1 as the last element. Python also supports slicing, so that if ls is a list and
i and j are integers, then ls[i:j] returns the “slice” (subset) of ls starting from
index i and ending just before index j.

However, strings are immutable while lists are mutable. Assigning a new charac-
ter to an indexed position in a string creates an error. But the same action is valid for
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lists. For example, the following code does not work and creates an item assignment
error.

s = "bat"
s[0] = "c"

Meanwhile, the following code works.

ls = ["apples", "oranges"]
ls[1] = "watermelon"

4.1.2 Indentation, Conditions, and Loops

Here, we discuss conditions and loops in Python, as well as the Python indentation
required for writing them.

Python separates blocks of code using indentation. Python programs run properly
if the number of spaces is at least 1 and remains consistent throughout the program,
but the convention is to use 4 spaces as an indent in Python. Suppose that x is an
integer variable, and consider the following code snippet, which demonstrates the
use of indentation in a series of conditional statements.

x = 10

if x < 10:
print("x is less than 10.")

elif x == 10:
print("x is equal to 10.")

else:
print("x is greater than 10.")

In Python, if, elif, and else are used for decision-making and cause a pro-
gram to execute code only if a certain condition is true. For completeness, we note
that Python interprets expressions that evaluate to a nonzero value as True and ex-
pressions that evaluate to None or 0 as False. In the code above, the print function
in the body of the if statement is only executed if x < 10 is True. If x < 10
is False, then the program moves to the following elif statement and executes
its body if x == 10 evaluates to True. Statements starting with elif (short for
“else if”) are optional but must come after an if statement or another elif state-
ment. Multiple elif statements can be used, but if multiple elif statements are
True, only the body of the first True elif statement is executed. If x == 10
is False, then the program moves to the else statement and executes its body.
An else statement is optional, but it must come after an if or elif statement,
which also means there cannot be more than one else statement in a row. We can
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also nest if, elif, and else conditions. Inner conditions must have additional
indentation and obey the same logical rules as the outer conditions.

In the code above, x < 10 and x == 10 are examples of logical conditions
in Python. Python supports the usual logical operators ==, !=, <, <=, >, and >=.
Notice that two equal signs == are used for checking equality in a condition, since
the use of only one equality sign = is the assignment operator. Conditions such as
x < 10 and x == 10 evaluate to True or False, which are keywords of the
Boolean data type in Python (type bool). Conditions can be combined with the
and and or keywords acting as logical operators. In the code below, x is only
printed if both conditions x %10 == 0 and x < 100 are True, and a nested
if statement prints another message if in addition to the two previous conditions
holding, x == 50 holds as well.

if x %10 == 0 and x < 100:
print(x)
if x == 50:

print("x equals 50.")

Logical conditions are important for while loops, which repeat the execution of
code, while a certain condition is true. Loops are crucial, particularly in simulation
programming, because they allow us to execute statements multiple times. The fol-
lowing simple while loop sequentially increments and prints n until n <= 10 is
no longer True. Notice that as with conditional statements, the body in a loop must
be indented. We must be careful with while loops, because if the while condition
is always True, then the program will loop infinitely and will never terminate.

n = 0
while n <= 10:

n += 1
print(n)

Python for loops behave similarly as while loops but repeat the execution
of code a certain number of times. Python for loops are commonly used with
the built-in range function. This combination is useful for iterating over multiple
replications in a simulation model. If n is a positive integer, then range(n) re-
turns a sequence of integers from 0 up to but not including n. The following code
successively prints 0, 1, . . . ,9.

for i in range(10):
print(i)

Python supports nesting while and for loops within each other, and each
nested loop requires more indentation. Conditional statements can also be nested
within loops, and vice versa. Often, conditional statements within a loop are used to
trigger the control statements break and continue, which modify normal loop
execution. The statement break immediately terminates the loop, and continue
skips any subsequent code in the body of the loop and sends the program to test the
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loop condition. As an exercise, work through the logic of the code snippet below,
which successively prints 1, 2, 4, and 5.

n = 0
while n <= 10:

n += 1
if n == 3:

continue
print(n)
if n == 5:

break

Finally, in Python, one way to wrap long lines is by creating line breaks within
parentheses, brackets, or braces. In the code below, the first and second code snip-
pets, as labeled using Python comments, behave identically. In the case of the second
code snippet, by using Python’s implied line continuation within the parentheses, we
can break a long line into two more manageable lines.

# Code Snippet 1
if SomeConditionA == True and SomeConditionB == True:

print("Both conditions hold.")

# Code Snippet 2
if (SomeConditionA == True

and SomeConditionB == True):
print("Both conditions hold.")

4.1.3 Functions, Scope, and Modules

Python functions are created using the def keyword, followed by the name of the
function, and then comma-separated parameter names enclosed in parentheses, fol-
lowed by a colon. The body of the function must be indented. Functions can send
objects back to the caller using the return keyword, although functions do not
require return statements.

Consider the code below, in which we define a function called CutInHalf with
parameter m. Triple quotation marks support multiline comments and also demarcate
a docstring at the beginning of a function, which describes a function’s behavior.
Function declarations have parameters, and functions are passed specific arguments
when called. In the last line in the code below, we call CutInHalf(10) with
argument 10 and assign the return value to a new variable n.

def CutInHalf(m):
’’’Divides a number by 2’’’
return m/2

n = CutInHalf(10)
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The scope of a variable concerns its visibility and accessibility. Python variables
created outside of a function have global scope and are visible from the code any-
where in a program. When a function is called (not when it is defined), any variables
defined inside the function have local scope and are only visible from the code inside
the function. After the function call, the corresponding local scope is destroyed.

Python looks up variable names by first checking local scopes, then enclosing
scopes (which we do not elaborate on here but involves nested functions), and then
the global scope. Even though global names can be accessed anywhere, they cannot
be modified within a function. To illustrate this point, we provide a code example
below, and this code also demonstrates the declaration of a function without param-
eters and without a return statement. Although x is the name of a global variable,
calling the function ChangeTo10() cannot modify that global variable. Instead,
what ChangeTo10() does is create a new variable called x in the function’s local
scope. The global variable with the same name remains unchanged, which is why
the final print statement, despite being after a ChangeTo10() function call, prints
0 rather than 10.

x = 0

def ChangeTo10():
x = 10
print(x)

# This prints 10
ChangeTo10()

# Global variable x is unchanged
# This prints 0
print(x)

The following modification of ChangeTo10() does successfully update the
global variable x to its new desired value 10, but for more complicated code, return-
ing and assigning values in this way can result in overly lengthy and cumbersome
code.

def ChangeTo10():
x = 10
return x

x = ChangeTo10()

The global keyword tells Python to look for x in the global scope, rather than
create a new local variable, and the following modification of ChangeTo10()
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also successfully updates the global variable x. However, this practice is generally
discouraged because it makes the code more complicated and harder to maintain.

def ChangeTo10():
global x
x = 10

A better practice for handling global variables that need to be modified within
function calls is to define such variables in a separate file (module), which is then
imported. This practice is used for a simulation model’s clock time and is detailed
in Sect. 4.1.5.

4.1.4 Modules, Packages, and Writing Output

A module is a Python file containing definitions and statements. A package is a
collection of modules, usually following some sort of organization or hierarchy.
Both modules and packages can be loaded into a Python program using the import
keyword, and modules and packages are useful for structuring and reusing code.

PythonSim uses the built-in package math and the two popular packages numpy
and pandas, which can be downloaded using pip after installing Python from
source at http://www.python.org.

Dot notation is Python’s way of accessing objects in another module or package.
For example, after we call import math, we can use math.inf to represent in-
finity in logical operations and conditions. When called on a number in a suitable do-
main, the functions math.sin, math.exp, math.log, and math.sqrt give
access to the sine function, exponential function, logarithmic function, and square
root function, respectively.

The numpy package is a very powerful package supporting numpy arrays (type
numpy.ndarray), which have similar functionality as lists but are optimized for
scientific computing performance. A proper discussion of numpy is beyond the
scope of this primer, but we use numpy in PythonSim programs to apply mathe-
matical operations element-wise to a list of numbers; an example is shown below.

data = [1,2,3,4,5]

# This statement works
squareroot_data = numpy.sqrt(data)

# This statement does not work
squareroot_data = math.sqrt(data)

The pandas package is a library for data analysis on numerical tables. We use
pandas for its dataframes (type pandas.core.frame.DataFrame), which
have useful methods for statistics and writing data to comma-separated values (.csv)

http://www.python.org
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files. Writing to .csv files is useful for saving data for future analysis, and .csv files
can also be imported as tables into Excel.

Suppose that Statistic1 and Statistic2 are lists of equal length. For
example, in a simulation setting, each item of Statistic1 and Statistic2
corresponds to a statistic from an i.i.d. simulation replication. The following code
demonstrates how to write simulation data to a .csv file using pandas. The strings
"Statistic1" and "Statistic2" become the column names in a dataframe,
and Statistic1 and Statistic2 become the data columns. Here, the input
to creating a dataframe is a dictionary (type dict), a data structure that stores data
in pairs of the form key:value. Elaborating in detail about dictionaries is outside the
purpose of this PythonSim primer, but we note that dictionaries are powerful tools
supporting fast lookup of values based on keys. Keys index a dictionary and must
be unique (no duplicates allowed) and of an immutable data type (such as a string).
This structure is natural for building tables of data which are organized by columns
each corresponding to a unique statistic. The last line in the code below writes the
dataframe to a .csv file called "output.csv" in the current working directory,
with elements separated by commas.

output = pandas.DataFrame(
{"Statistic1": Statistic1,
"Statistic2": Statistic2})

output.to_csv("output.csv", sep=",")

The built-in Python function len() can take in a dataframe to return its number
of rows. If output is a dataframe, then output.mean() and output.var()
return the mean and sample variance of each column’s values.

4.1.5 Object-Oriented Programming and Classes in PythonSim

PythonSim consists of classes, functions, and random-number generation tools, all
of which are entirely open source and can be modified to suit the user. PythonSim
provides tools to aid in developing discrete-event simulations and is designed to be
easy to understand and use, but not necessarily efficient.

In this section, we discuss object-oriented programming (OOP) in Python and
introduce the classes in PythonSim. We cannot cover all of the important topics
in object-oriented programming, but we briefly describe the OOP concepts that
PythonSim exploits. OOP is incredibly valuable for simulation programming, be-
cause discrete-event simulations often contain multiple instances from the same
template, so it makes sense to structure our programs around classes, which are
blueprints for creating similar objects. For example, discrete-event simulations
might track multiple continuous-time statistics, such as a number of customers and
a number of busy servers in the system. Although the number of customers and
the number of busy servers are distinct statistics that track different quantities and
take different values in a simulation, the machinery for recording and computing
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these statistics is the same. Therefore, we can bundle this machinery in a class for
continuous-time statistics and let the number of customers and the number of busy
servers be instances of this class. Furthermore, OOP leads to organized and read-
able code, which supports large-scale simulation models. Classes allow attributes to
be grouped and created in one place, and we can add new functionality to classes
without breaking previous code.

The classes in PythonSim reside in the file SimClasses.py. This file acts
like a module and can be imported using import SimClasses at the beginning
of a simulation program. To access the classes in SimClasses, we use Python’s
dot notation. For example, SimClasses.Clock accesses the Clock variable in
the SimClasses module. In each simulation, we need the simulation clock to be
globally viewable and modifiable. Because Python only creates one instance of each
imported module, SimClasses.Clock can be accessed and changed from any
file that uses import SimClasses.

Below, we list the classes in PythonSim that are the building blocks for a Python-
Sim discrete-event simulation.

• CTStat objects record continuous-time statistics.
• DTStat objects are companions to CTStat objects and behave similarly but

record discrete-time statistics.
• Entity objects model transient items, such as transactions or customers that

pass through the system.
• FIFOQueue objects hold Entity objects in first-in-first-out order.
• Resource objects represent scarce quantities such as workers, machines, and

computers that are needed to serve or process an Entity in some way.
• EventNotice objects model the state-changing events that drive a discrete-

event simulation.
• EventCalendar objects are lists of event notices ordered by time.

The SimClasses module also includes Activity and Node classes, but
those are specific to simulating a stochastic activity network (SAN) and are dis-
cussed in Sect. 4.4.2.

The code for the class CTStat is shown in Fig. 4.1, and we use the CTStat to
illustrate some key concepts in Python OOP. We create a class in Python using the
class keyword, followed by the class name and a colon. Notice that the body of
the class is indented.

InstanceList is created outside of the method init () and is a class
attribute, which means it is shared across all instances of the class. We can access it
using SimClasses.CTStat.InstanceList, and we can also assign it a new
value. In the init () method, we define instance attributes, which can have
different values across different instances of the class. The init ()method can
be defined with any number of parameters, but the first parameter must always be
self. The init ()method initializes each new instance, because it is run each
time a new instance is created and sets the default values for the instance’s attributes.
The self keyword allows an instance to refer to itself. We also define the methods
Record(), Mean(), and Clear(), which are instance methods that take self
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class CTStat:

InstanceList = []

def __init__(self):

self.Area = 0.0
self.Tlast = 0.0
self.TClear = 0.0
self.Xlast = 0.0
self.Max = -math.inf
self.Min = math.inf

self.__class__.InstanceList.append(self)

def Record(self,X):

self.Area += self.Xlast * (Clock - self.Tlast)
self.Tlast = Clock
self.Xlast = X

if X > self.Max:
self.Max = X

if X < self.Min:
self.Min = X

def Mean(self):

mean = 0.0
if (Clock - self.TClear) > 0.0:

mean = ((self.Area + self.Xlast * (Clock - self.Tlast))
/ (Clock - self.TClear))

return mean

def Clear(self):

self.Area = 0.0
self.Tlast = Clock
self.TClear = Clock

Fig. 4.1 PythonSim CTStat class for continuous-time statistics

as the first parameter but can also include any number of additional parameters.
The last line in the init ()method body adds the newly created instance to the
class attribute InstanceList. This allows us to keep track of all continuous-time
statistics in a simulation program, so we can clear them between replications.

The following code imports SimClasses and instantiates a new instance of the
class CTStat using the call SimClasses.CTStat().

import SimClasses

NumCustomers = SimClasses.CTStat()
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If init () were to take parameters other than self, we would call
SimClasses.CTStat() with additional arguments to pass to these parameters.
Now, NumCustomers is a CTStat object. Whenever we create a new instance
of a class, this instance is its own unique copy with specific characteristics that we
can modify. Using dot notation, we can access an instance’s attributes and methods.
For example, NumCustomers.Max gives us the instance’s attribute Max, and we
can also assign NewCustomers.Max a new value. If N is an integer variable,
then NumCustomers.Record(N) calls the instance method Record() with
the argument N and records N as the current state (the current number of customers).
When instantiating an instance or calling an instance method, there is no need to
pass self as parameter because this is handled automatically.

In general, whenever the value of the variable of interest changes, the Record()
method of the relevant CTStat object is employed to record the change (which
means the method is called just after the change occurs). The Mean() method
returns the continuous-time average up through the current time in the simulation
but does not update any variable values. DTStat objects behave very similarly, and
after each new observation of interest (e.g., a waiting time or a service time has
just finished), we call the Record() method of the relevant DTStat to record
this new observation. The Mean() method returns the average of the discrete-time
observations accumulated up through the current time.

After introducing some important OOP Python syntax, we conclude this sec-
tion by pointing out some important details about the PythonSim classes. Entity
instances are typically dynamically generated through a simulation run. For ex-
ample, we might generate a new Entity instance representing a customer ev-
ery time an arrival event occurs. Entity instances have attributes that they
carry with them; by default each instance has an attribute called CreateTime ,
which is set to the value of Clock at its creation time. The FIFOQueue and
Resource classes each have an InstanceList class attribute, just like the
CTStat and DTStat classes, so that each queue and resource instance can
be properly reset between simulation replications. FIFOQueue objects have a
built-in CTStat for work-in-process (WIP), i.e., the number in the queue, and
Resource objects have a built-in CTStat for the number of busy resource units.
Each FIFOQueue and Resource instance’s built-in CTStat is automatically
added to SimClasses.CTStat.InstanceList as well. EventNotice in-
stances, like Entity instances, are typically dynamically generated as the simu-
lation progresses and are managed by an EventCalendar instance. Typically,
we have one EventCalendar instance for our simulation, and its attribute
ThisCalendar starts off as an empty list. EventNotice objects are added
to the EventCalendar instance and removed in chronological order when the
simulation clock time reaches their occurrence times.

In the following section, we discuss the PythonSim functions that act on Python-
Sim class instances as well as event-scheduling logic.
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4.1.6 Functions, Random-Number Generation, and Event
Scheduling in PythonSim

The modules SimFunctions.py and SimRNG.py contain Python functions
for managing events and initializing simulation replications, as well as random-
number generation. Using import SimFunctions and import SimRNG at
the beginning of a program allows access to both modules. The random-number
and random-variate generation routines are Python translations of the correspond-
ing routines in simlib (Law, 2007), which is written in C.

Here is a brief overview of the functions in PythonSim:

SimFunctions.SimFunctionsInit() initializes PythonSim for use by
“reseting” key objects, typically called before the start of each replication. Resets
the simulation clock, empties the event calendar, empties all queues, reinitializes
resources, and clears continuous-time and discrete-time statistics.

SimFunctions.Schedule() schedules future events on an event calendar.
SimFunctions.SchedulePlus() has the same functionality as

Schedule, with the additional capability of storing an object along with
the scheduled event.

SimFunctions.ClearStats() clears continuous-time and discrete-time
statistics.

SimRNG.InitializeRNSeed() initializes the random-number generator,
typically called only once in a simulation.

SimRNG.Expon() generates exponentially distributed random variates.
SimRNG.Uniform() generates uniformly distributed random variates.
SimRNG.RandomInteger() generates a random integer.
SimRNG.Erlang() generates Erlang distributed random variates.
SimRNG.Normal() generates normally distributed random variates.
SimRNG.Lognormal() generates lognormally distributed random variates.
SimRNG.Triangular() generates triangularly distributed random variates.

The random-variate generation functions take two types of arguments: param-
eters and a random-number stream; the random-number stream is always the last
argument. For instance,

X = SimRNG.Uniform(10, 45, 2)

generates random variates that are uniformly distributed between 10 and 45, using
stream 2.

As you already know, the pseudorandom numbers we use to generate random
variates in simulations are essentially a long list. Random-number streams are just
different starting places in this list, spaced far apart. The generator in PythonSim
(which is a translation of the generator in Law (2007)) has 100 streams. Calling
SimRNG.InitializeRNSeed sets the initial position of each stream. Then,
each subsequent call to a variate generation routine using stream # advances stream
# to the next pseudorandom number. The need for streams is discussed in Chap. 7,
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for reps in range(NumReps):

SimFunctions.SimFunctionsInit(Calendar)
<schedule events>

while <some stopping condition not yet met>:

NextEvent = Calendar.Remove()
SimClasses.Clock = NextEvent.EventTime

if NextEvent.Type == "A":
<do function A>

elif NextEvent.Type == "B":
<do function B>

<conditional statements for other event types>

<record replication statistics>

Fig. 4.2 Pseudocode outline for simulation experiment main loop

but it is important to know that any stream is as good as any other stream in a well-
tested generator.

Next, we discuss a general recipe for building discrete-event simulations in
PythonSim, putting the tools from the SimClasses, SimFunctions, and
SimRNGmodules all together. The code for the examples in Sects. 4.2–4.6 is loosely
divided into different parts:

• Imports: importing the PythonSim modules SimClasses, SimFunctions,
and SimRNG, and importing packages such as math, pandas, and numpy.

• Initialization and parameters: initializing a random-number generator, creating
an event calendar, creating discrete-time and continuous-time statistics as well
as lists to hold these statistics after each replication, and setting values such as
parameters in distributions and a number of simulation replications to run.

• Simulation functions: defining “helper functions” triggered when certain event
types occur.

• Simulation experiment: the main loop for running multiple replications of a sim-
ulation experiment.

• Simulation output: writing data to .csv files and printing relevant statistics.

In Fig. 4.2, we provide pseudocode outlining the general structure of a sim-
ulation experiment main loop. Suppose that NumReps is a positive integer for
the desired number of simulation replications and Calendar is an instance of
SimClasses.EventCalendar. The angle brackets are informal pseudocode,
intended to summarize code that varies based on the specific simulation program.
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def Schedule(calendar,EventType, TimeUntilEvent):
addedEvent = SimClasses.EventNotice()
addedEvent.EventType = EventType
addedEvent.EventTime = SimClasses.Clock + TimeUntilEvent
calendar.Schedule(addedEvent)

Fig. 4.3 SimFunctions.Schedule() function

The simulation main loop in the examples of Sects. 4.2–4.6 has an outer loop
for multiple simulation replications and an inner loop cycling through events within
each simulation replication. At the beginning of each simulation replication, call-
ing SimFunctions.SimFunctionsInit() and passing our event calendar
instance Calendar “resets” our simulation so that it starts fresh for the new repli-
cation. Then, we schedule events, such as the first event in the simulation (e.g., the
first customer arrival) and events with occurrence times that we know up front (e.g.,
a staff shift change time, a warm-up period, a simulation stopping time).

While a stopping condition is not yet met, the program cycles through events
on the event calendar. NextEvent = Calendar.Remove() removes and re-
turns the next event from Calendar. The statement SimClasses.Clock =
NextEvent.EventTime advances simulation clock time to this event’s occur-
rence time. Then, the program executes certain actions depending on the type of
the event. For example, an “arrival” event might trigger creating another Entity
instance and scheduling another arrival event on Calendar. Commonly, these ac-
tions are packaged in a previously defined helper function for more organized and
readable code. After the simulation replication, we record replication statistics.

We conclude this section by discussing SimFunctions.Schedule(),
which is shown in Fig. 4.3. This function is fundamental to a discrete-event sim-
ulation because it creates and schedules the events that drive our simulation. In
PythonSim, we schedule an event by calling SimFunctions.Schedule() and
passing our event calendar object, a string for the event type, and a time until event.
Notice that PythonSim requires the user to decide on the base time unit in the simu-
lation and to use it consistently throughout. SimFunctions.Schedule() cre-
ates a new EventNotice instance, which is inserted into the event calendar in
chronological order.

4.2 Simulating the M(t)/M/∞ Queue

Here, we consider the parking lot example of Sect. 3.1, a queueing system with a
time-varying car arrival rate, exponentially distributed parking time, and an infinite
number of parking spaces. The event-driven simulation program consists of initial-
ization and parameter specifications (Fig. 4.4), a function to generate car arrivals
(Fig. 4.5), event routines (Fig. 4.6), a main program loop (Fig. 4.7), and some out-
put printing and writing (Fig. 4.8). There are two important aspects of PythonSim
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that are illustrated by this example: event scheduling and keeping track of quantities
such as time-averaged statistics.

We begin by initializing the parking lot simulation and specifying parameters, as
shown in Fig. 4.4. The key state variable to track in the simulation is the number
of cars in the lot. We initialize a continuous-time statistic NumCars to track the
time-averaged number of cars in the lot. We can also use NumCars to easily collect
auxiliary statistics, such as the maximum value observed so far and the number of
cars in the lot at the end of the simulation run after 24 h. We initialize lists to hold
the results of each desired statistic after each independent simulation replication.
We also specify a MeanParkingTime of 2 and an EndSimulationTime of
24, where the units are in hours. We can choose our own units, but we must make
sure all functions and quantities reference consistent units.

There are two events that affect the number of cars in the parking lot: the
arrival of a car and the departure of a car. We define functions Arrival and
Departure, which are called whenever arrival and departure events occur, re-
spectively. These functions are defined in Fig. 4.6. Since only one car arrives
and departs at each arrival and departure event, respectively, we can easily keep
track of the total number of cars in the parking lot. Upon an arrival, we record
NumCars.Record(NumCars.Xlast + 1), since one car just arrived, and we
make an analogous record for each departure event.

The function NSPP, which stands for nonstationary Poisson process, is recruited
during an arrival event to compute interarrival times according to our desired non-
stationary arrival rate. Code is shown in Fig. 4.5. The formal definition of a nonsta-
tionary Poisson process is a topic of Chap. 6. However, here we provide an intuitive
justification for how NSPP works.

Recall that the arrival rate (in cars per hour) to the parking lot in Example 3.1
is modeled by the function λ (t) = 1000+ 100sin(πt/12). To make our simulation
execute more quickly for the purpose of this introduction, we scale down that rate
by a factor of 10 and instead use λ (t) = 100+10sin(πt/12). This new arrival rate
varies between 90 and 110 cars per hour, depending on the hour of the day t.

A stationary Poisson process has times between arrivals that are exponentially
distributed with a fixed rate λ (or equivalently, a constant mean time between ar-
rivals 1/λ ). The inverse cdf method for generating exponentially distributed random
variates is described in Sect. 2.2. The maximum arrival rate for λ (t) is 110 cars per
hour, so NSPP generates possible arrivals using a stationary arrival process with rate
λ = 110. To achieve the time-varying arrival rate, it only accepts a possible arrival
at time t as an actual arrival with probability λ (t)/λ . When λ (t) = 110, a possible
arrival is guaranteed to be an actual arrival, and when λ (t) = 90, a possible arrival
only has a 90/110 chance of becoming an actual arrival. Chapter 6 provides a rig-
orous explanation of how this “thinning” method generates a nonstationary Poisson
process with the desired rate.

While there is only one upcoming arrival event at any point in time, handling de-
parture events is trickier. There are not a fixed number of departure events because
there are as many pending departure events as there are cars in the lot. Therefore,
having a unique variable to represent the scheduled time of each pending event, as
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# PythonSim imports
import SimClasses
import SimFunctions
import SimRNG

# Python package imports
import math
import pandas

# Initialization
SimClasses.Clock = 0
ZSimRNG = SimRNG.InitializeRNSeed()
Calendar = SimClasses.EventCalendar()

# Create CTStat object for number of cars in lot
NumCars = SimClasses.CTStat()

# Example-specific statistics
# NumCarsAvg: list of average queue length in each replication
# NumCarsMax: list of max queue length in each replication
# NumCarsAt24Hrs: list of queue length at simulation end
# in each replication
NumCarsAvg = []
NumCarsMax = []
NumCarsAt24Hrs = []

# Parameters to specify
MeanParkingTime = 2.0
EndSimulationTime = 24

# Number of simulation experiment replications
NumReps = 10

Fig. 4.4 Initializing the parking lot simulation

was used for the TTF example in Chap. 2, does not work here. Discrete-event simu-
lations can easily accommodate the unlimited number of pending departure events,
by dynamically scheduling a departure event at each arrival event. Specifically, at
each arrival event, we schedule a departure event corresponding to the time that this
newly arriving car departs, as shown in the Arrival function in Fig. 4.6.

The main loop for simulation of the M/M/∞ queue is displayed in Fig. 4.7. In
addition to arrival and departure events, we also have a third type of event to stop
the simulation after 24 h. Figure 4.8 provides code for generating a dataframe from
our lists of statistics NumCarsAvg, NumCarsMax, and NumCarsAt24Hrs.

Figure 4.9 shows a histogram of the 1000 daily averages of the number of cars in
the parking lot obtained by running the simulation for 1000 replications; the overall
average of these averages is 184.2±0.3 cars, where the “±0.3” part comes from a
95% confidence interval on the mean (confidence intervals are a subject of Chap. 7).
Thus, the simulation provides a pretty precise estimate of the time-average mean
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def NSPP(Stream):
’’’
Generates next interarrival time until next nonstationary

Poisson arrival using thinning method

Input:
Stream: integer, corresponding to random number stream

Output:
nspp: float, positive, time until next nonstationary

Poisson arrival
’’’

PossibleArrival = SimClasses.Clock
Ratio = 0
while SimRNG.Uniform(0, 1, Stream) >= Ratio:

PossibleArrival += SimRNG.Expon(1.0/110, Stream)
Ratio = (100 + 10 * math.sin(math.pi

* PossibleArrival / 12)) / 110.0

nspp = PossibleArrival - SimClasses.Clock
return nspp

Fig. 4.5 Function to generate interarrival times to the parking lot

def Arrival():
’’’
Called when an arrival event occurs
Increments NumCars count by 1 and records
Schedules next arrival event
Also schedules departure event of car that just arrived
’’’

NumCars.Record(NumCars.Xlast + 1)

SimFunctions.Schedule(Calendar,"Arrival", NSPP(1))

SimFunctions.Schedule(Calendar,
"Departure",SimRNG.Expon(MeanParkingTime, 2))

def Departure():
’’’
Called when a departure event occurs
Decrements NumCars count by 1 and records
’’’

NumCars.Record(NumCars.Xlast - 1)

Fig. 4.6 Event routines for the parking lot simulation
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for Reps in range(0,NumReps):

# Initialize simulation objects and schedule first event
# and end-of-simulation event
SimFunctions.SimFunctionsInit(Calendar)
SimFunctions.Schedule(Calendar,"Arrival",NSPP(1))
SimFunctions.Schedule(Calendar,
"EndSimulation", EndSimulationTime)

# Main simulation loop
while Calendar.N() > 0:

NextEvent = Calendar.Remove()
SimClasses.Clock = NextEvent.EventTime
if NextEvent.EventType == "Arrival":

Arrival()
elif NextEvent.EventType == "Departure":

Departure()
elif NextEvent.EventType == "EndSimulation":

break

# Add replication statistics to respective lists
NumCarsAvg.append(NumCars.Mean())
NumCarsMax.append(NumCars.Max)
NumCarsAt24Hrs.append(NumCars.Xlast)

Fig. 4.7 Main program for the parking lot simulation

# Create dataframe for replication statistics
# and write to csv file
output = pandas.DataFrame(

{"NumCarsAvg" : NumCarsAvg,
"NumCarsMax": NumCarsMax,
"NumCarsAt24Hrs" : NumCarsAt24Hrs})

output.to_csv("MMInfinity_output.csv", sep=",")

print("Replication Stats")
print(output)

print("Means")
print(output.mean())

Fig. 4.8 Printing and writing output
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Fig. 4.9 Histogram of the daily average number of cars
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Fig. 4.10 Empirical cdf of the daily maximum number of cars in the parking lot

number of cars that would be found in the (conceptually) infinite-size garage during
a day.

The histogram shows that the average number of cars in the garage can vary
substantially from day to day, so we certainly would not want to build a garage with
a capacity of, say, 185 cars. Furthermore, averaging over the day masks the largest
number of cars in the garage during the day and that number is more useful for
selecting a finite capacity for the garage.

Suppose that we want the parking lot to be of adequate size 99% of the time.
Since we record the maximum size on 1000 replications, we could use the 990th
value (sorted from smallest to largest) as the size of the garage, which turned out to
be 263 cars in this simulation. Figure 4.10 shows the empirical cumulative distribu-
tion (ecdf) of the 1000 maximums recorded by the simulation. The ecdf treats each
observed value as equally likely (and therefore as having probability 1/1000) and
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plots the sorted maximum values on the horizontal axis and the cumulative proba-
bility of each observation on the vertical axis. The plot shows how the cumulative
probability of 0.99 maps to the value of 263 cars, which might be a very reasonable
capacity for the garage. Putting a confidence interval on this value is quite different
from putting one on the mean and will be discussed in Chap. 7. Without a confidence
interval (or some measure of error), we cannot be sure if 1000 replications are really
enough to estimate the 99th percentile of the maximum.

4.2.1 Issues and Extensions

1. The M(t)/M/∞ simulation presented here simulates 24 h of parking lot operation
and treats each 24-h period as an independent replication starting with an empty
garage. This only makes sense if the garage is emptied each day, for instance, if
the mall closes at night. Is the assumed arrival rate λ (t) appropriate for a mall
that closes at night?

2. Suppose that the parking lot serves a facility that is actually in operation 24 h a
day, 7 days per week (i.e., all the time). How should the simulation be initialized,
and how long should the run length be in this case?

3. How could the simulation be initialized so that there are 100 cars in the parking
lot at time 0?

4. When this example was introduced in Sect. 3.1, it was suggested that we size the
garage based on the (Poisson) distribution of the number of cars in the garage at
the point in time when the mean number in the garage was maximum. Is that what
we did, empirically, here? If not, how is the quantity we estimated by simulation
related to the suggestion in Sect. 3.1 (for instance, will the simulation tend to
suggest a bigger or smaller garage than the analytical solution in Sect. 3.1?).

5. One reason that this simulation executes quite slowly when λ (t) = 1000+
100sin(πt/12) is that the thinning method we used is very inefficient (lots of
possible arrivals are rejected). Speculate about ways to make it faster.

6. For stochastic processes experts, another reason that the simulation is slow when
λ (t) = 1000+ 100sin(πt/12) is that there can be 1000 or more pending depar-
ture events on Calendar at any time, which means that scheduling a new event
in chronological order involves a slow search. However, it is possible to exploit
the memoryless property of the exponential distribution of parking time to create
an equivalent simulation that has only two pending events (the next car arrival
and the next car departure) at any point in time. Describe how to do this.

4.3 Simulating the M/G/1 Queue

Here, we consider the hospital example of Sect. 3.2, a queueing system with Poisson
arrival process, some (not yet specified) service-time distribution, and a single server
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(either a receptionist or an electronic kiosk). In other words, here we have an M/G/1
queue. Patient waiting time, specifically the long-run average waiting time, is the
key performance measure.

In this section, we will describe both recursion-based and event-based simula-
tions of this queue, starting with the recursion. The recursion-based simulation uses
Lindley’s equation (3.3), which avoids the need for an event-based simulation, but
this approach is limited in the ability to track quantities of interest. For example,
Lindley’s equation does not provide a way to track the time-average number of en-
tities in the system.

4.3.1 Lindley Simulation of the M/G/1 Queue

Lindley’s equation (3.3) is

Y0 = 0 X0 = 0

Yi = max{0,Yi−1+Xi−1−Ai}, i = 1,2, . . . ,

where Yi is the ith customer’s waiting time, Xi is that customer’s service time, and
Ai is the interarrival time between customers i−1 and i.

Suppose that the mean time between arrivals is 1min, with the distribution being
exponential, and the mean time to use the kiosk is 0.8min (48 s), with the distribu-
tion being an Erlang-3. An Erlang-p is the sum of p i.i.d. exponentially distributed
random variables, so an Erlang-3 with mean 0.8 is the sum of three exponentially
distributed random variables each with mean 0.8/3.

Recall from Sect. 3.2 that the waiting-time random variables Y1,Y2, . . . con-
verge in distribution to a random variable Y . To summarize the long-run perfor-
mance of the queueing system, we are interested in μ = E(Y ). We know that
Ȳ (m) = m−1∑m

i=1Yi converges with probability 1 to μ as the number of simulated
customers m goes to infinity.

Although it seems reasonable to make a very long simulation run by choosing
a very large m and using Ȳ (m) to estimate μ , we do not use this approach due
to the following issue. Waiting times early in a simulation run pull Ȳ (m) down.
This behavior occurs because at the beginning of a simulation run, the queue starts
empty, and waiting times early in the run tend to be smaller than μ . The impact
of early waiting times with a downward bias becomes negligible as m → ∞, but in
practice whatever number m of customers we simulate is finite and the impact of
early waiting times does affect Ȳ (m).

To reduce this impact of early waiting times, we use a warm-up period. During
a simulation run, we let the simulation generate some waiting times (say d of them)
before starting to actually include them in our average. We still make m large, but
our average only includes the last m−d waiting times. That is, we use the truncated
average as our estimator:
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import SimRNG
import pandas
import numpy

ZRNG = SimRNG.InitializeRNSeed()

WaitTimeAvg = []

# Parameters to specify
# Units are in minutes
MeanTBA = 1.0 # mean time-between-arrivals
MeanST = 0.8 # mean service time
Phases = 3 # number of Erlang distribution phases
m = 55000 # number of customers to simulate
d = 5000 # number of customers in warm-up period

# Number of simulation experiment replications
NumReps = 10

for Rep in range(NumReps):

Y = 0
SumY = 0

# Warm-up period -- these waiting times
# are not saved or recorded
for i in range(0,d):

A = SimRNG.Expon(MeanTBA, 1)
X = SimRNG.Erlang(Phases, MeanST, 2)
Y = max(0, Y + X - A)

# End of warm-up period -- these waiting times
# are kept and used for estimation
for i in range(d,m):

A = SimRNG.Expon(MeanTBA, 1)
X = SimRNG.Erlang(Phases, MeanST, 2)
Y = max(0, Y + X - A)
SumY = SumY + Y

WaitTimeAvg.append(SumY/(float(m-d)))

# Create dataframe for replication statistics
# and write to CSV file
WaitTimeAvg = pandas.DataFrame({"WaitTimeAvg": WaitTimeAvg})
WaitTimeAvg.to_csv("WaitTimeAvg.csv", sep=",")

print("Means")
print(WaitTimeAvg.mean())

Fig. 4.11 Simulation of the M/G/1 queue with Lindley’s equation
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Table 4.1 Ten replications of the M/G/1 queue using Lindley’s equation

Replication Ȳ (55,000,5000)
1 2.191902442
2 2.291913404
3 2.147858324
4 2.114346960
5 2.031447995
6 2.110924602
7 2.132711743
8 2.180662859
9 2.139610760
10 2.146212039

Average 2.148759113
std. dev. 0.066748617

Ȳ (d,m) =
1

m−d

m

∑
i=d+1

Yi. (4.1)

In addition, rather than only conduct a single run of m customers, we instead make
n replications, yielding n i.i.d. averages Ȳ1(d,m),Ȳ2(d,m), . . . ,Ȳn(d,m) to which we
can apply standard statistical analysis. This avoids the need to directly estimate the
asymptotic variance γ2, a topic we defer to later chapters.

Figure 4.11 shows a PythonSim simulation of the M/G/1 queue using Lindley’s
equation. We run n = 10 simulation replications, and in each run we simulate m =
55,000 customers and discard the data from first d = 5000 of them. The estimates
of average waiting time from each replication are displayed in Table 4.1.

Notice that the average waiting time is a bit over 2min and that Python, like all
programming languages, displays a very large number of output digits. How many
are really meaningful? A confidence interval is one way to provide an answer.

Since the across-replication averages are i.i.d., and since each across-replication
average is itself the within-replication average of a large number of individual wait-
ing times (50,000 to be exact), the assumption of independent, normally distributed
output data is reasonable. This assumption justifies a t-distribution confidence in-
terval on μ . The key ingredient is t1−α/2,n−1, the 1−α/2 quantile of the t distri-
bution with n− 1 degrees of freedom. If we want a 95% confidence interval, then
1−α/2 = 0.975, and our degrees of freedom are 10−1 = 9. Since t0.975,9 = 2.26,
we get 2.148759113± (2.26)(0.066748617)/

√
10 or 2.148759113±0.047703552.

This implies that we can claim with high confidence that μ is around 2.1min, or
we could give a little more complete information as 2.14±0.05min. Any additional
digits are statistically meaningless.

Is an average of 2min too long to wait? To actually answer that question would
require some estimate of the corresponding wait to see the receptionist, either from
observational data or a simulation of the current system. Statistical comparison of
alternatives is a topic of Chap. 9.
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4.3.2 Event-Based Simulation of the M/G/1 Queue

The event-driven simulation program consists of initialization and parameter speci-
fications (Fig. 4.12), event routines (Fig. 4.13), a main program loop (Fig. 4.14), and
output generation (Fig. 4.15).

Four PythonSim class objects and one function are illustrated by this model:
Entity, FIFOQueue, Resource, DTStat and ClearStats. In this simula-
tion, the Entity objects represent patients. We create an instance of FIFOQueue
called Queue to represent the patients waiting to use the kiosk. We use a
Resource object to represent the kiosk.

We are interested in long-run average patient waiting time, so we create a
DTStat instance called WaitTime to keep track of the average of all observed
waiting times within a simulation replication. FIFOQueue objects automatically
create a CTStat instance that keeps track of the average number in the queue. We
can also use Queue.NumQueue() to access the current number in the queue at
any point in time. When called at the end of a replication, Queue.NumQueue() is
the number of patients still in the queue at the end of the simulation. Resource ob-
jects automatically create a CTStat instance that keeps track of the average number
of busy resource units, and in our setting this statistic is equivalent to the average
kiosk utilization, i.e., the average proportion of time the kiosk is in use. Initialization
of these statistics as well as parameter designation is shown in Fig. 4.12.

Next, we discuss arrival and end-of-service events, which are the two types of
recurring events that drive the simulation, as shown in Fig. 4.13. Arrival() rep-
resents an arrival event and creates a new patient instance and adds this new pa-
tient to the queue. If the kiosk is not being used, then there are no other patients
waiting either, so the patient who has just arrived can immediately begin using the
kiosk. When a new patient begins service on a kiosk, we do the following: seize
the server, remove the patient starting service from the queue, record that patient’s
waiting time, and schedule that patient’s corresponding end-of-service event. Ad-
ditionally, the next arrival event is scheduled. EndOfService() represents an
end-of-service event. When called, we free the server so that it is no longer busy.
If the queue is nonempty, the first patient in the queue begins service at the kiosk.
Just as in the Arrival() routine, when this new patient begins service on a kiosk,
we seize the server, remove the patient starting service from the queue, record the
observed waiting time, and schedule the next end-of-service event.

Notice that Queue.Add(Patient) adds Patient to the end of Queue,
which preserves order and a first-in-first-out policy. Queue.Remove() both re-
moves and returns the SimClasses.Entity() instance at the front of Queue.
Therefore, NextPatient = Queue.Remove() captures this instance and al-
lows us to access attributes such as NextPatient.CreateTime, which in this
example is the arrival time (in simulation clock time) of that patient. The time dif-
ference between a patient’s service start time and arrival time is that patient’s wait-
ing time, which is why we log WaitTime.Record(SimClasses.Clock -
NextPatient.CreateTime).
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Before a Resource object can be used, its capacity (the number of identical
units) must be set. This is accomplished by using the object’s SetUnit method,
Server.SetUnits(1). If, for instance, there were three identical kiosks, then
this statement would be Server.SetUnits(3). To make one (or more) units of
a Resource busy, the Seize method is employed, while idling a Resource is
accomplished via the Free method.

In addition to arrival and end-of-service events, we need two other types of
events, each of which only occurs once. We require an event corresponding to the
end of a “warm-up period” and an end of simulation event to stop the simulation
run. The warm-up period is the time that a simulation replication runs before we
collect results. At the end of the warm-up period, we clear statistics. The approach
here is analogous to the truncated average approach of Sect. 4.3.1.

Because we are interested in long-run performance, we must decide on when
the end of the warm-up period and when the end of the simulation run occur. This
decision is not a trivial one, because using a warm-up period that is too brief may
lead to biased results and simulating a replication over a time horizon that is too
short cannot generate results that capture long-run behavior. Furthermore, when us-
ing Lindley’s equation (3.3) and the estimator Ȳ (d,m) (4.1), it is natural to work in
units of “number of patients to simulate.” In other words, d and m are patient counts.
But in event-driven simulations with more complicated logic and more kinds of out-
puts, it is far more common to work in units of simulation clock time, which is also
ideal for continuous-time statistics like the time-average number in queue. Whereas
we discard data after a certain count of d customers when using Lindley’s equation,
we discard data after a certain time when using an event-driven simulation. Simi-
larly, we stop a simulation replication at a stopping time chosen to be long enough
to obtain good estimates for all desired outputs.

We schedule two events: a statistics clearing event “ClearIt” that calls
ClearStats at time t1 = 5000min in the simulation run and an “EndSimulation”
event at time t2 = 55,000min. Because the arrival rate is on average 1 per minute, t1
and t2 approximately correspond to the simulation time needed to observe 5000 and
55,000 patients, respectively; however, the actual number of patients is random and
varies from replication to replication.

We define an estimator that is a function of t1 and t2 rather than patient counts:

Ȳ ′(t1, t2) =
1

N(t2)−N(t1)

N(t2)

∑
i=N(t1)

Yi, (4.2)

where Yi is the ith patient’s waiting time, 0< t1 < t2, and

N(t) =

{
maxn :

n

∑
i=1

Yi ≤ t

}
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is the number of patients who have arrived and started service (finished their waiting
times) by simulation time t. In other words, Ȳ ′(t1, t2) is a replication average of all
waiting times recorded between times t1 and t2.

Clearly, Ȳ (d,m), which is based on count, has different statistical properties than
Ȳ ′(t1, t2), which is based on time. But both are good estimators of μ provided that
their arguments are large enough and fixed, meaning that they do not depend on the
data.

For this event-based simulation, it is easy to record and report a num-
ber of statistics. FIFOQueue, Resource and DTStat objects all have
Mean methods for reporting average values. At the end of each replication,
the values of WaitTime.Mean(), Queue.Mean(), Queue.NumQueue(),
and Server.Mean() are appended to respective lists WaitTimeAvg,
QueueLengthAvg, QueueLengthAtEnd, and NumBusyServersAvg. See
Figs. 4.12 and 4.14 for details. The ith element of each list holds the statistic re-
sult from the ith simulation replication, and this format is conducive to writing the
experiment data to a .csv file, as shown in Fig. 4.15.

Table 4.2 shows the results from ten replications, along with the overall averages
and 95% confidence interval halfwidths. Again, there are meaningless digits, but the
confidence intervals can be used to prune them. For instance, for average waiting
time, we could report 2.13±0.04min.

4.3.3 Issues and Extensions

1. In what situations does it make more sense to compare the simulated kiosk sys-
tem to simulated data from the current receptionist system rather than real data
from the current receptionist system?

2. It is clear that if all we are interested in is mean waiting time, defined either
as time until service begins or as the total time including service, the Lindley
approach is superior (since it is clearly faster, and we can always add in the
mean service time to the Lindley estimate). However, if we are interested in the
distribution of total waiting time, then adding in the mean service time does not
work. How can the Lindley recursion be modified to simulate total waiting times?

3. How can the event-based simulation be modified so that it also records the total
time in system (the time waiting for service plus the service time)?

4. How can the event-based simulation be modified to clear statistics after exactly
5000 patients and to stop at exactly 55,000 patients?
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# PythonSim imports
import SimClasses
import SimFunctions
import SimRNG

# Python package imports
import math
import pandas

# Initialization
SimClasses.Clock = 0
ZSimRNG = SimRNG.InitializeRNSeed()
Calendar = SimClasses.EventCalendar()
Queue = SimClasses.FIFOQueue()
WaitTime = SimClasses.DTStat()
Server = SimClasses.Resource()

# Example-specific statistics
# WaitTimeAvg: list of average patient waiting time
# in each replication
# QueueLengthAvg: list of average queue length
# in each replication
# QueueLengthAt24Hrs: list of queue length at simulation end
# in each replication
# NumBusyServersAvg: list of time-averaged number
# of busy servers in each replication
WaitTimeAvg = []
QueueLengthAvg = []
QueueLengthAtEnd = []
NumBusyServersAvg = []

# Parameters to specify
# Units are in minutes
Server.SetUnits(1) # set number of servers to 1
MeanTBA = 1.0 # mean time-between-arrivals
MeanST = 0.8 # mean service time
Phases = 3 # number of Erlang distribution phases
RunLength = 55000.0 # run length in minutes
WarmUp = 5000.0 # warm-up period length in minutes

# Number of simulation experiment replications
NumReps = 10

Fig. 4.12 Initializing the hospital simulation
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def Arrival():
’’’
Called when a new patient arrives
Creates a new patient instance corresponding to

arriving patient and adds this to the queue
If server (kiosk) is free, then new patient

starts service and their waiting time
is recorded in DTStat WaitTime

Schedules the next arrival event
’’’

Patient = SimClasses.Entity()
Queue.Add(Patient)

# If kiosk idle, service begins on new patient
if Server.CurrentNumBusy == 0:

Server.Seize(1)
NextPatient = Queue.Remove()
WaitTime.Record(SimClasses.Clock

- NextPatient.CreateTime)
SimFunctions.Schedule(Calendar,

"EndOfService",SimRNG.Erlang(Phases,MeanST,2))

SimFunctions.Schedule(Calendar,
"Arrival",SimRNG.Expon(MeanTBA, 1))

def EndOfService():
’’’
Called when a patient finishes service
If there are other patients in the queue,

then patient at the front starts service,
their end of service event is scheduled,
and their waiting time is recorded

Otherwise, the server (kiosk) becomes idle
’’’

Server.Free(1)

# Next patient in line starts using kiosk
if Queue.NumQueue() > 0:

Server.Seize(1)
NextPatient = Queue.Remove()
WaitTime.Record(SimClasses.Clock

- NextPatient.CreateTime)
SimFunctions.Schedule(Calendar,

"EndOfService",SimRNG.Erlang(Phases,MeanST,2))

Fig. 4.13 Event routines for the hospital simulation
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for reps in range(0,NumReps):

# Initialize simulation objects and
# schedule first event, end-of-simulation event,
# and event to clear statistics after warm-up period
SimFunctions.SimFunctionsInit(Calendar)
SimFunctions.Schedule(Calendar,

"Arrival",SimRNG.Expon(MeanTBA, 1))
SimFunctions.Schedule(Calendar,"EndSimulation",RunLength)
SimFunctions.Schedule(Calendar,"ClearIt",WarmUp)

# Main simulation loop
while Calendar.N() > 0:

NextEvent = Calendar.Remove()
SimClasses.Clock = NextEvent.EventTime
if NextEvent.EventType == "Arrival":

Arrival()
elif NextEvent.EventType == "EndOfService":

EndOfService()
elif NextEvent.EventType == "ClearIt":

SimFunctions.ClearStats()
elif NextEvent.EventType == "EndSimulation":

break

# Add replication statistics to respective lists
WaitTimeAvg.append(WaitTime.Mean())
QueueLengthAvg.append(Queue.Mean())
QueueLengthAtEnd.append(Queue.NumQueue())
NumBusyServersAvg.append(Server.Mean())

Fig. 4.14 Main program for the hospital simulation

# Create dataframe for replication statistics
# and write to csv file
output = pandas.DataFrame(

{"WaitTimeAvg": WaitTimeAvg,
"QueueLengthAvg": QueueLengthAvg,
"QueueLengthAtEnd" : QueueLengthAtEnd,
"NumBusyServersAvg": NumBusyServersAvg})

output.to_csv("MG1_output.csv", sep=",")

print("Means")
print(output.mean())

print("Standard Deviation")
print(numpy.sqrt(output.var(ddof = 1)))

print("95% CI Half-Width")
print(1.96*numpy.sqrt(output.var(ddof = 1)/len(output)))

Fig. 4.15 Output for the hospital simulation
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Table 4.2 Ten replications of the M/G/1 queue using event-based simulation

Replication Wait Avg Queue Avg Remaining Utilization
1 2.195532 2.210769 0 0.806655
2 2.302218 2.320497 6 0.807273
3 2.150942 2.149009 1 0.799339
4 2.053335 2.051967 0 0.794694
5 2.107930 2.101822 1 0.798616
6 2.093995 2.094918 2 0.801967
7 2.108793 2.102555 0 0.798657
8 2.117575 2.113171 3 0.795435
9 2.123434 2.124378 0 0.799157
10 2.070940 2.063029 0 0.799144

Average 2.132469 2.133211 1.300000 0.800093
std. dev. 0.071591 0.079399 1.946507 0.004157
±95% CI 0.044372 0.049212 1.206457 0.002577

5. The experiment design method illustrated in the event-based simulation is of-
ten called the “replication–deletion” method. If we only had time to generate
500,000 waiting times, what issues should be considered in deciding the values
of n (replications), m (run length), and d (deletion amount)? Notice that we must
have nm = 500,000, and only n(m−d) observations will be used for estimating
the mean μ .

6. An argument against summarizing system performance by long-run measures is
that no system stays unchanged forever (for instance there could be staff changes,
construction, or emergencies), so a measure like μ is not a reflection of reality.
The counter-argument is that it is difficult, if not impossible, to model all of
the detailed changes that occur over any time horizon (even the time-dependent
arrival process in the M(t)/M/∞ simulation is difficult to estimate in practice),
so long-run performance at least provides an understandable summary measure.
(“If our process stayed the same, then over the long run. . . ”) Also, it is often
mathematically easier to obtain long-run measures than it is to estimate them by
simulation (since simulations have to stop). Considering these issues, what sort
of analysis makes the most sense for the hospital problem?

4.4 Simulating the Stochastic Activity Network

Here, we consider the construction example of Sect. 3.4, which is represented as a
stochastic activity network (SAN). Recall that the time to complete the project, Y ,
can be represented as

Y =max{X1+X4,X1+X3+X5,X2+X5},
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where Xi is the duration of the ith activity. This simple representation requires that
we enumerate all paths through the SAN, so that the project completion time is
the longest of these paths. Path enumeration itself can be time consuming, and this
approach does not easily generalize to projects that have resources shared between
activities, for instance. Therefore, we also present a discrete-event representation,
which is more complicated, but also more general.

4.4.1 Maximum Path Simulation of the SAN

Figure 4.16 shows an implementation of the algorithm displayed in Sect. 3.4 and
repeated here:

1. set s = 0
2. repeat n times:

a. generate X1,X2, . . . ,X5

b. set Y =max{X1+X4,X1+X3+X5,X2+X5}
c. if Y > tp then set s = s+1

3. estimate θ by θ̂ = s/n

Since Pr{Y ≤ tp} is known for this example (see Eq. (3.12)), the true θ = Pr{Y >
tp} = 0.165329707 when tp = 5 is also computed by the program so that we can
compare it to the simulation estimate. Of course, in a practical problem, we would
not know the answer, and we would be wasting our time simulating it if we did. No-
tice that all of the digits in this probability are correct—assuming that the numerical
functions in Python did their job—although certainly not practically useful.

The simulation estimate turns out to be θ̂ = 0.164, and the Python code for com-
puting this estimate is displayed in Fig. 4.16. A nice feature of a probability estimate
that is based on i.i.d. outputs is that an estimate of its standard errors is easily com-
puted:

ŝe=

√
θ̂(1− θ̂)

n
.

Thus, ŝe is approximately 0.011, and the simulation has done its job since the true
value θ is well within ±1.96 ŝe of θ̂ . This is a reminder that simulations do not
deliver the answer, such as Eq. (3.12), but do provide the capability to estimate the
simulation error and to reduce that error to an acceptable level by increasing the
simulation effort (the number of replications).
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# imports
import SimRNG
import math

ZRNG = SimRNG.InitializeRNSeed()

NumReps = 10000

# Counter for number of times Y > tp
counter = 0

# Desired completion time for the project
tp = 5

# Main simulation loop
for rep in range(0,NumReps):

X = []
for i in range(0,5):

X.append(SimRNG.Expon(1.0,7))
Y = max(X[0] + X[3], X[0] + X[2] + X[4], X[1] + X[4])

if Y > tp:
counter = counter + 1

# Compute closed-form solution for P{Y < tp}
Theta = 1- ((tp ** 2 / 2.0 - 3 * tp - 3)

* math.exp(-2 * tp)
+ (-tp ** 2 / 2.0 - 3 * tp + 3)
* math.exp(-tp) + 1 - math.exp(-3 * tp))

print("Estimated P{Y < tp}")
print(counter/NumReps)

print("Closed form P{Y < tp}")
print(Theta)

Fig. 4.16 Simulation of the SAN as the maximum path through the network

4.4.2 Discrete-Event Simulation of the SAN

As usual, we organize our event-driven simulation into subsections of initialization
and parameter specifications (Figs. 4.17 and 4.18), definition of a “milestone” event
(Fig. 4.19), the main simulation loop (Fig. 4.20), and output generation (Fig. 4.21).

This example uses more advanced PythonSim constructs than any other part of
the book and may be skipped without loss of continuity. Specifically, we discuss
Activity and Node objects and the use of SchedulePlus to assign objects to
the WhichObject attribute of EventNotice instances.
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# PythonSim imports
import SimClasses
import SimFunctions
import SimRNG

# Python package imports
import pandas

# Initialization
SimClasses.Clock = 0.0
ZSimRNG = SimRNG.InitializeRNSeed()
Calendar = SimClasses.EventCalendar()

# Number of simulation replications
NumReps = 10000

# Stores each replication’s completion time
CompletionTime = []

a = SimClasses.Node()
b = SimClasses.Node()
c = SimClasses.Node()
d = SimClasses.Node()

X1 = SimClasses.Activity()
X2 = SimClasses.Activity()
X3 = SimClasses.Activity()
X4 = SimClasses.Activity()
X5 = SimClasses.Activity()

X1.Destination = b
X2.Destination = c
X3.Destination = c
X4.Destination = d
X5.Destination = d

Fig. 4.17 Initializing the discrete-event SAN simulation

First, we discuss Activity and Node objects and how they are used to cap-
ture the structure of a stochastic activity network. As shown in Fig. 4.17, we ini-
tialize one Node instance for each node in the SAN, creating a,b,c, and d. We
initialize one Activity instance for each activity and assign each activity’s corre-
sponding destination node to the activity’s Destination attribute. For example,
X1.Destination = b.

We create a function SANInit() to be called at the beginning of each replica-
tion (see Fig. 4.18). In this function, we fill in each Node object’s Incoming and
Outgoing attributes and also set each Activity object’s CompletionTime
to a random variable with the correct distribution. A Node object’s Incoming at-
tribute is a list of Activity objects, representing unfinished incoming activities.
As these activities are completed within a simulation run, they are removed from
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def SANInit():
’’’
Called at beginning of every replication
Defines example-specific graph structure

and specifies the distribution
for each activity duration

For each Node instance,
Incoming attribute is list of unfinished

incoming activities
Outgoing attribute is a list of unscheduled

outgoing activities
Activity instances are removed

from their lists when completed
’’’

a.Incoming = []
a.Outgoing = [X1,X2]

b.Incoming = [X1]
b.Outgoing = [X3,X4]

c.Incoming = [X2,X3]
c.Outgoing = [X5]

d.Incoming = [X4,X5]
d.Outgoing = []

X1.CompletionTime = SimRNG.Expon(1,1)
X2.CompletionTime = SimRNG.Expon(1,1)
X3.CompletionTime = SimRNG.Expon(1,1)
X4.CompletionTime = SimRNG.Expon(1,1)
X5.CompletionTime = SimRNG.Expon(1,1)

Fig. 4.18 Initializing the discrete-event SAN simulation, continued

the list. The Outgoing attribute is also a list of Activity objects and represents
outgoing activities that are not yet scheduled on the event calendar. Only after all
incoming activities into a node are finished can the node’s outgoing activities com-
mence, and once they are scheduled, they are removed from Outgoing. We wrap
these aforementioned assignments in SanInit() because we need each node’s
incoming and outgoing lists to reset at the beginning of each simulation replication,
and we need new random variables for each activity’s random completion times
with each simulation replication.

Next, we discuss the only type of event we need, called “event milestones.” Event
milestones are described in Fig. 4.19. As noted in Sect. 3.4, we can think of the
completion of a project activity as an event. When all of the inbound activities I ( j)
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to a node j are completed, then the outbound activities i ∈ O( j) are scheduled,
with the destination milestone of activity i being D(i). A brief description of event
milestone logic is shown below.

event milestone (activity � inbound to node j)
I ( j) = I ( j)− �
if I ( j) = /0 then

for each activity i ∈ O( j)
schedule milestone(activity i inbound to node D(i) at Xi time units later)

end if

The event-driven simulation approach using milestones avoids enumeration of
all of the paths through the SAN. We only have to keep track of the sets I ( j)
and O( j) for each node j and the destinations D(i) for each activity i, which we
need to specify any way to define the project itself, regardless of which simulation
approach we use. We take care of housekeeping for these sets and destinations using
our Activity and Node objects. One key takeaway from the event-driven SAN
simulation is that object-oriented programming can capture network structures in a
simple way.

The main simulation loop is displayed in Fig. 4.20. Each simulation is kick-
started by scheduling the first milestone with the function Milestone(None,a).
We input None as the parameter for ActivityIn because a is the first node and
has no incoming activities, and the first events on the event calendar are a’s outgoing
activities.

The SAN example introduces the function SchedulePlus, which
is identical to Schedule except for the addition of a fourth param-
eter called TheObject. The argument for TheObject becomes an
additional attribute WhichObject of an EventNotice instance,
which is then added to the event calendar in the usual way. Using
SimFunctions.SchedulePlus(Calendar, ‘‘Milestone’’,
NextActivity.CompletionTime, NextActivity) (Fig. 4.19) is
important because of the special structure of a SAN—we need to know
which activity is completed whenever a milestone event occurs. At each
event, we set CurrentActivity = NextEvent.WhichObject,
which determines the next milestone Milestone(CurrentActivity,
CurrentActivity.Destination) (Fig. 4.20). Because we need the in-
bound activity and the target node, and since this information is needed when a
milestone event is executed, not when it is scheduled, we need to store this informa-
tion with the event notice. Using SchedulePlus makes it possible to program a
single event routine to handle many simulation events that are conceptually distinct,
by passing event-specific information to the event routine.

The SAN project ends when all activities have been completed, so rather than
create an event for a simulation end time, we simply end each simulation run
when there are no longer any events on the event calendar. As shown in Fig. 4.20,
Calendar.N returns the number of events currently on the event calendar, and the
simulation replication ends when this quantity is 0. At simulation termination, the
simulation clock time SimClasses.Clock is the project completion time. We
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def Milestone(ActivityIn, DestinationNode):
’’’
Removes ActivityIn from DestinationNode’s

Incoming list
If all incoming activities of DestinationNode

have finished, begin all outgoing activities
and schedule completion times

Input:
ActivityIn: Activity object
DestinationNode: Node object that is the

destination of ActivityIn
’’’

if ActivityIn in DestinationNode.Incoming:
DestinationNode.Incoming.remove(ActivityIn)

if len(DestinationNode.Incoming) == 0:
while len(DestinationNode.Outgoing) > 0:

NextActivity = DestinationNode.Outgoing.pop()
SimFunctions.SchedulePlus(Calendar,"Milestone",

NextActivity.CompletionTime, NextActivity)

Fig. 4.19 Milestone event for the discrete-event SAN simulation

append this quantity to a list CompletionTime, which stores completion times
from all replications, and Fig. 4.21 provides a basic script for simple data analysis.

We can estimate Pr{Y > tp}, where Y is project completion time, for any given
value of tp by counting how many entries of CompletionTime are greater than
tp. Figure 4.22 shows the empirical cdf of 1000 project completion times, which is
the simulation estimate of Eq. (3.12).

4.4.3 Issues and Extensions

1. In real projects, there are not only activities but also limited and often shared
resources that are needed to complete the activities. Furthermore, there may be
specific resource allocation rules when multiple activities contend for the same
resource. How might this be modeled in PythonSim?

2. Time to complete the project is an important overall measure, but at the plan-
ning stage it may be more important to discover which activities or resources are
the most critical to on-time completion of the project. What additional output
measures might be useful for deciding which activities are “critical”?
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for rep in range(0,NumReps):

# Reset incoming and outgoing activities
# for each node and reset other simulation objects
SANInit()
SimFunctions.SimFunctionsInit(Calendar)

# Set up first milestone
# This also schedules initial calendar events
# since the starting node has no incoming
# activities
Milestone(None,a)

# Main simulation loop
while Calendar.N() > 0:

NextEvent = Calendar.Remove()
SimClasses.Clock = NextEvent.EventTime
CurrentActivity = NextEvent.WhichObject
Milestone(CurrentActivity,CurrentActivity.Destination)

CompletionTime.append(SimClasses.Clock)

Fig. 4.20 Main program for the discrete-event SAN simulation

CompletionTime = pandas.DataFrame(
{"Completion Time": CompletionTime})

CompletionTime.to_csv("CompletionTime.csv", sep=",")

print("Means")
print(CompletionTime.mean())

Fig. 4.21 Output for the discrete-event SAN simulation
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Fig. 4.22 Empirical cdf of the project completion times
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4.5 Simulating the Asian Option

Here, we consider estimating the value of an Asian option

ν = E
[
e−rT (X̄(T )−K)

+
]

as described in Sect. 3.5. This estimation problem is an example in which a discrete-
event simulation approach is actually unnecessary and even undesirable due to over-
head. Instead of using an event calendar, we use a simple loop for numerical com-
putation.

The maturity is T = 1 year, the risk-free interest rate is r = 0.05 and the strike
price is K = $55. The underlying asset has an initial value of X(0) = $50 and the
volatility is σ2 = (0.3)2.

Recall that the key quantity is

X̄(T ) =
1
T

∫ T

0
X(t)dt,

the time average of a continuous-time, continuous-state geometric Brownian motion
process, which we cannot truly simulate on a digital computer. Thus, we approxi-
mate X̄(T ) it by dividing the interval [0,T ] into m steps t1, t2, . . . , tm−1, tm and using
the discrete approximation

¯̂X(T ) =
1
m

m

∑
i=1

X(ti).

This makes simulation possible, since

X(ti+1) = X(ti)exp

{(
r− 1

2
σ2
)
(ti+1− ti)+σ

√
ti+1− ti Zi+1

}

for any increasing sequence of times {t0, t1, . . . , tm}, where Z1,Z2, . . . ,Zm are i.i.d.
N(0,1).

Figure 4.23 displays code for estimating ν . Here we use m = 32 steps in the
approximation, and we use equally spaced steps, so that ti+1 − ti = T/m for all
i = 0,1,2, . . . ,m−1. We run 10,000 replications to estimate ν . Discrete-event struc-
ture would slow execution without any obvious benefit, so a simple loop is used to
advance time. The value of the option from each replication is written to a .csv file
for the post-simulation analysis.

The estimated value of ν is $2.20 with a relative error of just over 2% (recall
that the relative error is the standard error divided by the mean). As the histogram in
Fig. 4.24 shows, the option is frequently worthless (approximately 68% of the time),
but the average payoff, conditional on the payoff being positive, is approximately
$6.95.
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# Imports
import SimRNG
import math
import pandas

# Initialization
ZRNG = SimRNG.InitializeRNSeed()

# Option parameters
Maturity = 1.0
InterestRate = 0.05
StrikePrice = 55.0
InitialValue = 50.0
Sigma = 0.3

# Number of approximation steps
Steps = 32

# Number of simulation replications
NumReps = 10000

# Distance between successive timepoints (t_{i+1} - t_i)
Interval = Maturity / Steps

# List to hold replication output
TotalValue = []

# Main simulation loop
for i in range(0,NumReps):

Sum = 0.0
X = InitialValue

for j in range(0,Steps):
Z = SimRNG.Normal(0,1,12)
X = X * math.exp((InterestRate - (Sigma **2 / 2))

* Interval + Sigma * math.sqrt(Interval) * Z)
Sum += X

Value = (math.exp(-InterestRate * Maturity)
* max(Sum / Steps - StrikePrice, 0))

TotalValue.append(Value)

TotalValue = pandas.DataFrame({"Total Value": TotalValue})
TotalValue.to_csv("TotalValue.csv", sep = ",")

print("Replication Stats")
print(TotalValue)

print("Means")
print(TotalValue.mean())

Fig. 4.23 VBA simulation of the Asian option problem
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Fig. 4.24 Histogram of the realized value of the Asian option from 10,000 replications

4.6 Case Study: Service Center Simulation

This section presents a simulation case based on a project provided by a former
student. While still relatively simple, it is more complex than the previous stylized
examples, and an answer is not available to us without simulation. The purpose of
this section is to illustrate how one might attack simulation modeling and program-
ming for a realistic problem.

4.6.1 Fax Center Staffing: Example

A service center receives faxed orders1 throughout the day, with the rate of arrival
varying hour by hour. The arrivals are modeled by a nonstationary Poisson process
with the rates shown in Table 4.3. There is a bank of fax machines dedicated to
incoming faxes, so it is reasonable to treat the arrival of faxes as an unconstrained
external arrival process.

A team of Entry Agents selects faxes on a first-come-first-served basis from the
fax queue. Their time to process a fax is modeled as normally distributed with mean
2.5min and standard deviation 1min. There are two possible outcomes after the
Entry Agent finishes processing a fax: either it is a simple fax and the work on it is
complete, or it is not simple and it needs to go to a Specialist for further processing.
Over the course of a day, approximately 20% of faxes require a Specialist. The
time for a Specialist to process a fax is modeled as normally distributed with mean
4.0min and standard deviation 1min.

1 A fax is like an old-school, physical email. The first fax machine was actually created in 1843,
which is roughly the time Nelson finished his Ph.D.
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Table 4.3 Arrival rate of faxes by hour

Time Rate (faxes/minute)
8 a.m.–9 a.m. 4.37
9 a.m.–10 a.m. 6.24
10 a.m.–11 a.m. 5.29
11 a.m.–12 p.m. 2.97
12 p.m.–1 p.m. 2.03
1 p.m.–2 p.m. 2.79
2 p.m.–3 p.m. 2.36
3 p.m.–4 p.m. 1.04

Minimizing the number of staff minimizes cost, but certain service-level require-
ments must be achieved. In particular, 96% of all simple faxes should be completed
within 10min of their arrival, while 80% of faxes requiring a Specialist should also
be completed (by both the Entry Agent and the Specialist) within 10min of their
arrival.

The service center is open from 8 a.m. to 4 p.m. daily, and it is possible to change
the staffing level at 12 p.m. Thus, a staffing policy consists of four numbers: the
number of Entry Agents and Specialists before noon and the number of Entry
Agents and Specialists after noon. Any fax that starts its processing before noon
completes processing by that same agent before the agent goes off duty, and faxes
in the queues at the end of the day are processed before the agents leave work and
therefore are not carried over to the next day.

4.6.2 Fax Center Staffing: Problem Modeling and Analysis

The first step in building any simulation model is deciding what question or ques-
tions that the model should answer. Knowing the questions helps identify the system
performance measures that the simulation needs to estimate, which in turn drives the
scope and level of detail in the simulation model.

The grand question for the service center is, what is the minimum number of
Entry Agents and Specialists needed for both time periods to meet the service-level
requirements? Therefore, the simulation must at least provide an estimate of the
percentage of faxes of each type entered within 10min, given a specific staff assign-
ment.

Even when there seems to be a clear overall objective (e.g., minimize the staff
required to achieve the service-level requirement), we often want to consider trade-
offs around that objective. For instance, if meeting the requirement requires a staff
that is so large that they are frequently underutilized, or if employing the minimal
staff means that the Entry Agents or Specialists frequently have to work well past
the end of the day, then we might be willing to alter the service requirement a bit.
Statistics on the number and the time spent by faxes in queue, and when the last fax
of each day is actually completed, provide this information. Including additional
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measures of system performance, beyond the most critical ones, makes the simula-
tion more useful.

Many discrete-event, stochastic simulations involve entities that dynamically
flow through some sort of queueing network with constrained resources. In such
simulations, identifying the entities and resources is a good place to start the model.
For this service center, the faxes are the dynamic entities, while the Entry Agents
and Specialists are resources. Since there is a bank of fax machines dedicated to
incoming faxes, we treat the arrival of faxes as an unconstrained external arrival
process, and we do not model the fax machines as a resource. But in other situa-
tions, if the fax machines are heavily utilized or if outgoing as well as incoming
faxes use the same machines, considering fax machines as a resource might be a
necessary model addition. In practice, a client’s initial problem description might
not provide all of the information necessary for modeling; follow-up questions are
often needed to fully understand the system of interest.

Next, we discuss queueing process modeling. Whenever there are scarce re-
sources, queues can form, and queueing behavior is often a critical part of the model.
Queues are often first-in-first-out, with one queue for each resource, as is the case
for this service center example. However, queues might have priorities, and multiple
queues might be served by the same resource, or a single queue might feed multiple
resources.

When the simulation involves entities flowing through a network of queues, then
there are two possible types of arrivals: “external” arrivals from outside of the net-
work and “internal” arrivals from within the network. Outside arrivals are like those
we have already seen in the M(t)/M/∞ and M/G/1 examples. Internal arrivals are
departures from one queue that become arrivals to others. How these are modeled
depends largely on whether the departure from one queue is an immediate arrival
to the next—in which case the departure and arrival events are effectively the same
thing—or whether there is some sort of transportation delay—in which case the ar-
rival to the next queue should be scheduled as a distinct event. For the service center,
the arrival of faxes to the Entry Agents is an outside arrival process, while the 20%
of faxes that require a Specialist are internal arrivals from the Entry Agents to the
Specialists.

Critical to experiment design is defining what constitutes a replication. Repli-
cations should be independent and identically distributed. Since the service center
does not carry faxes over from 1 day to the next, a “day” defines a replication. If
faxes do carry over, but all faxes are cleared weekly, then a replication might be de-
fined by a work week. However, if there is always significant carry over from 1 day
to the next, then a replication might have to be defined arbitrarily.

The work day at the service center is 8 h; however, the staff does not leave until
all faxes that arrive before 4 p.m. are processed. If we define a replication to be
exactly 8 h, then we could be fooled by a staffing policy that allows a large queue
of faxes to build up toward the end of the day, since the entry of those faxes would
not be included in our statistics. To model a replication that ends when there is
no additional work remaining, we cut off fax arrivals at 4 p.m. and then end the
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simulation when the event calendar is empty. This works because idle Entry Agents
and Specialists always take a fax from their queue if one is available.

4.6.3 Fax Center Staffing: PythonSim and Output Analysis

Here we discuss the PythonSim code and logic for a discrete-event simulation of
the fax center example. We implement 15 Entry Agents in the AM shift and 9 in the
PM shift and 6 Specialists in the AM shift and 3 in the PM shift, but these decision
variables can be changed as desired. We split the code into distinct parts. Figure 4.25
initializes the simulation and defines the problem-specific parameters and decision
variables. Figure 4.26 completes initialization by setting up the necessary DTStat,
Resource, and FIFOQueue objects and creating lists for example-specific statis-
tics data from each replication. Figure 4.27 is code for the nonstationary Poisson
process for fax arrivals, Figs. 4.28 and 4.29 provide routines for arrival and end-of-
service events at Entry Agents and Specialists, respectively, and Fig. 4.30 provides
a routine for the midday staffing change. Finally, Fig. 4.31 is the main simulation
loop, and Fig. 4.32 provides some simple output generation.

Rather than go through each line or function one by one, we highlight the key
elements of the simulation.

We note that the two DTStat statements defining RegPropWithin10 and
SpPropWithin10 in Fig. 4.30 are used to obtain the fraction of regular and “spe-
cial” faxes (faxes that require additional service at a Specialist) that are completed
within the 10 minute requirement by recording a 1 for any fax that meets the require-
ment, and a 0 otherwise. The mean of these values is the desired fraction, illustrating
how DTStat objects can be used for indicator variables or estimating proportions.
Whenever a fax is completed, we compute its time-in-system (variable TIS in the
code, in EntryAgentEndOfService and SpecialistEndOfService in
Figs. 4.28 and 4.29, respectively). We record the time-in-system and also record
whether it is less than 10 min. Notice that we can record (TIS < 10) for our
DTStat objects RegWithin10 and SpWithin10. The quantity (TIS < 10)
can be added to other Booleans or integers and behaves like 1 if True and 0 if
False. RegWithin10.Sum is the total number of regular faxes completed un-
der 10 min, and SpWithin10.Sum is analogous for special faxes.

Next we discuss the external arrival process, as well as the logic for cutting
off arrivals after 4 p.m.. The function NSPP in Fig. 4.27 generates the interarrival
times for faxes with the desired time-varying rate. This function is similar to the
one defined in Fig. 4.5 in the M(t)/M/∞ example in Sect. 4.2. The key difference
is that the fax center example has piecewise constant arrival rate that changes ev-
ery hour and is specified for 8 h, while the M(t)/M/∞ example has a continuous
function defining its arrival rate for all times t ≥ 0. Here, if NSPP is computing
a possible arrival time that would occur after 4 p.m., it uses the last hour’s arrival
rate (the rate from 3 p.m. to 4 p.m.). The function NSPP always returns an inter-
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# PythonSim imports
import SimFunctions
import SimRNG
import SimClasses

# Python package imports
import math
import pandas
import numpy

# Initialize simulation
ZRNG = SimRNG.InitializeRNSeed()
Calendar = SimClasses.EventCalendar()

# Mean and variance parameters for
# normal distribution for service time
# for regular and special faxes
RegMean = 2.5
RegVar = 1.0
SpMean = 4.0
SpVar = 1.0
RunLength = 480

# Center is open from 8am-4pm (8 hours)
# 60 minutes in an hour ("period")
# ARate is arrival rate in faxes per minute
# MaxRate is used for thinning in NSPP
NPeriods = 8
PeriodLength = 60
ARate = [4.37,6.24,5.29,2.97,2.03,2.79,2.36,1.04]
MaxRate = max(ARate)

# Specify staffing schedule
NumEntryAgentsAM = 15
NumEntryAgentsPM = 9
NumSpecialistsAM = 6
NumSpecialistsPM = 3

# Number of simulation replications
NumReps = 10

Fig. 4.25 Initializing the service center simulation
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# Simulation statistics trackers
RegTIS = SimClasses.DTStat()
RegWithin10 = SimClasses.DTStat()
SpTIS = SimClasses.DTStat()
SpWithin10 = SimClasses.DTStat()
EntryAgents = SimClasses.Resource()
EntryAgentsQueue = SimClasses.FIFOQueue()
Specialists = SimClasses.Resource()
SpecialistsQueue = SimClasses.FIFOQueue()

# Example-specific statistics
# RegTISAvg: list of average time-in-system (min)
# for regular faxes in each replication
# RegPropWithin10: list of proportion of
# regular faxes completed in <= 10min in each
# replication
# SpTISAvg: same as RegTISAvg but for special faxes
# SpPropWithin10: same as RegPropWithin10 but
# for special faxes
# EntryAgentsBusyAvg: list of average number of
# busy EntryAgents units in each replication
# EntryAgentsQueueAvg: list of average queue length
# for EntryAgents resource in each replication
# SpecialistsBusyAvg: same as EntryAgentsBusyAvg
# but for Specialists
# SpecialistsQueueAvg: same as EntryAgentsQueueAvg
# but for special faxes at the Specialists queue
# EndingTime: list of times at which all faxes
# arriving before 4pm are completed
RegTISAvg = []
RegPropWithin10 = []
SpTimeAvg =[]
SpPropWithin10 = []
EntryAgentsBusyAvg = []
EntryAgentsQueueAvg = []
SpecialistsBusyAvg = []
SpecialistsQueueAvg = []
EndingTime = []

Fig. 4.26 Initializing continued: setting up statistics

arrival time, even if it corresponds to an arrival scheduled to occur after 4 p.m.
When called, the Arrival function in Fig. 4.28 generates an interarrival time
using NSPP and checks if SimClasses.Clock + InterarrivalTime >
RunLength, where RunLength is set to 480, referring to the 480 min between 8
a.m. and 4 p.m. If this condition is true, the Arrival function terminates and an
arrival is not scheduled. In fact, if this condition is true, there are no more arrival
events for the rest of the simulation replication, successfully preventing arrivals af-
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def NSPP(Stream):
’’’
Generates next interarrival time from a nonstationary

Poisson arrival process using thinning method
Uses final hour’s arrival rate for any possible arrivals

that would occur after closing time

Input:
Stream: integer, corresponding to random number stream

Output:
nspp: float, positive, time until next nonstationary

Poisson arrival
’’’

PossibleArrivalTime = SimClasses.Clock
Ratio = 0

while SimRNG.Uniform(0, 1, Stream) >= Ratio:
PossibleArrivalTime += SimRNG.Expon(1.0/MaxRate, Stream)
i = int(min(NPeriods,

math.ceil(PossibleArrivalTime/PeriodLength)))
Ratio = ARate[i-1]/MaxRate

nspp = PossibleArrivalTime - SimClasses.Clock
return nspp

Fig. 4.27 NSPP function

ter 4 p.m. This occurs because there is at most one arrival event on the calendar at
any time, and a new arrival event is scheduled only when an arrival event has just
occurred.

Figure 4.28 contains the arrival and end-of-service events for faxes at the En-
try Agents. When a fax arrives, either it starts service immediately if an Entry
Agent is free, or it joins the queue for the Entry Agents. When an Entry Agent
finishes service on a fax, with 20% probability, the DepartingFax that has
just completed service is sent directly and immediately to the Specialists with
the call SpecialArrival(DepartingFax). We pass DepartingFax be-
cause we need to keep track of each fax’s time-in-system. Notice that in our im-
plementation, we do not schedule a special arrival event, because we simply call
SpecialArrival(DepartingFax) at an Entry Agent end-of-service event if
the departing fax needs a Specialist. Alternatively, we could schedule a special ar-
rival event occurring zero time units in the future (or nonzero time units in the future
if, for instance, there is a travel time delay between Entry Agents and Specialists).
Either approach is correct and is a modeling choice.

Figure 4.29 contains the arrival and end-of-service events for faxes at the Spe-
cialists. These functions are analogous to their Entry Agent counterparts. The Spe-
cialists have their own Resource object, FIFOQueue object, and corresponding
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def Arrival():
’’’
Called when a new fax arrives

If next arrival would occur after center has closed,
function terminates and no next arrival is scheduled,
otherwise, next arrival is scheduled

If an Entry Agent is free, new fax seizes 1 unit and
starts service, otherwise fax is added to EntryAgentsQueue

’’’

InterarrivalTime = NSPP(1)
if SimClasses.Clock + InterarrivalTime > RunLength:

return

SimFunctions.Schedule(Calendar,"Arrival",InterarrivalTime)
Fax = SimClasses.Entity()

if EntryAgents.CurrentNumBusy < EntryAgents.NumberOfUnits:
EntryAgents.Seize(1)
SimFunctions.SchedulePlus(Calendar,

"EntryAgentEndOfService",
SimRNG.Normal(RegMean,RegVar,2),Fax)

else:
EntryAgentsQueue.Add(Fax)

def EntryAgentEndOfService(DepartingFax):
’’’
Called when a fax finishes service at an Entry Agent

Randomly sends 20% of faxes to Specialist
If no Specialist needed, fax leaves and its

time-in-system statistics are recorded

If an Entry Agent is free and queue nonempty, start service
on next fax, otherwise, free an Entry Agent

’’’

if SimRNG.Uniform(0,1,3) < 0.2:
SpecialArrival(DepartingFax)

else:
TIS = SimClasses.Clock - DepartingFax.CreateTime
RegTIS.Record(TIS)
RegWithin10.Record((TIS < 10))

if (EntryAgentsQueue.NumQueue() > 0 and
EntryAgents.NumberOfUnits >= EntryAgents.CurrentNumBusy):
NextFax = EntryAgentsQueue.Remove()
SimFunctions.SchedulePlus(Calendar,

"EntryAgentEndOfService",
SimRNG.Normal(RegMean,RegVar,2),NextFax)

else:
EntryAgents.Free(1)

Fig. 4.28 Entry Agents functions
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def SpecialArrival(SpecialFax):
’’’
Called when a fax finishes service at an Entry Agent

(specifically after EntryEntryAgentEndOfService function
is called) and requires service by a Specialist

If a Specialist is free, the fax seizes 1 unit
and starts service, otherwise, the fax is added to
SpecialistsQueue

’’’

if Specialists.CurrentNumBusy < Specialists.NumberOfUnits:
Specialists.Seize(1)
SimFunctions.SchedulePlus(Calendar,

"SpecialistEndOfService",
SimRNG.Normal(SpMean,SpVar,4),SpecialFax)

else:
SpecialistsQueue.Add(SpecialFax)

def SpecialistEndOfService(DepartingFax):
’’’
Called when a fax finishes service at a Specialist

Fax leaves and its time-in-system statistics are recorded

If a Specialist is free and queue nonempty, start service
on next fax, otherwise, free a Specialist

’’’

TIS = SimClasses.Clock - DepartingFax.CreateTime
SpTIS.Record(TIS)
SpWithin10.Record((TIS < 10))

if (SpecialistsQueue.NumQueue() > 0 and
Specialists.NumberOfUnits >= Specialists.CurrentNumBusy):
NextFax = SpecialistsQueue.Remove()
SimFunctions.SchedulePlus(Calendar,

"SpecialistEndOfService",
SimRNG.Normal(SpMean,SpVar,4),NextFax)

else:
Specialists.Free(1)

Fig. 4.29 Specialists functions

statistics. The function SpecialArrival corresponds to internal arrivals in the
fax center queueing system, because “special” arrivals come from finishing service
at the EntryAgents resource.

Next we discuss the function ChangeStaff, which is called at a change staff
type event occurring at noon (240min into the simulation run). Here we use the
SetUnits method of the Resource to change the staffing levels of both the
EntryAgents and Specialists resources. As an exercise, we leave it to
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def ChangeStaff():
’’’
Called at "ChangeStaff" event at noon

Updates units for EntryAgents and Specialists
If the number of EntryAgents increases after

staff change, new EntryAgents begin
service on faxes in EntryAgentsQueue,
if any

Similarly for Specialists
’’’

EntryAgents.SetUnits(NumEntryAgentsPM)
Specialists.SetUnits(NumSpecialistsPM)

while (EntryAgentsQueue.NumQueue() > 0
and (EntryAgents.NumberOfUnits

>= EntryAgents.CurrentNumBusy)):

NextFax = EntryAgentsQueue.Remove()
EntryAgents.Seize(1)

SimFunctions.SchedulePlus(Calendar,
"EntryAgentEndOfService",
SimRNG.Normal(RegMean,RegVar,2),NextFax)

while (SpecialistsQueue.NumQueue() > 0
and (Specialists.NumberOfUnits
>= Specialists.CurrentNumBusy)):

NextFax = SpecialistsQueue.Remove()
Specialists.Seize(1)

SimFunctions.SchedulePlus(Calendar,
"SpecialistEndOfService",
SimRNG.Normal(SpMean,SpVar,4),NextFax)

Fig. 4.30 Change staff function

the reader to verify that the function ChangeStaff successfully executes its
intention and in particular allows any Entry Agent or Specialist working on a
fax at noon to finish their service. We recommend considering the two types of
staff changes: if NumEntryAgentsAM is less than NumEntryAgentsPM, or if
NumEntryAgentsAM is more than NumEntryAgentsPM. The staff change for
the number of Specialists obeys analogous logic. As a hint for the case in which
NumEntryAgentsAM is more than NumEntryAgentsPM, the “if” statement in
EntryAgentEndOfService is important (see Fig. 4.28).
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for reps in range(0,NumReps):

# Initialization
# Reset number of EntryAgents and Specialists to AM staffing
# Schedule first arrival and ChangeStaff event at noon
SimFunctions.SimFunctionsInit(Calendar)
EntryAgents.SetUnits(NumEntryAgentsAM)
Specialists.SetUnits(NumSpecialistsAM)
SimFunctions.Schedule(Calendar, "Arrival", NSPP(1))
SimFunctions.Schedule(Calendar, "ChangeStaff",

(NPeriods/2)*PeriodLength)

# Main simulation loop
while Calendar.N() > 0:

NextEvent = Calendar.Remove()
SimClasses.Clock = NextEvent.EventTime

if NextEvent.EventType == "Arrival":
Arrival()

elif NextEvent.EventType == "EntryAgentEndOfService":
EntryAgentEndOfService(NextEvent.WhichObject)

elif NextEvent.EventType == "SpecialistEndOfService":
SpecialistEndOfService(NextEvent.WhichObject)

elif NextEvent.EventType == "ChangeStaff":
ChangeStaff()

# At end of replication, store stats in lists
RegTISAvg.append(RegTIS.Mean())
EntryAgentsQueueAvg.append(EntryAgentsQueue.Mean())
RegPropWithin10.append(RegWithin10.Mean())

SpTimeAvg.append(SpTIS.Mean())
SpecialistsQueueAvg.append(SpecialistsQueue.Mean())
SpPropWithin10.append(SpWithin10.Mean())

EntryAgentsBusyAvg.append(EntryAgents.Mean())
SpecialistsBusyAvg.append(Specialists.Mean())
EndingTime.append(SimClasses.Clock)

Fig. 4.31 Main program for service center simulation

The main program for the simulation is in Fig. 4.31, which ties everything to-
gether. In each replication, we initialize the EntryAgents and Specialists
resource units to their AM staffing levels and put two events on the event calen-
dar: the first arrival and the change staff event at noon. While the event calendar
is nonempty, we move through the event calendar events, and each event is either
an arrival, Entry Agent end-of-service, Specialist end-of-service, or a change staff
event. We leave it to the reader to verify that terminating the simulation replica-
tion when the event calendar is empty satisfies the desired properties in the problem
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output = pandas.DataFrame(
{"RegTISAvg": RegTISAvg,
"EntryAgentsQueueAvg": EntryAgentsQueueAvg,
"EntryAgentsBusyAvg":EntryAgentsBusyAvg,
"SpTimeAvg": SpTimeAvg,
"SpecialistsQueueAvg": SpecialistsQueueAvg,
"SpecialistsBusyAvg": SpecialistsBusyAvg,
"RegPropWithin10": RegPropWithin10,
"SpPropWithin10": SpPropWithin10,
"EndingTime": EndingTime})

output.to_csv("output.csv", sep=",")

print("Means")
print(output.mean())

print("95% CI Half-Width")
print(1.96*numpy.sqrt(output.var(ddof = 0)/len(output)))

Fig. 4.32 Main program for service center simulation

statement in Sect. 4.6.1. As usual we provide a snippet in Fig. 4.32 with a simple
script for output generation.

Ten replications of this simulation with a staffing policy of 15 Entry Agents in
the morning and 9 in the afternoon and 6 Specialists in the morning and 3 in the
afternoon give 0.98± 0.02 for the fraction of regular faxes entered in 10min or
less, and 0.79± 0.08 for the special faxes. The “±” are 95% confidence interval
halfwidths. Our stated policy appears to be close to the requirements, although if
we absolutely insist on 80% of special faxes finishing in 10 min, then additional
replications are needed to narrow the confidence interval.

Exercises

1. Simulate an M(t)/G/∞ queue, where G corresponds to an Erlang distribution
with fixed mean but try different numbers of phases. That is, keep the mean
service time fixed but change the variability. Is the expected number in queue
sensitive to the variance in the service time?

2. This problem assumes a more advanced background in stochastic processes.
In the simulation of the M(t)/M/∞ queue, there could be a very large number
of events on the event calendar: one “Arrival” and one “Departure” for each
car currently in the garage. However, properties of the exponential distribution
can reduce this to no more than two events. Let β = 1/τ be the departure rate
for a car (recall that τ is the mean parking time). If at any time we observe
that there are N cars in the garage (no matter how long they have been there),
then the time until the first of these cars departs is exponentially distributed
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with mean 1/(Nβ ). Use this insight to build an M(t)/M/∞ simulation with at
most two pending events, next arrival and next departure. Hint: Whenever an
arrival occurs the distribution of the time until the next departure changes, so
the scheduled next departure time must again be generated.

3. For the hospital problem, simulate the current system in which the reception-
ist’s service time is well modeled as having an Erlang-4 distribution with mean
0.6min. Compare the waiting time to the proposed electronic kiosk alternative.

4. Beginning with the event-based M/G/1 simulation, implement the changes
necessary to make it an M/G/s simulation (a single queue with any number
of servers). Keeping λ = 1 and τ/s = 0.8, simulate s = 1,2,3 servers and com-
pare the results. What you are doing is comparing queues with the same service
capacity, but with 1 fast server as compared to two or more slower servers. State
clearly what you observe.

5. Modify the PythonSim event-based simulation of the M/G/1 queue to simu-
late an M/G/1/c retrial queue. This means that customers who arrive to find c
customers in the system (including the customer in service) leave immediately
but arrive again after an exponentially distributed amount of time with mean
MeanTR. Hint: The existence of retrial customers should not affect the arrival
process for first-time arrivals.

6. Modify the SAN simulation to allow each activity to have a different mean time
to complete (currently they all have mean time 1). Use a collection to hold these
mean times.

7. Try the following numbers of steps for approximating the value of the Asian
option to see how sensitive the value is to the step size: m = 8,16,32,64,128.

8. In the simulation of the Asian option, the sample mean of 10,000 replications
was 2.198270479, and the standard deviation was 4.770393202. Approximately
how many replications would it take to decrease the relative error to less than
1%?

9. For the service center, increase the number of replications until you can be
confident that the suggested policy does or does not achieve the 80% entry in
less than 10min requirement for special faxes.

10. For the service center, find the minimum staffing policy (in terms of the total
number of staff) that achieves the service-level requirement. Examine the other
statistics generated by the simulation to make sure you are satisfied with this
policy.

11. For the service center, suppose that Specialists earn twice as much as Entry
Agents. Find the minimum cost staffing policy that achieves the service-level
requirement. Examine the other statistics generated by the simulation to make
sure you are satisfied with this policy.

12. For the service center, suppose that the staffing level can change hourly, but
once an Agent or Specialist comes on duty they must work for 4 h. Find the
minimum staffing policy (in terms of the total number of staff) that achieves the
service-level requirement.

13. For the service center, pick a staffing policy that fails to achieve the service-
level requirements by 20% or more. Rerun the simulation with a replication
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being defined as exactly 8 h, but do not carry waiting faxes over to the next
day. How much do the statistics differ using the two different ways to end a
replication?

14. The function NSPP is presented in Fig. 4.27. This function implements the thin-
ning method described in Sect. 4.2 for a nonstationary Poisson process with
piecewise-constant rate function. Study it and describe how it works.

15. The phone desk for a small office is staffed from 8 a.m. to 4 p.m. by a single op-
erator. Calls arrive according to a Poisson process with rate 6 per hour, and the
time to serve a call is uniformly distributed between 5 and 12min. Callers who
find the operator busy are placed on hold, if there is space available; otherwise,
they receive a busy signal and the call is considered “lost.” In addition, 10% of
callers who do not immediately get the operator decide to hang up rather than
go on hold; they are not considered lost, since it was their choice. Because the
hold queue occupies resources, the company would like to know the smallest
capacity (the number of callers) for the hold queue that keeps the daily fraction
of lost calls under 5%. In addition, they would like to know the long-run utiliza-
tion of the operator to make sure he or she will not be too busy. Use PythonSim
to simulate this system and find the required capacity for the hold queue. Model
the callers as class Entity, the hold queue as class FIFOQueue and the oper-
ator as class Resource. Use the PythonSim functions Expon and Uniform
for random-variate generation. Use class DTStat to estimate the fraction of
calls lost (record a 0 for calls not lost and a 1 for those that are lost so that the
sample mean is the fraction lost). Use the statistics collected by class
Resource to estimate the utilization.

16. Software Made Personal (SMP) customizes software products in two areas:
financial tracking and contact management. They currently have a customer
support call center that handles technical questions for owners of their software
from the hours of 8 a.m. to 4 p.m. Eastern time.
When a customer calls, they first listen to a recording that asks them to se-

lect among the product lines; historically, 59% are financial products and 41%
contact management products. The number of customers who can be connected
(talking to an agent or on hold) at any one time is essentially unlimited. Each
product line has its own agents. If an appropriate agent is available, then the call
is immediately routed to the agent, and if an appropriate agent is not available,
then the caller is placed in a hold queue (and listens to a combination of music
and ads). SMP has observed that hang-ups very rarely happen.
SMP is hoping to reduce the total number of agents they need by cross-

training agents so that they can answer calls for any product line. Since the
agents will not be experts across all products, this is expected to increase the
time to process a call by about 5%. The question that SMP has asked you to
answer is how many cross-trained agents are needed to provide service at the
same level as the current system.
Incoming calls can be modeled as a Poisson arrival process with a rate of 60

per hour. The mean time required for an agent to answer a question is 5min,
with the actual time being Erlang-2 for financial calls and Erlang-3 for contact
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management calls. The current assignment of agents is four for financial and
three for contact management. Simulate the system to find out howmany agents
are needed to deliver the same level of service in the cross-trained system as in
the current system.

17. Beginning with the FIFOQueue class module, develop a new class module
called PriorityQueue. When an Entity is added to the Priority-
Queue, its position depends on the entity’s Priority property with high
value of Priority first. Be sure to add the Priority property to the
Entity class module.

18. The fax entry times were modeled as being normally distributed. However,
the normal distribution admits negative values, which certainly does not make
sense. What should be done about this? Consider mapping negative values to
0 or generating a new value whenever a negative value occurs. Which is more
likely to be realistic and why?



Chapter 5
Three Views of Simulation

Prior to this chapter, the focus of the book has been on building—literally writ-
ing computer code for—simulation models. This chapter sets up the remainder of
the book which addresses issues related to experiment design and analysis. To do
so, we present three different, but complementary ways of viewing computer sim-
ulation. Section 5.1 makes clear the roles of real systems, simulated systems, and
the conceptual systems that the analyst wants to design. This framework highlights
sources of error in a simulation study; it is abstract, but not mathematically formal.
Section 5.2 views simulation output as a stochastic process to provide a framework
for designing simulation experiments and analyzing the results; it is a mathematical
treatment that provides the foundation for statistical analysis. Section 5.3 describes
simulation from a computational perspective with an emphasis on how computation
impacts experiment design and analysis. All of these perspectives are necessary to
have a deep understanding of stochastic simulation.

5.1 A Framework for Simulation Modeling and Analysis

Example 5.1 (The Call Center). A software company has a customer call center
for inquiries or problems related to its products. Currently the agents are trained
only for particular products, and therefore they only handle calls related to their
product. The company would like to reduce staff, while still delivering the same
level of service, by cross-training some agents to handle calls regarding more than
one product. What staff level is required?

This situation has characteristics that are common to many system-design
problems for which we seek a simulation solution: There is a conceptual design for
a new system (the call center with cross-trained agents). There is also an existing
real system that is related to the conceptual one, but is not identical to it (the current

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
B. L. Nelson, L. Pei, Foundations and Methods of Stochastic Simulation,
International Series in Operations Research & Management Science 316,
https://doi.org/10.1007/978-3-030-86194-0 5

89

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86194-0_5&domain=pdf
https://doi.org/10.1007/978-3-030-86194-0_5


90 5 Three Views of Simulation
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Fig. 5.1 Relationship between real, simulated, and conceptual systems

call center with dedicated agents). Using the real system as a starting point, a simu-
lated system will be constructed to evaluate how well the conceptual system might
work. In this section we describe a framework for simulation problems such as the
call center, a framework that will be informative as we think about simulation input
modeling, output analysis, and experiment design (the subjects of Chaps. 6–9).

For the purpose of this framework, a system consists of inputs and logic. Inputs
are the uncertain (stochastic) components of a system, while the logic may be
thought of as a collection of rules or algorithms that govern how the system behaves
as a function of the inputs. Let L denote logic, and let F denote the probability
model that governs the inputs (often a collection of probability distributions). In our
framework, there are three different kinds of systems: Real systems (R), simulated
systems (S), and conceptual systems (C); by a “conceptual” system we usually mean
a system that could exist, but does not yet exist. Systems have performance parame-
ters that are implied by the inputs and logic; we will denote these generically by μ .
Refer to Fig. 5.1 for the discussion that follows.

An experiment on a system, denoted by E , is a recipe for exercising the system to
observe its behavior. Experiments on real systems will often be field observations of
the system as it currently operates, because a designed experiment on a real system
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might be expensive, disruptive, or dangerous. Vast quantities of data are passively
collected on many real systems automatically. Simulation experiments, on the other
hand, should be designed using statistical principles because the simulated system
is completely under our control. Experiments on a conceptual system are, by defini-
tion, impossible, which is why we do simulations.

An experiment on a system generates observed behavior, which for our purposes
is always numerical. Denote numerical observations of a system’s inputs by X and
its outputs by Y, both collections of random variables in general. Outputs are de-
rived quantities that are a function of the inputs, logic, and experiment design. It is
very important to understand that Y is not well defined without an experiment, E .
Observing a real system for a month is different than observing it for a day; running
a simulation for ten replications is different than running it for 1000. This is critical,
because performance parameters μ are estimated by functions of the outputs,T (Y),
and therefore properties of these estimators depend on the experiment design.

For example, in the current call center the inputs FR include the arrival process
of calls, and the time required to resolve a caller’s problem (excluding the time they
spend on hold before talking to an agent). These are inputs because they are un-
certain, stochastic quantities that we do not view as being functions of some more
basic stochastic quantities. The call center logic LR includes the hours of operation
and the rules for how calls are routed to agents. A performance parameter μR that
measures customer satisfaction is the long-run average time a caller spends on hold
before talking to an agent. Therefore, an output of interest YR is how long indi-
vidual callers spend on hold. And an experiment ER might be logging data on call
center activity (call arrival times, times to resolve problems, and caller hold times)
for several months.

In our typical situation, there is a conceptual system {LC,FC} whose
performance μC we would like to predict; in the example it is the call center with
cross-trained agents that we might want to implement. If we could perform an ex-
periment on this system, then we could use observed outputs YC to estimate μC

(e.g., the mean hold time when using cross-trained agents). Of course, we cannot
do this directly, because the system is conceptual. We can, however, perform an ex-
periment on the real system {LR,FR}; specifically, we can study its logic LR, and
observe its inputs XR and outputs YR. We do this to aid in developing a simulation
of the conceptual system {LSC,FSC}. Notice that while the rules that govern a sys-
tem’s behavior LR may be at least partially observable, the input probability model
FR is not; only the input data itself XR can be observed. For instance, we can log the
times that calls arrive, but not the probability mechanism that generated the calls.

Simulation is useful for evaluating a conceptual system design when we believe
we understand the critical aspects of the conceptual system’s logic LC (often that
logic is our choice, like using cross-trained agents), and we also believe that FC ⊆
FR—that is, the input processes for the conceptual system are a subset of the input
processes for the real system. For instance, using cross-trained agents likely will
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have no impact on the arrival process of calls. This leads naturally to constructing
two simulated systems:

• SR = {LSR,FSR}: This is the simulation of the real system (SR stands for
“simulated-real” system). Ideally this simulated system has performance
parameters μSR that are close to those of the real system μR so we can validate it.

• SC= {LSC,FSC}: This is the simulation of the conceptual system (SC stands for
“simulated-conceptual” system). Ideally this simulated system has performance
parameters μSC that are close to those of the conceptual system μC. Recall that
the input models for the simulated-conceptual system are a subset of the input
models for the simulated-real system, while the conceptual system’s logic is
our choice.

With this framework, we can now define the simulation design and analysis
problems that will occupy the remainder of the book:

Input modeling: This is the process of choosing the simulation input probability
models FSR that approximate the input models of the real system FR. When real
system inputs XR can be observed, then we may fit distributions to the data or
simply resample the data; otherwise we have to use subjective methods. Simi-
larly, input models for the simulated conceptual system FSC must be chosen.

Variate generation: Given the simulation input models FSR and FSC, we need
methods to generate realizations from them to drive the simulation. We touched
on this topic in Sect. 2.2, but will go into more depth and describe variate-
generation algorithms for more complex input models in the following chapter.

Validation: In theory, this is the process of deciding whether the performance pa-
rameters of the simulated-conceptual system μSC are close enough to the perfor-
mance parameters of the conceptual system μC for the simulation to be useful for
the decisions that it needs to support. Unfortunately, this sort of validation is im-
possible to achieve by any quantitative means. For this reason we often construct
a simulation of the real system, {LSR,FSR}, because we can validate it with re-
spect to the real system {LR,FR}. Knowing we can model the real system gives
us confidence that our simulation of the conceptual system will also be useful
(although this is certainly not a guarantee).
Our definition of validation as a quantitative evaluation of {LSR,FSR} with

respect to {LR,FR} is narrower than many researchers who also provide non-
quantitative ways to validate {LSC,FSC} with respect to {LC,FC}. For a
broader perspective, see Sargent (2011) and Robinson (2014).

Output analysis: The goal of the simulation experiment is to estimate
performance parameters μSC (which we hope are close to those of the conceptual
system μC). Output analysis is concerned with designing a simulation experiment
ESC for {LSC,FSC}, and estimating the performance characteristics μSC via the
generated outputs YSC. If, as is often the case, there is more than one conceptual
system, then output analysis may include designing an experiment to identify the
best conceptual system.
With this framework in place, the sources of error in solving a problem via

simulation can be defined.
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Modeling error: LSC �=LC orLSR �=LR. There is almost always modeling error,
since the real or conceptual system will typically be richer and more complicated
than the simulation model, with behaviors that cannot be quantified by a col-
lection of algorithmic rules. For instance, in the call center example the rule for
assigning incoming calls to agents may be well defined, while the rule for pass-
ing a call along to a supervisor is more ambiguous and agent dependent. The
fiction that a real system has quantifiable logic is necessary for modeling, but is
not strictly true. The key is whether the logic we use in our simulation model
is accurate enough to obtain useful results. Simulation logic was the focus of
Chaps. 1–4.

Input uncertainty: FSC �= FC or FSR �= FR. The true input distributions FR are
only discernible through the observed input data XR, which is always a finite
sample. We typically fit FSR to these data, so there will be error. The problem
is compounded when we move to FSC. Again, the existence of “true” distribu-
tions FC and FR is not strictly correct, but is the basis of all of statistics, and it
allows input modeling to be treated as a statistical problem.

Estimation error: T (YSC) �= μSC. Experiments on simulated systems are
statistical experiments because they generate realizations of the output random
variables YSC to estimate performance properties μSC; but again, only with a
finite sample. Therefore, we need to account for estimation error, often via confi-
dence intervals for the unknown performance parameters. Estimation error is the
easiest to quantify, but there can still be complications due to bias and correlated
data.

“Uncertainty quantification,” “model risk,” “sensitivity analysis,” and “calibra-
tion” are broad terms that address various aspects of the errors cited above, in-
cluding ways to measure them, hedge against them or adjust for them. This is an
important research area with significant practical consequences. General references
include the SIAM/ASA Journal on Uncertainty Quantification and textbooks such as
Gramacy (2020) and Saltelli et al. (2008).

Clearly, not all simulation studies have all the features of the framework
described here. For instance, input modeling without any real data is a common
occurrence. Also, there may be no real system, only one or more conceptual ones
that we want to evaluate. These are special cases of our general framework.

5.2 Simulation as a Stochastic Process

In this section we focus on simulation output processes, the data generated by a
simulation that are used to estimate system performance. We think of simulation
output as a stochastic process: an indexed sequence of random variables defined
on a common probability space. Depending on the output process, the index may
be time, observation count or replication number. We are particularly interested in
large-sample behavior of summary statistics as the index (time, observation count, or
number of replications) increases. Large-sample, or asymptotic, behavior is relevant
for simulation as we are frequently able to simulate very large samples, unlike,
for instance, expensive physical experiments. To set up the formal description of
asymptotic behavior, we start with a less formal simulation description.
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Fig. 5.2 Histogram of the 1000 replication averages at m = 10,100,1000, and 10,000

5.2.1 Simulated Asymptotic Behavior

To illustrate the key aspects of asymptotic behavior we will use the M/G/1 queue
example of Sects. 3.2 and 4.3; recall that this is a single-server queue that was used
to model a hospital reception system to estimate long-run average delay in queue,
which we will denote by μ . In the simulation we observed Y1,Y2, . . . ,Ym, the delay
in queue of the first m patients and visitors, and estimated the long-run average by
the sample mean Ȳ (m) = ∑m

i=1Yi/m. We will consider the same case as in Sect. 4.3
where the arrival rate is one customer per minute, and the service time has an Erlang
distribution with mean τ = 0.8min and three phases. For this model the Pollaczek–
Khinchine formula in Eq. (3.4) gives μ = 2.133min, so of course simulation is not
actually needed.

Now suppose that you and 999 of your friends are hired by “the boss” to each
simulate one replication of this system for m = 10,000 patients and visitors, choos-
ing your initial random-number seeds independently, randomly, and without collab-
oration. However, because your boss is eager to know the outcome, you will each
report your results to her at check points m = 10,100,1000 and finally 10,000 sim-
ulated patients and visitors. That is, each of you will report Ȳ (10), Ȳ (100), Ȳ (1000)
and Ȳ (10,000). You only get to see the result of your one replication, but your boss
gets to see them all. We will look at the results both from your and your boss’s
perspectives.
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Fig. 5.3 Histogram of the 1000 scaled and centered replication averages at m = 10,100,1000, and
10,000

Figure 5.2 shows the histograms that your boss would see of the 1000 Ȳ (10),
Ȳ (100), Ȳ (1000) and Ȳ (10,000) values. Your boss can see that the variability in the
results you and your friends submit decreases as m increases. That is, they cluster
more closely around a central value. Also, the shape of the histogram becomes more
nearly symmetric and bell-shaped although it appears to be decreasing to a point.

If your boss instead plotted a histogram of the 1000
√

m(Ȳ (m)−2.133) values
for each m—that is, she took each sample mean Ȳ (m), subtracted the true steady-
state mean μ = 2.133, and multiplied the result by

√
m—then she would see the

sequence of histograms in Fig. 5.3. Notice that rather than the variability of the
histograms decreasing, as happened with the raw averages, the distribution appears
to be stabilizing toward a specific mean-zero (perhaps) normal distribution. This is
an example of convergence in distribution as promised by the central limit theo-
rem, which we state precisely below. We often say loosely that “the sample means
become normally distributed,” but as these figures show, the scaling up by

√
m is

needed to converge to a stable distribution (one whose variability is not shrinking
as in Fig. 5.2).
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Table 5.1 Summary measures of the 1000 sample means

m 10 100 1,000 10,000
¯̄Y (m) 0.718 1.739 2.083 2.130

¯̄Y (m)−2.133 −1.415 −0.394 −0.0503 −0.003

#{|Ȳ (m)−2.133|> 0.5}
1,000

0.914 0.742 0.359 0.010

Still looking at things from your boss’s point of view, we will summarize the
sample averages in three additional ways: ¯̄Y (m), the overall average of the 1000 av-
erages obtained at each check point; ¯̄Y (m)−2.133, the difference between the over-
all average and the true steady-state mean; and the fraction of the 1000 averages that
differ from μ = 2.133min by more than 0.5min. These three measures are empir-
ical estimates of E(Ȳ (m)), Bias(Ȳ (m)) and Pr{|Ȳ (m)−2.133|> 0.5}. The results
are shown in Table 5.1. Notice that as m increases, the overall mean seems to be
converging to 2.133, the bias seems to be going to 0, and the likelihood of a sam-
ple mean being more than 0.5min from 2.133 seems to be going to zero. Notice
also that the bias is negative, a result of starting the simulation with no patients and
visitors in the system so that for small m the delay in queue tends to be quite low.

Your sample means contributed to these results; they were 0.517, 2.212, 1.621,
and 1.972, for m = 10,100,1000 and 10,000, respectively, each just one of the 1000
sample means your boss observed at each check point. None of them equal 2.133,
meaning they all have error, consisting of bias and sampling variability. What does
large-sample asymptotic behavior tell you about your single result? Knowing how
things look from your boss’ point of view helps provide an interpretation of the var-
ious modes of convergence as they apply to you; we define these now and relate
them back to the example.

Consider a sequence of random variables {W1,W2, . . .} and a constant μ . To relate
the situation to the queueing problem, letWm = Ȳ (m),m= 1,2, . . . , be your sequence
of sample means.

Definition 5.1. Convergence in probability: Wm
P−→ μ if for any ε > 0,

lim
m→∞

Pr{|Wm −μ |> ε}= 0.

In the queueing example we noticed that as m increases, fewer and fewer of
the sample means your boss saw were greater than ε = 0.5 away from μ = 2.133.
While you could be unlucky with your one result, convergence in probability says
that the chances that you are unlucky become smaller and smaller. Your last sample
mean, Ȳ (10,000) = 1.972, is less than 0.5 from μ .

Definition 5.2. Convergence with probability 1: Wm
a.s.−→ μ if

Pr
{
lim

m→∞
Wm = μ

}
= 1.

The abbreviation a.s. stands for “almost surely,” so convergence with probability 1
is also called almost sure convergence.
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To really make the definition of a.s. convergence complete we also need to define
the underlying probability space on which the sequence Wm is defined. However, a
simulation analogy captures the essence of this type of convergence: Recall that you
and your friends independently and randomly selected a random-number seed for
your queueing simulation. Once you pick a seed your simulation outputs are a deter-
ministic sequence of numbers. Almost sure convergence means that with probability
1 you will select a seed such that your sequence of sample means Ȳ (m) converges to
μ in the usual sense of convergence of a sequence of numbers to a constant. Some
of your friends may get there faster, and others slower, but you are all guaranteed
that as m increases your sample mean Ȳ (m) will converge to μ .1

Although we have defined convergence in probability and with probability 1 as
convergence of a sequence of random variables to a constant, they can also be ex-
tended to convergence to a random variableW defined on the same probability space
as Wm. However, we do not need the more general definition just yet.

To describe convergence in distribution, and specifically the central limit
theorem, consider a sequence of random variables Z1,Z2, . . . and a random vari-
able Z whose distribution is not a function of m. Let Fm(z) = Pr{Zm ≤ z} and let
F(z) = Pr{Z ≤ z}. In the queueing simulation we could let Zm =

√
m(Ȳ (m)−μ).

Definition 5.3. Convergence in distribution: Zm
D−→ Z if

lim
m→∞

Fm(z) = F(z)

for all points z at which F(z) is continuous. This definition extends without change
to Zm and Z being vector-valued random variables.

In the queueing simulation, the boss saw that as m got large the empirical
distribution of the scaled and centered sample means became a stable, mean-zero
normal distribution. Thus, F is a mean-zero normal distribution. When convergence
in distribution is established to a mean-zero normal distribution it is often referred
to as a “central limit theorem.”

Central limit theorems are extremely valuable. If one holds for Zm =√
m(Ȳ (m)−μ), then for large m we can say that

√
m(Ȳ (m)−μ)≈ γN(0,1), where

N(0,1) is a standard normal random variable and γ2 is a (usually unknown) variance
constant. Or equivalently, for large m

Ȳ (m)≈ μ+ γ√
m
N(0,1). (5.1)

Thus, up to the variance constant γ2 (which can often be estimated), the central limit
theorem completely characterizes the error in using Ȳ (m) to estimate μ . Specif-
ically, it says that the error is symmetric about μ , and normally distributed, with
standard deviation γ/

√
m. This characterization permits the derivation of bounds

on the error that are correct with high probability (a confidence interval). The only

1 While this is a good analogy, it is not precisely correct since random-number generators imitate
truly random numbers and in fact repeat the same (long) cycle of values over and over again.
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missing piece is the variance constant, which is why estimation of γ2 has been such
an important topic in simulation research.

5.2.2 Asymptotics Across Replications

The large-sample properties defined in the previous section are useful because they
provide some assurance that our simulation-based estimates are converging to the
performance measures of interest, and by helping to quantify the remaining error
when we stop simulating. This leads to the obvious question: When can we expect
such convergence properties to hold?

The most easily verifiable collection of theorems are for the i.i.d. case; in the
queueing example, this is from your boss’s point of view. Remember that your boss
sees n = 1000 (or more if you find more friends) results, each independently simu-
lated according to the same rules. In other words, your boss sees independent and
identically distributed replications.

Theorem 5.1. Weak law of large numbers (WLLN): If Z1,Z2, . . . are i.i.d. with
E(Z1)< ∞, then

1
n

n

∑
i=1

Zi
P−→ E(Z1).

Strong law of large numbers (SLLN): If Z1,Z2, . . . are i.i.d. with E(Z1)<∞, then

1
n

n

∑
i=1

Zi
a.s.−→ E(Z1).

Central limit theorem (CLT): If Z1,Z2, . . . are i.i.d. with E(Z2
1)< ∞, then

√
n

(
1
n

n

∑
i=1

Zi −E(Z1)

)
D−→ γN(0,1),

where γ2 = Var(Z1).

These results say that if your boss hired more and more friends to submit results,
the average of these results would converge (both in probability and almost surely)
to the mathematical expected value, and that the distribution of the (scaled) average
would look more and more normally distributed.

There is a very subtle but important point to emphasize here: The centering
constant in these theorems is E(Z1), which is not necessarily μ , the performance
measure you are interested in estimating.2 This is exactly the situation in the queue-
ing example: For any finite m, the E (Y (m)) �= μ (the steady-state mean) due to
bias induced by the way the simulation was initialized empty and idle. As we saw

2 Since Z1,Z2, . . . are i.i.d., we can select Z1 or any of the others as the representative.
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in Table 5.1, results are biased low (underestimating the steady-state mean waiting
time). Since we will often make many replications to control statistical error, we
need to remember that replications do not affect this sort of bias. In the next section
we see how this sort of bias can be tamed by increasing the length of the replication
(number of customers m in the queueing example).

What is “Z1” in each of our other standard examples, and is E(Z1) what we want
to estimate?

Stochastic activity network: Here the goal was to estimate θ = Pr{Y > tp} and
our observation on replication 1 is

Z1 =

{
1, Y1 > tp

0, Y1 ≤ tp

Thus, E(Z1) = 1 ·Pr{Y1 > tp}+ 0 ·Pr{Y1 ≤ tp} = θ ; so the WLLN, SLLN, and
CLT guarantee precisely the sort of convergence we want.

Asian option: Here the quantity of interest is

ν = E
[
e−rT (X̄(T )−K)

+
]

but what we observe is

Z1 = e−rT
(
¯̂X1(T )−K

)+
,

where ¯̂X1(T ) is a discretized version of X̄(T ) from replication 1; discretiza-
tion introduces bias. Thus, E(Z1) �= ν , and no number of replications can cause
∑n

i=1 Zi/n to converge to ν ; of course, it will converge to something not far from
ν if the discretization error is small.

M(t)/M/∞ queue: Suppose that, as in Sect. 4.2, we are interested in the maximum
number of cars in the parking lot over a 24-h period. Recall that N(t) was the
stochastic process representing the number of cars in the lot at time t. A quantity
of interest then might be

μ = E

(
max

0≤t≤24
N(t)

)

the expected value of the maximum over a 24-h period. The natural output—as
illustrated in Sect. 4.2—is

Z1 = max
0≤t≤24

N1(t).

Therefore μ = E(Z1) by definition and the convergence results in this section
imply that taking more replications guides us to the right value.

The WLLN, SLLN, and CLT show that sample means of i.i.d. data have very
desirable properties under very general conditions. When we average across-
replication outputs, these results apply. In our queueing example the replications
came from you and your friends conducting independent simulations; more typi-
cally it is only you executing multiple replications with different random numbers.
Assuming a good random-number generator, we treat these two ways of obtaining
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replications as the same. However, we have to take some care to understand the re-
lationship between the expected value of our estimator and the expected value we
are trying to estimate; when they are not the same, no quantity of replications can
reduce the bias.

Remark 5.1. Convergence in probability and with probability 1 do not always hold
together; if this was the case, then there would only be a need for one concept.
The SLLN is called “strong” for a reason: it implies that the WLLN holds, but not
the other way around. This important distinction is treated in advanced texts on
probability such as Billingsley (1995).

The WLLN, SLLN and CLT establish convergence of the sample mean Z̄(n) =
∑n

i=1 Zi/n to its expectation μ = E(Z1). Large deviations (LD) results provide
deeper insight into how this happens. There are many LD results; we state two,
one on the convergence to 0 of the probability of a large deviation, and the second
on the probability of any large deviations of the entire sequence of sample means
Z̄(n),n = 1,2, . . . .

Theorem 5.2 (Cramér’s Theorem). Suppose that Z1,Z2, . . . are i.i.d. and Z has
finite log moment generating function, that is ln[E(etZ)] < ∞ for all t. Then for any
z > E(Z) there exists a constant I(z) that depends on the distribution of Z and the
value z such that

lim
n→∞

1
n
ln [Pr{Z̄(n)≥ z}] =−I(z). (5.2)

This famous result implies that as n increases, the probability that Z̄(n) is above
its mean decreases exponentially fast: Pr{Z̄(n) ≥ z} ≈ e−nI(z). As an example, if
Z ∼ N(μ ,σ2), then I(z) = (z− μ)2/(2σ2). If one has a choice among unbiased
estimators that satisfy Theorem 5.2, then the one with the larger rate constant I(z)
is preferred in terms of speed of convergence. A reference on LD methods with
application to simulation is Bucklew (2004).

Theorem 5.3. If Z1,Z2, . . . are i.i.d. normally distributed with mean −∞ < μ < 0
and variance σ2 < ∞, then for any constant a > 0 the

Pr{Z̄(n)> a/n for some n < ∞} ≤ e2μa/σ2
. (5.3)

The assumption that μ < 0 implies that Z̄(n) tends to be negative. This result
bounds the probability that it ever becomes positive by more than a specific amount
that is tending to 0. Such results support sequential statistical procedures that ex-
amine the sequence Z̄(n) for many values of n. Notice that the assumption that Z is
normally distributed is stronger than the assumptions of Theorem 5.2.

5.2.3 Asymptotics Within Replications

Recall that in the queueing experiment you only got to see one (quite long)
replication. The results that your boss saw from across many replications suggested
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that you might be able to assume that a strong law of large numbers or central
limit theorem applies to your particular Ȳ (m) as the number m of patients and vis-
itors, rather than the number n of replications, increases. However, your data are
clearly not i.i.d. since the first patient waits 0min no matter what, and Lindley’s
equation (3.3) shows that the waiting times of successive patients and visitors are
dependent. Therefore, the theorems of Sect. 5.2.2 do not apply.

Unfortunately, there are no general, easily verifiable conditions for establishing
convergence in the non-i.i.d. case. In fact, a rather deep understanding of the
stochastic process being simulated is essential to actually prove a SLLN/WLLN
or CLT for a dependent process. See Henderson (2006) and the references therein
for a lucid, but technically challenging exploration of this point.

That said, the desired large-sample properties often hold. Typically heuristic
justifications are offered based on analogies with simpler processes that have been
studied: Stationary Markovian queues where the service capacity exceeds the cus-
tomer load; stationary, irreducible, positively recurrent Markov chains; time series
processes such as the AR(1); and regenerative processes are a few examples. The
appendix to this chapter discusses regenerative structure in more detail; interested
readers can refer to Haas (2002) and Glynn (2006).

Roughly, conditions such as the following must hold:

• Neither the logic of the system nor the input processes that drive the simulation
can change over time, and there can be no periodic (cyclic) behavior.

• The state space of the simulation may not decompose into distinct subsets such
that the simulation gets trapped in one or the others based on the particular ran-
dom numbers used.

• The state of the simulation in the distant future must be effectively independent
of the state in the past. In particular, the initial state at the start of a simulation
replication must become irrelevant when simulating far enough into the future.
This requires at least a minimal level of randomness and forgetfulness.

We now suppose that these conditions are satisfied, and the output process

Y1,Y2, . . . within a replication is such that Ym
D−→Y , a random variable Y whose dis-

tribution does not depend on the time index. We refer to Y as the steady state, and
the existence of Y implies that limit properties such as μ = E(Y ) are well defined.

Even though Ym has a steady state, the estimator Ȳ (m) may still be biased (as in
the M/G/1 queue). If we simulate long enough, then we want the bias in Ȳ (m) to
disappear. Define the asymptotic bias as

β = lim
m→∞

m(E(Ȳ (m))−μ)

= lim
m→∞

m

(
E

(
1
m

m

∑
i=1

Yi

)
−μ

)

=
∞

∑
i=1

(E(Yi)−μ) (5.4)
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which under some regularity conditions converges to a finite constant (Whitt, 2006).
Thus, for large m, Bias(Ȳ (m))≈ β/m. Estimating β is very difficult, so the fact that
it must fall off quickly (as 1/m) is important because we can overwhelm it with a
long replication.

For any random variables Y1,Y2, . . . ,Ym,

Var(Ȳ (m)) =
1

m2

m

∑
i=1

m

∑
j=1

Cov(Yi,Yj). (5.5)

This formula is a direct extension of the basic result Var(Y1 +Y2) = Var(Y1) +
Var(Y2) + 2Cov(Y1,Y2) = Cov(Y1,Y1) + Cov(Y2,Y2) + Cov(Y1,Y2) + Cov(Y2,Y1).
Notice that the expression has m2 terms and we only have m observations, so there
is no way to estimate it directly. What we hope, and can sometimes prove, is that the
dependence structure of Y1,Y2, . . . also stabilizes for large m, not just the marginal
properties such as mean and variance. The standard assumption is that beyond some
point we can treat the process as being covariance stationary, meaning that for m
large enough, σ2 =Var(Ym) and ρk = Corr(Ym,Ym+k) are no longer a function of m.
The quantity ρk is called the autocorrelation at lag k. For a covariance stationary
process (5.5) simplifies to

Var(Ȳ (m)) =
σ2

m

(
1+2

m−1

∑
k=1

(
1− k

m

)
ρk

)
. (5.6)

Therefore, for a covariance stationary process the asymptotic variance is

γ2 = lim
m→∞

mVar(Ȳ (m)) = lim
m→∞

σ2

(
1+2

m−1

∑
k=1

(
1− k

m

)
ρk

)

= σ2

(
1+2

∞

∑
k=1

ρk

)
. (5.7)

For the Var(Ȳ (m)) to go to 0 with m we need γ2 < ∞. Covariance stationarity
alone does not guarantee this, since Yi having “heavy tails” (σ2 = ∞) or long-range
dependence (ρk not falling off fast enough) could cause γ2 to be infinite. When γ2
exists then Var(Ȳ (m))≈ γ2/m for large m. Further, if ρk falls off quickly relative to
m, then observations far enough apart are effectively uncorrelated and there is some
hope of estimating γ2 (see Chap. 8).

Bias is a systematic error, while variance reflects error due to random sampling.
It might appear that they are equally important, because they both decrease as 1/m.
However, variance is not a measure of error, but of squared error:

Var(Ȳ (m)) = E
[
{Ȳ (m)−E(Ȳ (m))}2

]
. A more relevant measure is the standard er-

ror,
√
Var(Ȳ (m)), which decreases as 1/

√
m. Thus, even though both are important,
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in a large-sample sense sampling variability dominates bias. A combined measure
that treats bias and variance equally is the mean squared error,

MSE(Ȳ (m))= E
[
(Ȳ (m)−μ)2

]
= Bias2 (Ȳ (m))+Var(Ȳ (m)) (5.8)

≈ β 2

m2 +
γ2

m
.

Remark 5.2. Although we defined modes of convergence in terms of a discrete-time
process Z1,Z2, . . . , there are completely analogous definitions for continuous-time
processes, {Z(t), t ≥ 0} (e.g., the queue-length process Y (t) instead of waiting
time in the queue Y1,Y2, . . .). In particular, the CLT for a continuous-time process
shows that

lim
t→∞

√
t

(
1
t

∫ t

0
Z(t)dt −μ

)
D−→ γN(0,1).

5.2.4 Beyond Sample Means

Not every performance measure is estimated by a sample mean (e.g., the variance).
However, many estimators can be thought of as functions of sample means. A few
key results are helpful for understanding the simulation literature.

Theorem 5.4 (Converging Together Lemma). Suppose Zm
D−→ Z and Wm

P→ η ,
where η is a constant. Then

(Zm,Wm)
D−→ (Z,η).

This theorem states that if Zm converges in distribution to Z, whileWm converges
in probability to a constant, then no matter what their joint distribution is, they con-
verge together to these limits. The converging together lemma is often paired with
the following:

Theorem 5.5 (Continuous Mapping Theorem). Suppose Zm and Z are random

variables in ℜd; that Zm
D−→ Z; and that h(·) is a continuous function from ℜd to

ℜ. Then

h(Zm)
D−→ h(Z).

This result states that when random variables converge in distribution, then
functions of them may also converge. The statement of the theorem is actually
stronger than necessary: h may have discontinuities in a set D as long as Pr{Z ∈
D}= 0.

These two results turn the CLT into a practically useful tool. Suppose we have an
estimator Zn that satisfies the CLT

√
n(Zn −μ) D−→ γN(0,1)
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and we have an estimator S2n
a.s.−→ γ2 (remember that almost sure convergence implies

convergence in probability). Then if we let h(a,b) = a/
√

b, the converging together
lemma and the continuous mapping theorem imply that

h
(√

n(Zn −μ),S2n
)
=

√
n(Zn −μ)

Sn

D−→ γN(0,1)
γ

= N(0,1).

Thus, for large n we can argue that Zn ≈ μ+N(0,1)Sn/
√

n. This provides an asymp-
totic justification for the usual confidence interval Zn ± 1.96Sn/

√
n, where 1.96 is

the 0.975 quantile of the standard normal distribution. More generally, the converg-
ing together lemma and continuous mapping theorem are useful for establishing the
validity of “plug-in estimators” where unknown constants (in this case the variance
constant γ2) are replaced with convergent estimators of them.

Here is another application of the continuous mapping theorem: Suppose that
Z1,Z2, . . . are i.i.d. with finite mean μ and variance σ2, and we want to estimate
h(μ) for continuous and twice differentiable function h.

The continuous mapping theorem implies that h(Z̄(n)) converges to h(μ). Since
we will have to stop our simulation short of ∞, what can we say about the estimator
h(Z̄(n))? Using a Taylor series expansion

h(Z̄(n)) ≈ h(μ)+h′(μ)(Z̄(n)−μ)

so that provided h′(μ) �= 0

√
n(h(Z̄(n))−h(μ)) ≈ h′(μ)

√
n(Z̄(n)−μ)

D−→ h′(μ)σN(0,1)

by the CLT and continuous mapping theorem. Therefore, Var(h(Z̄(n)))≈h′(μ)2
σ2/n for large n. Taking the Taylor series out to one more term, a similar argument
shows that

Bias(h(Z̄(n))) = E(h(Z̄(n)))−h(μ)≈ 1
2

h′′(μ)σ2

n
. (5.9)

This approach for deriving the variance and bias of one statistic that is a function of
another is usually called the “Delta method.” The base statistic need not be a sample
mean, but it does need to be a statistic whose asymptotic properties are known.

5.2.5 Simulation and Gaussian Processes

The theme of the previous section is that a simulation can be viewed as a stochastic
process. Gaussian processes are a class of stochastic process that has been increas-
ing useful as a way to represent various aspects of stochastic simulation design and
analysis. Loosely speaking a Gaussian process (GP), also called a Gaussian random
field, is a real-valued random function G(x) on some domain x ∈ X such for any
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finite k and x1,x2, . . . ,xk ∈ X , the values (G(x1),G(x2), . . . ,G(xk))
� have a multi-

variate normal (MVN) distribution. We briefly review the MVN distribution below,
followed by a description of two useful classes of GPs, one in which x represents
time, and a second in which it represents space (e.g., decision variables).

5.2.5.1 Multivariate Normal Distribution

Detailed descriptions of the MVN distribution can be found in many textbooks, in-
cluding Johnson (1987). If Z = (Z1,Z2, . . . ,Zk)

� has a MVN distribution, we write
Z ∼ N(m,C), where m is the k × 1 mean vector and C is the k × k variance ma-
trix, with respective elements E(Zi) = mi and Cov(Zi,Z j) = Ci j. Remember that
Cov(Zi,Zi) = Var(Zi). A MVN distribution is fully specified by m and C, where C
must be positive definite or positive semi-definite.

Let A ,B denote subsets of {1,2, . . . ,k} that may overlap, and need not be ex-
haustive. We use the notation [A ] to indicate the rows of a vector with indices in
A , and [A ,B] to indicate the rows and columns of a matrix with indices in A and
B, respectively. For instance, if A = {1,2} and B = {2,3}, then

m[A ] =

(
m1

m2

)
and C[A ,B] =

(
C12 C13

C22 C23

)
.

Two key properties of the MVN distribution are the following:

• If Z∼ N(m,C), then Z[A ]∼ N(m[A ],C[A ,A ]).
• If Z∼ N(m,C), then the conditional distribution of Z[A ] given Z[B] = z[B] is

also multivariate normal, with mean

m[A ]+C[A ,B]C[B,B]−1 (z[B]−m[B]) (5.10)

and variance
C[A ,A ]−C[A ,B]C[B,B]−1C[A ,B]�. (5.11)

Thus, by observing Z[B] one learns about Z[A ], as represented by a revised
mean and a reduction of the variance.

5.2.5.2 Brownian Motion

The argument of Brownian motion (BM) typically corresponds to “time,” so in this
section we write {G(t); t ≥ 0} for standard BM, and let m(t) = E[G(t)], C(t, t) =
Var[G(t)] and C(s, t) = Cov[G(s),G(t)] where by convention s ≤ t.

Standard BM is a one-dimensional random function that is everywhere continu-
ous, but nowhere differentiable. Further,

G(0) = 0
G(t)−G(s) is independent of G(s)
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G(t)−G(s)∼ N(0, t − s)
C(s, t) =min{s, t}= s.

From standard BM we can construct B(t) = σG(t)+μt, where the constant −∞<
μ <∞ is called the drift, and the constant 0< σ <∞ is called the scaling. It follows
immediately that B(t)−B(s)∼ N((t − s)μ ,(t − s)σ2). BM has been studied exten-
sively, including many results characterizing the probability of BM achieving large
deviations from its mean.

There are several reasons why BM is important for stochastic simula-
tion. Suppose that Z1,Z2, . . . are i.i.d. N(μ ,σ2). Then the partial sum process
{∑n

i=1 Zi;n = 1,2, . . .} is equal in distribution to {B(t); t = 1,2, . . .}; that is, the pro-
cess created by summing the first n i.i.d. normals has the same distribution as Brow-
nian motion with drift μ and scaling σ evaluated at integer times. Thus, properties
of BM may sometimes be used as approximations for the properties of simulation
output processes.

Of course, simulation output processes need not be i.i.d. normal; nevertheless
they may still behave like BM asymptotically. Suppose now that Z1,Z2, . . . ,Zn is
a stationary process with marginal mean μ and variance σ2, but is not necessarily
either normally distributed nor independent. Define the standardized process on 0≤
t ≤ 1:

Yn(t) =
�nt	(Z̄(�nt	)−μ)

σ
√

n
. (5.12)

Consider this process from two different perspectives: For fixed number n of Z’s,
Yn(t) is a random function defined for all 0 ≤ t ≤ 1. For fixed t ∈ (0,1], Yn(t) is a
standardized average of a larger and larger number of Z’s as n increases, just the
sort of process to which the Central Limit Theorem applies. Under certain technical
conditions (e.g., Glynn and Iglehart , 1990), the following Functional Central Limit
Theorem (FCLT) holds:

Theorem 5.6. As n → ∞, Yn(t)
D−→ G(t) for all 0≤ t ≤ 1.

This is quite a powerful result: It states that the entire random function Yn(t) con-
verges in distribution to standard BM, not just pointwise (for a given t) but jointly
over all 0 ≤ t ≤ 1. Thus, BM can be used as an approximation for more general
simulation output processes than i.i.d. normal.

As an illustration, let Zi = 5+ 0.8(Zi−1− 5)+Xi where the Xi are i.i.d. N(0,2);
although the Z’s are marginally normal, they are dependent. Figures 5.4 and 5.5
show one realization of Z1,Z2, . . . ,Zn and the standardized process Yn(t) for n = 10
and 1000, respectively.

Observant readers will notice that the plot of Y1000(t) seems too variable to be a
standard BM: recall that Var[G(t)] = t, but we observe that Y1000(t) deviates from 0
by as much as 4 in the plot. This behavior is an artifact of the dependence among the
Zi. The FCLT is a “limit theorem” as n → ∞, and for this illustration a much larger
n is required before Yn(t) is consistent with standard BM; Exercise 13 asks you to
examine the effect of further increasing n.
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5.2.5.3 Spatial Gaussian Processes

Suppose g(x) is an unknown function, but we have the capability to evaluate it at a
set of points B = {x1,x2, . . . ,xk}. Using these evaluations we would like to predict
its value at any x ∈ X . A plausible property of g(·), if g(·) is to be predictable, is
that when x and x′ are “close” in the space X , then the values of g(x) and g(x′) will
be similar. The following is a clever way to exploit this property.

Since g(·) is unknown, model it as a realization of a GP G(·) defined on X .
Stated differently, g(·) is thought of as a random, but unobserved, instance of a GP.
To specify the distribution of G(·) we need a mean function m(x) = E[G(x)] and
a covariance function C(x,x′) = Cov[G(x),G(x′)] for any x,x′ ∈ X . A common
choice is to assume m(x) = m for all x, and C(x,x′) = C(d(x,x′)), where d(·, ·) is
a distance function; see Santner et al. (2003). The choice of covariance function is
intimately connected to the properties of g(·), but loosely we want a function for
which the covariance decreases as the distance between x and x′ increases.

Having evaluated g[B] = (g(x1),g(x2), . . . ,g(xk))
�, the natural predictor of g(x)

is the conditional mean of G(x) given G[B] = g[B], which from (5.10) is

ĝ(x) =m+C[x,B]C[B,B]−1 (g[B]−m1k×1) . (5.13)

This highly effective method is called kriging, GP regression, or GP learning.
In stochastic simulation g(x) might represent system performance as a function

of controllable decision variables x. For instance, x might be a staffing policy by
hour of the day in a call center, and g(x) might be the mean caller delay under this
plan. What makes simulation different from the setting above is that g(x) can only
be estimated, rather than evaluated, by running a stochastic simulation. Stated more
formally, the simulation generates g(x) + ε(x), where ε(x) represents estimation
error.

Stochastic kriging (Ankenman et al., 2010) represents this setting as Y (x) =
G(x)+ε(x), where G(·) and ε(·) are independent GPs, and derives statements about
G(x) conditional on observing Y[B] = (Y (x1),Y (x2), . . . ,Y (xk))

� = y[B]. In par-
ticular, one can show that the conditional mean and variance are

ĝ(x) = m+C[x,B]{C[B,B]+Cε [B,B]}−1 (y[B]−m1k×1) (5.14)

Var[ĝ(x)] = C[x,x]−C[x,B]{C[B,B]+Cε [B,B]}−1C[x,B]�, (5.15)

where Cε is the covariance matrix of the estimation error. In practice there are many
parameters in this result that need to be estimated, but we ignore that issue for now.

An important difference between kriging and stochastic kriging is the prediction
at a point xi ∈B: In kriging the prediction is g(xi), the observed value since there is
no error. This is not the case for stochastic kriging because there is estimation error
even at the simulated points.
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5.3 Simulation as Computation

This book covers stochastic computer simulation with an emphasis on the model-
ing and statistical issues that arise due to it being “stochastic.” In this section we
consider the computational aspects of simulation, starting with a non-simulation
computation to provide context.

Let I = [0,1] be the unit interval and let be g(·) be an integrable function over I.
For some nice functions g, the integral μ =

∫
I g(x)dx can be expressed as G(1)−

G(0), where G is the anti-derivative of g that sometimes has an easy-to-evaluate
form. However, “easy-to-evaluate form” is not the case for every integrable function,
leading to the need for numerical approximations.

For instance, if we partition I into n subintervals 0= x0 < x1 < · · ·< xn = 1, then
the well-known trapezoid rule is

∫
I
g(x)dx ≈

n

∑
i=1

g(xi−1)+g(xi)

2
Δxi, (5.16)

where Δxi = xi − xi−1. Therefore, we can approximate the integral by evaluating g
at only n+1 specific values of x. As n becomes larger and the Δxi become smaller,
the approximation becomes better in theory. However, when actually implemented
on a computer, decreasing Δxi can lead to a loss of numerical accuracy due to the
finite representation of numbers; further, the computing effort to approximate the
integral grows linearly in n.

Next suppose that g(x) is a function of a d-dimensional x, and I is the hyperbox
[0,1]d . Then using something like the trapezoid rule with n intervals in each dimen-
sion, the number of function evaluations to approximate the integral grows as nd .
Thus, there are computational limits on accurate, high-dimensional numerical inte-
grations. And while there exist much better methods than the trapezoid rule (Süli
& Mayers, 2003), the key observation that, to obtain an accurate approximation in
higher and higher dimensions one has to bear substantially increased computation,
still applies.

To connect numerical integration to stochastic simulation, we note that integrals
can often be represented as expected values. For instance, if X is uniformly dis-
tributed3 on I, then

E(g(X)) =
∫
I
g(x)dx. (5.17)

This leads to the Monte Carlo estimator of μ :

μ̂ =
1
n

n

∑
j=1

g(X j), (5.18)

3 By “uniformly distributed” we mean that each dimension is uniformly distributed on [0,1], and
the dimensions are independent, so the joint density is 1d = 1 on I.
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whereX1,X2, . . . are i.i.d. samples from the uniform distribution on I. Notice that in-
creasing n—the number of distribution samples—reduces the estimation error with
no inherent loss of numerical accuracy since we are not slicing I into smaller and
smaller hyperboxes. Further, the only impact that the dimension d has on the compu-
tational effort is in simulating X, and that grows only linearly since we can simulate
each dimension of X from an independent uniform distribution. For these reasons
“Monte Carlo methods” are often superior to numerical methods for approximating
high-dimensional integrals. Even though we have not to this point thought of our
discrete-event stochastic simulation problems as the approximation of integrals, in
many cases we could, and the same basic insights apply regardless.4

Although sometimes used interchangeably, the terms accuracy and precision are
not equivalent, although both are related to error. Accuracy refers to how close a
measurement is to the true value, while precision refers to how close measurements
of the same item are to each other. Both are inversely proportional to their associated
error. For instance, for the trapezoid rule with a particular choice of n and xi

accuracy ∝

∣∣∣∣∣
∫

I
g(x)dx−

n

∑
i=1

g(xi−1)+g(xi)

2
Δxi

∣∣∣∣∣
−1

.

In the Monte Carlo context, accuracy is inversely proportional to the absolute bias
of the estimator |E(μ̂)−μ |; Monte Carlo estimators of integrals are often unbiased.
Precision, on the other hand, is less relevant for numerical integration, but very
relevant for Monte Carlo estimators: it is inversely proportional the Var(μ̂). MSE,
as described in Sect. 5.2.3, encompasses both accuracy and precision for Monte
Carlo estimators.

In pure numerical calculations, such as the trapezoid rule, additional computing
effort is typically expended to increase accuracy; in stochastic simulation it is typ-
ically expended to increase precision (reduce variance), and sometimes to increase
accuracy (reduce bias) as in steady-state simulation. In a very real sense, the cen-
tral topics of this book are assessing the MSE of simulation-based estimators and
achieving an acceptable MSE through how we expend simulation effort. This is not
to say the discrete-event simulations are immune from numerical representation is-
sues: For instance, random-number generators and random-variate generators may
create or employ numerical values that are so large or so close to 0 that how they
are handled can depend very much on the language in which they are coded or even
the computer architecture itself. It is also possible that statistical summaries that are
updated during execution can lose numerical precision if not updated carefully.

Since the typical discrete-event simulation generates a time-ordered sample path,
it is inherently serial, moving from one event to the next one. For this reason event
handling is often the primary computational bottleneck. By “event handling” we
mean maintaining a time-ordered event calendar, inserting newly scheduled events
in the appropriate place in the calendar, extracting the next event, and executing

4 The exception is the Asian option example in Sects. 3.5 and 4.5, which has a lot in common with
numerical integration and is not fundamentally a discrete-event simulation.
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the event logic itself. The more scenarios (distinct systems) that need to be simu-
lated, and the more replications of them that need to be executed, and the longer
the simulated time within each replication, the more event handling that needs to
be done. Clearly random-number generation, random-variate generation, updating
statistical calculations, etc. also require expending computational effort, and they
can in certain situations also be bottlenecks.

Simulations may also be run in various modes, especially when using commer-
cial simulation products. For instance, such products can often produce a high-
resolution graphical animation of model execution, and can generate an output trace
of every event and update that happens during the run; both of these features cre-
ate computation burdens, and in the case of animation it intentionally slows down
the execution of events. The term “production runs” is used to indicate simulations
that turn off animations, traces, and anything else that might slow execution so as to
generate output measures as rapidly as possible. In this book we are typically doing
production runs.

Certainly the most profound computational change for stochastic simulation
since the graphical user interface is inexpensive parallel computing. Even low-end
laptops are multi-core and have the capability of executing several processes in par-
allel. Commercial services such as Amazon Web Services, Microsoft R© Azure and
Google Cloud Platform rent parallel computing capacity to facilitate exploiting hun-
dreds of processes at low cost.

At a high level, there are three ways to “parallelize” a discrete-event, stochastic
simulation: (a) execute portions of the same simulation model in parallel with nec-
essary synchronization, (b) execute distinct replications of the same simulation in
parallel and concatenate the results, and (c) execute distinct simulation models or
scenarios in parallel to compare the results.

Situation (a) is addressed by the PADS (Parallel and Distributed Simulation)
community. Imagine simulating traffic in a large metropolitan area like Chicago, or
the spread of a virus across the world. Although traffic can flow from anywhere in
the Chicago area to any other, and a virus can spread from any country to any other,
areas that are spatially distant may interact only weakly. Therefore, the simulation
of distant regions can proceed largely in parallel but with some synchronization.
This quite interesting approach will not be considered further here; see, for instance
Fujimoto (2016).

Situations (b) and (c) are relevant to this text. To describe the statistical issues,
suppose that we have p+ 1 parallel processes, which means we can execute p+ 1
“jobs” in parallel. We designate process p+ 1 as the “master” and the other p as
“workers.” In this set up, the master assigns simulation jobs to the workers, compiles
results from the workers as they complete, and assigns further jobs to the workers.
See Fig. 5.6. There are many possible computer architectures for parallel simulation,
but this one is common and represents the key issues.

In situation (b) there is a single simulation model, the master assigns “simu-
late 1 replication” jobs to the workers and, to be specific, averages the returned
outputs. It is immediately obvious that some care is needed in handling the pseu-
dorandom numbers so that the replications use different portions of the sequence;
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Master

p Workers

Fig. 5.6 Jobs represented as • being distributed to parallel processors to be returned when com-
pleted in a master-worker computing environment

see Sect. 6.5.3. However, even when that issue is addressed, Heidelberger (1988)
and Glynn and Heidelberger (1991) observed that the outputs received by the mas-
ter may not be i.i.d. if there is dependence between the clock (computer) time it
takes to execute a replication and the value it returns. A queueing simulation of T
units of simulated time provides an intuitive example: If on a particular replication
the assigned pseudorandom numbers cause the system to be more congested than
average—say because there are many more arrivals than average—then the clock
time to execute that replication will be longer than average due to the larger number
of arrival and service events that need to be handled. Thus, a performance mea-
sure like average queue length will have a positive dependence with execution time.
Therefore, the master will tend to receive replications with smaller values of average
queue length before those with larger values of average queue length, so the outputs
are not identically distributed in the order they are received. As a result, the cumu-
lative sample mean computed by the master will be biased. Exercise 20 asks you to
derive the bias for a simple case. Of course, if the master needs a fixed number n of
replications, makes no more than n assignments to workers, and then waits until all
results are returned, then the problem disappears, but at the cost of forcing things to
slow down.

In situation (c) there are many distinct models or scenarios that can be executed in
parallel. This might occur when the goal is to optimize the performance of a system
with respect to some controllable decision variables, and each distinct setting of
these variable corresponds to a “scenario;” see Chap. 9. For instance, the goal might
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be to minimize the expected customer delay in a call or contact center by assigning
agents to different work schedules that stay within a budget. For simplicity suppose
that we do not simulate multiple replications of the same scenario in parallel, but do
simulate different scenarios (perhaps for multiple replications) in parallel. Assuming
that we pay for the parallel processing capability, a reasonable goal is to complete
the optimization in a statistically valid way and as cost-effectively as possible.

Suppose that there are in total K < ∞ feasible solutions and p � K parallel pro-
cessors. A simple prescription such as “simulate all K models for 10 replications
each and compute pairwise confidence intervals for the differences among them”
now raises computational as well as statistical issues. Consider the following strate-
gies:

• The master waits until all replications from all scenarios are complete and then
performs the pairwise comparisons. This strategy idles the p workers while the
master computes an excessive number of comparisons if K is large.

• As scenarios finish their replications, the master begins computing some of the
pairwise comparisons while also dispatching unsimulated scenarios to the work-
ers. The master must now do computations and keep track of which comparisons
have been completed, and therefore may idle workers while being busy with these
other tasks.

• The master dispatches roughly K/p scenarios to each worker to simulate and
compare, and then exchanges results among them until all pairwise comparisons
are complete. This strategy requires coordination among workers that finish their
tasks out-of-sync, as well as a large quantity of data movement among the work-
ers.

Clearly “all pairwise comparisons” is the simplest possible simulation optimiza-
tion algorithm; more sophisticated algorithms will search for improving solutions
and may eliminate solutions from further consideration with statistical guarantees.
Without complete synchronization, which slows down progress, the statistical issues
that arise in simulating a single scenario become even more complicated here; see
Hunter and Nelson (2017) and Luo et al. (2015) as well as Chap. 9.

Appendix: Regenerative Processes and Steady State

How do we establish that a simulated system has a steady state? Or that
simulation-based estimators satisfy a SLLN or CLT? As indicated earlier, this is a
difficult question in general. In some cases we can argue that the simulation generat-
ing the output is a regenerative process. For deeper discussion beyond this appendix,
see Haas (2002) and Glynn (2006).

Our goal is to prove that the output process Yt has a steady state, and that the
sample mean satisfies a SLLN and CLT. We will handle the continuous-time (t ≥ 0)
and discrete-time (t = 0,1, . . .) cases together.
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Fig. 5.7 Plot of successive waiting times in M/G/1 queue with times when customers arrive to an
empty system indicated by dashed lines

Suppose that in the same simulation we can identify a renewal process {Si, i =
0,1,2, . . .}; by a renewal process we mean that

S0 = 0

Si = A1+A2+ · · ·+Ai,

where Ai are i.i.d. with Pr{Ai = 0} < 1 and Pr{Ai < ∞} = 1. The output processes
{Yt ; t ≥ 0} or {Yt ; t = 0,1, . . .} are regenerative processes if taken together

{Yt ;Si ≤ t < Si+1}, i = 0,1,2, . . .

are i.i.d. Notice that the output process Yt may be highly dependent; being
regenerative means that the behavior of {Yt ;Si ≤ t < Si+1} and {Yt ;Si+1 ≤ t < Si+2},
say, are independent of each other, and have the same probability distribution. For
this reason, regenerative processes are said to probabilistically “start over” at the
renewal times t = S0,S1,S2, . . . .

For instance, an ergodic discrete or continuous-time Markov chain starts over
every time it enters a fixed state, due to the Markov property. Many queueing
systems start over probabilistically each time a customer arrives to find the sys-
tem empty and idle. Figure 5.7 plots the waiting times Yt of successive customers
t = 1,2, . . . arriving to an M/G/1 queue, with the vertical dashed lines indicating
the customers who arrive to find the system empty and therefore have waiting time
0.

Let

Zi =
∫ Si

Si−1

Yt dt

be the accumulated output over the ith renewal cycle (between the dashed lines). The
integral becomes a sum for discrete-time output processes like Fig. 5.7. IfYt is regen-
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erative (with right-continuous sample paths if Si is continuous valued), E(|Z1|)<∞,
E(A1)< ∞, and A1 is aperiodic,5 then the following hold:

• Yt
D−→ Y (the process has a steady-state distribution);

• limt→∞ t−1 ∫ t
0Ys ds

a.s.−→ E(Z1)/E(A1) (the sample mean converges to the expected
total output per cycle divided by the expected length of a cycle); and

• μ = E(Y ) = E(Z1)/E(A1) (the steady-state mean is the almost sure limit of the
sample mean).

Thus, regenerative structure establishes that there is a steady-state distribution and
that as the length of the replication increases the sample mean satisfies a SLLN for
the steady-state mean.

Now let Vi = Zi −μAi; this is the cumulative output from the ith cycle minus the
predicted cumulative output based only on the length of the cycle. If it is also the
case that E(V 2

1 )< ∞, then

• limt→∞
√

t(Ȳt −μ) D−→ γN(0,1), where Ȳt = t−1 ∫ t
0Ys ds; and

• The asymptotic variance γ2 = E(V 2
1 )/E(A1).

Therefore, the sample mean satisfies a CLT, and the asymptotic variance can be
expressed in terms of properties of a regenerative cycle.

Establishing the existence of steady state using the regenerative argument
amounts to identifying the renewal process Si and arguing that {Yt ;Si ≤ t < Si+1}
are i.i.d. Typically S1,S2, . . . are times such that the state of the simulation is identi-
cal, and the probability distributions of all pending events are also the same. Further,
one needs to establish that Pr{Ai < ∞}= 1; that is, the time between regenerations
is finite.

Consider the M/G/1 queue of Sect. 5.2.1 and sample path in Fig. 5.7. Let Si

be the ith time an arriving customer finds the system completely empty. At such
times nothing that has happened in the past is relevant: there are no other customers
in the system, the distribution of the time until the next arrival is exponential with
parameter λ = 1, and the service time of the customer that just arrived is Erlang
with mean τ = 0.8 and three phases. The time between such occurrences is finite
because λτ < 1, meaning that the system can keep up and therefore will be empty
from time to time.

Exercises

1. Suppose that Z1,Z2, . . . ,Zn are i.i.d. with finite mean μ and variance σ2. Use

the WLLN and continuous mapping theorem to show that S2
P−→ σ2.

2. Look up and write down corresponding convergence definitions for continuous-
time processes.

5 Aperiodic means that for A1 continuous valued, there is no d > 0 such that∑∞n=0 Pr{A1 = nd}= 1;
and for A1 discrete valued, there is no integer d ≥ 2 such that ∑∞n=0 Pr{A1 = nd}= 1.
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3. Suppose that Z1,Z2, . . . ,Zn are i.i.d. with finite mean μ , and variance σ2, and
that h(·) is twice continuously differentiable at μ . Show that

n [E(h(Z̄(n)))−h(μ)]−→ 1
2

h′′(μ)σ2.

4. Derive Eq. (5.5).
5. Starting with Eq. (5.5), show that for a covariance stationary process

Var(Ȳ (m)) =
σ2

m

(
1+2

m−1

∑
k=1

(
1− k

m

)
ρk

)
.

6. Derive Eq. (5.9).
7. To prove that the results obtained by the Delta method are correct, conditions

are needed on the higher-order terms in the Taylor series expansion. Derive or
research these conditions.

8. In Sect. 5.2.4 it was stated that “The continuous mapping theorem implies that
h(Z̄(n)) converges to h(μ).” What mode of convergence does it satisfy? Hint:
Convergence in distribution to a constant implies convergence in probability to
that constant.

9. For the AR(1) process described in Sect. 3.3, derive the asymptotic MSE of the
sample mean Ȳ (m).

10. For the following scenarios, state whether the estimator will be biased and
explain why or why not.

a. For the stochastic activity network, we want to estimate the mean time to
complete the project, and for our estimator we use Eq. (3.11).

b. A European option is based on X(T ), the value of the asset at time T . To
estimate the expected value of a European option and we use e−rT (X(T )−
K)+.

c. For an M/G/1 queue, we are interested in estimating the mean waiting time
of the tenth customer to arrive when the system starts empty, and we use Y10
from Eq. (3.3) as our estimator.

d. Suppose that the parking lot represented by the M(t)/M/∞ queue is open
from 8 a.m. to 11 p.m. daily. A replication is defined by 1 day, and the garage
starts empty each day. We want to estimate the expected value of the number
of hours in a day when the garage has more than 2000 cars in it. We take as
our output

Z =

∫ T

0
M(t)dt,

where T = 15 h and

M(t) =

{
1, N(t)> 2,000
0, N(t)≤ 2,000.
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11. In addition to the AR(1), another surrogate model that is used to represent
steady-state simulation output is the MA(1):

Yi = μ+θXi−1+Xi, i = 1,2, . . . ,m,

where X1,X2, . . . are i.i.d. (0,σ2) random variables, X0 may be random or fixed,
and |θ |< 1. Show for this process that Var(Yi) = (1+θ 2)σ2, and

Cov(Yi,Yi+ j) =

{
θσ2, j = 1
0, j > 1.

Use this information to derive the asymptotic MSE of Ȳ (m) = ∑m
i=1Yi/m as an

estimator of μ .
12. A mode of convergence not covered in this chapter is convergence in mean

square (also called mean-square convergence). Look up the definition and de-
scribe how it relates to the other modes of convergence that were covered.

13. Recall the standardized average Yn(t) (Eq. (5.12) from Sect. 5.2.5.2) that con-
verges to standard BM as n → ∞, and the illustration using Zi = 5+0.8(Zi−1−
5)+Xi, where the Xi are i.i.d. N(0,2). The illustration is a specific instance of an
AR(1) process Zi = μ+ϕ(Zi−1−μ)+Xi where the Xi are N(0,σ2). Set μ = 0
and σ2 = 1, and run an experiment with n = 100,1000,10,000, and 100,000,
and ϕ ∈ {0,0.6,0.9}. Notice that ϕ = 0 corresponds to standard BM observed
discretely. As n increases do the standardized averages appear to be converg-
ing to BM for the other values of ϕ? Hint: to start the AR(1) in steady state,
generate Z0 from N(0,σ2/(1−ϕ2)).

14. Show that the kriging predictor (5.13) interpolates—meaning that ĝ(xi) =
g(xi) for the observed points x1,x2, . . . ,xk—but the stochastic kriging predic-
tor (5.14) does not in general. Hint: for the second part all you need is a coun-
terexample.

15. Let �(t) = ln[E(etZ)]. Then for random variables satisfying Cramér’s Theorem,
it can be shown that I(z) = supt∈ℜ(tz− �(t)), the Legendre transform of �. Use
this result to show that I(z) = (z−μ)2/(2σ2) for the normal distribution.

16. Prove that the Monte Carlo estimator (5.18) is unbiased for the integral.
17. In the integral

∫
I g(x)dx, suppose that I = [ai,bi]

d , where ai < bi but not nec-
essarily [0,1]. Generalize the Monte Carlo method to this case. Hint: For any
constant ν �= 0 we have

∫
I g(x)dx= ν

∫
I g(x)/ν dx

18. Estimate the integral
∫ 4
0 (2x2− x)dx using the trapezoid rule with n = 16 inter-

vals and using the Monte Carlo method using n = 16 samples; repeat the Monte
Carlo method 10 times. Compare your results to the true value. For a simple
one-dimensional integral like this is there any advantage to using Monte Carlo
over numerical integration? Hint: You will need the result from the previous
exercise.

19. We defined the Monte Carlo method for estimating
∫
I g(x)dx by simulating

X from the uniform distribution over I = [0,1]d . Suppose f (x) is some other
density over I, and we simulate X1,X2, . . . ,Xn as i.i.d. from f instead. Show
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that
1
n

n

∑
j=1

g(X j)

f (X j)

has expected value
∫
I g(x)dx. Comment: Choosing an f that reduces the vari-

ance leads to a better estimator for the same computational effort.
20. In a parallel simulation environment with one master and p > 2 workers, let

Yj be the value returned from the jth replication requested by the master, and
let Tj be the corresponding execution (computer) time required to obtain it.
Suppose that the output Y ∼ exponential with mean μ , and T = Y . Derive the
E(Yj), j = 1,2, . . . . Hint: Remember that the first p simulation jobs will all start
at time 0, and derive the E(Y1).



Chapter 6
Simulation Input

This chapter covers simulation input, which includes the following:

Input modeling: Selecting (and perhaps fitting) the probability models that repre-
sent the uncertainty in the simulated system.

Random-variate generation: Representing the inputs as transformations of i.i.d.
U(0,1) random variables.

Random-number generation: Producing a good approximation to realizations of
i.i.d. U(0,1) random variates.

We present the topics in this order because input modeling is the objective, while
random-variate generation and random-number generation are means to an end.

6.1 Input Modeling Overview

In many cases, the inputs themselves are not of great interest; what is of interest are
the outputs that the inputs imply. For random-variate generation we can use provably
correct methods; for random-number generation we can use generators with well-
documented properties. Input modeling, on the other hand, may require judgement
and is therefore open to more error. Since fitting distributions to data using methods
such as maximum likelihood estimation (MLE) is a standard topic in statistics, our
focus will be more on avoiding errors and less on the mechanics of fitting. We also
discuss selecting input models when there are no data.

6.1.1 An Input Modeling Story

To motivate the important topics in input modeling, we will walk through a generic
input modeling story, pausing from time to time to discuss it. The story represents
a typical input modeling approach that makes standard assumptions; the discussion
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outlines pitfalls and issues. The story parallels the simulation framework described
in Sect. 5.1: There is a conceptual system of interest that does not yet exist, but
there is a corresponding real system that is similar enough that some input data and
system logic can be observed. The goal is to build a simulation of the conceptual
system design.

Recall the hospital reception problem, Example 3.2: Under consideration was re-
placing the human receptionist by an electronic kiosk with a touch screen that might
be a bit slower, or more variable, for patients and visitors who are less comfort-
able interacting with a touch screen. Therefore, the hospital management engineers
wanted to evaluate how much additional delay that this might cause.

Hospital records were available to estimate the overall arrival rate. The physical
basis for the Poisson distribution—arrivals from a large population of potential cus-
tomers making independent decisions about when to arrive—suggests using it as the
arrival-process input model. (For this reason exponentially distributed interarrival
times are the default in some commercial simulation languages.)

To “fit” this input model, hospital records were used to count the number of
arrivals over some time interval [0,T ] and the arrival rate λ was estimated by

λ̂ =
N(T )

T
,

where N(t) is the number of arrivals that occurred by time t. This turns out to be
an unbiased, maximum likelihood estimator of λ if the arrival process is really
Poisson.

Notice that we are not just treating the arrival process as Poisson, but as sta-
tionary Poisson (constant arrival rate), which is a significantly stronger approxima-
tion. Unfortunately, if the arrival process was nonstationary Poisson, there is nothing
about the estimator λ̂ to alert us; when we carry out this calculation we will get a
number, even if the arrival rate is changing radically throughout the day as in the
parking lot Example 3.1. The only way to detect nonstationarity is to look at de-
tailed arrival data, either the counts over smaller time intervals, or the interarrival
times themselves if available.

Suppose that the arrival rate is indeed constant throughout the day. Let T be the
length of 1 day, and suppose we had recorded patient arrivals counts for, say, m
days. Let Ni(T ), i = 1,2, . . . ,m be the counts from the m days. Then a statistical test
could be used to see if the data support the hypothesis that the counts are Poisson.
“Goodness-of-fit tests” are formulated as

H0 : The chosen distribution with the estimated parameters is correct
H1 : The chosen distribution with the estimated parameters is incorrect.

There are at least three reasons why the test might reject the Poisson input model:

1. The distribution of the data is substantially different from Poisson. For instance,
if the reception desk only serves patients with appointments, and a fixed number
of appointments are scheduled each day, then the counts are nearly identical and



6.1 Input Modeling Overview 121

therefore not Poisson. Also, scheduled appointments are typically spread evenly
throughout the day and therefore arrivals are not as random as a Poisson model
would predict.

2. The distribution of arrivals might differ by day of the week. For instance, Satur-
days could be especially busy. Saturday arrival counts, considered by themselves,
might be well-modeled as stationary Poisson, but not all days taken together.
Thus, even if arrivals throughout a day can be treated as stationary Poisson there
could still be nonstationarity across days.

3. We might have too much data. Why could this cause the hypothesis to be re-
jected? Treating the counts as Poisson is always an approximation if we are deal-
ing with a physical (as opposed to simulated) system; real data do not come
from probability distributions. Thus, any valid goodness-of-fit test will, if given
enough data, reject every distribution. This does not mean that goodness-of-
fit tests are useless, but it does mean that they should be used with caution.
Goodness-of-fit tests make the most sense when there is a physical basis for the
distribution choice, and we want a warning if the data vary substantially from
that choice.

Hospital records would certainly provide counts. But if arrival times themselves
are logged, then they would provide more detail, including interarrival times. If the
arrival process is (stationary) Poisson, then the distribution of the interarrival times
is exponential, and this fact provides another way to validate the input model.

The management engineers collected data on people interacting with the kiosk
from a trial study with the vendor. For the service-time distribution, there is no
strong process physics guiding the choice of distribution, as there was for the ar-
rival process. Therefore, the management engineers analyzed the data using distri-
bution fitting software and chose the distribution that the software recommends as
the “best fit.”

Distribution fitting software typically fits every relevant distribution it can using
methods such as MLE, and then it recommends a candidate using some kind of
score, often the best (smallest) goodness-of-fit statistic. Fitting all relevant distri-
butions makes comparisons among the choices convenient, but otherwise this is a
questionable approach. First, any score summarizes all aspects of the fit by a single
number, without regard to where the lack of fit occurs, or if it matters. Second, if
a goodness-of-fit test is to have any meaning at all, then there must be a distribu-
tion that was hypothesized due to some additional information (as we did with the
Poisson choice for the arrival process); there is no statistical meaning that can be
attached to the distribution having the smallest test score from among an arbitrary
collection.

Are the data collected during the vendor trial representative of what will occur
in the hospital? If the trial “patients and visitors” are vendor or hospital staff, then
maybe not. Is learning anticipated? That is, are patients and visitors expected to get
better at using the kiosk over time? If so, then any distribution fit to the trial data
will not represent long-run behavior. The message is that data have to be relevant to
the situation at hand to be useful.



122 6 Simulation Input

Recall that the Pollaczek–Khinchine formula (Eq. (3.4)) gives the steady-state
expected waiting time in an M/G/1 queue as

E(Y ) =
λ (σ2+ τ2)
2(1−λτ) ,

where λ is the arrival rate of the Poisson arrival process and (τ ,σ2) are the mean
and variance of the service-time distribution. One outcome of input modeling in
this case is to establish values λ̂ , τ̂ , and σ̂2 for these parameters. Because this is an
M/G/1 queue, it allows us to make a few observations:

• In this situation, at least in steady state, the particular service-time distribution
chosen by the software does not matter as long as it gets the mean and variance
right. Fortunately, it is often true—which is not the same as always true—that
simulation results are not overly sensitive to the specific input distributions pro-
vided key characteristics are correct. In fact, we rely on this because any distri-
bution we choose is an approximation of the physical process; there is no true
distribution.

• Since our parameters are estimates, they will almost certainly be wrong. That is,
λ̂ �= λ , τ̂ �= τ , and σ̂2 �= σ2. While the expected waiting time is insensitive to the
choice of service-time distribution, it is sensitive to the values of the mean and
variance, τ and σ2. Further, if λ̂ τ̂ > 1, then there is no steady-state distribution
of waiting time because the queue cannot keep up. While in reality the queue
might be able to keep up, a sample of data could yield λ̂ τ̂ > 1, particularly when
λ̂ comes from one source (e.g., the hospital records), and τ̂ comes from another
(the vendor study).

• Although the distribution is not critical for the service process, it is for the arrival
process: that is, the Pollaczek–Khinchine result does not depend on the particular
service-time distribution except through its mean and variance, but it does depend
on the arrival process being Poisson. If the arrival process is more or less variable
than Poisson, then the congestion will be, respectively, more or less than what is
predicted by the M/G/1 model.

What this “view through the queue” emphasizes is that the goal of input modeling
is to get relevant outputs. This frees us from a futile search for the “true, correct
distribution” and toward trying, as best we can, to approximate the information and
data we have about the input processes.

6.1.2 Characteristics of Input Processes

It is difficult to formally define which random variables in a stochastic simulation
are inputs, as opposed to outputs or intermediate random variables between inputs
and outputs. Informally, inputs are stochastic processes whose (joint) distributions
are treated as “known” in the simulation. Typically, inputs represent the uncertainty
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in the real world at its most basic level. We want inputs to have characteristics that
match the real world, but we are usually not interested in those characteristics in and
of themselves. As noted above, we want input models that provide relevant outputs.

We will divide input models into two classes:

Univariate input models: A univariate input random variable X is fully specified
by its marginal distribution, FX ; when we need multiple realizations X1,X2, . . .
then they are i.i.d. Examples of univariate inputs include the times to failure
of several electronic components of the same type; the bed occupancy times of
patients in a hospital; and the number of fans who arrive to a basketball game.
We often model univariate inputs using parametric probability distributions, such
as the Poisson, exponential, lognormal, and Weibull, with parameters that need
to be tuned to the situation at hand. A particular parametric distribution may be
justified by the physical basis of the input process or because it seems to provide
a good fit to real-world data. We discuss selecting and fitting parametric input
models in Sect. 6.2. Alternatively, we may simply reuse the data themselves; this
is described in Sect. 6.2.4. When we do not have any relevant data, then other
means for specifying FX are required; see Sect. 6.2.6.

Multivariate input models: Multivariate input models define collections of ran-
dom variables that are in some way related, as opposed to being i.i.d. realiza-
tions from a common distribution FX . Examples of multivariate inputs include
the quantity of whole milk, 2% milk and skim milk ordered by a grocery store;
the times to failure of four tires on the same car; the arrival times of customer
calls to a call center; and the returns on each of the bonds held in a portfolio.
A multivariate input model must directly or indirectly specify the marginal dis-
tribution of each component random variable, as well as the dependence among
them. In principle, we could define the full joint probability distribution of the
multivariate input, but this may be difficult in practice for the following reasons:

• The multivariate input is a (conceptually) infinite sequence, S1,S2,S3, . . . ,
which means that we cannot write a full joint distribution and need some other
way to express how this sequence is constructed.

• We do not know the full joint distribution of, say (X1,X2,X3), but we do know
the marginals and have a partial characterization of the dependence among
them, such as Corr(Xi,Xj) for all i �= j.

• The marginal distributions (and perhaps the dependence as well) are a function
of time; we refer such input processes as being nonstationary.

Multivariate input models for (possibly nonstationary) arrivals and for random vec-
tors are described in Sect. 6.3.

6.2 Univariate Input Models

The situation addressed in this section often occurs in practice: We have a sample of
real-world data, denoted X1,X2, . . . ,Xm, that we are willing to model as being i.i.d
observations with a stable (unchanging) distribution FX , and we want to generate
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random variates from FX to drive our simulation. A standard approach is to somehow
choose a parametric family of distributions to represent FX and to fit the distribution
to the data by estimating values of its parameters. Let F(x;θ) denote the parametric
family with parameter vector θ . For instance, F(x;θ)might be the lognormal family
with parameters θ = (μ ,σ2), its mean and variance. Then “fitting” means using
some appropriate estimator θ̂ = θ̂(X1,X2, . . . ,Xm), that is a function of the sample
of real-world data, as the choice for θ .

The fact that we will use F(x; θ̂) for variate generation is important in terms of
how we think about evaluating the “goodness of fit.” Let X̂ denote a random variable
with distribution F(x; θ̂). To be clear on this point, X̂ is not one of the real-world data
values X1,X2, . . . ,Xm; instead, it is a random variate generated from the distribution
F(x; θ̂), where the parameters θ̂ are functions of the real-world data.

What makes a good fit? There are two paradigms:

Inference: The classical paradigm is to hypothesize that there is a true but un-
known distribution FX , and it is a member of a parametric family F(x;θ). In this
paradigm we try to discover the true FX using a method that has good proper-
ties, averaged over the possible distributions and data we could see. Maximum
likelihood estimators of θ arise from this paradigm, as does testing of the hy-
pothesis H0: F(x; θ̂) = FX . In brief, the classical approach treats input modeling
as a problem of statistical inference about the true distribution FX , and employs
methods that have good statistical properties.

Matching: The matching paradigm is concerned with how closely the properties
of X̂ match those of the real-world sample of data X1,X2, . . . ,Xm. For instance, it
might be desirable to have

E
(

X̂ |X1,X2, . . . ,Xm

)
= X̄ .

Here the expectation is with respect to F(x; θ̂). This condition indicates that the
expected value of a random variable with distribution F(x; θ̂) is the same as the
sample mean of the data that was used to fit it. Depending on the application,
there are many other properties of the data that it might be important to match,
for instance certain tail percentiles. In brief, the matching paradigm treats input
modeling as capturing key features of the real-world data X1,X2, . . . ,Xm.

In practice, univariate input modeling often combines aspects of the inference
and matching approaches, so we will consider the balance between the two. We do
not provide details about any estimation methods (such as maximum likelihood) or
hypothesis tests (such as the Kolmogorov–Smirnov test) as these are well covered in
basic statistics texts or other simulation references, such as Law (2007); also, they
are implemented in input modeling software. Instead, we provide insight for proper
use.
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6.2.1 Inference About Univariate Distributions

Many of the well-known parametric families arise from particular process physics,
often in some sort of limit. Perhaps the most well-known example is the normal dis-
tribution: If the random variable X is obtained by the summation of a large number
of component random variables, then the distribution of X might tend to be normal
by the central limit theorem. See Sect. 5.2.2 for the central limit theorem for the sum
of i.i.d. random variables; there are also versions that apply to sums of non-identical
and even dependent random variables (see for instance Lehmann (1999)).

For example, consider a worker who assembles laptop computers by hand. There
are many steps in the assembly process, each of which may be modeled as a ran-
dom variable. Because the total time to assemble a laptop is the sum of all of these
component times, the nature of the process suggests that the total time to assemble
a laptop might be well-modeled by a normal distribution.

Many discrete distributions are naturally defined by the process physics that they
represent: For instance, the binomial distribution describes the number of successes
in a fixed number of independent and identically distributed trials, while the negative
binomial distribution describes the number of such trials required to achieve a given
number of successes. Input modeling means deciding what constitutes a “trial” and
a “success.”

The inference paradigm is justified by having strong process physics that supports
the choice of parametric family. In this section, we describe the theoretical support
for selecting some common distributions (Poisson, lognormal, Weibull, and gamma)
as input models. A comprehensive source for this type of insight is the series of
books by Johnson, Kotz, and co-authors (Johnson et al., 2005, 1994, 1995, 1997;
Kotz et al., 2000) and the website http://www.math.wm.edu/∼leemis/chart/UDR/
UDR.html.

6.2.1.1 The Poisson Distribution

An arrival process resulting from a large population of potential arrivals who make inde-
pendent, but infrequent, decisions about when to arrive tends to be Poisson.

In a renewal process, the interarrival times between successive customers or en-
tities, denoted A1,A2, . . . , are i.i.d. nonnegative random variables with distribution
G. Two stochastic processes that are derived from the An are

Sn =

{
0, n = 0
∑n

i=1 Ai, n = 1,2, . . .

N(t) = max{n ≥ 0:Sn ≤ t}.

Thus, Sn is the time of the nth arrival, while N(t) is the number of arrivals by time
t ≥ 0. The continuous-time process N is called the arrival-counting process.

http://www.math.wm.edu/~leemis/chart/UDR/UDR.html
http://www.math.wm.edu/~leemis/chart/UDR/UDR.html
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Now consider a collection of independent renewal processes, with their associ-
ated arrival-counting processes

N1(t),N2(t), . . . ,Nh(t)

and each with their own interarrival-time distribution Gi, i = 1,2, . . . ,h. Think of
these as independent sources of arrivals, maybe different types of customers, or cus-
tomers from different locations. The overall number of arrivals is the superposition
arrival-counting process

Ch(t) =
h

∑
i=1

Ni(t).

This is just the total number of arrivals from all sources by time t.
Now suppose that the number of independent arrival processes h is increasing,

and consider

C∞(t) = lim
h→∞

h

∑
i=1

Ni(t).

We would expect this to blow up, but we impose two conditions on the interarrival
distributions Gi as h increases:

lim
h→∞

max
i=1,2,...,h

Gi(t) = 0 (6.1)

lim
h→∞

h

∑
i=1

Gi(t) = λ t. (6.2)

Recall that Gi(t) is the probability that an interarrival time is less than or equal to t
for the ith renewal arrival process; therefore, Condition (6.1) can be interpreted as
implying that as we superpose more and more processes, the times between arrivals
for each individual process are tending to become longer and longer. Stated differ-
ently, when the number of arrival sources h is large, the arrivals from each source
are rare.

To interpret the second condition, let A1i be the interarrival time from 0 until the
first arrival for process i. Suppose that t is small, so that there is little chance of more
than 1 arrival from each source. Then

E[Ch(t)]≈ E

[
h

∑
i=1

I(A1i ≤ t)

]
=

h

∑
i=1

Gi(t).

So Condition (6.2) can be interpreted as implying that the limiting arrival process
has a stable arrival rate.

The following result shows that under these conditions, Ch(t) will have a Pois-
son distribution as h → ∞; that is, as we superpose more and more renewal arrival
processes, the overall arrival process tends to be Poisson.
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Theorem 6.1 (Poisson as Superposition of Renewal Processes). If Condition (6.1)
holds, then

lim
h→∞

Pr{Ch(t) = j}= e−λ t(λ t) j

j!
, j = 0,1, . . .

if and only if Condition (6.2) holds.

A proof of an even more general version of this result can be found in Karlin and
Taylor (1975).

Consider the people living in the Deerfield, Highland Park, and Northbrook com-
munities north of Chicago who might call the local Subaru dealer to make an ap-
pointment for repair. Each owner’s calls are infrequent. In addition, there is no rea-
son to coordinate with other Subaru owners about when to call for service; thus,
their calls are independent. The theorem suggests that the number of calls for ap-
pointments over any time period might be modeled as having a Poisson distribution.
Notice, however, that if the Subaru dealer schedules a fixed number of repairs per
day, then the number of actual arrivals (as opposed to calls) to the dealer will not be
Poisson since a bound on appointments imposes dependence on the arrival process.

6.2.1.2 The Lognormal Distribution

A random variable formed as the product (multiplication) of independent, positive random
variables tends to have a lognormal distribution.

By definition, if a random variable X is such that ln(X) has a normal distribution,
then X has a lognormal distribution. This connection gives rise to one asymptotic
justification for selecting the lognormal distribution as an input model: Suppose that
Z1,Z2, . . . are i.i.d. positive random variables, and

X =
m

∏
i=1

Zi.

Then

W = ln(X) =
m

∑
i=1

ln(Zi).

Thus, if E
(
ln(Z1)

2
)
< ∞, then the central limit theorem establishes that

√
m

(
1
m

m

∑
i=1

ln(Zi)

)
=

W√
m

is asymptotically normally distributed as m → ∞. Then since X = exp(W ), the con-
tinuous mapping theorem can be used to show that X is asymptotically lognormal.
And just as the condition of being identically distributed can sometimes be relaxed
for the central limit theorem, the Zi are not required to be identically distributed for
the limiting distribution to be lognormal.
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A context in which the lognormal distribution arises as a natural input model is
in returns on investments that are compounded. Suppose that Zi = (1+Ri), where
the Ri are i.i.d. and > −1. Here Zi represents the rate of return in the ith period,
so the overall rate of return for m periods is X = ∏m

i=1 Zi. Thus, the value of an
initial investment of $S has value S ·X after m periods, which might be modeled as
lognormally distributed if m is large.

6.2.1.3 The Weibull and Gamma Distributions

The Weibull and gamma distributions often arise as models of system reliability (time until
failure).

There are several equivalent parameterizations of the Weibull distribution, but
this is a common one for the pdf and cdf, respectively:

fT (t) = αβ−α tα−1e−(t/β )α (6.3)

FT (t) = 1− e−(t/β )α (6.4)

for t ≥ 0, where α > 0 is called the shape parameter, and β > 0 is the scale pa-
rameter. Notice that when α = 1 the Weibull distribution becomes the exponential
distribution with mean β .

Let T represent the time until failure of a system. The hazard function of T is a
useful way to think about how a distribution represents reliability. The definition of
the hazard function is

h(t) =
fT (t)

1−FT (t)
(6.5)

which can be interpreted as the system failure rate at time t (numerator), given sur-
vival to time t (denominator). For the Weibull,

h(t) = αβ−α tα−1

for t ≥ 0, which is a constant 1/β if α = 1.
By taking the derivative of h(t) with respect to t, we can show that h(t) for the

Weibull is increasing for α > 1, decreasing for α < 1, and constant for α = 1.
An increasing hazard is appropriate for a system that is more likely to fail as it
ages; a decreasing hazard is appropriate for a system that is subject to early failure;
while a constant hazard (the exponential special case) means that the failure rate is
unaffected by age.

The gamma distribution is similar in many ways to the Weibull; the pdf is

fT (t) =
β−α tα−1e−(t/β )

Γ (α)
(6.6)

for t ≥ 0, where Γ (α) =
∫ ∞
0 tα−1e−t dt is the gamma function. The parameters α

and β have the same interpretation as for the Weibull, with α = 1 again giving the
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exponential distribution with mean β . Neither the cdf nor the hazard function of the
gamma distribution has a simple closed form, but it can be shown that the hazard
function may be increasing, decreasing, or constant, just as with the Weibull. So
how might an understanding of the physics of a process lead to a sensible choice
between these two distributions?

Displayed below are the pdfs with scale parameter β = 1:

Weibull gamma

αtα−1e−tα Γ (α)−1tα−1e−t

The similarities are obvious. But notice that as t increases (t represents the time of
failure), the tail of the gamma distribution becomes that of an exponential distri-
bution, no matter what the choice of the shape parameter α . Recall that the hazard
function for the exponential is constant. Thus, as the item of interest ages without
failing, it eventually has a constant failure rate if it is modeled as a gamma distri-
bution. For the Weibull distribution, however, the shape parameter affects the tail;
in particular for α > 1 the tail is lighter than exponential, indicating an increasing
failure rate even for older items.

Consider the following two examples:1 A new computer operating system is
released to the market. Which of the Weibull or gamma distributions might be an ap-
propriate model for the time to the first failure of the operating system? In this case,
a probability model would likely be one that has increased risk of a failure initially,
but after the software gets “broken in” the risk of a failure decreases to a constant
value. Since the risk is constant, one would like to use a gamma distribution, rather
than a Weibull distribution, because of the exponential right-tail property. Notice
that if we used the Weibull distribution with α = 1, then we would have constant
failure rate even at product release, which is clearly not appropriate.

As a second example, consider the time to failure of a ball bearing in a machine.
In this case, since the ball bearing is physically wearing out, it is not reasonable
that as time increases the risk of failure becomes constant. The right-hand tail of a
gamma distribution is too heavy, and theWeibull distribution is the more appropriate
model.

6.2.2 Estimation and Testing

When there is a strong physical basis for choosing a parametric family of distri-
butions, then parameter estimation with a method like maximum likelihood, and
goodness-of-fit hypothesis testing of the choice, make sense. These topics are well
covered in many textbooks, including Law (2007), and both parameter estimation
and testing are included in input modeling software packages. Therefore, this sec-
tion provides a few comments to put estimation and testing in context.

1 These examples were suggested in a personal communication by Dr. Lawrence Leemis of the
William & Mary.
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6.2.2.1 Maximum Likelihood Estimation (MLE)

Suppose that we have a sample of real-world data X1,X2, . . . ,Xm and we have a
strong physical basis for modeling it as being an i.i.d. sample from a distribution
with pdf f �(x;θ), where θ is a vector of unknown parameters. Then the likelihood
function is defined to be

L(θ) =
m

∏
i=1

f �(Xi;θ). (6.7)

The MLE is the value of θ that maximizes L(θ) given the available data:

θ̂ = argmaxθL(θ).

MLEs have many good statistical properties under the assumption that f �(x;θ) is
the true, correct distribution. The only reasonable justification for this assumption is
that there is strong process physics supporting the selection of f �(x;θ).

Notice also that the likelihood function (6.7) is formed by assuming that the data
are independent. Even if f �(x;θ) is an appropriate parametric family of distributions
for X , (6.7) is not the likelihood function if the data are dependent (in which case
the likelihood function involves the full joint distribution). Preliminary examination
of the data for signs of dependence is always worthwhile.

6.2.2.2 Goodness-of-Fit Testing

The premise behind goodness-of-fit testing is that there is a true, correct distribution
f � with true, correct parameter values θ �. The hypothesis test is then

H0: f (x; θ̂) = f �(x;θ �)
H1: f (x; θ̂) �= f �(x;θ �).

Because real-world data do not come from probability distributions, we know
before executing the test that the null hypothesis is false. However, if we have a
strong basis for choosing f (x;θ) and have used an appropriate parameter estimator
θ̂ , then such a test is useful because it may alert us to egregious departures of the
data from the proposed input model. A few additional points are worth keeping in
mind:

• When the sample size is small, goodness-of-fit tests often have low power and
thus may accept (formally, fail to reject) many possible parametric families of
distributions. As discussed above, the Weibull and gamma families are very sim-
ilar, and therefore may be indistinguishable when m is small. Thus, accepting the
null hypothesis should not be interpreted as proof that the correct, or best, choice
has been made.
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• When the sample size is large, goodness-of-fit tests will often reject every choice
of parametric distribution family because real-world data do not come from
probability distributions, and when m is large, then the test has enough power
to recognize this. Thus, rejecting the null hypothesis does not necessarily mean
that the chosen distribution should be discarded.

• Rather than report an accept/reject decision, most input modeling software
provides either the value of the test statistic itself (a small value is better for most
tests), or a p-value. The p-value is the Type I error level at which one would just
reject the null hypothesis. Thus, a large p-value (say >0.1) suggests accepting
the chosen distribution rather than taking a large risk by rejecting it.

• There are many goodness-of-fit tests, each sensitive to different sorts of depar-
tures from the null hypothesis. Thus, it is entirely possible that one test may give
a large p-value (suggesting that you accept the chosen distribution), and another
may give a small p-value (suggesting you reject the chosen distribution) for the
same data. In fact, the very popular chi-squared test may give both conclusions
depending upon how many bins into which the data are divided. For this reason,
automated selection of an input model by fitting many of them and choosing the
one with the smallest value of a particular test statistic or the largest p-value
for that test seems questionable. If there is no strong physical support for a par-
ticular distribution, then the matching paradigm (discussed below) may be more
relevant.

Related to goodness-of-fit tests are “information criteria.” Two popular statis-
tics are the Akaike information criterion (AIC) and Bayesian information criterion
(BIC). Both rank model fits based on a penalized likelihood function. There is a
stronger argument for ranking the fit of several distributions to the same data using
AIC or BIC than there is for comparing the p-values of a test; however, neither di-
rectly answers the question of whether any of the proposed distributions is a good
choice.

Goodness-of-fit tests and information criteria represent fit or lack of fit by a sum-
mary statistic. Distribution fitting software usually also contains graphical tools for
visually evaluating fit, and these give a more comprehensive picture. The most pop-
ular is the density-histogram plot, but your perception of fit for that plot can be
influenced by how the data are grouped to form the histogram. A better tool that
does not require grouping is the quantile–quantile (Q-Q) plot. For a random vari-
able with continuous, increasing cdf FX its q-quantile (for 0 < q < 1) is F−1

X (q),
the inverse cdf evaluated at q. Recall that we used the inverse cdf for variate gen-
eration, X = F−1

X (U) with U ∼ U(0,1). The Q-Q plot plots the sorted input data
X(1) ≤ X(2) ≤ ·· · ≤ X(m) against the fitted inverse cdf F̂−1 at what might be called a
“perfectly generated sample”

F̂−1
(
0.5
m

)
< F̂−1

(
1.5
m

)
< · · ·< F̂−1

(
m−0.5

m

)
.
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Fig. 6.1 Q-Q plot resulting from fitting a uniform (left) and normal (right) distribution to a set of
input data

Stated more succinctly, it plots X(i) vs. F̂−1 ((i−0.5)/m), and a good fit is indicated

by X(i) ≈ F̂−1 ((i−0.5)/m), i = 1,2, . . . ,m. Deviation from an approximate 45◦ line
indicates not only lack of fit, but also where it occurs.

To illustrate how it works, Fig. 6.1 shows Q-Q plots for a set of data that actually
are normally distributed, but for which both uniform and normal distributions have
been fit. The uniform distribution is far too heavy in its tails, which the plot reveals
in the way that the tails deviate more severely from a line.

6.2.2.3 Known and Unknown Bounds

Many standard distributions have their support on a fixed domain; for instance, the
lognormal, Weibull, and gamma distributions are defined on [0,∞), while the beta
distribution is defined on [0,1].

A random variable X ′ describing outcomes on [0,∞) can be shifted to [a,∞)
simply by adding a constant: X = a+X ′. This changes the mean but not the variance.
A random variableY ′ describing outcomes on [0,1] can be shifted and scaled to [a,b]
by the transformation Y = a+(b−a)Y ′; this changes both the mean and variance.

Obviously these transformations can be inverted to convert a random variable
to a standard domain: X ′ = X − a and Y ′ = (Y − a)/(b− a). This is important if
we encounter a situation in which there are known bounds. For instance, we might
want to model a processing time using a distribution with standard domain [0,∞),
but we know that the process cannot take less than 4min. To fit the observed data
X ′
1,X

′
2, . . . ,X

′
m, we should first transform it by subtracting 4 (e.g., Xi = X ′

i − 4), fit
the distribution to the transformed data, and then add 4 to each random variate gen-
erated.

Using known bounds is not the same as trying to infer an unknown bound. Dis-
tribution fitting software will often treat each distribution on [0,∞) as having an
additional lower-bound parameter a, and each distribution on [0,1] as having two
additional upper and lower-bound parameters a,b; these additional parameters are
then included in the fitting. Sometimes the bounds are estimated heuristically (e.g.,
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â is the smallest observation), and sometimes they are included in the likelihood
function. Known bounds should typically be used instead of estimated bounds, if
available. A known bound brings in additional information that may not be present
in the data, and estimated bounds may substantially over (under) estimate lower
(upper) bounds, particularly in small samples. That said, loose bounds that are not
actually attainable by the process or represented in the data can wreck havoc on dis-
tribution fitting software by forcing the distribution to stretch to the bound. Unless
the bound is really “known” it is often better to estimate the bound so it is consistent
with the data.

6.2.3 Matching Properties of Univariate Distributions

When there is not a strong physical basis for choosing a particular family of distri-
butions, then an alternative to trying to infer the “true” distribution is to use a very
flexible family of distributions and obtain values for its parameters so that it closely
matches properties of the data. In this section we describe two common matching
methods and present one flexible family.

Recall that for the M/G/1 queue the steady-state expected waiting time depends
only on the mean and variance of the service-time distribution; thus, any nonnega-
tive distribution that matches the correct mean and variance will give the right sim-
ulation results. Typically more than just the mean and variance matter, which is why
there are many two-parameter distributions (Weibull, gamma, lognormal, etc.) from
which to choose. Fortunately, it is often the case that if we can match the first four
moments (defined below) of the input random variable correctly, then the particular
family of distributions is not as important.2

Let X be a random variable with distribution FX . The kth moment of X is

E(Xk), k = 1,2, . . . .

Of more use for input modeling are the standardized central moments, specifically
the first four:

μX = E(X) mean
σ2

X = E[(X −μX )
2] variance

α3 = E[(X −μX )
3]/σ3

X skewness
α4 = E[(X −μX )

4]/σ4
X kurtosis

(6.8)

The skewness is a measure of symmetry (symmetric distributions have α3 = 0),
while the kurtosis is a measure of tail weight (the normal distribution has kurtosis
α4 = 3; sometimes α4−3 is called the excess kurtosis). If α3 and α4 are finite, then
α4 > 1+α2

3 and the inequality is strict. This relationship defines a plane of feasible
(α2

3 ,α4) values.

2 The most common exceptions are when system performance depends critically on the behavior
of the extreme tail of the distribution, or when one or more of the first four moments are infinite.
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Suppose that the first four central moments of X , (μX ,σ2
X ,α3,α4), exist. Let μ

and σ2 be a desired mean and variance, and define a new random variable

X ′ = μ+σ
(

X −μX

σX

)
. (6.9)

Then it is easy to show that X ′ has mean μ and variance σ2; in the exercises you are
asked to show that X and X ′ have the same skewness and kurtosis. Thus, any random
variable X can be transformed to match a desired mean and variance without altering
its skewness and kurtosis. In matching, α3 and α4 are the challenges.

For a parametric distribution F(·;θ), its central moments are functions of θ ;
denote these as μ(θ),σ2(θ),α3(θ), and α4(θ), respectively. We call a parametric
distribution “flexible” if its parameters θ allow coverage of a substantial portion
of the feasible (α2

3 ,α4) plane. As (6.9) shows, the mean and variance of F are not
critical since we can scale and shift any distribution to have the desired first two
central moments.

Many well-known distributions provide little flexibility; for instance the normal
distribution has α3 = 0 and α4 = 3; the exponential distribution has α3 = 2 and
α4 = 9; while the gamma distribution (6.6) has a little flexibility with α3 = 2/

√
α

and α4 = 3+6/α . We describe some more flexible distributions below.
The sample standardized central moments of the data are

X̄ =
1
m

m

∑
i=1

Xi

σ̂2 =
1
m

m

∑
i=1

(Xi − X̄)2

α̂3 =
1
m

m

∑
i=1

(Xi − X̄)3/σ̂3

α̂4 =
1
m

m

∑
i=1

(Xi − X̄)4/σ̂4.

To match the moments, we solve the system of equations

μ(θ) = X̄

σ2(θ) = σ̂2

α3(θ) = α̂3
α4(θ) = α̂4

for θ ; denote the solution by θ̂M . Unless we bring in some other type of information,
we need at least four parameters to match four moments.

Provided that the parametric family is flexible enough to match the moments
exactly, then using F(·; θ̂M) as the input model guarantees that the simulation in-
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put has the same central moments as the observed data X1,X2, . . . ,Xm; that is, they
match. For this reason the “method of moments” is an appealing approach that is
widely used. Notice that one need not always fit four moments. For instance, the
gamma distribution has θ = (α,β ) with μ(θ) = αβ and σ2(θ) = αβ 2, so it can be
fit by solving α̂β̂ = X̄ and α̂β̂ 2 = σ̂2.

A drawback of the method of moments is that there is no guarantee that the
fitted distribution F(·; θ̂M) resembles the empirical distribution of the data. The next
approach tries to achieve a closer match between these two.

A second matching approach exploits the following fact: If X is a random
variable with strictly increasing cdf FX , then U = FX (X) has a U(0,1) distribution.
Exercise 36 asks you to show that this is indeed the case, but it seems reasonable
since it reverses the inverse cdf method of variate generation. This fact implies that
if X1,X2, . . . ,Xm are i.i.d. with continuous distribution FX , then Ui = FX (Xi), i =
1,2, . . . ,m are i.i.d. U(0,1). Going one step further, let X(1) ≤ X(2) ≤ ·· · ≤ X(m) be
the order statistics of the sample of data, and letU(i) = FX (X(i)), i = 1,2, . . . ,m. Then
U(i) has the distribution of the ith order statistic of m i.i.d.U(0,1) random variables,
for which it is known that

E(U(i)) =
i

m+1
.

If we want to match the behavior of X1,X2, . . . ,Xm with a parametric distribution
F(·;θ), then another approach that is different from the method of moments is to set

θ̂U = argminθ
m

∑
i=1

w(i)

(
F(X(i);θ)−

i
m+1

)2

, (6.10)

where w(i) is a positive weight. The weights can be chosen based on a number of
criteria; common choices are w(i) = 1 and w(i) = (m+ 2)(m+ 1)2/[i(m− i+ 1)].
The latter weight is 1/Var(U(i)) so that it gives order statistics with smaller variance
more weight.

What does this fit achieve? Notice that if the fit was perfect, then

F(X(i); θ̂U ) =
i

m+1
.

Compare this with the empirical cumulative probability of the real-world data:

#{Xj ≤ X(i)}
m

=
i
m
.

Thus, with a perfect fit the cumulative probabilities of the fitted distribution at the
data points F(Xi; θ̂U ), i = 1,2, . . . ,m are nearly the same as the cumulative proba-
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bilities of the data themselves. Therefore, F should tend to look like the empirical
distribution of the data. Exercise 5 asks you to show why it is better to fit to i/(m+1)
rather than i/m.

A similar fit is obtained by using the inverse cdf. Let Q(u;θ) = F−1(u;θ), the
inverse cdf. If E[Q(U(i);θ)] is easy to evaluate, then an alternative to (6.10) is to fit
directly to the order statistics of X :

θ̂O = argminθ
m

∑
i=1

(
X(i)−E[Q(U(i);θ)]

)2
. (6.11)

We refer to both θ̂U and θ̂O as least-squares fits.

To employ either the method of moments or least squares matching, we need
flexible families of distributions. The flexible distributions that have seen significant
application in simulation are Johnson’s translation system (see, for instance Swain
et al. (1988)) and the generalized lambda distribution (GLD; see for instance Karian
and Dudewicz (2000)). Johnson’s translation system is comprised of four transfor-
mations of the normal distribution, and it covers the entire feasible (α2

3 ,α4) plane;
the GLD is a single function that covers a large portion of it. We present the GLD
here because it is easy to describe as well as being useful.

The GLD has four parameters θ = (λ1,λ2,λ3,λ4) and is most easily represented
via its inverse cdf

Q(u;θ) = λ1+
uλ3 +(1−u)λ4

λ2
(6.12)

for 0≤ u≤ 1. Therefore, variate generation is immediate. The parameter λ1 controls
location, λ2 controls scale, and skewness and kurtosis are determined jointly by λ3
and λ4.

There is no physical basis for choosing the GLD; its usefulness comes from its
flexibility and the ease of random-variate generation. Unfortunately fitting is not
as easy, and this is typical of flexible distributions with four or more parameters.
Fitting via the method of moments (Karian & Dudewicz, 2000) and least squares
(using formulation (6.11), see Lakhany and Mausser (2000) and references therein)
are possible, but both involve a numerical search for parameters since there are
no closed-form solutions. In the Appendix we give expressions for the necessary
moments and expectations.

Figure 6.2 shows the GLD approximation for the N(0,1) distribution, where the
circles are points on the normal pdf, while the solid line is the GLD approximation.
The standard normal has moments μX = 0,σ2

X = 1,α3= 0, and α4= 3. Clearly out to
three standard deviations from the mean, the approximation is quite good. Figure 6.3
shows the GLD approximation to the exponential distribution with mean 1, which
has moments μX = 1,σ2

X = 1,α3 = 2, and α4 = 9. While it has the correct moments,
the GLD approximation has a different shape as x approaches 0, and in fact assigns
positive (but very, very small) probability to negative x. Matching moments does not
guarantee a particular distribution shape.
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Fig. 6.2 GLD approximation (solid line) to points on the standard normal pdf
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Fig. 6.3 GLD approximation (solid line) to points on the exponential pdf with mean 1

The GLD parameters (λ1,λ2,λ3,λ4) for these examples were obtained from
Karian and Dudewicz (2000); for the normal approximation they are
(0,0.1975,0.1349,0.1349); while for the exponential approximation they are
(0.006862,−0.0010805,−0.4072×10−5,−0.001076).

6.2.4 Empirical Distributions

As in the previous sections, we have a sample of real-world data X1,X2, . . . ,Xm that
we believe to be i.i.d. observations from some unknown distribution FX . When there
is no strong physical basis for choosing a particular parametric family of distribu-
tions, and no parametric distribution provides an adequate fit to the data, then it
makes sense to consider using the data themselves. The disadvantages to using the
data directly will be apparent shortly.
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The empirical cdf (ecdf) is a nonparametric input model defined as

F̂(x) =
1
m

m

∑
i=1

I(Xi ≤ x) (6.13)

for all−∞< x <∞, where I(·) is the indicator function. Let X(1) ≤ X(2) ≤ ·· · ≤ X(m)

be the sorted values, and let X̂ be a random variable with distribution F̂ . The ecdf
places probability mass 1/m on each observed value:

Pr
{

X̂ = X(i)

∣∣∣X1, . . . ,Xm

}
= Pr

{
X̂≤X(i)

∣∣∣X1, . . . ,Xm

}
−Pr

{
X̂ < X(i)

∣∣∣X1, . . . ,Xm

}

=
i
m
− (i−1)

m
=

1
m
.

This makes variate generation easy via the inverse cdf:

1. Generate U ∼U(0,1)
2. Set i = �mU�
3. Return X̂ = X(i)

The ecdf has several appealing properties. First, as an estimator of the true dis-
tribution FX it is unbiased:

E
(

F̂(x)
)
= E

(
1
m

m

∑
i=1

I(Xi ≤ x)

)
=

m
m
E(I(X1 ≤ x)) = FX (x).

Notice that the expectation is with respect to all possible real-world samples from
FX . Further, using the strong law of large numbers it is easy to show that F̂(x)

a.s.−→
FX (x) pointwise as m → ∞, since F̂(x) is the average of i.i.d. observations I(Xi ≤
x), i = 1,2, . . . ,m.

A second feature of the edcf is that if we use random variates X̂ in our simulation,
then they will have properties that match the sample properties of the observed real-
world data; for instance,

E
(

X̂
∣∣∣X1, . . . ,Xm

)
=

m

∑
i=1

X(i)
1
m

= X̄ .

Here the expectation is with respect to the edcf F̂ , and it shows that the expected
value of a random variable with distribution F̂ is the sample mean of the data that
created it.

These appealing properties of the ecdf contrast with two undesirable ones: Only
the observed values X1,X2, . . . ,Xm have positive probability, and only values be-
tween [X(1),X(m)] will be realized. In other words, it is a finite, discrete distribution.
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This is particularly troubling if X is known to be continuous valued, or it is expected
to have a long tail of extreme but low probability values.

A standard way to obtain a continuous distribution is to linearly interpolate the
ecdf between the data points:

F̃(x) =

⎧⎪⎪⎨
⎪⎪⎩

0, x < X(1)
i−1
m−1

+
x−X(i)

(m−1)(X(i+1)−X(i))
, X(i) ≤ x < X(i+1)

1, x ≥ X(m).

(6.14)

The linearly interpolated ecdf fills in between the observed data; however, the sup-
port is still restricted to [X(1),X(m)]. Bratley et al. (1987) describe a linearly interpo-
lated ecdf with an exponential tail added.

Because the linearly interpolated ecdf is piecewise linear, variate generation via
inversion is easy:

1. Generate U ∼U(0,1)
2. Set i = �(m−1)U�
3. Return X̃ = X(i) + (m−1)(X(i+1)−X(i))

(
U − i−1

m−1

)

Unfortunately, F̃ is biased for FX , although F̃(x)
a.s.−→ FX (x) as m →∞. The proof

of this is instructive because it shows that various smoothing schemes can be used
without losing asymptotic consistency.

Proof. For any fixed x, let

F̄(x) =
1

m−1

m

∑
i=1

I(Xi ≤ x) =
m

m−1
F̂(x).

Then clearly F̄(x)
a.s.−→ FX (x) because m/(m− 1) → 1. Notice also that for X(i) ≤

x < X(i+1) we have

0≤
x−X(i)

(m−1)(X(i+1)−X(i))
<

1
m−1

.

Therefore,

F̄(x)− 1
m−1

≤ F̃(x)< F̄(x).

Since both the lower and upper bounds on F̃(x) converge a.s. to FX (x), so does F̃(x).
��
Next consider the random variable X̃ . Exercise 10 asks you to show that

E(X̃ |X1, . . . ,Xm) �= X̄ , but the discrepancy decreases with m. Thus, the linearly in-
terpolated ecdf does not perfectly match the sample properties of the data when m is
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small. Nevertheless, smoothing is typically worthwhile when the input is expected
to be continuous valued.

The ecdf is equivalent to resampling the data, with replacement, and the linearly
interpolated ecdf fills in the gaps. But what if the number of data values m is very,
very large, perhaps multiple millions? Computational issues arise either from trying
to embed such a large data set within the simulation, or from referencing it from
another source each time a value is needed. However, large m suggests that the ecdf
will be a faithful representation of the real input process, which implies that using
some version of the ecdf is desirable. The following is a simple way to facilitate this
for which many refinements are possible.

Suppose that X is continuous valued. The basic idea is to approximate FX by
linearly interpolating between k � m quantiles of FX , that are estimated precisely
using the methods described in Chap. 7.

Let ϑ̂1 = X(1), ϑ̂k = X(m), and

ϑ̂i = F̂−1
X

(
i−1
k−1

)
= X(�m i−1

k−1�), i = 2,3, . . . ,k−1.

Thus, ϑ̂i is an estimate of the (i− 1)/(k− 1) quantile of X , ϑi = F−1
X ((i− 1)/(k−

1)); see Chap. 7. Assuming a vast amount of data are available, these estimates
should be quite precise. This leads to an approximation of the linearly interpolated
ecdf algorithm for variate generation:

1. Generate U ∼U(0,1)
2. Set i = �(k−1)U�
3. Return X̃ = ϑ̂i +(k−1)(ϑ̂i+1− ϑ̂i)

(
U − i−1

k−1

)

Notice that obtaining the ϑ̂i is a one-time set-up computation, and k can be quite
large (e.g., 1000) without taxing computer memory. We refer to this as the linearly
interpolated quantile method.

6.2.5 Direct Use of Input Data

Arrivals to the fax center described in Sect. 4.6 were modeled by a nonstationary
Poisson arrival process fit to actual arrival data. Fax arrival data are relatively easy
to collect since each incoming fax has a time stamp printed on it by the fax ma-
chine, and after the fax has been entered we know if it was classified as “simple”
or not. Days, months, or even years of such data might be available. This suggests
that we could avoid input modeling by driving the simulation with the actual ob-
served arrival data. Functionally, the simulation would read the arrival times and fax
types from a file of actual data rather than generating them from an input model.
Notice that this is different from using the empirical distribution, which resamples
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the data rather than using it exactly as it was observed. This distinction is important
to understanding the advantages and disadvantages of direct data use:

Advantages: Direct use might capture features missed by an input model, even
the empirical distribution. For instance, if our input model treats a process as
i.i.d., but there is actually some difficult-to-observe dependence or nonstation-
ary behavior, then this will be reflected in the data but not the input model. In
fact, probabilistic input models will seldom be rich enough to capture all of the
complexity of a real process.

Disadvantages: Clearly the simulation run length is limited by the amount of data
we have; increasing the run length or number of replications is not possible. And
the statistical statements we can make are subtle. For instance, in the fax center
simulation we could make statements such as “had we staffed at this level during
the period when we recorded fax arrivals, our performance would have been. . . .”
Statements about long-run performance, however, are more problematic. Con-
sider a system that is affected by rare occurrences in the input (e.g., excessively
large insurance claims). However, the system can tolerate isolated occurrences of
the rare input value, but not two or more in quick succession. If multiple rare oc-
currences in close proximity never happened in the observed data, then of course
they will never happen in a simulation that directly uses the data; the simulation
estimate of the chance of disaster will be 0. However, if we use a probabilistic
input model (e.g., modeling insurance claims as being i.i.d. with a fitted distribu-
tion F), then over a long enough simulation we will observe multiple rare input
values together and recognize the vulnerability of the system.

There is no easy rule for deciding when direct use of the data is appropriate and
when fitting an input model is better. When we have large quantities of data that
we believe are representative, and we have no reason to believe that the system is
dramatically affected by unobserved behavior in the input, then direct data use is
reasonable. When we want to make broader statements that go beyond just the input
data we saw, then input modeling is essential.

6.2.6 Input Modeling Without Data

Many simulations are undertaken without having relevant input data available.
When this happens we try to exploit knowledge about the process to produce rea-
sonable input models, and sensitivity analysis to assess how much they matter.

As discussed in Sect. 6.2, the physical nature of the input process may align well
with certain parametric distribution families. This sort of thinking is particularly
helpful when there are no data. The difficulty then becomes assigning values to
the distribution’s parameters. One approach is to obtain subjective estimates from
people familiar with the process. However, care must be taken to ask for information
in a way that is likely to elicit useful responses. Here is an example.
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Suppose the nature of the process suggests use of a normal distribution. There-
fore, numerical values for the mean μ and variance σ2 are required. People are
good at providing “typical” values, although a clear distinction between the mean
(average) value and the most likely value is not common. Fortunately, for the nor-
mal distribution they are the same thing. The variance, however, is very difficult to
estimate based on experience alone (without having looked at data). Here are three
ways that a value for the variance might be obtained:

Estimate the standard deviation: Unlike the variance, the standard deviation σ
is measured in the natural units of the input process, the same units as the mean.
Someone familiar with a process might be able to provide the average deviation
around the mean, which is an intuitive way to ask for the standard deviation.

Estimate an extreme deviation: If someone familiar with the process can pro-
vide an extreme, but still feasible, deviation from the mean, then this could be
interpreted as, say, 3σ . Sensitivity analysis could assume multiples of σ that are
greater or less than 3.

Relate to a known process: If there is a similar process on which data are avail-
able, then one can ask if the other process is more or less variable, and by what
percentage. If the process with data has standard deviation S, and the process
without data is thought to be 10% less variable, then σ = 0.9S. Sensitivity anal-
ysis could assume values greater or less than 0.9.

The key idea is to translate the parameters of the distribution into terms that are
understandable by those familiar with the process.

When there is no strong physical basis for selecting a particular family of distri-
butions, then a distribution like the triangular may be useful. The triangular distribu-
tion was not created with a specific physical process in mind; instead it is designed
to match three easy-to-specify characteristics: minimum value (a), most likely value
(b), and maximum value (c). The pdf of the triangular distribution is

f (x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2(x−a)
(b−a)(c−a)

, a ≤ x ≤ b

2(c− x)
(c−b)(c−a)

, b ≤ x ≤ c

0, elsewhere.

(6.15)

Notice that triangular distributions with a = b or b = c are also legitimate distribu-
tions where one of the extremes is also the most likely value.

The triangular distribution is typically superior to the uniform distribution on the
minimum and maximum values, because there are few real processes for which the
extremes (a and c) are just as likely as more central values. One justification for
choosing the uniform, however, is that it represents maximum uncertainty on values
between a and c.

The uniform and triangular distributions are not the only ones that can be fit from
this sort of information. For instance, the beta distribution can also be parameterized
by the minimum, maximum, and most likely values. However, there is not a unique
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beta distribution to represent these characteristics, while the triangular is unambigu-
ously defined. Once there is no longer a physical basis for the distribution choice,
then the triangular distribution is as good as any other choice, and it is easy to vary
the extremes and the most likely value to check sensitivity.

6.3 Multivariate Input Processes

The previous section described input processes consisting of independent and iden-
tically distributed observations; we referred to these as univariate input processes
because specification of the marginal distribution is all that is required. This sec-
tion covers two types of multivariate input processes that are frequently needed in
practice: nonstationary arrival processes and random vectors.

Examples of (possibly nonstationary) arrival processes include the arrival of cus-
tomers to a shopping mall; the arrivals of e-mails to a mail server; and the arrivals
of claims to an insurance company. Although we can think of defining the joint dis-
tribution of all of the arrival times, it is convenient for discrete-event simulation to
describe the times between arrivals; this permits the simulation to advance from one
arrival to the next by simply scheduling the next arrival.

Examples of random-vector input processes include multiple characteristics of
the same customer (e.g., gender, age, income, and occupation); annual sales of re-
lated products (e.g., new cars, new car tires, custom floor mats, and GPS devices);
and returns on various financial assets (e.g., values of short-term bonds, long-term
bonds, and stocks). An input model for a random vector must specify the marginal
distribution of each component of the vector and the dependence among them.

There is a vast literature on nonstationary arrival processes that are Poisson, and
on multivariate probability distributions that are useful as input models. Good start-
ing points are Leemis (2006) for Poisson arrival processes, and Johnson (1987) and
Biller and Ghosh (2006) for random vectors.

Just as was the case with univariate input models, the physical basis of the
real process can provide a justification for the choice of multivariate input model.
However, models that are obtained in this way tend to be somewhat restrictive.
Many well-known multivariate probability distributions have all of their compo-
nent marginal distributions from the same family. For instance, all marginals of the
multivariate normal distribution are normal, making it unsuitable for a situation in
which one marginal should be continuous valued, while another is discrete.

For this reason transformation-based approaches for constructing multivariate
inputs processes have proven useful in simulation. By “transformation-based ap-
proach” we mean that the input process we want is obtained by transforming a more
basic input process. To be useful, the base process should have easily controllable
characteristics, which the transformation preserves, while the transformation itself
allows matching some other desired features of the input process. To be specific, we
will obtain nonstationary arrival processes by transforming i.i.d. interarrival times
to obtain the desired arrival rate while preserving a measure of variability; and we
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will obtain random vectors by transforming a vector of dependent U(0,1) random
variables to obtain the desired marginal distributions.

The transformation-based approaches we describe provide a general frame-
work for creating arrival processes with desired arrival rate and variability, and
random vectors with given marginals and correlations. There is no claim that
the physical basis of the real process justifies the transformation. Stated differ-
ently, the transformation-based approaches are tools for matching characteristics.
A convenient feature of this approach is that random-variate generation follows
directly: generate the base process, then transform it to obtain inputs. For this reason
we will present both input modeling and random-variate generation together in this
section.

Time series are a third class of multivariate input process, but they are not cov-
ered in this book; a brief introduction with references can be found in Biller and
Ghosh (2006). A time-series input process represents a sequence of (possibly vec-
tor) random variables that are dependent in sequence, for example the sequence of
weekly order quantities that a grocery store chain places for a sports drink.

6.3.1 Nonstationary Arrival Processes

Arrival processes are often primary inputs to computer simulation of real-world
systems. The parking lot in Sect. 3.1 had an arrival process representing cars, while
the arrivals to the hospital reception in Sect. 3.2 were patients and visitors. A char-
acteristic of these two examples, and many real arrival processes, is that the arrivals
are not organized or predictable. In such cases, the usual input modeling paradigm
is to characterize the distribution of the time between arrivals, also called the in-
terarrival time. The interarrival-time approach does not apply to scheduled arrivals,
such as patients to a doctor’s office, and may or may not be a good model for ar-
rivals targeting a particular event time, such as fans arriving to a basketball game;
in both of these cases the total number of arrivals is fixed (number of appointments
or number of tickets sold, respectively) and the arrivals are supposed to occur at or
around a specific time. See Exercises 11 and 22.

Renewal processes are the simplest form of random arrivals: In a renewal arrival
process, Ã1, Ã2, . . . are i.i.d. nonnegative random variables with distribution G that
represent the interarrival times of successive entities. The arrivals to the hospital
reception were modeled in this way. In addition to the interarrival times, two related
stochastic processes are

S̃n =

{
0, n = 0
∑n

i=1 Ãi, n = 1,2, . . .

Ñ(t) = max{n ≥ 0 : S̃n ≤ t}.

In words, S̃n is the time of the nth arrival, while Ñ(t) is the number of arrivals by time
t ≥ 0. The continuous-time process Ñ is also called the arrival-counting process.
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Renewal arrival processes are easy to simulate, since an arrival at time S̃n triggers
scheduling the next arrival to occur at time S̃n+1 = S̃n+ Ãn+1. If the interarrival times
have finite mean and variance, and we let λ̃ = 1/E(Ãi), then

E
(
Ñ(t)

)
t

−→ λ̃

as t → ∞, which is why λ̃ is interpreted as the arrival rate of the process (see, e.g.,
Kulkarni (1995)). From here on we will assume that the interarrival times Ãi are
continuous valued and have a density function, which is appropriate for arrivals that
occur in continuous time.3

The parking lot did not have a renewal arrival process; instead it had an arrival
process with a time-varying arrival rate λ (t) = 1000+100sin(πt/12). Such arrival
processes are called nonstationary, and are the focus of this section. We will, how-
ever, simulate nonstationary arrival processes by transforming renewal arrival pro-
cesses in one of two ways: either by stretching (to space arrivals farther apart) or
compressing (to force arrivals closer together) the time between renewal arrivals, or
by selectively ignoring (“thinning”) some renewal arrivals. To be concrete we use
the example of the arrival of e-mails to a mail server.

To do this we need the concept of an equilibrium renewal process. The only
difference between an equilibrium renewal process and the renewal process defined
above is that the first interarrival time Ã1 has distribution Ge, where

Ge(t) = Pr{Ã1 ≤ t}= λ̃
∫ t

0
(1−G(s)) ds. (6.16)

Think of this as the distribution of the time until the next arrival if we started ob-
serving the renewal arrival process at an arbitrary point in time.4 If we initialize the
renewal process in this way, then it can be shown that

E
(
Ñ(t)

)
t

= λ̃ (6.17)

for all t ≥ 0, not just in the limit (Kulkarni, 1995).
Now consider arrival processes with time-varying arrival rates. Let N(t) be the

arrival-counting process of a (potentially) nonstationary arrival process. To make
the concept of “arrival rate” precise, define

Λ(t) = E(N(t))

the expected number of arrivals by time t, and the arrival rate by

3 It is certainly possible to have discrete-time arrival processes when activities are synchronized to
a clock, as in some computer networks.
4 If G is an exponential distribution, then Ge =G due to the memoryless property of the exponential
distribution. Exercise 25 asks you to prove this.



146 6 Simulation Input

λ (t) =
d
dt
Λ(t)

when Λ is differentiable. The function Λ(t) is also called the integrated rate
function. For an equilibrium renewal process, Eq. (6.17) implies that Λ(t) = λ̃ t and
λ (t) = λ̃ ; to simulate nonstationary arrival processes, we allow more general Λ(t)
and λ (t).

6.3.1.1 Inverting Λ (t)

Suppose that the time-varying behavior that we want is specified through Λ(t)
(which might be obtained by integrating λ (t)). Let S̃n be an equilibrium renewal
arrival process with arrival rate λ̃ = 1. Define a nonstationary arrival process with
arrival times Sn, interarrival times An, and arrival-counting process N(t) as follows:

1. Set index n = 1 and S̃0 = 0
2. Generate Ãn

3. Let

a. S̃n = S̃n−1+ Ãn

b. Sn =Λ−1(S̃n)
c. An = Sn −Sn−1

4. n = n+1
5. Go to Step 2

Let N(t) =max{n≥ 0 : Sn ≤ t}. Notice thatΛ(t) provides a change of time scale:
If it is time s for Ñ then it is time Λ−1(s) for N; similarly, if it is time t for N, then
it is time Λ(t) for Ñ. Therefore, N(t) = Ñ (Λ(t)) and

E(N(t)) = E
[
E
(
N(t)

∣∣Ñ (Λ(t))
)]

= E
[
Ñ (Λ(t))

]
= 1 ·Λ(t) =Λ(t)

remembering that Ñ is an equilibrium renewal process with rate 1. Thus, Λ−1

transforms the arrival times of an equilibrium renewal process with arrival rate
1 into a nonstationary arrival process with rate λ (t) = dΛ(t)/dt. Inversion pro-
vides a very simple way to obtain a nonstationary process with given arrival rate,
provided Λ is easily invertible.

Figure 6.4 illustrates the inversion method for an arrival process with λ (t) = 2t,
so that Λ(t) = t2. Since the rate is increasing in time, we expect arrivals to be more
and more densely packed as t increases. In the figure, the vertical axis represents
the arrival times in a rate-1 base process, which is still a random process but with a
mean time between arrivals of 1. These times are mapped into arrival times in the
nonstationary process byΛ−1(s) =

√
s, as shown on the horizontal axis. Notice that

as t increases, the arrival rate is clearly increasing as well.
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Fig. 6.4 Illustration of the inversion method when λ (t) = 2t so that Λ(t) = t2 and Λ−1(s) =
√

s.
The ◦’s on the vertical axis represent arrival times for the rate-1 base process while the�’s on the
horizontal axis represent arrival times in the nonstationary process

6.3.1.2 Thinning for λ (t)

Suppose now that the time-varying behavior that we want is specified through
the arrival rate λ (t) (which might be obtained by differentiating Λ(t)). Let S̃n be
an equilibrium renewal arrival process with arrival rate λ̃ = maxt λ (t), which we
assume is finite. The idea behind thinning is to generate a stationary process of
potential arrivals at the maximum rate, then randomly delete or “thin” some of the
potential arrivals to form the actual arrival process. The probability that a potential
arrival at time t is thinned is 1−λ (t)/λ̃ . The algorithm is as follows:

1. Set indices n = 1 and k = 1 and S̃0 = 0
2. Generate Ãn and let S̃n = S̃n−1+ Ãn

3. Generate U ∼U(0,1)
4. If U ≤ λ (S̃n)/λ̃ then

a. Sk = S̃n

b. Ak = Sk −Sk−1

c. k = k+1

Endif
5. n = n+1
6. Go to Step 2

If we again let N(t) = max{n ≥ 0 : Sn ≤ t}, then Gerhardt and Nelson (2009)
showed that E(N(t)) = Λ(t) =

∫ t
0 λ (s)ds. Thus, thinning S̃n transforms the arrival

times of an equilibrium renewal process with arrival rate λ̃ =maxt λ (t) into a non-
stationary arrival process with rate λ (t) = dΛ(t)/dt. While inversion and thinning
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Fig. 6.5 Illustration of the thinning method when λ (t) = 6+ 4sin(t). The ◦’s represent arrival
times for the rate-10 base process while the �’s on the horizontal axis represent arrival times in
the nonstationary process

both lead to arrival processes with the same time-varying arrival rate, they do not
give processes that are probabilistically the same, in general (although they do for
Poisson arrival processes; see Sect. 6.3.1.4). In other words, inversion and thinning
are transformations that both yield the desired arrival rate, but other aspects of the
arrivals, such as the variance of the number of arrivals by time t, will be different.

Thinning was the approach used for the parking lot example in Sect. 3.1. Thin-
ning has the distinct advantage of being applicable for any bounded arrival rate
λ (t), no matter how complex, while inverting Λ(t) can be computationally diffi-
cult. However, thinning can also be slow if λ̃ is greater than much of λ (t) because
many potential arrivals are generated, but most are thinned. Figure 6.5 illustrates the
approach.

6.3.1.3 Estimating Λ (t) or λ (t) from Arrival Data

We next turn to the topic of estimating Λ(t) or λ (t).
Suppose that we can observe k independent realizations of an arrival process.

Specifically, we observe Ti j, the time of the ith arrival on the jth realization for
j = 1,2, . . . ,k; and we have reason to believe that realizations are independent
and identically distributed. For instance, to model the arrival of e-mail messages
to mail.iems.northwestern.edu on Mondays, we might observe k = 10
Mondays from 4 a.m. (time 0) to 10 p.m. (time T ). For input modeling, we want
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to approximate the arrivals by an arrival-counting process N(t) that has E(N(t)) =
Λ(t) over 0≤ t ≤ T .

Let Cj(t) be the cumulative number of arrivals by time t on the jth realization;
therefore the full data set is

{Ti j; i = 1,2, . . . ,Cj(T )}, j = 1,2, . . . ,k. (6.18)

The natural estimator of Λ(t) is

Λ̄(t) =
1
k

k

∑
j=1

Cj(t) (6.19)

the average number of arrivals by time t over k realizations. Exercise 13 asks you to
prove that Λ̄(t) a.s.−→Λ(t) as k → ∞, and E

(
Λ̄(t)

)
=Λ(t) for any fixed t ∈ [0,T ].

However, Λ̄(t) is not a very satisfying estimator. LetC =∑k
j=1Cj(T ) be the total

number of observed arrivals, and let T(1) ≤ T(2) ≤ ·· · ≤ T(C) be all of the arrival
times in (6.18) sorted from smallest to largest. Notice that Λ̄(t) is a piecewise-
constant function that jumps 1/k at each arrival time T(i). As a result, if we apply the
inversion method to generate arrivals, then only the arrival times T(i), i = 1,2, . . . ,C
can be generated and nothing in between.

A solution is to linearly interpolate between observed arrival times (Leemis,
1991). Let T(0) = 0 and T(C+1) = T . Then define

Λ̂(t) =
(

C
C+1

){
i
k
+

1
k

(
t −T(i)

T(i+1)−T(i)

)}
(6.20)

when T(i) < t ≤ T(i+1) for i = 0,1, . . . ,C. The factor C/(C + 1) is needed because
there are C+1 gaps when we include T(0) and T(C+1). Much like the linearly inter-

polated ecdf, Leemis (1991) showed that Λ̂(t) a.s.−→ Λ(t) as k → ∞, so Λ̂ fills in the
gaps while still giving a consistent estimator of Λ .

To illustrate the two estimators with a (very) small example, suppose we ob-
served an arrival process for k = 2 observation periods, each of T = 5 h. On the first
observation period arrivals occurred at times T11 = 1.2 and T21 = 4.1 h, soC1(T ) = 2
arrivals. On the second observation period, we observed only C2(T ) = 1 arrival at
time T12 = 2.4 h. Therefore, the sorted arrival times are T(1) = 1.2,T(2) = 2.4 and
T(3) = 4.1, and C =C1(T )+C2(T ) = 3.

The natural estimator Λ̄(t) jumps 1/k = 1/2 at each arrival time T(1) = 1.2,T(2) =
2.4 and T(3) = 4.1 and is constant in between; it is shown as the solid curve in

Fig. 6.6. The interpolated estimator Λ̂(t) increases by (C/(C+1))(1/k) = 3/8 at
each arrival time, and linearly interpolates in between; it is shown as the dashed
curve in the figure. Figure 6.7 is a more realistic integrated rate function: The arrival
of emergency phone calls during a 24-h period observed over three Mondays.

The algorithm below generates arrival times Sn and interarrival times An for a
process with integrated rate function Λ̂ by inversion. Remember that S̃n and Ãn

are the arrival times and interarrival times, respectively, of an equilibrium renewal
process with arrival rate 1. The algorithm is based on Leemis (1991).
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Fig. 6.6 Illustration of the estimators Λ̄ (solid) and Λ̂ (dashed)

t

La
m

bd
a(

t)

0

0

2

4

6

8

5 10 15 20

Fig. 6.7 Estimation of Λ(t), the expected number of emergency phone calls by time t with Λ̄
(solid) and Λ̂ (dashed)

1. Set n = 1 and S0 = 0
2. Generate S̃1 ∼ Ge

3. While S̃n ≤C/k do

a. m =

⌊(
C+1

C

)
kS̃n

⌋

b. Sn = T(m) +
(
T(m+1)−T(m)

)((C+1
C

)
kS̃n −m

)

c. An = Sn −Sn−1

d. n = n+1
e. Generate Ãn ∼ G
f. S̃n = S̃n−1+ Ãn

Loop
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Notice that the condition S̃n ≤ C/k is needed because S̃n = C/k maps into an
arrival at time T , which is the end of the observation interval.

Next consider estimating the arrival-rate function λ (t) directly. A standard
method is to assume that λ (t) is piecewise constant over intervals of length δ > 0,
for δ small enough. Then λ̂ (t) is a piecewise-constant rate function obtained as the
average number of arrivals observed in nonoverlapping intervals of size δ .

To be specific, assume T/δ is integer. Then

λ̂ (t) =
1

kδ

k

∑
j=1

[Cj (�(t +δ ))−Cj (�(t))] , (6.21)

where �(t) = �t/δ	δ is the beginning of the interval in which time t falls. This
is a rather complicated way to express a simple idea: To estimate the arrival rate
between, say, times iδ < t ≤ (i+1)δ , compute the average number of arrivals that
occurred during this interval across the k realizations, then divide by δ to make it a
rate. The resulting λ̂ (t) can be incorporated into a thinning algorithm, or integrated
and used with inversion.

To illustrate, consider again the small example where we observed an arrival
process for k = 2 observation periods, each of T = 5 h. On the first observation
period arrivals occurred at times T11 = 1.2 and T21 = 4.1 h, while on the second
observation period we observed only 1 arrival at time T12 = 2.4 h. If we set δ = 2.5 h,
then there were in total two arrivals between t = 0×δ = 0 and t = 1×δ = 2.5, and
only one arrival between times t = 2.5 and t = 2δ = 5. Therefore, the estimated
arrival rate is

λ (t) =

⎧⎪⎪⎨
⎪⎪⎩

1
kδ

2=
2
5
, 0< t ≤ δ = 2.5

1
kδ

1=
1
5
, 2.5< t ≤ 2δ = 5.

Selecting δ is clearly difficult: too small and there may be intervals with few or
no observed arrivals; too large and the nonstationary behavior may be masked. Hen-
derson (2003) showed a consistency property of this estimator as k → ∞ provided
δ → 0.

For example, Fig. 6.8 shows λ̂ (t) constructed from the data on arrivals of emer-
gency phone calls during a 24-h period over three Mondays with δ = 1 h. Notice
that the sparseness of the data results in many hours of the day having estimated
arrival rate 0; while the arrival rate of emergency calls may be quite small, it is
unlikely to be 0 over the long run. However, if we make δ much larger, then the
time-of-day effect will be lost; the linearly interpolated estimator Λ̂(t) avoids this
problem. To estimate the arrival rate directly it is important to have sufficient data
(observation periods).

In some situations it is more convenient to collect arrival counts rather than arrival
times. For instance, counts of customer arrivals might be recorded every 30min.
This makes it natural to use the piecewise-constant arrival-rate function (6.21) with
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Fig. 6.8 Estimation of λ (t), the arrival rate of emergency phone calls at time t, by λ̂

δ = 30, the resolution used to collect the data. All else being equal, we recommend
using Λ̂(t) when actual arrival times are available, and λ̂ (t) when all we have are
counts.

Fitting Λ(t) or λ (t) to data is a very active research area with new and practical
methods created regularly; nonparametric, semi-parametric, and fully parametric
estimators of Λ(t) or λ (t) are available. Some recent references with good pointers
to the broader literature are Chen and Schmeiser (2019), Morgan et al. (2019), and
Zheng and Glynn (2017).

6.3.1.4 Poisson or Not Poisson?

If the interarrival times of the renewal base process are exponential with rate λ̃ ,
then the base process is Poisson, and either inversion or thinning leads to proba-
bilistically identical nonstationary Poisson processes (NSPP). The stationary and
nonstationary Poisson processes are the most widely used in simulation practice—
in fact, they are the default arrival process in many simulation languages—because
they are often good representations of arrivals from a large population of potential
arrival entities, each making independent decisions about whether or when to ar-
rive (see Sect. 6.2.1.1). They are also very convenient processes to simulate because
Ge(t) = G(t) = 1− e−λ̃ t , t ≥ 0, so that interarrival times of the base process are
easily generated by the inverse cdf method.

How can we recognize that an arrival process is not well-represented as a NSPP,
and how can we model the arrival process when it is not? Consider a NSPP with
integrated rate function Λ(t). One of the many known properties of a NSPP is that

Var(N(t))
E(N(t))

= 1 for all t ≥ 0. (6.22)
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In words, the ratio of the variance of the number of arrivals to the expected number
of arrivals by time t is always 1, no matter what Λ(t) or λ (t) is chosen. However,
some real arrival processes are more variable (e.g., call centers) or less variable
(e.g., manufacturing orders) than this, which is one way to recognize and adjust for
departures from Poisson.

Gerhardt and Nelson (2009) showed that if the nonstationary arrival process is
generated by the inversion method, then

Var(N(t))
E(N(t))

≈ σ2
A for large t, (6.23)

where σ2
A = Var

(
Ã2
)
, the variance of the stationary interarrival times of the rate-

1 base process. When the base process is exponential, then σ2
A = 1. Thus, the base

process provides a way to obtain arrival processes that are more or less variable than
a NSPP.

The key idea is that deviation of the ratio Var(N(t))/E(N(t)) from 1 is a measure
of deviation from being a Poisson process, but the deviation can be matched by using
an appropriate base process.

Assuming we have arrival data, let

V (t) =
1

k−1

k

∑
j=1

(
Cj(t)− Λ̄(t)

)2

be the estimated variance of the number of arrivals by time t. If we select a collection
of times t1 < t2 < · · ·< tm, then an estimator of σ2

A is

σ̂2
A =

1
m

m

∑
i=1

V (ti)

Λ̄(ti)
.

When this value is significantly different from 1, then it indicates that a NSPP is
not appropriate; it also provides an estimate of what the variance of the equilibrium
renewal base process should be. In the exercises we suggest some base processes
that have controllable variances and for which generating values from G and Ge is
not difficult.

Estimating σ̂2
A from data is illustrated in Table 6.1. Notice that the hourly count

data must first be transformed into cumulative counts before computing Λ̄(t), V (t),
and their ratio V (t)/Λ̄(t). The average of these ratios is σ̂2

A = 0.59, indicating an
arrival process that is less variable than Poisson. Therefore, to generate arrivals by
inversion we want a renewal base process that is correspondingly less variable than
Poisson.

At present there is no easy-to-use relationship between the variance of the base
process and the arrival process for thinning, so we only recommend thinning for
generating a NSPP.

Notice that the method described in this section for assessing whether a NSPP
is appropriate exploited the existence of k > 1 arrival-process sample paths. What
if there is only one? Nelson and Leemis (2020) show that it is not possible to
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Table 6.1 Illustration of estimating σ̂2
A given hourly arrival count data from k = 3 realizations. The

# column is the hourly count and Cj(t) is the cumulative count

t # C1(t) # C2(t) # C3(t) Λ̄(t) V (t) V (t)/Λ̄(t)
8 a.m.–9 a.m. 1 1 3 3 1 1 1.67 1.33 0.80
9 a.m.–10 a.m. 5 6 7 10 4 5 7.00 7.00 1.00
10 a.m.–11 a.m. 14 20 8 18 11 16 18.00 4.00 0.22
11 a.m.–12 p.m. 19 39 15 33 17 33 35.00 12.00 0.34
12 p.m.–1 p.m. 22 61 20 53 18 51 55.00 28.00 0.51
1 p.m.–2 p.m. 9 70 11 64 8 59 64.33 30.33 0.47
2 p.m.–3 p.m. 4 74 1 65 2 61 66.67 44.33 0.67
3 p.m.–4 p.m. 2 76 3 68 1 62 68.67 49.33 0.72

σ̂2
A 0.59

test whether a NSPP is supported by the data from a single sample path without
additional stronger assumptions, such as knowing λ (t) orΛ(t). However, if process
physics supports the use of a NSPP, then it is possible to estimateΛ(t) from a single
path using the interpolation method described in Sect. 6.3.1.3.

6.3.2 Random Vectors

Suppose that the simulation requires generation of a random vector (X1,X2, . . . ,Xk),
where the ith component has cdf Fi = FXi . Let (U1,U2, . . . ,Uk) be a vector ofU(0,1)
random variables that may or may not be dependent. Then it follows from the
development of the inverse cdf method in Sect. 2.2 that the transformation

⎛
⎜⎜⎜⎝

X1

X2
...

Xk

⎞
⎟⎟⎟⎠=

⎛
⎜⎜⎜⎝

F−1
1 (U1)

F−1
2 (U2)

...
F−1

k (Uk)

⎞
⎟⎟⎟⎠

produces a random vector with the correct marginal distributions, and it seems
plausible that the vector (X1,X2, . . . ,Xk) will inherit some of the dependence of
(U1,U2, . . . ,Uk). Therefore, the key to this method is finding a dependent vec-
tor (U1,U2, . . . ,Uk) that produces the desired dependence among (X1,X2, . . . ,Xk).
Here we will measure dependence by the correlation matrix R = (ρi j) where
ρi j = Corr(Xi,Xj).

While there are a number of ways to construct a base vector (U1,U2, . . . ,Uk), we
will describe the normal-to-anything (NORTA) method:

⎛
⎜⎜⎜⎝

X1

X2
...

Xk

⎞
⎟⎟⎟⎠=

⎛
⎜⎜⎜⎝

F−1
1 (U1)

F−1
2 (U2)

...
F−1

k (Uk)

⎞
⎟⎟⎟⎠=

⎛
⎜⎜⎜⎝

F−1
1 [Φ(Z1)]

F−1
2 [Φ(Z2)]

...
F−1

k [Φ(Zk)]

⎞
⎟⎟⎟⎠ (6.24)
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where (Z1,Z2, . . . ,Zk) has a standard multivariate normal distribution with correla-
tion matrix R, each component having mean 0 and variance 1, and Φ is the cdf of
the standard normal distribution. The NORTAmethod is based on the fact that if Z is
standard normal, then U = Φ(Z) has a U(0,1) distribution; see Exercise 36. There
are many methods for constructing joint distributions of uniforms (U1,U2, . . . ,Uk);
these distributions are known as copulas. The normal copula is a good one for con-
trolling the correlations of (X1,X2, . . . ,Xk), but other measures of dependence may
be relevant in some applications. A comprehensive reference is Biller and Corlu
(2012).

To employ the NORTA method, we first choose or fit the cdfs F1,F2, . . . ,Fk of the
k component random variables, and also estimate the pairwise correlations R= (ρi j)
that we require. Given F1,F2, . . . ,Fk and ρi j, we find a correlation matrix R = (ri j)
for (Z1,Z2, . . . ,Zk) that implies the target correlation matrix R for (X1,X2, . . . ,Xk)
after the NORTA transformation. Variate generation is done by first generating a
standard multivariate normal random vector (Z1,Z2, . . . ,Zk) with correlation matrix
R and then applying the transformation (6.24).

The level of complexity involved in implementing the NORTA method is sig-
nificantly greater than other methods described here. Details are provided in the
Appendix to the chapter. To illustrate we use a very simple example chosen to be
easy to understand, rather than corresponding to a practical problem.

Suppose that we need bivariate random vectors (X1,X2) where X1 has an ex-
ponential distribution with mean 10, X2 has a discrete uniform distribution on
{1,2, . . . ,10}, and we want to match some ρ12 = Corr(X1,X2). These might rep-
resent a time to do something and a count of the number of things that are done,
respectively, so they are naturally dependent. The NORTA transformation is

(
X1

X2

)
=

(
F−1
1 (U1)

F−1
2 (U2)

)
=

(
−10ln(1−U1)

�10U2�

)
=

(
−10ln[1−Φ(Z1)]

�10Φ(Z2)�

)
,

where (Z1,Z2) have a standard bivariate normal distribution with correlation r12.
The key to the NORTA method is finding r12 that implies (X1,X2) have correlation
ρ12 after the transformation.

Using the method described in the Appendix to the chapter, we solved the
correlation-matching problem for several possible values of ρ12 as shown below.
Notice that the relationship is not linear. Because of the symmetry of the discrete
uniform distribution in this problem, we can obtain correlation −ρ12 by using base
correlation −r12; this is not the case for all pairs of marginal distributions.

ρ12 r12
−0.5 −0.578
0.5 0.578
0.7 0.813
0.8 0.950
0.85 0.991
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Fig. 6.9 Scatter plot of 200 pairs of bivariate exponential (X1) and discrete uniform (X2) variates
with correlation 0.7

Figure 6.9 shows a scatter plot of 200 (X1,X2) pairs when the correlation is ρ12 =
0.7. Notice how large values of X1 tend to occur with large values of X2.

6.4 Generating Random Variates

The inverse cdf method of random-variate generation was described in Sect. 2.2. For
generating univariate inputs this is, in theory, the only method we need. The fact that
inversion maps a single uniform U monotonically into a single X via X = F−1

X (U)
will be helpful for experiment design and optimization, as discussed in Chap. 9, so
inversion is the method of choice.

In practice, however, each inversion may require solving the root-finding problem

U = FX (X) =
∫ X

−∞
fX (x)dx (6.25)

for X , which could be slow if numerical integration is required. In the case of a
discrete distribution, a search over a countably infinite number of possible outcomes
might be necessary (e.g., the Poisson distribution). Therefore, methods other than
inversion are sometimes more practical. Nevertheless, it is worth noting that even
when there is no closed-form expression for F−1

X , if (6.25) can be solved efficiently
and to sufficient numerical accuracy, then inversion is still preferred.

Random-variate generation is a vast topic with decades of development. An out-
standing general reference is Devroye (1986), along with the update in Devroye
(2006). The most general method, after inversion, is rejection, which we cover in
Sect. 6.4.1. Most other approaches exploit particular properties of the distribution
from which variates are needed; we provide a few examples in Sect. 6.4.2.
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6.4.1 Rejection Method

Let X be the random variable of interest. The rejection method applies when we can
express

Pr{X ≤ x}= Pr{V ≤ x|A },
where V is another random variable and A is some “acceptance” event (for this
reason the method is sometimes called “acceptance–rejection”). If V is easy to gen-
erate, while X is difficult, then this suggests that we can generate X in the following
way:

1. Generate V
2. If A occurs, then return X =V

Otherwise, reject V and go to Step 1

Provided generation of V is fast and, on average, we do not have to reject too
many V ’s until the event A occurs, then rejection can be a competitive method.

How can we set up such a situation? Suppose that X has a density function fX

(and cdf FX ), and let m(x) be a function that “majorizes” fX , by which we mean
m(x)≥ fX (x) for all x. Unless they are equal, m(x) will not be a density function (its
integral will be greater than 1), but

g(x) =
m(x)∫ ∞

−∞m(y)dy
=

m(x)
c

will be. The following is a general rejection algorithm:

1. Generate V ∼ g
2. Generate U ∼U(0,1)
3. If U ≤ fX (V )/m(V ) then return X =V

Otherwise go to Step 1

Here the acceptance event is A = {U ≤ fX (V )/m(V )}, and we need to show that

Pr{V ≤ x|A }= FX (x).

By definition

Pr{V ≤ x|A }= Pr{V ≤ x,A }
Pr{A } .

But

Pr{A } = Pr{U ≤ fX (V )/m(V )}

=
∫ ∞

−∞
Pr{U ≤ fX (y)/m(y)|V = y}g(y)dy

=
∫ ∞

−∞

fX (y)
m(y)

· m(y)
c

dy

=
1
c

∫ ∞

−∞
fX (y)dy =

1
c
. (6.26)
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A similar argument gives the numerator:

Pr{V ≤ x,U ≤ fX (V )/m(V )} =
∫ ∞

−∞
Pr{y ≤ x,U ≤ fX (y)/m(y)|V = y}g(y)dy

=
∫ x

−∞
Pr{U ≤ fX (y)/m(y)}g(y)dy

=
1
c

∫ x

−∞
fX (y)dy =

1
c

FX (x). (6.27)

Combining (6.27) and (6.26) proves the result.
Notice that (6.26) is the probability that we accept V on any trial; since the trials

are independent, they have a geometric distribution and the expected number of tri-
als to generate one X is c. Thus, the closer c is to 1 the more efficient the algorithm is.
Also notice that the rejection method requires a random number ofU(0,1)’s to gen-
erate each X .

As an example, consider the beta distribution with pdf

fX (x) =
xα1−1(1− x)α2−1

B(α1,α2)
(6.28)

for 0≤ x ≤ 1, where α1,α2 > 0 are shape parameters, and

B(α1,α2) =
∫ 1

0
uα1−1(1−u)α2−1 du.

The beta distribution does not have a closed-form inverse cdf.
When α1 > 1 and α2 > 1 the mode of the beta distribution occurs at x� = (α1−

1)/(α1+α2−2). Thus, the highest point on the density function is f � = fX (x�) and
the constant function

m(x) = f �, 0≤ x ≤ 1

majorizes fX . This implies that g(x) = 1, for 0 ≤ x ≤ 1, the uniform distribution
on (0,1). This gives the following rejection algorithm for generating beta random
variates when α1 > 1 and α2 > 1:

0. Compute f � = fX

(
α1−1

α1+α2−2

)
1. Generate V ∼ g =U(0,1)
2. Generate U ∼U(0,1)
3. If U ≤ fX (V )/m(V ) = [Vα1−1(1−V )α2−1/B(α1,α2)]/ f � then return

X =V
Otherwise go to Step 1

The efficiency of this rejection algorithm depends on the particular values of
α1 and α2. For instance, when α1 = 4 and α2 = 3, then c = 2.0736 meaning the
expected number of trials is a little greater than 2 to generate each beta variate.
By modern standards this is not a very efficient rejection algorithm. This particular
example is illustrated in Fig. 6.10.
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Fig. 6.10 Rejection method for a beta distribution (solid line), with majorizing function m(x)
(dashed line) and corresponding density g(x) (dot-dashed line)

State-of-the-art algorithms use a number of tricks to increase efficiency. One is
to express the density fX as a probabilistic mixture of pieces so that each piece can
be majorized very closely.

6.4.2 Particular Properties

By “particular properties” we mean relationships among distributions that facili-
tate variate generation. For instance, if X1 ∼ gamma(α1,β ), independent of X2 ∼
gamma(α2,β ), then X = X1/(X1+X2) has a beta(α1,α2) distribution. Thus, if one
has a gamma random-variate generation algorithm, then it can be used to generate
beta variates.

Relationships among the standard normal distribution, the normal distribution,
and the lognormal distribution have already been mentioned: If Z ∼ N(0,1), then
X = μ+σZ has a N(μ ,σ2) distribution. Further, Y = exp(X) has a lognormal dis-
tribution. A good reference for such relationships is Leemis and McQueston (2008).

Although particular properties can often supply competitive random-variate gen-
eration algorithms, they should typically be used only if they provide exact methods.
Recall that what we mean by “exact” is that if we had infinite-precision computer
arithmetic, and a source of trulyU(0,1) random numbers, then Pr{X ≤ x}= FX (x).
There are particular properties that only lead to approximate methods. For instance,
if X has a Poisson distribution with mean λ and λ is large, then (X − λ )/

√
λ is

approximately standard normal. Thus, if we had a method for generating N(λ ,λ )
random variates, then we could round them to obtain approximately Poisson dis-
tributed variates. However, there is no reason to settle for this approximation since
exact, uniformly fast methods exist (e.g., Hörmann (1993)).
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The most infamous example of an approximate method is generating a N(0,1)
random variate by setting

Z =
12

∑
i=1

Ui −6, (6.29)

where U1,U2, . . . ,U12 are i.i.d. U(0,1). The justification for normality is the central
limit theorem, and the convenient choice of 12 gives variance 1. In Exercise 24 you
are asked to explore the faults of this method.

6.5 Generating Pseudorandom Numbers

The driving source of randomness in stochastic simulations is, in theory, i.i.d. sam-
ples from the U(0,1) distribution; but in practice they are a deterministic sequence
of pseudorandom numbers that appear to be random. As described in Sect. 2.3, one
way to visualize the pseudorandom numbers is as a large, ordered list

u1,u2,u3, . . . ,ui,ui+1, . . . ,uP−1,uP,u1,u2,u3, . . .

where P is the period. Here we use lowercase u to denote pseudorandom numbers
to emphasize that they are deterministic and not actually random.

Rather than storing an actual list, pseudorandom numbers are invariably gen-
erated by a recursive algorithm called a pseudorandom-number generator. In this
section, we present enough background about pseudorandom-number generators to
use them effectively. It is worth stating that inventing algorithms to generate a se-
quence that appears to be i.i.d. U(0,1) is quite difficult. Basic properties, such as
having the right mean (1/2) and variance (1/12), are relatively easy to achieve,
but apparent independence is not. For instance, given any dimension d, the values
(ui+1,ui+2, . . . ,ui+d), i = 1,2, . . . should appear to be uniformly distributed in the d-
dimensional unit hypercube (0,1)d . This property is hard to achieve as d increases,
and poor generators can give results that do not look random in high dimensions.
Creating pseudorandom-number generators that have a long period P and good sta-
tistical properties involves number theory, computer science, and clever testing. A
very accessible reference is L’Ecuyer (2006), to which the reader should refer for
technical details not covered here.

The pseudorandom-number generators we consider produce a sequence of inte-
ger values that are scaled to be between 0 and 1. The generator in PythonSim starts
with an integer seed z0 ∈ {1,2, . . . ,231−1}, and then generates pseudorandom num-
bers via the recursion

zi = 630,360,016zi−1 mod 231−1

ui =
zi

231−1
. (6.30)
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This is a Python implementation of the algorithm described in Marse and Roberts
(1983) and Law (2007). Recall that “mod m” means to retain the remainder after
dividing by m; for instance, 7 mod 3 = 1. This generator is one instance of a class
of generators of the form

zi = azi−1 mod m

ui =
zi

m
(6.31)

which are called (linear) multiplicative congruential generators (MCGs). MCGs
have been in widespread use for many years. Here are some important observations
about MCGs:

1. The only possible values a MCG can return are {0,1/m,2/m, . . . ,(m− 1)/m}.
Clearly we do not want it to return 0 since it will produce nothing but zeroes
from then on.5 Thus, the maximal period of a MCG is P = m− 1, which the
generator (6.30) achieves.

2. We want m to be large so that the interval between 0 and 1 is densely filled;
thus, m = 231−1 is a natural choice because it is the largest integer representable
on 32-bit computers. However, to appear random requires more than just a long
period; there are 534 million values of a that achieve full period for m = 231−1,
but only a fraction of them generate sequences with good statistical properties.

3. The computation zi = azi−1 mod m must be done with care. For example, the
multiplication 630,360,016zi−1 will frequently yield a value greater than 231−1,
leading to overflow if we try to do integer arithmetic.

4. Exercise 45 asks you to show that zi = aiz0 mod m for a MCG. Therefore, it is
possible to skip ahead in the sequence since

zi = aiz0 mod m = (ai mod m)z0 mod m.

Thus, a single generator with a long period can act as several virtual genera-
tors, each one starting with their own unique “seed” z0 spaced far apart. The
PythonSim implementation of the generator (6.30) has 100 virtual generators
with seeds spaced 100,000 pseudorandom numbers apart; these are accessed
via the random-number streams 1–100. For instance, stream 1 corresponds to
z0 = 1,973,272,912 while stream 2 has z0 = 281,629,770.

The pseudorandom-number generator (6.30) is adequate for learning about
stochastic simulation, but with a period of only about two billion it is insufficient
for many problems. Consider this simple and very realistic example: We want to
estimate the reliability of a system for which failure needs to be very unlikely
because human life is involved. Suppose each replication of the simulation re-
quires 100 random numbers, and we would like to observe at least 30 failures.
If the actual probability of failure is one in a million, then we would expect to

5 Typically we do not want pseudorandom-number generators to return either 0 or 1 because these
values correspond to ±∞ for some distributions from which we want to generate random variates.
For instance, the inverse cdf of the exponential distribution with mean 1 is F−1(u) =− ln(1−u).
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need 100×30×1,000,000= 3,000,000,000 random numbers, many more than the
pseudorandom-number generator (6.30) can provide before repeating.

Unfortunately, even if the period P of a generator is sufficient for the applications
we have in mind problems can occur. L’Ecuyer and Simard (2001) demonstrated that
for many standard generators, such as (6.30), nonrandom behavior of the generator
is easily detectable by statistical tests if more than a fraction of the period is actually
used (from P1/3 to P1/2). This implies that we would like to have generators with
periods substantially larger than what the application requires. To complete our un-
derstanding of modern pseudorandom-number generators, we describe two general
approaches that greatly extend the period of MCGs; selecting the specific constants
that give good statistical properties is, however, beyond the scope of this book.

6.5.1 Multiple Recursive Generators

A recursive pseudorandom-number generator maps a previous state into a new state,
so its period depends on the number of distinct states it can take. The period of a
MCG is limited because its state is the most recently generated integer zi−1, which
can assume only m values. A multiple recursive generator (MRG) of order K extends
the state to include the K most recent values:

zi = (a1zi−1+a2zi−2+ · · ·+aKzi−K) mod m

ui =

⎧⎪⎨
⎪⎩

zi

m+1
, zi > 0

m
m+1

, otherwise.
(6.32)

Notice that a value of zi = 0 is not fatal for a MRG, but is mapped into m/(m+1) to
avoid generating ui = 0. Since the state of this generator is (zi−K ,zi−K+1, . . . ,zi−1),
and since each element can take m possible values, the maximal period—avoiding
the state (0,0, . . . ,0)—is P = mK −1. A necessary (but not sufficient) condition for
achieving full period is that aK and at least one other a j are not zero. Notice that the
“seed” for such a generator consists of K values (z0,z1, . . . ,zK−1).

6.5.2 Combined Generators

Combining MRGs is a way to further increase the state of the generator. Suppose
that we have j = 1,2, . . . ,J MRGs of the form

zi, j = (a1, j zi−1, j +a2, j zi−2, j + · · ·+aK, j zi−K, j) mod m j.
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That is, zi, j is the ith pseudorandom integer from the jth MRG. Then we form the
ith pseudorandom number from

zi = (δ1 zi,1+δ2 zi,2+ · · ·+δJ zi,J) mod m1

ui =

⎧⎪⎨
⎪⎩

zi

m1+1
, zi > 0

m1

m1+1
, otherwise

where δ1,δ2, . . . ,δJ are fixed integers. In words, the generator consists of J MRGs of
order K executed in parallel, with their outputs combined to form a pseudorandom
number.

If each of the component MRGs uses a prime number modulus m j and has
period Pj = mK

j − 1, then the period of the combined generator is at most P =

P1P2 · · ·PJ/2J−1. Notice that the initial “seed” for such a generator consists of J×K
values.

A specific instance that has been widely implemented is MRG32k3a (L’Ecuyer,
1999), which consists of J = 2 MRGs each of order K = 3:

zi,1 = (1,403,580zi−2,1−810,728zi−3,1) mod 232−209

zi,2 = (527,612zi−1,2−1,370,589zi−3,2) mod 232−22,853

zi = (zi,1− zi,2) mod 232−209.

The period of this generator is P ≈ 2191 ≈ 3× 1057, which is enormous: If you
could generate two billion pseudorandom numbers per second (the entire period of
the PythonSim generator), then it would take longer than the age of the universe to
exhaust the period of MRG32k3a!

There are reasons why combining MRGs can lead to a generator with good sta-
tistical properties as well as long period, but again the specific choices must be
made with great care; see L’Ecuyer (2006). The following result shows that if the
first component MRG zi,1 provides what appear to be uniformly distributed integers,
then the combined generator will as well. Thus, combining several MRGs will not
destroy the uniformity of the first generator. Of course, this provides no guarantee
that successive values appear to be independent.

Theorem 6.2 (L’Ecuyer (1988)). Suppose that Z1,Z2, . . . ,ZJ are independent, integer-
valued random variables and that Z1 has a discrete uniform distribution on {0,1,
. . . ,m1−1}. Then

Z =
J

∑
j=1

Z j mod m1

also has a discrete uniform distribution on {0,1, . . . ,m1−1}.
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Proof. Let W = ∑J
j=2 Z j mod m1, and notice that Z1 mod m1 = Z1. Then

Z =

(
Z1 mod m1+

J

∑
j=2

Z j mod m1

)
mod m1

= (Z1+W ) mod m1.

Then sinceW only takes values in {0,1, . . . ,m1−1}, we have for z= 0,1, . . . ,m1−1
that

Pr{Z = z} =
m1−1

∑
w=0

Pr{Z = z|W = w}Pr{W = w}

=
m1−1

∑
w=0

Pr{(Z1+W ) mod m1 = z|W = w}Pr{W = w}

=
m1−1

∑
w=0

Pr{(Z1+w) mod m1 = z}Pr{W = w}

=
m1−1

∑
w=0

1
m1

Pr{W = w} (6.33)

=
1

m1
,

where (6.33) follows because there is only one value of Z1 that will make (Z1+w)
mod m1 = z, and Z1 has a discrete uniform distribution so all values are equally
likely. ��

6.5.3 Proper Use of Pseudorandom-Number Generators

Pseudorandom-number generators are implemented so that after each call they re-
tain memory of the generator’s state. Thus, each call to the generator advances to the
next pseudorandom number in the sequence, approximating an independent sample
from the U(0,1) distribution. This is why we may treat replications as (pseudo) in-
dependent, as long as we do not exhaust the period P of the generator or mistakenly
reset the initial seed between replications. Notice that a MCGwill generate a distinct
integer zi on each call, while a MRG or combined MRGs can (and will) generate
the same zi value many times before exhausting its period, since different generator
states map into the same zi value.

For a well-tested pseudorandom-number generator such as MRG32k3a, there is
no advantage to using any particular initial seed. A common misconception is that
pseudorandom-number generators include different streams (initial seeds) because
some parts of the sequence are better (more random) than others, or that assigning
different streams makes different input processes more independent; this is not the
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case. A good pseudorandom-number generator appears to produce a sequence of
i.i.d. U(0,1)’s, so it does not matter if they are used in their natural order or if they
are obtained from different subsequences.

Of course, surprising events occur in a pseudorandom sequence just as they
would in a truly random process. This is why adequate run lengths or numbers of
replications are essential to overcome the quirks of randomness, and why statistical
error should be measured by a standard error or a confidence interval. These are the
goals of good experiment design and analysis, the subjects of Chaps. 7 and 8.

One reason streams exist is to synchronize how the random numbers are used
when we compare alternative scenarios via simulation. Roughly speaking, we want
each scenario to see the same source of randomness so that observed differences in
performance are due to structural differences in the scenarios, not different random
numbers. As discussed in Chap. 9, this is facilitated by insuring (as far as possible)
that each pseudorandom number is used for the same purpose in the simulation
of each alternative scenario. Assigning distinct streams to distinct input processes
facilitates this. If only a single scenario is simulated, then streams are irrelevant,
unless replications are executed in parallel.

The ability to execute the simulations of different scenarios, and different repli-
cations of those scenarios, in parallel introduces another wrinkle into the proper use
of pseudorandom-number generators. Consider obtaining n replications of k ≥ 1
scenarios using 1≤ p ≤ n parallel processors. First suppose that k = 1. When p = 1
the replications are executed one after another, and therefore as long as we do not
reinitialize the pseudorandom-number generator between replications, the replica-
tions will be (pseudo) i.i.d. Clearly this approach fails when p > 1 because it defeats
the purpose of parallelization to wait for one replication to complete before starting
the next one! Therefore, each replication must be assigned its own stream or seed.
When there are k > 1 scenarios, then the replications for the each scenario must have
completely distinct streams or seeds if we want to simulate them independently, or
be coordinated if we desire synchronization as described above.

Conceptually, we would like to break the period of a pseudorandom number gen-
erator into an effectively infinite number of streams, with an effectively infinite num-
ber of substreams within each stream, all effectively infinitely far apart. This facili-
tates assigning “streams” to scenarios and “substreams” to replications as we see fit.
Fortunately, generators such as MRG32k3a have long enough periods to make this
possible, with the additional feature that the seeds for new starting streams or sub-
streams can be computed as needed, rather than having to be stored; see L’Ecuyer
et al. (2002) and Exercise 44. The summary point is that more care is required to
use pseudorandom-number generators correctly in parallel simulation.

Finally, it is sometimes argued that to appropriately represent the uncertainty
that occurs in reality, it is important to randomly select the initial seed z0. While
this may appear correct on the surface, remember that the goal of a stochastic sim-
ulation is not to produce a random result, as in a game of cards or in a lottery, but
rather to estimate underlying properties of a system that is subject to uncertainty.
Whether the initial seed is fixed or random, the experiment should be conducted
so as to overcome the effect of randomness and obtain precise estimates. If the
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pseudorandom-number generator can be trusted, then the benefits of repeatability
and precise comparisons that can be obtained with fixed seeds or streams outweigh
the superficial connection to true uncertainty provided by choosing a random seed.

Appendix 1: Properties of the GLD

The results below can be found in Karian and Dudewicz (2000) or Lakhany and
Mausser (2000).

The pdf of the GLD is

f (x) =
λ2

λ3yλ3−1+λ4(1− y)λ4−1

at the point x = Q(y), where Q is the inverse cdf. This expression is useful for
plotting a fitted GLD distribution. The support of the GLD depends on its parameters
(Karian & Dudewicz, 2000):

λ3 λ4 Support
λ3 > 0 λ4 > 0 [λ1−1/λ2,λ1+1/λ2]
λ3 > 0 λ4 = 0 [λ1,λ1+1/λ2]
λ3 = 0 λ4 > 0 [λ1−1/λ2,λ1]
λ3 < 0 λ4 < 0 (−∞,∞)
λ3 < 0 λ4 = 0 (−∞,λ1+1/λ2]
λ3 = 0 λ4 < 0 [λ1−1/λ2,∞)

To fit a GLD via the method of moments, the following are valid provided λ3 >
−1/4 and λ4 >−1/4:

μ = λ1+
A
λ2

σ2 =
B−A2

λ 2
2

α3 =
C−3AB+2A3

λ 3
2σ3

α4 =
D−4AC+6A2B−3A4

λ 4
2σ4

,
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where

A =
1

1+λ3
− 1

1+λ4

B =
1

1+2λ3
+

1
1+2λ4

−2B(1+λ3,1+λ4)

C =
1

1+3λ3
− 1

1+3λ4
−3B(1+2λ3,1+λ4)+3B(1+λ3,1+2λ4)

D =
1

1+4λ3
+

1
1+4λ4

−4B(1+3λ3,1+λ4)+6B(1+2λ3,1+2λ4)

−4B(1+λ3,1+3λ4)

with

B(a,b) =
∫ 1

0
xa−1(1− x)b−1 dx.

Software can be found in Karian and Dudewicz (2000).
To fit via least squares we need E[Q(U(i))], which can be computed using the

following:

E
[
Uλ3
(i)

]
=
Γ (m+1)Γ (i+λ3)
Γ (i)Γ (m+λ3+1)

E
[
(1−U(i))

λ4
]
=
Γ (m+1)Γ (m− i+λ4+1)
Γ (m− i+1)Γ (m+λ4+1)

.

Appendix 2: Implementation of the NORTA Method

In this appendix, we provide details on one implementation of the NORTA method.
We assume that you start with observed input data, fit the NORTA input model, and
then generate variates.

Fitting NORTA Components

Suppose we have observed input data that we believe are i.i.d. vectors Xh =
(X1h,X2h, . . . ,Xkh)

�,h = 1,2, . . . ,m. Since the random vectors are i.i.d., then so are
Xi1,Xi2, . . . ,Xim for any one of the marginal distributions i. Thus, the ith marginal
may be fit by using any of the methods described in Sect. 6.2. Denote the fitted
marginals as F̂i, i = 1,2, . . . ,k.

Let

X̄=
1
m

m

∑
h=1

Xh
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be the sample mean vector, and

Ĉ=
1

m−1

m

∑
h=1

(Xh − X̄)(Xh − X̄)� (6.34)

be the sample variance–covariance matrix. The sample correlations are therefore

ρ̂i j = Ĉi j/
√
ĈiiĈ j j. Let R̂ = (ρ̂i j) be the estimated correlation matrix. The fit-

ted marginals F̂i, i = 1,2, . . . ,k and correlations ρ̂i j are the inputs to the NORTA
correlation-matching problem; we describe one solution method below.

Under the set-up described above, R̂ is guaranteed to be positive semi-definite, a
requirement to be a legitimate correlation matrix. Unfortunately, if we do not have m
complete vectors of observations on all k input processes, then there is no such guar-
antee. For instance, (X1,X2) might have been observed together 100 times, while a
separate study observed (X2,X3) together 87 times, but (X1,X3) might never have
been observed jointly so a guess of their correlation will be used. From these data
we can estimate ρ12,ρ13, and ρ23 separately, but there is no longer any guarantee
that R̂ will be positive semi-definite and some sort of remedial measures will be
required. For instance, if R̂ is not a positive semi-definite correlation matrix, then

R̂′ =
R̂− εI
1− ε

will be, provided ε is the smallest eigenvalue of R̂ (which will be negative) and I is
the k× k identity matrix. There are many other fixes; see, for instance, Ghosh and
Henderson (2002).

Remark 6.1. Notice that our approach is to decompose the problem into fitting the
marginals and the correlations separately, and then solving the correlation-matching
problem. Biller and Nelson (2005) describe a least-squares method for fitting the
marginals and correlation structure simultaneously.

Generating Multivariate Normal Vectors

A component of the NORTA method is generating standard multivariate normal
random vectors with correlation matrix R. The multivariate normal distribution is
completely characterized by its marginal means and standard deviations, and the
correlations among all pairs of components. See, for instance, Johnson (1987).

To illustrate how variate generation is done, suppose that k = 2 so that we need
bivariate normal random vector (Z1,Z2) with correlation r = r12. If W1,W2 are i.i.d.
N(0,1) random variables, then the following transformation works:

(
Z1

Z2

)
=

(
1 0
r
√
1− r2

)(
W1

W2

)
. (6.35)
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Notice that by definition Z1 is N(0,1), while Z2 is normally distributed because it
is a linear combination of normally distributed random variables. Also, Var(Z2) =

r2+
(√

1− r2
)2

= 1. Exercise 37 asks you to prove that Corr(Z1,Z2) = r.

Equation (6.35) is based on the fact that the conditional distribution of Z2 given
Z1 is N(rZ1,1− r2). This insight for k = 2 extends to k > 2: The conditional dis-
tribution of Zh given Z1,Z2, . . . ,Zh−1 is normal, for h = 2,3, . . . ,k. The following
algorithm is equivalent to generating Z1, then generating Z2 given Z1, then Z3 given
Z1,Z2, etc. (Johnson, 1987):

1. Let C be the Cholesky decomposition of the correlation matrix R so that
C�C= R.

2. Let W� = (W1,W2, . . . ,Wk) where the Wi are i.i.d. N(0,1).
3. Set Z= (Z1,Z2, . . . ,Zk)

� = C�W.

Remark 6.2. Although not needed to apply the NORTA method, another useful fact
is that if Z ∼N(0,1), then μ+σZ ∼N(μ ,σ2). This provides a method for generat-
ing multivariate normal random vectors with any means, variances, and correlations
by first generating Z1,Z2, . . . ,Zk with the desired correlations, then applying the
transformation to achieve the required means and variances.

Solving the Correlation-Matching Problem

The correlation-matching problem is simplified by two insights, one obvious, the
other not:

1. For a NORTA vector, the correlation ρi j is a function of only the base correlation
ri j. This is true because

ρi j = Corr(Xi,Xj) = Corr
(

F−1
i [Φ(Zi)] ,F

−1
j [Φ(Z j)]

)

which is only a function of Zi and Z j. Thus, the correlation-matching problem
decomposes into k(k−1)/2 individual matching problems.

2. Under very mild conditions, Corr
(

F−1
i [Φ(Zi)] ,F

−1
j [Φ(Z j)]

)
is a continuous,

nondecreasing function of ri j (Biller & Nelson, 2003). Thus, a straightforward
search can be used to find ri j.

To implement the search we need to be able to calculate

Corr
(

F−1
i [Φ(Zi)] ,F

−1
j [Φ(Z j)]

)
for any given ri j. There are essentially two

choices: numerical methods or simulation. We present a simulation approach here
because of its simplicity; for numerical methods see Cario and Nelson (1998) and
Biller and Nelson (2003).

The simulation method is straightforward: Given a pair of marginals Fi and Fj, a
correlation ρi j to match, and a feasible value of ri j to check, generate m independent
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replications of Xi = F−1
i [Φ(Zi)] and Xj = F−1

j [Φ(Z j)], estimate their correlation ρ̂ ,
and adjust ri j until ρ̂ ≈ ρi j. In the algorithm below we implement a bisection search,
and we call a function rho to compute the correlation estimate ρ̂ . Notice that the
number of replications m and error tolerance ε > 0 must be specified; we comment
on these choices later.

Empirical correlation matching

1. generate W1 = (W11,W12, . . . ,W1m) and W2 = (W21,W22, . . . ,W2m), all
i.i.d. N(0,1)

2. if ρ < 0 then set �=−1 and u = 0
Else set �= 0 and u = 1

3. set r = ρi j

4. set ρ̂ = rho(r,W1,W2)
5. while |ρ̂−ρi j|> ε do

a. if ρ̂ > ρi j then set u = r
Else set �= r

b. set r = (�+u)/2
c. set ρ̂ = rho(r,W1,W2)

6. loop
7. return ri j = r

The function below computes the correlation estimate given a value of r:

rho(r,W1,W2)

1. set Z1 j =W1 j, j = 1,2, . . . ,m
2. set Z2 j = rZ1 j +

√
1− r2W2 j, j = 1,2, . . . ,m

3. set Xi j = F−1
i [Φ(Zi j)] , i = 1,2; j = 1,2, . . . ,m

4. return

rho=
∑m

h=1(X1h − X̄1)(X2h − X̄2)√
[∑m

h=1(X1h − X̄1)2] [∑m
h=1(X2h − X̄2)2]

Clearly, the choice of sample size m and error tolerance ε matter. We recommend
m no less than 10,000 and ε no greater than 0.05|ρi j|, with 0.01|ρi j| preferred. Chen
(2001) describes how a sequence of experiments with increasing m and decreasing
ε can be used to provide controlled error. This is essential because as k gets larger,
a poorly estimated R may not be positive definite, a condition required for it to be a
legitimate correlation matrix.

Also notice that only one set of W1,W2 needs to be generated.
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Evaluation of the CDF and Inverse CDF

The NORTA method as described here requires three things:

1. The capability to evaluate the standard normal cdf, Φ(·).
2. The capability to evaluate the inverse cdfs of the target marginal distributions,

F−1
1 (·),F−1

2 (·), . . . ,F−1
k (·).

3. The capability to generate i.i.d. standard normal random variates Wi j.

Many numerical libraries contain efficient methods to evaluate Φ(·), and com-
puter code can be found in textbooks such as Bratley et al. (1987). The NORTA
method is very sensitive to having an accurate evaluation of the normal cdf, and im-
plementations that do not handle the tails in a sensible way can cause the empirical
correlation matching to fail to converge.

As discussed in Sect. 6.4, even when F−1(·) cannot be expressed in closed form,
it is still possible to numerically invert the cdf. Numerical methods to evaluate the
inverse cdf of many common distributions can also be found in numerical libraries
as well as Bratley et al. (1987).

Exercises

1. Suppose that Z1,Z2, . . . are i.i.d. positive random variables, and X = ∏n
i=1 Zi.

LetW = ln(X) =∑n
i=1 ln(Zi), and suppose that E(ln(Z1)

2)<∞. Use the central
limit theorem and the continuous mapping theorem to show that X is asymptot-
ically lognormal.

2. Show that the hazard function for the Weibull distribution is increasing for α >
1, decreasing for α < 1, and constant for α = 1.

3. Derive the relationship between the mean and variance of Y and Y ′ when Y =
a+(b−a)Y ′.

4. Show that X and X ′ in (6.9) have the same skewness and kurtosis.
5. What problem could occur if instead of solving the least-squares formulation

in (6.10), we instead tried to solve

θ̂U = argminθ
m

∑
i=1

w(i)

(
F(X(i);θ)−

i
m

)2

?

Hint: Suppose F is a distribution with unbounded support, such as the expo-
nential distribution.

6. Suppose we want to parameterize a triangular distribution by specifying the
minimum, maximum, and mean value. Derive the most likely value b given this
information.

7. Prove that the ecdf is asymptotically consistent F̂(x)
a.s.−→ F(x).
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8. Suppose that X̂ ∼ F̂ , the ecdf of X1,X2, . . .Xm. Show that

Var
(

X̂
∣∣∣X1, . . . ,Xm

)
=

1
m

m

∑
i=1

(Xi − X̄)2.

9. For the linearly interpolated ecdf, show that E(F̃(x)) �= FX (x) in general (a
single example will suffice).

10. Suppose that X̃ ∼ F̃ , the linearly interpolated ecdf. Derive a general expression
for E(X̃ |X1, . . . ,Xm) to show that it is not equal to X̄ , except as m → ∞.

11. Suggest ways to model the arrival of fans to a basketball game, or more gener-
ally arrivals to an event with a fixed starting time and capacity.

12. In this chapter we focused on nonparametric estimators of λ (t) or Λ(t). How-
ever, there is a substantial literature on parametric models, such as

λ (t) = exp

{
p

∑
i=0
βit

i +η sin(ωt +φ)

}

(Lee et al., 1991), where p,βi,η ,ω , and φ are parameters to be estimated from
arrival data. This model allows cyclic behavior via η sin(ωt + φ) and a long-
term trend through ∑p

i=0βit i. What is the advantage of using this form, rather
than the apparently simpler λ (t) = ∑p

i=0βit i +η sin(ωt +φ)?
13. Prove that Λ̄(t) a.s.−→Λ(t) and that E

(
Λ̄(t)

)
=Λ(t) for any fixed t ∈ [0,T ). Hint:

For any fixed t, N1(t),N2(t), . . . ,Nk(t) are i.i.d. random variables.
14. For the arrival-rate function λ̂ (t) obtained by counting arrivals in fixed intervals

of size δ , derive the corresponding integrated rate function.
15. Data on the arrival of faxes, by hour, for 1 month (31 days) can be found on the

book website in FaxCounts.xls. Use these data to estimate arrival rates for
a piecewise-constant, nonstationary arrival process.

16. For the call center in Exercise 16 of Chap. 4, the arrival rate is not actually
a steady 60/h, it varies throughout the day. Data on call counts, by hour, for
1 month (31 days) can be found on the book website in CallCounts.xls.
Use these data to estimate arrival rates for a piecewise-constant, nonstation-
ary Poisson arrival process. Implement this arrival process in your call center
simulations. Does this affect your recommendation?

17. Consider the call arrival data from the previous exercise. Let N(t) repre-
sent the cumulative number of arrivals by time t. If the process is nonsta-
tionary Poisson, then Var(N(t))/E(N(t)) = 1 for all t, or stated differently
Var(N(t)) = βE(N(t)) with β = 1. Since you have arrival count data, you can
estimate Var(N(t)) and E(N(t)) at t = 1,2, . . . ,8 h. Use these data to fit the
regression model Var(N(ti)) = βE(N(ti)) and see if the estimated value of β
supports the choice of a nonstationary Poisson arrival process. Hints: This is
regression through the origin. Also, remember that N(ti) represents the total
number of arrivals by time ti.

18. Each summer a car dealer runs a 40-h sale. Customer arrival times (in
hours) from two of these sales can be found on the book website in
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ArrivalTimes.xls. Use these data to form a linearly interpolated inte-
grated rate function Λ̂(t), and then generate customer arrival times for 1 day
from a nonstationary Poisson arrival process using Λ̂(t).

19. For the Weibull distribution with cdf (6.4), derive the inverse cdf in a form
useful for random-variate generation.

20. Derive the cdf of the triangular distribution (6.15), and then derive the inverse
cdf in a form useful for random-variate generation.

21. Show that the inverse cdf for the linearly interpolated cdf is

X̃ = X(i) + (m−1)(X(i+1)−X(i))

(
U − i−1

m−1

)
,

where i = �(m−1)U�.
22. A simple model of a doctor’s office is a single server queue. Suppose that patient

arrivals to the office are schedule at 15-min intervals, but patients deviate from
their scheduled time by an amount that can be modeled as normally distributed
with mean−5 min and standard deviation 1 min. How can you generate arrivals
to such a queue?

23. We claim the following algorithm implements the inverse cdf method to gen-
erate Poisson random variates with mean λ ; that is Pr{X = x}= e−λλ x/x! for
x = 0,1,2, . . . .

a. Set c = d = e−λ and X = 0
b. Generate U ∼U(0,1)
c. Until U ≤ c do

i. X = X +1
ii. d = dλ/x
iii. c = c+d

Loop
d. Return X

First prove that this algorithm does as claimed. Then derive the expected num-
ber of times that the loop is executed for each random variate generated. Notice
that it is an increasing function of λ , so the algorithm becomes less and less
efficient as λ increases. Hint: Pr{X = x}= λ Pr{X = x−1}/x for x ≥ 1.

24. How well does the method of Eq. (6.29) approximate a normally distributed
random variate?

25. Prove that λ
∫ t
0(1−G(s))ds = G(t) if G(t) = 1−e−λ t . Then show that Ge �= G

in general.
26. Show that if we apply the inversion method to Λ̄(t) that (a) only the observed

arrival times T(i), i = 0,1, . . . ,C can be generated, and (b) that we are likely to
generate multiple arrivals with the same arrival time.

27. A disadvantage of using Λ̂(t) is the need to store all of the arrival times T(i), i =
1,2, . . . ,C. Suppose instead that we only stored Λ̄(δ ),Λ̄(2δ ), . . . ,Λ̄(mδ ), where
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δ = T/m. Propose an interpolated estimator of Λ(t) based on these values, and
derive a variate-generation algorithm for it.

28. For the inversion algorithm applied to Λ̂(t), show that S̃n = C/k maps into an
arrival at time T .

29. Suppose that arrivals occur according to a NSPP process with integrable rate
function Zλ (t), conditional on a positive random variable Z with E(Z) = 1.
In other words, to simulate this process we first generate a value of Z, and
then generate arrivals from a NSPP with rate Zλ (t) using inversion or thinning.
Derive E (N(t)) and Var(N(t))/E (N(t)) for this process, and compare it to
results for inverting a renewal process. This arrival process is called a doubly
stochastic Poisson process, and it is popular in modeling call center arrivals.

30. Let X be a discrete-valued random variable that takes values x0 < x1 < · · ·< xn

with probabilities p0, p1, . . . , pn, respectively. Derive, and prove the correctness
of a rejection algorithm that first generates an index I ∈ {0,1, . . . ,n} using the
discrete uniform distribution. What is the expected number of trials for your al-
gorithm to generate one X? Hint: The following simple algorithm works but is
very inefficient: (i) GenerateW ∼U(0,1) and set I = �(n+1)W�−1. (ii) Gen-
erate U ∼U(0,1). (iii) If U ≤ pI then return X = xI ; otherwise go to Step (iii).
First prove that this algorithm works, and that it has expected number of trials
n+ 1. Then derive a better algorithm by applying the concept of a majorizing
function as used in the continuous case.

31. Apply your answer to Exercise 30 to produce a rejection algorithm for the
binomial distribution on n trials with probability of success 0< p < 1. That is,

pX (i) = Pr{X = i}=
(

n
i

)
pi(1− p)n−i, i = 0,1,2, . . . ,n.

Hint: The mode of the binomial distribution is either i� = �(n+ 1)p	 or i� =
�(n+1)p	−1.

32. In the rejection method, why is it necessary to resample both U and Y on each
trial? Is the following algorithm sufficient?

(a) Generate U ∼U(0,1)
(b) Generate V ∼ g
(c) If U ≤ fX (V )/m(V ), then return X =V ; else go to Step (b).

33. Consider generating a NSPP with rate λ (t) using the following algorithm (with
S0 = 0):

Sn+1 = Sn − ln(1−Un+1)/λ (Sn),

where U1,U2, . . . are i.i.d. U(0,1). That is, we generate an exponential interar-
rival time using the arrival rate in force at the most recent arrival time. Prove
that this method does not guarantee an arrival process with rate λ (t). Hint:
Consider an arrival rate λ (t) that is 0 for some interval of time.

34. The inversion method for generating a nonstationary arrival process requires
an equilibrium base process with rate 1 and variance σ2

A . For σ2
A > 1, Ger-
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hardt and Nelson (2009) suggest a balanced hyperexponential distribution; this
means that Ã is exponentially distributed with rate λ1 with probability p, and
exponentially distributed with rate λ2 with probability 1− p. “Balance” means
that p/λ1 = (1− p)/λ2. Thus, there are only two free parameters, p and λ1.
Show that we achieve the desired arrival rate and variance if

p =
1
2

(
1+

√
σ2

A −1

σ2
A +1

)
λ1 = 2p.

35. The inversion method for generating a nonstationary arrival process requires an
equilibrium base process with rate 1 and variance σ2

A . When σ2
A < 1, Gerhardt

and Nelson (2009) suggest a mixture of Erlangs of common order. First find
an integer k such that 1/k ≤ σ2

A < 1/(k − 1). Then with probability p, Ã is
Erlang distributed with k−1 phases and mean (k−1)/λ , and with probability
1− p it is Erlang distributed with k phases and mean k/λ . Thus, there are two
free parameters, p and λ . Show that we achieve the desired arrival rate and
variance if

p =
1

1+σ2
A

(
kσ2

A −
√

k(1+σ2
A)− k2σ2

A

)

λ = k− p.

36. Suppose Y is a continuous valued random variable with strictly increasing cdf
F . Prove that U = F(Y ) has the U(0,1) distribution. This is known as the
probability–integral transformation.

37. Show that the transformation (6.35) implies that Corr(Z1,Z2) = r. Hint: Since
we have already shown that Var(Z1) = Var(Z2) = 1, then Corr(Z1,Z2)
= Cov(Z1,Z1).

38. For a random variable X that has density function

f (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, x <−1

x+1
2

, −1≤ x ≤ 1

0, x > 1

provide two variate-generation algorithms, one using the inverse cdf and the
other using rejection.

39. As part of the assembly process for laptop computers, batches of computers are
loaded into a rack and software is copied to their hard drives. The time to load
computers into the rack depends on how many computers are in the batch, but
is not perfectly predictable. For a simulation of laptop assembly, you need an
input model that generates a load time given a batch size. Develop an appropri-
ate input modeling and variate-generation algorithm, carefully justifying your
approach. You have the following data:
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Batch Load time
size (min)

5 9.9
10 15.2
15 20.2
20 24.4
10 14.4
10 14.8
15 20.8
5 10.0
5 9.0

15 19.5
5 9.9
5 9.4

10 15.8
15 20.1
20 25.7
5 10.5

10 15.6
10 15.2
5 10.2

20 24.5

40. Given observations of arrival times on [0,T ] the linearly interpolated integrated
rate function is

Λ̂(t) =
(

C
C+1

)[
i
k
+

1
k

(
t −T(i)

T(i+1)−T(i)

)]
, when T(i) < t ≤ T(i+1)

with T(0) = 0, T(C+1) = T , and T(i) the sorted arrival times. Suppose that we
wanted to generate arrivals with this integrated rate function, but by thinning
rather than inversion. Thus, we need an arrival-rate function λ̂ (t). First give an
expression for the rate function that is implied by Λ̂(t). Then give an expression
for the maximum arrival rate λ̃ to use for thinning.

41. Implement the random-vector example from Sect. 6.3.2 and compare your
results to those in the book which used m = 10,000 and ε = 0.01|ρ12|. Try fit-
ting various marginal distributions for which you have access to the inverse cdf
(Excel, Matlab, R, and other software applications have the inverse cdf of many
distributions as built-in functions, along with the cdf of the normal distribution).

42. A popular full-period MCG is zi = 16,807zi−1 mod 231 − 1. Implement this
generator, using double-precision floating point arithmetic to avoid overflow
problems.

43. Starting with z0 = 1, generate ten additional starting seeds 100,000 values apart
for the generator in Exercise 42 above.

44. Show that a MRG of order K can be represented as

zi = Azi−1 mod m,
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where zi = (zi−K+1,zi−K , . . . ,zi)
� and

A=

⎛
⎜⎜⎜⎝

0 1 · · · 0
...

. . . 0
0 0 · · · 1
ak ak−1 · · · a1

⎞
⎟⎟⎟⎠ .

Also show that we can skip ahead q values by using the relationship

zi+q = Aqzi−1 mod m = (Aq mod m)zi−1 mod m.

45. For a MCG show that zi = aiz0 mod m. Hint: If b1,b2,m are integers, and ri =
bi mod m, then (r1r2 mod m) = (b1b2 mod m).

46. For the following combined linear congruential generator of the L’Ecuyer type:

Zi = (Zi,1−Zi,2) mod 15

Ui =

⎧⎪⎪⎨
⎪⎪⎩

Zi

16
, Zi > 0

15
16

, Zi = 0,

where the two generators are

Zi,1 = (11Zi−1,1) mod 16 with Z0,1 = 1

Zi,2 = (2Zi−1,2) mod 13 with Z0,2 = 1

generate U1 and U2 by hand. Next implement the generator.
47. Implement the linearly interpolated quantile method of Sect. 6.2.4 so that it can

take as input a data set of X’s and a number of quantiles k, and can then generate
n values of X̃ .

48. Using the algorithm you created for the linearly interpolated quantile method
for the previous exercise, examine the impact of the choice of k by doing the
following: Generate 10,000 variates from some distribution, such as the stan-
dard normal, to be your real-world data X . Compute the sample mean and vari-
ance and plot a histogram of this data. Now for a fixed value of k, generate
10,000 values of X̃ . Compute the sample mean and variance and plot a his-
togram of this data; compare it to the corresponding results for X . Try values of
k = 10,25,50,100.

49. Generalize the linearly interpolated quantile method so that it can employ any
set of quantiles qi, not just equally spaced quantiles qi = (i− 1)/(k− 1). Why
might we want more closely spaced quantiles in some portion of the range of
X?

50. Distribution fitting software is widely available, including standalone products,
products integrated into simulation software, and packages or libraries for R and
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Python. Find such software. What distributions will it fit? What fitting methods
are used? What diagnostic tools are provided?

51. Select a distribution from which you can generate random variates, such as a
Weibull distribution, and generate a sample of 10,000 values. Using the dis-
tribution fitting software you found for the previous exercise, apply it to the
first 10,30,50,100,500,1000 and then all 10,000 observations. Does the soft-
ware always recommend the correct distribution family? If you force it to fit the
correct distribution family, how close are the parameters to the ones you set?



Chapter 7
Simulation Output

This chapter describes simulation output analysis, specifically estimating means,
probabilities, and quantiles of simulation output, along with measures of error on
these estimates. The distinction between risk and error is emphasized, along with
the impact of uncertainty about the input processes that drive the simulation.

7.1 Performance Measures, Risk, and Error

Figure 7.1 displays a histogram and empirical cdf (ecdf) of 1000 replications of the
time to complete the project planning stochastic activity network (SAN) described
in Sect. 3.4 and simulated in Sect. 4.4. Let the random variable Y denote the time
to complete the project with cdf FY ; Y1,Y2, . . . ,Y1000 are the results from 1000 i.i.d.
replications; Y(1) ≤Y(2) ≤ ·· · ≤Y(1000) are the sorted values (called order statistics);

and F̂ is the ecdf. From these figures we can visualize estimators of several system
performance measures:

• The expected value of the time to complete the project (the mean), μ = E(Y ), is
estimated by the sample mean Ȳ = ∑n

i=1Yi/n.
• The probability that the project completes in no more than 5 days, θ = FY (5), is

estimated by F̂(5) = #{Yi ≤ 5}/1000.
• The 0.95 quantile of the time to complete the project, ϑ = F−1

Y (0.95), is esti-
mated by F̂−1(0.95) = Y(950). The 0.95 quantile is a time ϑ such that the proba-
bility of completing the project by or before that time is 0.95.

This section covers estimating and interpreting these performance measures based
on simulation output.

For the SAN, the probability θ and the quantile ϑ are more relevant performance
measures than the mean μ . For whoever requested the project, θ is the probability
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Fig. 7.1 Histogram (left) and ecdf (right) of 1000 replications of the time to complete the stochastic
activity network. Histogram: Project completion times ≤5 are indicated by the arrow; the sample
mean by the circle. Ecdf: Y (950) is indicated by the arrow

that it completes by a desired date. For whoever is executing the project, ϑ is a
completion date that they can promise with a given probability of being able to
meet it. The mean time to complete the project is less informative: Assuming that
the project will only be undertaken once, the histogram indicates that a completion
time near the mean is possible but not at all certain.

By way of contrast, for the hospital reception described in Sect. 3.2 and simu-
lated in Sect. 4.3, the focus was on μ , the long-run average (mean) patient or visitor
waiting time. The mean is clearly relevant here as it summarizes performance aver-
aged over the very large number of patients and visitors who will arrive over time.
Less obvious is what measures are most relevant for the Asian option described in
Sect. 3.5 and simulated in Sect. 4.5. While it may seem similar to the SAN exam-
ple, since we will likely only buy or sell this option once, financial theory shows
that under certain assumptions about the market, the price of an option should be its
expected payoff under a particular probability model; see, for instance, Glasserman
(2004, Sect. 1.2). Therefore, valuing the option by its expected value ν makes sense.

A point of emphasis in this chapter is that some performance measures, such as
the mean μ , are most useful in characterizing a system over the long run, where
“long run” implies a large number of occurrences. Other measures, such as a prob-
ability θ or quantile ϑ can be used as measures of risk, helping to quantify what
is likely to happen “the next time” rather than “over the long run.” Of course, μ ,θ ,
and ϑ all have to be estimated, and estimates are subject to sampling error. Mea-
sures of sampling error are another theme of this chapter; they indicate whether we
have done enough simulation (e.g., obtained enough replications) to trust the perfor-
mance estimates we have. This chapter focuses on measures of error for estimators
that are functions of i.i.d. data from across replications; results for dependent data
from a single replication of a steady-state simulation are addressed in Chap. 8.
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7.1.1 Point Estimators and Measures of Error

Point estimators that are sample means, or functions of sample means, were ana-
lyzed in Sect. 5.2. By way of review, and keeping the SAN data in Fig. 7.1 in mind,
if we want to estimate μ = E(Y ) from i.i.d. observations with finite variance σ2,
then the natural unbiased estimator is the sample mean Ȳ which has standard er-
ror se(Ȳ ) = σ/

√
n. For large n the central limit theorem justifies the (1−α)100%

confidence interval (CI) for μ

Ȳ ± z1−α/2
S√
n
, (7.1)

where S is the sample standard deviation, computed as the square root of the sample
variance

S2 =
1

n−1

n

∑
i=1

(Yi − Ȳ )2 (7.2)

=
1

n−1

⎡
⎣ n

∑
i=1

Y 2
i − 1

n

(
n

∑
j=1

Yj

)2
⎤
⎦ . (7.3)

The expression in Eq. (7.3) is the one that is most often implemented because
it allows S2 can be computed in one pass through the data, while (7.2) requires
two passes.

For the data in Fig. 7.1 a 95% CI for μ is 3.46± 0.11. The ±0.11 is a measure
of error for our point estimate of the mean time to complete the project, 3.46 days.
If we increased the number of replications we would expect the width of the CI to
decrease as 1/

√
n.

Estimates of probabilities such as θ = Pr{Y ≤ y} can also be viewed as sample
means, since the ecdf evaluated at any fixed value of y is the average of indicator
functions:

F̂(y) =
1
n

n

∑
i=1

I(Yi ≤ y). (7.4)

Thus, for large n the CI (7.1) still applies and careful algebra shows that

S2 =

(
n

n−1

)
F̂(y)

(
1− F̂(y)

)
. (7.5)

When n is large the ratio n/(n−1) is often treated as 1.
For the data in Fig. 7.1 a 95% CI for θ is 0.17± 0.02. Again, the ±0.02 is a

measure of error for our point estimate of the probability that the project completes
in 5 days or less, 0.17. In this case we actually know that θ = 0.165329707, well
within the measure of error.

The standard error of a probability estimator θ̂ is

se(θ̂) =
√
θ(1−θ)

n
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which is maximized at θ = 1/2. However, for probabilities relative error is more
revealing:

se(θ̂)
θ

=

√
1−θ

nθ
.

As θ → 0 the size of the estimation error relative to the probability that we are
estimating increases dramatically; in other words, the more rare the event is, the
more difficult it is to estimate its probability precisely.

Remark 7.1. In the discussion above we assumed that θ �= 0. See Louis (1981) for
the case when the event of interest is never observed to occur on any observation of
the simulation experiment.

Suppose that the cdf of Y , FY , is strictly increasing and has a density fY . The q-
quantile is the value ϑ such that FY (ϑ) = q, or equivalently ϑ = F−1

Y (q). Clearly the
natural estimator ϑ̂ = F̂−1(q) = Y(�nq�) is not a sample average, so its distributional

properties are more complicated. Nevertheless it can be shown that ϑ̂ does satisfy a
central limit theorem:

√
n
(
ϑ̂ −ϑ

)
D−→ N

(
0,

q(1−q)

[ fY (ϑ)]2

)
(7.6)

as n→∞ provided fY (ϑ)> 0.1 Thus, a large n approximation of the standard error is

se
(
ϑ̂
)
≈
√

q(1−q)
n[ fY (ϑ)]2

.

Unfortunately, even though the standard error of ϑ̂ decreases as 1/
√

n, like a sam-
ple average, this result is not easily applied since it involves the unknown density
function fY evaluated at the unknown quantile ϑ . However, this result is helpful for
seeing the impact of q on the standard error, as shown in the following example.

Suppose fY (y) = e−y,y ≥ 0, the exponential distribution with mean 1. Then ϑ =
− ln(1−q), so that

se
(
ϑ̂
)
≈
√

q(1−q)

n [exp(ln(1−q))]2
=

√
q

n(1−q)
.

Thus, the standard error of ϑ̂ = Y(�nq�) as an estimator of the q quantile increases
dramatically as q approaches 1, meaning a quantile farther out in the right tail. For
instance, when Y is exponentially distributed the standard error of ϑ̂ for estimating
the 0.99 quantile is roughly ten times larger than the standard error for estimating the

1 This central limit theorem is obtained by noting that Pr{√n(ϑ̂−ϑ)≤ y}= Pr{ϑ̂ ≤ϑ+y/
√

n}=
Pr{F̂(ϑ + y/

√
n) > q} and then using the fact that the central limit theorem for averages applies

to F̂ .
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0.5 quantile (the median), for the same n. Therefore, the more extreme the quantile
is the more difficult it is to estimate.

Fortunately, there is a CI for quantiles that is not based on the central limit theo-
rem. Notice that since Pr{Yi ≤ ϑ}= q, and the observations Yi are i.i.d., then

#{Yi ≤ ϑ} ∼ Binomial(n,q).

This implies that if we find integers 0≤ � < u ≤ n such that

Pr{Y(�) ≤ ϑ < Y(u)}=
u−1

∑
i=�

(
n
i

)
qi(1−q)n−i ≈ 1−α,

then [Y(�),Y(u)] forms an approximate (1−α)100% CI for ϑ . In words, we find (�,u)
such that the probability that at least n−u+1 of the largest Yi’s are greater than ϑ ,
and at least � of the smallest Yi’s are less than or equal to ϑ , is approximately 1−α .

When n is large and neither nq nor n(1− q) is small, the normal approximation
to the binomial distribution gives easy approximations for � and u:

�̂ =
⌊

nq− z1−α/2
√

nq(1−q)
⌋

û =
⌈

nq+ z1−α/2
√

nq(1−q)
⌉
. (7.7)

For instance, with q = 0.95, n = 1000 and z0.975 = 1.96, an approximate 95% confi-
dence interval for the 0.95 quantile is given by [Y(936),Y(964)]. Notice that the values
of �= 936 and u= 964 are independent of the actual outputs. For the data in Fig. 7.1,
the point estimate is 6.71 days with 95% CI [6.43,7.05].

7.1.2 Measures of Risk and Error

The distinction between risk and error in simulation output analysis is important,
and often misunderstood.

• Measures of risk directly support decision-making. If FY (5), which is the proba-
bility of completing the SAN project in 5 days or less, is too small, then we might
decide not to undertake the project, or to commit additional resources to insure its
completion. Similarly, if the 0.95 quantile of completion time, F−1

Y (0.95), is too
many days then we might not be willing to bid on the project. The standard de-
viation of project completion time, σ , is also a measure of risk since it quantifies
the average deviation of the actual project completion time from its mean.

• Measures of error directly support experiment design. They tell us if we have
expended enough simulation effort (e.g., replications) to be confident in our esti-
mates of system performance.

Figure 7.2 displays a MORE (measure of risk and error) plot of the first 100
replications of the SAN output from Fig. 7.1. The MORE plot adds to the histogram
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Fig. 7.2 MORE plot of first 100 replications of time to complete the SAN project
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Fig. 7.3 MORE plots for the SAN simulation with (from left to right) n = 100,500,1000 replica-
tions

a central arrow indicating the sample average, and two other arrows indicating the
0.05 and 0.95 quantile estimates (other quantiles could be used). Thus, the box over
the histogram contains 90% of the simulated outcomes that are most central, and so
it is labeled as “Likely.” The areas beyond the box are labeled “Unlikely” indicating
that they are possible, but more extreme.

Of course, the sample mean and sample quantiles are only estimates of the true
mean and quantiles, so the MORE plot also includes confidence intervals for each of
these displayed as intervals just below the arrowheads. For instance, Fig. 7.2 shows
that the true 0.95 quantile could have substantial error and we should be cautious
about making decisions based on it.

Figure 7.3 shows a sequence of MORE plots of the SAN data moving from n =
100 to n = 500 to n = 1000 replications. Notice that the error in the estimates of
the mean and the quantiles decreases, but risk remains, which illustrates that we can
simulate away error, but not risk. This plot is useful for displaying both risk and error
in an intuitive way. See Nelson (2008) for additional details on the MORE plot.
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7.2 Input Uncertainty and Output Analysis

The output analysis methods described in the previous section implicitly assumed
that the performance parameters of the simulation model (e.g., the 0.95 quantile
of the simulated time to complete the project) are also the performance parameters
of the real-world system in which we are interested (e.g., the real-world project);
therefore they only measure estimation error.

Section 5.1 described other sources of error that arise in simulation modeling
and analysis, including input uncertainty, which refers to the unknown difference
between the input models used in the simulation and those that best characterize the
real-world system. We focus on the case when the input models have been derived
from real-world data, as described in Sects. 6.1–6.3. We first illustrate that input
uncertainty can be significant, and then provide one way to capture it.

7.2.1 Input Uncertainty: What Is It?

Consider an M/M/∞ queue, which is a special case of the parking lot problem
described in Sect. 3.1 when the arrival rate does not change over time, but instead
is a constant λ customers per time. We again denote the mean service time by τ .
Much is known about this queue, in particular if Y denotes the steady-state number
of customers in the system, then Y has a Poisson distribution with mean λτ .

Suppose λ and τ are not known, so we observe m i.i.d. interarrival times,
A1,A2, . . . ,Am, and m i.i.d. service times X1,X2, . . . ,Xm from the “real world” and
use them to fit input models. Specifically, we estimate λ by

λ̂ =

(
1
m

m

∑
i=1

Ai

)−1

and τ by

τ̂ =
1
m

m

∑
i=1

Xi.

That is, we estimate the arrival rate as the inverse of the sample mean time between
arrivals, and the mean service time by the sample mean service time. We assume that
we are confident that the distributions of A and X are exponential, but are uncertain
about the values of the parameters.

To allow for an analysis, suppose that when we simulate this queue we record
a single observation of Y (the number in the queue) in steady state on each of n
replications, say Y1,Y2, . . . ,Yn (typically we would observe Y (t) for some period of
time and take a time average). We then estimate the steady-state mean number in
queue by the sample mean

Ȳ =
1
n

n

∑
i=1

Yi.
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Clearly E
(

Ȳ |λ̂ , τ̂
)
= λ̂ τ̂ and Var(Ȳ |λ̂ , τ̂) = λ̂ τ̂/n. Why? Because conditional on λ̂

and τ̂ each observationY is Poisson with mean λ̂ τ̂ , and the mean equals the variance
for a Poisson random variable. However, since the input parameters are estimates,
we can be almost sure that λ̂ �= λ and τ̂ �= τ; that is, our parameter estimates are not
the true real-world values. What is the impact of this input uncertainty?

In the appendix to this chapter we show that

E(Ȳ ) =
m

m−1
λτ (7.8)

Var(Ȳ ) =
m

n(m−1)
λτ+

m(2m−1)(λτ)2

(m−1)2(m−2)

≈ λτ
n

+
2(λτ)2

m
, (7.9)

where the mean and variance are with respect to both the distributions of λ̂ and τ̂
(the input uncertainty) and the Poisson distribution of the simulation output (the es-
timation error). From Eqs. (7.8)–(7.9) we see that Ȳ is biased. Also, its variance has
two components, a familiar one that depends on the number of simulation replica-
tions n, and an unfamiliar one that depends on the amount of real-world data m used
to “fit” the input processes. In this example the bias is slight even with a modest sam-
ple of input data (about 1% if we have m = 100 real-world observations). However,
the variance due to input uncertainty (the second term in (7.9)) could easily dom-
inate the simulation variance; worse, this source of variance is not mathematically
derivable for realistic problems. In the next section we provide a simple method to
obtain a rough estimate of the variance due to input uncertainty.

7.2.2 Input Uncertainty: What to Do

Estimation error is something we control through simulation effort (e.g., the number
of replications, n). Input uncertainty, on the other hand, depends on the quantity of
real-world data we have and it may be impossible or impractical to obtain more.
So our goal will be to estimate how large input uncertainty is relative to estimation
error; the larger it is the more care we should take in using the simulation results.
In terms of the example of the previous section, and in particular the variance de-
composition in Eq. (7.9), we would like to know if the term 2(λτ)2/m, which cor-
responds to input uncertainty, is large relative to λτ/n, which represents simulation
error.

To simplify the explanation, suppose for the moment that our simulation model
has a single input distribution, FX , from which we have an i.i.d. sample of real-world
data X1,X2, . . . ,Xm. The true input distribution FX will be estimated by F̂ , a function
of this data, which might be the empirical distribution or a parametric distribution
with unknown parameters as in the M/M/∞ example of the previous section.
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We now represent the output of the simulation on replication j, implemented
using estimated input distribution F̂ , as

Yj = μ(F̂)+ ε j, (7.10)

where ε1,ε2, . . . ,εn are i.i.d. with mean 0 and variance σ2
S representing the natural

variability from replication to replication in the simulation. The mean term, μ(F̂),
depends on what input model we actually used in the simulation.

For instance, in the M/M/∞ example we simulated the service times as expo-
nential with mean τ̂ when what we really wanted was exponential with mean τ; and
the arrival process as Poisson with rate λ̂ when it should be λ . So for the example
μ(F̂) = λ̂ τ̂ , which depends on the random sample of real-world data.

Suppose that instead of one sample of real-world data, we had b independent
samples, Xi1,Xi2, . . . ,Xim, i = 1,2, . . . ,b, and from the ith sample we estimated an
input model F̂i. We could then imagine simulating n replications using each input
model, leading to the output

Yi j = μ(F̂i)+ εi j (7.11)

for i = 1,2, . . . ,b and j = 1,2, . . . ,n.
Model (7.11) is known as a random-effects model (see, e.g., Montgomery, 2009),

because the mean term μ(F̂i) is random, in this case depending on the particular
sample Xi1,Xi2, . . . ,Xim that we happened to use to estimate FX . We can characterize
input uncertainty by the value of σ2

I =Var[μ(F̂i)], which is analogous to the second
term in (7.9). A big simplifying approximation we make is that σ2

S , the variance
of the simulation output, does not depend on which F̂i we have; this will rarely be
precisely true, but will be acceptable to get an approximation of the effect of input
uncertainty.

For Model (7.11) an estimator of σ2
I is

σ̂2
I =

σ̂2
T − σ̂2

S

n
, (7.12)

where

σ̂2
T =

n
b−1

b

∑
i=1

(Ȳi· − Ȳ··)
2

and

σ̂2
S =

1
b(n−1)

b

∑
i=1

n

∑
j=1

(Yi j − Ȳi·)
2

(Montgomery, 2009). A “·” subscript indicates averaging over that index. Intuitively,
σ̂2

T measures both input and simulation variability, so by subtracting out simulation
variability we are left with variance due to input uncertainty. In Exercise 17 you
are asked to show that E

(
σ̂2

I

)
= σ2

I under Model (7.11). The ratio σ̂2
I /(σ̂2

S /n) is a
measure of how large input uncertainty is relative to estimation error.
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The practical problem with this proposal is the need for multiple real-world sam-
ples. And if we really had this extra data we would almost certainly use all mb
observations together to better estimate FX . However, a statistical technique known
as bootstrapping allows us to imitate the effect of having multiple real-world sam-
ples, even though we only have one (see Efron and Tibshirani (1993) for a general
reference on bootstrapping).

Again let {X1,X2, . . . ,Xm} be the one real-world sample of data. To implement
the procedure above, we generate b bootstrap samples, each of size m, by sampling
m times with replacement from {X1,X2, . . . ,Xm}. As is typical in the bootstrapping
literature, we denote the ith bootstrap sample as X�

i1,X
�
i2, . . . ,X

�
im. We then fit an input

distribution F̂�
i to this bootstrap sample, using the same method we used with the

real-world sample, and implement the procedure above by letting F̂�
i stand in for

F̂i. In a problem with more than one input model, such as the M/M/∞ which has
two, we do bootstrapping for each distribution separately. Notice that there is no
requirement that we have equal numbers of real-world observations for each input
model.

Here is the procedure in algorithm form:

1. Given real-world data {X1,X2, . . . ,Xm}, do the following:
2. For i from 1 to b

a. Generate the bootstrap sample X�
i1,X

�
i2, . . . ,X

�
im by sampling m times

with replacement from {X1,X2, . . . ,Xm}.
b. Fit F̂�

i to X�
i1,X

�
i2, . . . ,X

�
im. (If there is more than one input model, do

Steps 2a and 2b for each one.)
c. Simulate n replications Yi j, j = 1,2, . . . ,n using input model(s) F̂�

i .

3. Estimate σ2
I using (7.12).

The value of b should be at least 10. The number of replications n should be reason-
able for the simulation problem if we were not evaluating input uncertainty.

As an example, consider the M/M/∞ queue from the previous section. If λ = 5
customers/min, τ = 1min, we observe m = 100 real-world interarrival times and
m = 100 real-world service times, and we make n = 10 replications of the simula-
tion, then Eq. (7.9) gives

Var(Ȳ )≈ λτ
n

+
2(λτ)2

m
=

5
10

+
50
100

≈ σ2
S

n
+σ2

I ,

where the last ≈ holds if our random-effects model is approximately correct. Run-
ning the procedure with b = 100 bootstrap samples we obtained σ̂2

S = 5.321 and
σ̂2

I = 0.546, both very close to the correct values of 5 and 0.5, respectively. Since
σ̂2

S /10= 0.5321, we see that input uncertainty is approximately as large as estima-
tion error. Whether or not this is a concern depends on whether or not a standard
error of

√
0.5321 = 0.729 is considered large or small for this problem, since the

overall error is approximately double this.
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Remark 7.2. Because we estimate σ2
I by subtracting in Eq. (7.12) it is possible that

the estimate will be negative even though variances cannot be negative. A negative
σ̂2

I should be interpreted as implying that the variability due to input uncertainty is
small relative to simulation error. See Ankenman and Nelson (2012) for additional
discussion and also a method for identifying which input models account for the
most input uncertainty.

The method for assessing input uncertainty variance presented here is the sim-
plest we know that illustrates the key ideas. There are other methods that do not
require additional bootstrap experiments, as well as methods that obtain a more pre-
cise estimate of σ2

I . For surveys see Lam (2016) and Song and Nelson (2017).
Like the M/M/∞ queue, the typical simulation has multiple, maybe many, input

models. Therefore, natural questions to ask are “Which of the input models are the
largest contributors to σ2

I ?” and “For which inputs would obtaining more real-world
data reduce σ2

I the most?” These are not simple questions because the contributions
of the various input models are not, in general, additive as illustrated by the second
term in Eq. (7.9) for the M/M/∞ queue. Nevertheless, most approaches to assessing
the individual contributions treat them as approximately additive.

Again let F̂ represent the estimated input models. The standard variance decom-
position gives

Var(Ȳ (n)) = E
[
Var(Ȳ (n) | F̂)

]
+Var

[
E(Ȳ (n) | F̂)

]
.

In our notation the “input uncertainty” is σ2
I = Var[E(Ȳ (n)|F̂)]. Suppose F̂ consists

of p input models F̂ = {F̂1, F̂2, . . . , F̂p}; p = 2 for the M/M/∞ example. Let m j be
the number of real-world observations used to estimate the jth input model. The
essential idea is to further expand the approximation as

Var(Ȳ )≈ σ2
S

n
+σ2

I ≈ σ2
S

n
+
σ2

I1

m1
+
σ2

I2

m2
+ · · ·+

σ2
I p

mp
,

where σ2
I j/m j is the (approximate) contribution of the jth input model, the so-called

first-order effect Var[E(Ȳ (n)|F̂j)]. Under some conditions this approximation can be
justified. Different methods take different approaches to estimate the terms on the
right-hand side. Two approaches that build on bootstrap experiments as described in
this section are Lam and Qian (2018) and Song and Nelson (2015).

7.2.3 Input Uncertainty vs. Sensitivity Analysis

Properties of a simulation output Y , such as its mean, probabilities and quantiles,
depend on many aspects of the simulation model, including the chosen input dis-
tributions, the values of the distributions’ parameters (for parametric distributions),
and the values of controllable structural variables such as the number of servers at
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each station in a queueing network. Some of these quantities are uncertain—e.g.,
the input-model parameters when they were estimated from data—while others are
not—e.g., the number of servers assigned to each station in the queueing network. In
either case one might be interested in how properties of Y are influenced by changes
in these quantities.

Input uncertainty, local sensitivity analysis and global sensitivity analysis all ad-
dress some aspect of this “influence” although the boundaries between them are a
bit fuzzy. The purpose of this section is to explain informally what each tries to ac-
complish, deferring to Chap. 9 a mathematical treatment of local sensitivity analysis
because of its connection to simulation optimization.

Very loosely,

Input Uncertainty= System Sensitivity× Input Model Uncertainty.

When input models are estimated there is uncertainty about the correct distribution.
However, whether or not this uncertainty propagates to the outputs depends on how
sensitive Y is to this input, with the sensitivity either magnifying or dampening the
influence. For instance, due to having only a small sample of real-world data we may
have a great deal of uncertainty about the distribution of an input X , but if Y is not a
function of X—that is, it is insensitive to X—then the input-distribution uncertainty
does not transfer to the output. Some approaches for estimating input uncertainty
variance are based on combining an estimate of sensitivity with an estimate of input-
parameter variance.

To contrast local and global sensitivity analysis we focus on a particular property
of the output Y , its mean E(Y ). Local sensitivity is typically a partial derivative of
E(Y ) with respect to some quantity in the simulation at a nominal value. A common
case is ∂E(Y )/∂θ at θ = θ0, where θ is an input model parameter. For instance, in
the M/M/∞ illustration, Y is the steady-state number of customers in the system,
and the input parameters are the arrival rate λ and mean service time τ . For this
simple model we know that E(Y ) = λτ , and thus ∂E(Y )/∂λ = τ . Therefore, if we
run a simulation with nominal settings λ0 = 5 and τ0 = 1, the local sensitivity is
1, which is interpreted as the increase in the mean number in the system for each
unit increase in the arrival rate when the service rate is τ0 = 1. Notice that local
sensitivity does not depend upon how certain we are that, say, λ = 5 and τ = 1; it
simply measures how large a change in E(Y ) can be expected with a small change
in λ around these values.

Global sensitivity analysis is widely applied to computer experiments in which
there is no inherent randomness, but there are parameters that are not known with
certainty. Computer experiments are often deterministic simulations such as numer-
ically integrating a system of differential equations through time when some of the
coefficients of the differential equations are uncertain. To assess which parameters
have the most influence on the output or response, probability distributions are im-
posed on the parameters; this induces variance in the output of the deterministic
simulation (a different set of parameters leads to a different deterministic output).
Global sensitivity analysis tries to partition this variance among the parameters as a
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measure of their influence; first-order effects are a standard approach. Clearly there
is a relationship to input uncertainty, but the methods are different because there is
no inherent system randomness, and the imposed distributions are usually intended
to represent lack of knowledge rather than sampling variability due to estimation
from data. A good general reference is Saltelli et al. (2008).

Appendix: Input Uncertainty for the M/M/∞ Queue

Here we derive Eqs. (7.8) and (7.9). We will use the following results repeatedly:
Suppose E1,E2, . . . ,Em are i.i.d exponential each with rate ν (mean 1/ν), and let
G =∑m

i=1 Ei. Then G has an Erlang distribution (which is a special case of a gamma
distribution), and G−1 = 1/G has an inverse gamma distribution. Thus, mτ̂ has an
Erlang distribution, while λ̂/m has an inverse gamma distribution. For these distri-
butions it is known that

E(G) =
m
ν

Var(G) =
m
ν2

E(G−1) =
ν

m−1
for m > 1

Var(G−1) =
ν2

(m−1)2(m−2)
for m > 2.

These results imply that E(G2) = Var(G)+E2(G) = m(m+ 1)/ν2 and E(G−2) =
Var(G−1)+E2(G−1) = ν2/((m−1)(m−2)). Therefore, the expected value of the
point estimator is

E(Ȳ ) = E
[
E
(

Ȳ |λ̂ , τ̂
)]

(7.13)

= E
[
λ̂ τ̂

]

= E
[
λ̂
]
E [τ̂ ]

= E

[
m

∑m
i=1 Ai

]
× τ

=
m

m−1
λτ .

Notice that in Eq. (7.13) the inner expectation averages over the simulation output
distribution, while the outer expectation averages over the possible real-world sam-
ples. This result shows that the point estimator is, in general, biased when we must
estimate the input models.
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To derive the variance, we use the variance decomposition

Var(Ȳ ) = E
[
Var(Ȳ |λ̂ , τ̂)

]
+Var

[
E(Ȳ |λ̂ , τ̂)

]
.

Recall that E
(

Ȳ |λ̂ , τ̂
)
= λ̂ τ̂ and Var

(
Ȳ |λ̂ , τ̂

)
= λ̂ τ̂/n. Thus, using our previous

result for the mean we get

E
[
Var(Ȳ |λ̂ , τ̂)

]
= E

[
λ̂ τ̂
n

]
=

m
n(m−1)

λτ .

The second term is

Var
[
E(Ȳ |λ̂ , τ̂)

]
= Var

[
λ̂ τ̂

]

= E
[
(λ̂ τ̂)2

]
−E

[
λ̂ τ̂

]2

= E
[
λ̂ 2
]
E
[
τ̂2
]
−
(

m
m−1

)2

(λτ)2

=
m2λ 2

(m−1)(m−2)
× (m+1)τ2

m
−
(

m
m−1

)2

(λτ)2.

The result then follows by collecting terms.

Exercises

1. Show that Eq. (7.5), which gives the sample variance of a probability estimator,
is correct.

2. Suppose we observe i.i.d. simulation outputs Y1,Y2, . . . ,Yn, each with mean μ <
∞ and variance σ2 < ∞, and our goal is to estimate σ2 using the usual sample
variance S2 given in (7.2). Assuming also that E(Y k) < ∞,k = 3,4, show that
S2 satisfies a central limit theorem. Hint: This is not an easy problem, so start
with the easier problem of proving that

S̃2 =
1
n

n

∑
i=1

(Yi −μ)2

satisfies a central limit theorem, then express S2 as a function of S̃2. You will
need the tools from Sect. 5.2.4.

3. For the ecdf F̂ based on n observationsY1,Y2, . . . ,Yn, show that F̂−1(q) =Y(�nq�)
for 0< q ≤ 1.

4. Derive (and perhaps refine) the normal approximation (7.7) used to form a con-
fidence interval for a quantile.
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5. Recall the stochastic activity network simulation of Sect. 4.4. Estimate the 0.95
quantile of the time to complete the project and put a 90% confidence interval
on it. Use at least 1000 replications.

6. Recall the Asian option simulation of Sect. 4.5. Estimate the 0.95 quantile of
its value and a 90% confidence interval on it. Use at least 10,000 replications.

7. Recall the Asian option simulation of Sect. 4.5 where the volatility was σ2 =
(0.3)2. With all other parameters unchanged, examine the impact of volatility
on the value of the option for σ = 0.1,0.2,0.3,0.4,0.5. Estimate the value to
within 1% relative error.

8. There are many types of options in addition to the Asian option described in
Sect. 3.5 and simulated in Sect. 4.5. A lookback call option has the payoff

X(T )− min
0≤t≤T

X(t)

which can be thought of as the profit at time T from simultaneously buying the
asset at its lowest price during the period 0 to T and selling it for the final price
at time T . Thus, its value is

E

[
e−rT

(
X(T )− min

0≤t≤T
X(t)

)]
.

Using the same asset model as the Asian option with T = 1, X(0) = $50, r =
0.05 and σ2 = (0.3)2, estimate the value of this option to within 1% relative er-
ror. Notice that you will have to use a discrete approximation for min0≤t≤T X(t)
taking steps of size Δ t = T/m. Experiment with m = 8,16,32,64,128 steps to
see how it effects the estimated value, and provide intuition for the effect you
see.

9. There are many types of options in addition to the Asian option described in
Sect. 3.5 and simulated in Sect. 4.5. A down-and-out call option with barrier B
and strike price K has the payoff

I

{
min
0≤t≤T

X(t)> B

}
(X(T )−K)+

which means that if the value of the asset falls below $B before the option
matures then the option is worthless. Thus, its value is

E

[
e−rT I

{
min
0≤t≤T

X(t)> B

}
(X(T )−K)+

]
.

Using the same asset model as the Asian option with T = 1, X(0) = $50,
K = $55, r = 0.05 and σ2 = (0.3)2, estimate the value of this option to
within 1% relative error. Notice that you will have to use a discrete approx-
imation for min0≤t≤T X(t) taking steps of size Δ t = T/m. Experiment with
m = 8,16,32,64,128 steps and barrier B = 30,35,40,45 to see how they effect
the estimated value, and provide intuition for the effect you see.
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10. A small warehouse supplies paper products. Trucks pull up to the loading bays,
the driver places an order and then waits for the order to be gathered by a
warehouse worker with a forklift truck. There are currently four loading bays,
and when they are full, trucks wait in the parking lot next to the warehouse.
The warehouse is open from 7 a.m. to 4 p.m. Trucks arrive throughout the

day. The warehouse has two forklift drivers who pick orders one-at-a-time, on
a first-come-first-served basis. The truck drivers load their own orders after the
entire order is picked (for safety reasons), and then leave the loading dock. As
soon as the forklift driver has picked the order for a truck they are free to start
on another truck if there is one waiting in a loading bay (i.e., they do not have
to wait for the driver to load the order).
The warehouse company is interested in how much improvement in effi-

ciency they can obtain from three changes: (a) adding another forklift and
driver; (b) adding another loading bay; or (c) doing both (a) and (b). The least
expensive option is (a), but they might be willing to do (b) or (c) if there is
enough value.
“Efficiency” will be measured in terms of the daily mean number of trucks
waiting in the parking lot, mean time a truck spends waiting in the parking lot,
mean time a truck waits for a forklift after entering a loading bay, utilization of
the bays and the forklifts, and the mean number of trucks still in the parking
lot at 4 p.m. (trucks that arrive before 4 p.m. will be served, so having a large
number of trucks waiting at 4 p.m. implies that the company will have to pay a
great deal of overtime).
Trucks arrive according to a Poisson arrival process with mean time between

arrivals of 18min. The time to pick orders by the forklift drivers is modeled as
Erlang with mean 40min and four phases; the time for a driver to load the order
is modeled as Erlang with mean 12min and three phases.
Simulate the system to evaluate the improvement that can be attained from

the three options relative to the current set-up (so you also need to simulate the
current system). Determine a number of replications so that the relative error
on each estimate is no more than 5%. Stop each replication at 4 p.m. and do not
worry about the trucks remaining in the system at that time, other than recording
the value of the number still in the parking lot.

11. Arrivals to the warehouse in Exercise 10 are not stationary. On the book web-
site in TruckCounts.xls you will find hourly arrival counts for 30 days.
Use these data to estimate arrival rates for a piecewise-constant, nonstationary
Poisson arrival process. Implement this arrival process in your warehouse sim-
ulation, rerun each case (current system, one forklift, one loading bay, and both
a forklift and loading bay) and report the results.

12. Consider the truck arrival data from the previous problem. Let N(t) repre-
sent the cumulative number of arrivals by time t. If the process is nonsta-
tionary Poisson, then Var(N(t))/E(N(t)) = 1 for all t, or stated differently
Var(N(t)) = βE(N(t)) with β = 1. Since you have arrival count data, you can
estimate Var(N(t)) and E(N(t)) at t = 1,2, . . . ,9 h. Use these data to fit the
regression model Var(N(ti)) = βE(N(ti)) and see if the estimated value of β
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supports the choice of a nonstationary Poisson arrival process. Hints: This is
regression through the origin. Also, remember that N(ti) represents the total
number of arrivals by time ti.

13. FirstTreatment, Inc., plans to open for-profit health care clinics throughout the
United States. Your job is to help FirstTreatment estimate the costs to operate
such facilities for different patient loads, which will be part of their business
plan. The primary continuing cost for a health care clinic is staffing, which
will be your focus. There are requirements for providing timely treatment, but
having more staff and equipment than needed makes a facility expensive to
operate. This exercise is based on an example in Kelton et al. (2011).
FirstTreatment’s facility design consists of five stations: Sign-In/Triage; Regis-
tration; Examination; Trauma; and Treatment. Each of these are staffed sepa-
rately.
All patients enter at Sign-in/Triage, where a staff member quickly assesses

their condition. Patients with severe injuries or illness are sent to Trauma; once
their condition is stabilized they move to Treatment; then they are discharged
or transported to a hospital.
Patients with less severe problems proceed from Sign-In/Triage to Regis-

tration, and then to Examination for evaluation. After the evaluation, roughly
40% are immediately discharged; the others go to Treatment before they are
discharged.
The following distributions have been chosen to represent patient contact time:

• Sign-in/Triage: Exponential with mean 3min
• Registration: Lognormal with mean 5, and variance 2min
• Examination: Normal with mean 16 and variance 3min
• Trauma: Exponential with mean 90min
• Treatment:

– For trauma patients, Lognormal with mean 30 and variance 4min
– For non-trauma patients, Lognormal with mean 13.3 and variance 2min

Patient arrivals will be modeled as a Poisson arrival process, and the move-
ment of patients between stations is so brief that it will be treated as 0.
Staffing levels at each station will clearly depend on patient load, percentage

of trauma patients, and the patient service-level requirements. FirstTreatment
has asked you to look at a range of options for load and trauma (these are
distinct scenarios, not random quantities). The percentage of trauma patients
depends very much on where the health care facility is located; it could be as
low as 8% or has high as 12% of all patients. For load they are guessing as low
as 75 to as high 225 patients per day, on average. FirstTreatment clinics will
be open from 6 a.m. to 12 a.m. (18 h); once the doors close at midnight patients
currently being treated will be completed, but new arrivals will be directed to a
local hospital.
Clearly the most important requirement is that trauma patients be stabilized

quickly. FirstTreatment has specified that Sign-in/Triage should be “very fast”
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and that the wait to see a trauma doctor should average less than 5min. Average
delays of 15–20min are acceptable for other areas of the clinic.
Simulate the health care clinic and provide FirstTreatment with staffing lev-

els required to cover the range of loads for the clinics they might open. Make
enough replications so that you can be confident that the service-level require-
ments have been met. Provide some insight into whether slightly relaxing the
service requirements might reduce staffing cost.

14. Arrivals to the clinic in Exercise 13 are not stationary. On the book website
in ClinicCounts.xls you will find hourly arrival counts for 30 days for
a clinic that expects 225 patients/day on average. Use these data to estimate
arrival rates for a piecewise-constant, nonstationary Poisson arrival process.
Implement this arrival process in your clinic simulation using the staffing level
you found for that load. How well does this staffing level do under the more
realistic arrival process?

15. Consider the clinic arrival data from the previous exercise. Let N(t) repre-
sent the cumulative number of arrivals by time t. If the process is nonsta-
tionary Poisson, then Var(N(t))/E(N(t)) = 1 for all t, or stated differently
Var(N(t)) = βE(N(t)) with β = 1. Since you have arrival count data, you
can estimate Var(N(t)) and E(N(t)) at t = 1,2, . . . ,18 h. Use these data to fit
the regression model Var(N(ti)) = βE(N(ti)) and see if the estimated value
of β supports the choice of a nonstationary Poisson arrival process. Hints:
This is regression through the origin. Also, remember that N(ti) represents the
total number of arrivals by time ti.

16. Consider the M/M/∞ example of Sect. 7.2.1 used to demonstrate the impact of
input uncertainty. Suppose that the arrival rate of the Poisson arrival process was
estimated in the following alternative way: A time interval [0,T ] was observed
and λ was estimated by

λ̃ =
N(T )

T
,

where N(t) is the number of arrivals that occurred by time t. This is an unbi-
ased, maximum likelihood estimator of λ if the arrival process is really Poisson.
Using this alternative estimator of λ , derive the mean and variance of the sim-
ulation estimator described in Sect. 7.2.1.

17. Show that E
(
σ̂2

I

)
= σ2

I under Model (7.11).
18. Consider the stochastic activity network where the time to complete the

project is

Y =max{X1+X4,X1+X3+X5,X2+X5}.
A sample of data on activity durations for similar activities can be found on
the book website in SANData.xls. These data are believed to be exponen-
tially distributed but with different means for each activity, means that can be
estimated from the data. The goal is to estimate the expected value of the time
to complete the project, E(Y ), using 30 replications. Conduct an experiment to
also estimate σ2

I , the additional variance due to input uncertainty.
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19. Consider the waiting time of the ith customer in a single-server queue as repre-
sented by Lindley’s equation

Yi =max{0,Yi−1+Xi−1−Ai}

with Y0 = X0 = 0. A sample of data on interarrival times and service times
can be found on the book website in MG1Data.xls. The interarrival times
A are believed to be exponentially distributed and the service times X lognor-
mally distributed; the parameters of these distributions can be estimated from
the data. The goal is to estimate the expected value of the time to serve the first
10 customers, E

(
∑10

i=1Yi
)
, using 30 replications. Conduct an experiment to also

estimate σ2
I , the additional variance due to input uncertainty.



Chapter 8
Experiment Design and Analysis

The purpose of simulation, at least in this book, is to estimate the values of
performance measures of a stochastic system by conducting a statistical experiment
on a computer model of it. This chapter describes principles and methods for the
design and analysis of that experiment.

We have considered several different performance measures, including means,
probabilities, and quantiles, sometimes for systems with a natural time horizon,
and sometimes for steady-state systems (as time goes to infinity). For this initial
overview, let θ(x) denote a generic performance measure for scenario x. A “sce-
nario” defines a specific instance of a more general system. For example, the sce-
nario variable x could be a vector of cardinal values (e.g., x� = (15,9,6,3) denotes
the number Entry Agents and Specialists assigned before and after noon, respec-
tively, in the fax center simulation of Sect. 4.6) or nominal values (e.g., x= 2 denotes
the system design for the hospital reception of Sect. 4.3 that employs an electronic
kiosk, while x= 1 denotes the current design with a human receptionist). What we
call the scenario variable is sometimes called a decision variable, and having it will
be useful when we consider comparing system designs to answer questions such as
“What is the probability of a special fax being entered in less than 10 min when we
use a staff of x� = (15,9,6,3) agents?”

The reason for conducting a simulation experiment is to produce an estimator of
θ(x), denoted by θ̂(x;T,n,U), which is a function of x and up to three additional
quantities:

Stopping time T : The stopping time is the simulation clock time at which a repli-
cation ends; it can be a fixed time (“simulate 8 hours, from 8 AM to 4 PM”)
or a random time (“simulate until the stochastic activity network completes” or
“simulate until the system fails”). In some contexts T is called run length. See
also the Remark at the end of this section.

Number of replications n: The number of independent and identically distributed
replications of the simulation may also be fixed (n = 30) or random (“simulate
until the width of the confidence interval for θ(x) is less than 3 minutes”).

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
B. L. Nelson, L. Pei, Foundations and Methods of Stochastic Simulation,
International Series in Operations Research & Management Science 316,
https://doi.org/10.1007/978-3-030-86194-0 8

199

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86194-0_8&domain=pdf
https://doi.org/10.1007/978-3-030-86194-0_8


200 8 Experiment Design and Analysis

(Pseudo)random numbers U: The estimator θ̂(x;T,n,U) is a random variable be-
cause we treat U as random numbers. Of course, we will actually use pseudoran-
dom numbers; therefore, we may also think of U as a fixed set of numbers, say
u1, that can be reused by fixing the starting seed or stream.

Experiment design consists of selecting the scenarios x to simulate, controlling the
number of replications n to obtain, assigning the pseudorandom numbers U to drive
the simulations and, in steady-state simulation, setting the stopping time T .

Notice that whether or not T is part of the experiment design depends on what
we are estimating. For performance measures θ(x) defined as T → ∞, a choice as
to what finite T to use in the simulation is required. Otherwise, T is typically part
of the definition of a replication and is not a design choice. Consider the following
examples:

Parking lot (M(t)/M/∞ queue, Sect. 4.2): Here there was only a single scenario
so x is not needed. One performance measure of interest was

θ = E

[
max

0≤t≤24
N(t)

]

the expected value of the maximum number of cars in the lot during a day. Thus,
the stopping time T = 24 h is part of the definition of the problem, and the pri-
mary design decision is choosing the number of replications n.

Hospital reception (M/G/1 queue): Here there were two scenarios, the current
human receptionist x= 1 and the electronic kiosk x= 2. The performance mea-
sure was

θ(x) = E[Y (x)],

where Y (x) is the steady-state waiting time before service under scenario x. In
this case both T and n are design variables, and we may even want a design that
specifies n = 1 and T very large, such as T = 106 customers.1 In addition, if we
are interested in θ(2)−θ(1), the difference in expected waiting times, then we
show in Sect. 9.2 that there are statistical advantages to assigning both simula-
tions the same set of pseudorandom numbers, say u1. Thus, we could represent
the estimator of the difference as

θ̂(x= 2;T = 106,n = 1,U= u1)− θ̂(x= 1;T = 106,n = 1,U= u1).

Fax center: Here the scenarios were defined by the number of regular and special
agents before and after noon, so x� = (x1,x2,x3,x4) and there are many possible

1 Here we have chosen to measure “time” by the number of customers served, rather than via the
simulation clock time. Equivalently, we could let T be the simulation time required to serve 106

customers.
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combinations. If c� = (c1,c2,c3,c4) is a vector of costs/agent in each of these
categories, then the goal of the simulation is

min c�x

subject to:

θ1(x) ≥ 0.96

θ2(x) ≥ 0.80,

where θ1(x) and θ2(x) are the probabilities that regular and special faxes, re-
spectively, are entered within 10min of receipt under agent assignment x. The
stopping time T is the time when the last fax arriving before 4 p.m. is completed,
and is therefore part of the definition of the problem. The number of replications
n might be chosen adaptively depending on the variability of the estimators.

Although it is not possible to entirely separate the topics, Sect. 8.1 covers setting
the number of replications, n; Sect. 8.2 addresses the choice of stopping time for
steady-state simulations, T ; and Sect. 8.3 examines a different, but related topic:
choice of the estimator, θ̂ . We defer the choice of which scenarios x to simulate and
the assignment of pseudorandom numbers,U to Chap. 9 on simulation optimization.

Remark 8.1. Although not critical for understanding design and analysis, we use the
term stopping time in the formal sense of a stopping time of a stochastic process (see,
e.g., Karlin and Taylor, 1975). Informally, a stopping time is a point in simulated
time, possibly defined by a set of conditions, that can be recognized when it is
reached without having to look into the future beyond it. “Simulate for 10 hours of
simulation time” defines a stopping time, as does “simulate until 1000 customers
have been served” or “simulate until the first fax takes more than 10 minutes to
enter.” However, “simulate until you reach the maximum number of cars that will
be in the garage” is not a stopping time because we have to simulate the entire 24 h
to be sure when the maximum occurs.

8.1 Controlling Error via Replications

Classical statistical analysis was developed to infer characteristics of a population
(e.g., income of adults living in England) from a small sample of them, and to infer
characteristics of a physical entity or process (e.g., yield per acre of corn hybrids)
from an expensive or time-consuming scientific experiment. See, for instance, the
exceptional history of statistics by Stigler (1986). In both situations data are expen-
sive or time-consuming to obtain, so it is natural to think of the number of observa-
tions as small, fixed, and obtained in a one-time study. This leads to an emphasis on
tools that extract as much information as possible from little data, and on methods
for measuring the remaining estimation error.

Simulation replications, on the other hand, can often be obtained quickly and
inexpensively, and since the experiment is carried out on a computer they can also be
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obtained sequentially rather than in one trial. This can and should lead to designing
experiments to control error rather than just measure it. We discuss that approach
here.

Our goal in this section is to estimate a performance parameter for a single sce-
nario, so we drop the dependence on x and denote the parameter by θ . Further, we
suppose T is defined by the problem, and since pseudorandom-number assignment
is only a design decision when we are comparing scenarios, we also drop the de-
pendence on U and T . Therefore, the goal is to estimate θ = E [θ̂(n)]. Further, we
consider estimators that are averages across n replications, so to emphasize this we
replace the notation θ̂(n) by θ(n), which is defined to be

θ(n) =
1
n

n

∑
j=1
θ̂ j,

where θ̂ j is the unbiased estimator of θ from the jth i.i.d. replication. As an illus-
tration, consider the parking lot model of Sect. 4.2 where

θ = E

[
max

0≤t≤24
N(t)

]
.

Then θ̂ j is the maximum number of cars observed in the parking lot during the jth
replication of 24 h.

The normal-theory (1−α)100% confidence interval (CI) for θ when n is a fixed
number of replications is

θ(n)± t1−α/2,n−1
S(n)√

n
, (8.1)

where

S2(n) =
1

n−1

n

∑
j=1

(
θ̂ j −θ(n)

)2

is the sample variance of the replication estimators. Even when θ̂1, θ̂2, . . . , θ̂n are not
normally distributed, the central limit theorem for averages justifies (8.1) for a large
number of replications n because

√
n(θ(n)−θ) is asymptotically normal as n →∞;

see Sect. 5.2.2. When we simulated the parking lot for n = 1000 replications we got
a 95% CI of 237.2±0.7 cars.

One way to think about what a CI does is that it provides an error bound on
|θ(n)−θ | that holds with high confidence; specifically

Pr

{
|θ(n)−θ | ≤ t1−α/2,n−1

S(n)√
n

}
≈ 1−α.

But better than just measuring error is controlling it, and specifically reducing it
below an acceptable threshold for the decision problem at hand. This is different
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from increasing the confidence with which the bound holds, which is done through
our choice of 1−α . Instead, we are tightening the bound itself by the choice of n.

The acceptable level of error can be characterized in at least two ways: Absolute
error means

|θ(n)−θ | ≤ ε (8.2)

for given ε , while relative error means

|θ(n)−θ | ≤ κ |θ | (8.3)

for given 0 < κ < 1. The absolute error ε is in the same units as the performance
measure θ (minutes, dollars, cars). For the parking lot simulation we might consider
an absolute error of ε = 1 car. On the other hand, κ is a fraction of θ itself. Relative
error is often stated as a percentage; for instance, κ = 0.01 is “1% relative error.”
For the parking lot simulation it appears that 1% relative error is about 2.4 cars.

An intuitively appealing approach to achieve a given absolute error is to make N
replications, where

N =min
{

n : t1−α/2,n−1S(n)/
√

n ≤ ε
}
. (8.4)

Similarly, to achieve given relative error make N replications where

N =min
{

n : t1−α/2,n−1S(n)/
√

n ≤ κ |θ(n)|
}
. (8.5)

Notice that in both cases N is a random variable, so the validity of this approach is
not supported by the usual central limit theorem for averages. Instead, theoretical
support comes from central limit theorems for

√
N
(
θ(N)−θ

)
as ε → 0 and κ →

0, respectively. The classical references are Chow and Robbins (1965) and Nádas
(1969). A paper that specifically addresses the simulation setting is Glynn andWhitt
(1992); see also Alexopoulos (2006). Intuitively, this works because driving the
absolute error ε or the relative error κ to zero drives N to infinity, but the actual
proof is more subtle.

However, it is important to understand that, unlike the t-distribution CI (8.1),
even when θ̂1, θ̂2, . . . are normally distributed the bounds (8.2) and (8.3) are not
guaranteed to hold with probability 1−α when N is chosen in this way. Instead, as
we become more demanding (accept smaller and smaller error) these stopping rules
are valid.

To implement (8.4) or (8.5) we need to be able to update θ(n) and S2(n) effi-
ciently as we increase the number of replications. Two relationships help:

θ(n) = θ(n−1)+
θ̂n −θ(n−1)

n
(8.6)

n

∑
j=1

(
θ̂ j −θ(n)

)2
=

n−1

∑
j=1

(
θ̂ j−θ(n−1)

)2
+
(
θ̂n−θ(n)

)(
θ̂n−θ(n−1)

)
. (8.7)

The following algorithm, due to Knuth (1998), implements this recursion.
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Fig. 8.1 Confidence interval halfwidth as a function of the number of replications for the parking
lot simulation with 1% relative error stopping rule

1. n = 0, mean= 0 and sum= 0
2. Obtain replication result θ̂n+1

a. n = n+1
b. diff= θ̂n −mean
c. mean= mean+diff/n
d. sum= sum+diff∗ (θ̂n −mean)
e. If n > 1, then θ(n) = mean and S2(n) = sum/(n−1)

3. Next replication

The particular stopping test (8.4) or (8.5) would be inserted in Step 2e, and N is the
first n for which it is satisfied. However, there are good reasons not to implement
the algorithm exactly that way.

Unfortunately, rules such as (8.4) or (8.5) are subject to stopping too early, before
N has a chance to become large. This is because the sample variance S2(n) can be
quite variable for small n, meaning there is a chance that it will be far smaller than
the true variance; this leads to premature termination and a CI that is too short. Un-
less simulation replications are very time-consuming, the following simple guide-
line will help: Make at least 10 replications before applying the stopping test for the
first time, with 60 replications being better. A further advantage of starting at n = 60
is that the t quantiles t1−α/2,n−1 ≈ z1−α/2 for n ≥ 60, so there is no need to obtain
the t values.

Figure 8.1 is a plot of the CI halfwidth against the number of replications for the
parking lot problem with the 1% relative error stopping rule, computing the con-
fidence interval for the first time at n = 11 replications. The simulation stops after
N = 72 replications with confidence interval 236.306 ± 2.363 cars. Thus, the esti-
mated relative error is 2.363/236.306≈ 1%. Notice that due to sampling variability
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the halfwidths do not decrease monotonically, and it is this variability that can cause
early stopping.

One type of performance measure that does not fit neatly into this framework is
a quantile. As discussed in Sect. 7.1.1 the q-quantile of a continuous valued random
variable Y is ϑ = F−1

Y (q), and the standard estimator is ϑ̂ = Y(�nq�), where Y(1) ≤
Y(2) ≤ ·· · ≤Y(n) are the sorted values from all n replications. Therefore, we need the
results from all n replications to form a single quantile estimator. The same is true
of using a sample variance to estimate the Var(Y ).

Because we can often afford to make the number of replications very large, we
can adapt the methods in this section to performance measures such as quantiles
and variances using an approach called batching. The idea is that we redefine the
jth output to be a statistic computed from a batch of b individual replications; this
statistic can be an order statistic, a sample variance, or any other statistic of interest:

Y1, . . . ,Yb︸ ︷︷ ︸
θ̂1

,Yb+1, . . . ,Y2b︸ ︷︷ ︸
θ̂2

, . . . ,Y(n−1)b+1, . . . ,Ynb︸ ︷︷ ︸
θ̂n

.

With this adjustment the methods described in this section can be applied directly
to the batch statistics. However, a batch size b needs to be chosen, and in the case
of quantile estimation this is particularly critical because quantile estimators are
biased, with that bias decreasing in b. Thus, b should not be small.

8.2 Design and Analysis for Steady-State Simulation

In this section we address the challenging problem of steady-state simulation. To do
so we will consider the simulation of a single scenario, so we can drop the scenario
variable x and the random-number assignment U from the notation. Therefore, the
goal is to estimate a steady-state parameter θ with an estimator θ̂(T,n), since the
number of replications n and the run length T are both design choices. We will
also introduce an additional design decision that is only relevant for steady-state
simulation, an amount of data to delete, d.

For most of the section we will focus on the problem of estimating the steady-
state mean μ from a discrete-time output seriesY1,Y2, . . . ,Ym, so the run length is the
number of observations T = m and the estimator will be a sample mean. Therefore,
in this section we employ the notation

θ̂(T,n) = Y (n,m,d)

as defined below.
We used the M/G/1 queue (see Sect. 3.2) as an example of a steady-state sim-

ulation, one for which the quantity we want to estimate is defined in the limit as
the simulation run length goes to infinity. For the M/G/1 queue this suggested that
we make a very long simulation run (large number of customers m) and estimate,
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say, the steady-state mean waiting time μ by the average of the observed waiting
times Y1,Y2, . . . ,Ym. But we noticed that the waiting times early in the run tend to be
smaller than μ because the queue starts empty, which causes Y (m) to be biased low.
To reduce this effect, we suggested letting the simulation generate waiting times
for a while (say d of them) before starting to actually include them in the sample
average. That is, we used the truncated sample average

Y (m,d) =
1

m−d

m

∑
i=d+1

Yi. (8.8)

We may also choose to make n replications, yielding n i.i.d. averages Y 1(m,d),
Y 2(m,d), . . . ,Y n(m,d), giving the overall average

Y (n,m,d) =
1
n

n

∑
j=1

Y j(m,d). (8.9)

Of course, this includes the special case of n = 1 replication. Experiment design and
analysis for steady-state simulation focuses on choosing n,m, and d. We now give
two precise statements of the “steady-state simulation problem.” Neither problem is
directly solvable in practice, but knowing which one best represents your objective
helps determine the approach you will use.

Fixed-precision problem: Given ε > 0 or 0 < κ < 1, choose n,m and d so that√
MSE

(
Y (n,m,d)

)
≤ ε (absolute error), or

√
MSE

(
Y (n,m,d)

)
/μ ≤ κ (relative

error). That is, choose n,m, and d so that a fixed precision is achieved. This
statement of the problem favors large d to effectively eliminate bias, and n > 1
replications to make it easier to quantify error via, say, a confidence interval.

Fixed-budget problem: Given a budget of N observations, choose n,m, and d to
minimize MSE

(
Y (n,m,d)

)
subject to nm ≤ N and d < m. That is, spend a fixed

amount of simulation effort in a way that minimizes MSE. Examination of the
asymptotic MSE (8.11) or the AR(1) result (8.12) below makes it immediately
obvious that this formulation favors solutions with n = 1 replication and m = N.

Notice that both formulations focus on MSE
(
Y (n,m,d)

)
as the measure of the qual-

ity of the estimator, which makes sense because bias is a feature of steady-state sim-
ulation. The next two sections present methods for attacking each of these problems,
but to have them make sense we need to understand the properties of the Estima-
tor (8.9).

We argued in Sect. 5.2.3 that when steady-state makes sense then we should ex-
pect that the mean squared error of the sample average of one long replication can
be approximated by

MSE
(
Y (1,m,0)

)
≈ β 2

m2 +
γ2

m
, (8.10)

where β is the asymptotic bias and γ2 is the asymptotic variance. We referred to
this quantity as the asymptotic MSE. We can also argue that for large m and d much
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smaller than m that

MSE
(
Y (1,m,d)

)
≈ β (d)2

(m−d)2
+

γ2

m−d
,

where β (0) = β . Why should the asymptotic bias be a function of the amount of
data deleted, d? Recall that

β =
∞

∑
i=1

(E(Yi)−μ)

which can be thought of as the area under the bias curve from 0 to ∞, or the total
accumulated bias. And since the bias goes to 0 as 1/m, we approximated the bias of
Y (1,m,0) as β/m. Similarly, let

β (d) =
∞

∑
i=d+1

(E(Yi)−μ)

be the total accumulated bias from d + 1 to ∞, so the bias of Y (1,m,d) is approx-
imately β (d)/(m− d). Adjusting the asymptotic bias for deletion is important be-
cause we expect the bias to be largest early in the replication.

Finally, for general number of replications n,

MSE
(
Y (n,m,d)

)
≈ β (d)2

(m−d)2
+

γ2

n(m−d)
. (8.11)

That the variance decreases as 1/n is expected. That the bias is unaffected by repli-
cations is a consequence of

E
(
Y (n,m,d)−μ

)
=

1
n

n

∑
j=1

E
(
Y j(m,d)

)
−μ = E

(
Y 1(m,d)

)
−μ .

Replications reduce variance, but not bias, in steady-state simulation.
As a specific example, Exercise 2 asks you to show that the asymptotic MSE of

the AR(1) surrogate process is

MSE
(
Y (n,m,d)

)
≈ (y0−μ)2ϕ2d+2

(m−d)2(1−ϕ)2 +
σ2

n(m−d)(1−ϕ)2 (8.12)

and further to prove that for ϕ > 0 the asymptotic squared bias (the first term) is
decreasing in d for m large enough. Clearly, the variance σ2/

(
n(m−d)(1−ϕ)2

)
is

increasing in d. Thus, there is a bias-variance trade off in choosing a deletion point
d for steady-state simulation.

Expression (8.12) illustrates features of the steady-state simulation problem
that affect the MSE: Starting far from steady-state conditions (as represented by
(y0 − μ)2 being large), or having slowly diminishing bias (as represented by |ϕ|
close to one) make the bias the dominant feature of MSE, suggesting deletion. A
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large variance of the outputs (as represented by σ2 large) makes the variance domi-
nant, suggesting a long-run length m or number of replications n.

8.2.1 Fixed-Precision Problem

The fixed-precision setting makes sense when the simulation budget is not a con-
straint: typically this means that the simulation model executes fast enough, and that
the time until the results are needed is long enough, that we can afford to “simulate
until we are done.” This is often the case in practice, and it makes no sense to enforce
an arbitrary simulation budget when one does not exist.

The approach we take to solve this problem consists of two steps:

1. Determine a run length m and deletion point d̂ such that the bias β (d̂)/(m− d̂)
is effectively 0. Employ this deletion point to obtain truncated averages that are
(effectively) without bias.

2. Measure the remaining statistical error via a confidence interval or standard error,
and increase the run length or number of replications until the desired precision
has been achieved.

The specific methods applied to achieve Steps 1 and 2 depend on whether we plan
to make n = 1 or n > 1 replications. We focus on the n > 1 case; methods described
in Sect. 8.2.2 for a fixed budget could be adapted to obtain fixed precision from a
single run by letting batches replace replications.

The primary feature that makes steady-state simulation hard is that unlike vari-
ance, the bias β (d)/(m− d) is not directly estimable. However, a sufficient condi-
tion for β (d)/(m−d)≈ 0 is that E(Yi)−μ ≈ 0 for all i > d, and this will be true if
E(Yi) is essentially unchanging for i > d. Even though the bias cannot be estimated,
the change in E(Yi) as a function of i can, particularly if we can afford to make repli-
cations. Therefore, we solve Step 1 by estimating the E(Yi) vs. i curve and observing
where it appears to stop changing.

8.2.1.1 Estimating the Deletion Point

1. Obtain output data Yi j, i = 1,2, . . . ,m and j = 1,2, . . . ,n. For instance, in the
M/G/1 simulation Y3,8 is the waiting time of the third customer on the eighth
replication. The run length m will be a guess initially, while the number of repli-
cations n should be at least 10.

2. Average the ith observation across all n replications:

Y i =
1
n

n

∑
j=1

Yi j
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for i = 1,2, . . . ,m. For instance, in the M/G/1 simulation Y 3 would be the aver-
age waiting time of the third customer to arrive in each of the n replications.

3. Examine or plot Y i vs. i, or perhaps a smoothed version of it.

(a) If the data are too variable to detect the trend, then increase the number of
replications n.

(b) If the plot still seems to be trending up or down, then increase the run length
m.

(c) If there is an observation number d̂ such that beyond it the plot seems to
be varying consistently around a fixed central value, then choose d̂ as the
deletion point.

If done successfully, then we have selected d̂ such that

MSE
(

Y j(m, d̂)
)
≈ 0+

γ2

m− d̂

and therefore

MSE
(

Y (n,m, d̂)
)
≈ Var

(
Y (n,m, d̂)

)
≈ γ2

n(m− d̂)
.

To solve Step 2, we form a confidence interval for μ

Y (n,m, d̂)± t1−α/2,n−1
S(n,m, d̂)√

n
,

where

S2(n,m, d̂) =
1

n−1

n

∑
j=1

(
Y j(m, d̂)−Y (n,m, d̂)

)2

is the sample variance of the replication averages. The degrees of freedom analysis
presented in the next section suggests that if the confidence interval is not yet short
enough to meet the precision requirement, then it makes sense to increase the num-
ber of replications if n < 30, and otherwise to increase the run length m. However,
it is usually more convenient to fix m and just increase the number of replications
until the confidence interval is short enough. If this approach is adopted, then make
sure that m is substantially larger than d, say m ≈ 10d.

To achieve fixed absolute error we increase the number of replications n until

t1−α/2,n−1S(n,m, d̂)/
√

n ≤ ε .

Similarly, to achieve fixed relative error we increase the number of replications until

t1−α/2,n−1S(n,m, d̂)/
√

n

Y (n,m, d̂)
≤ κ .
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Fig. 8.2 Mean plot, by customer number, averaged across n = 100 replications of the M/G/1
queue

To illustrate these ideas, recall the M/G/1 queueing simulation of Sect. 4.3,
where the goal was to estimate the steady-state mean customer waiting time in
queue. Suppose we desired this estimate to have no more than 3% relative error.

Figure 8.2 shows the average waiting time, by customer number, for the first
m = 1000 customers averaged across n = 100 replications. The bias due to starting
the simulation empty is apparent. At somewhere around 100 customers the average
waiting times seem to vary around a central value, so we might take d̂ = 100. This
is a subjective judgement; additional replications, or smoothing of the plot, would
be helpful to confirm this choice, and there is no penalty (other than computation
time) for making it larger.

Given d̂ = 100, a convenient choice for the run length m is 1100 customers (at
least ten times as large). Thus, each replication will generate waiting times for the
first m = 1100 customers, and report the average of the last m− d̂ = 1000 of them.
A guess of n = 500 replications satisfied the relative error requirement, as it gave

t0.975,499S(500,1100,100)/
√
500

Y (500,1100,100)
≈ 0.053

2.154
≈ 0.025< 0.03.

Remark 8.2. This M/G/1 queue, which represents hospital reception, is not a very
congested system, so the amount of data deletion required is very small. This is fine
for a book example, but should not be considered representative of all simulations,
or even all queueing simulations. Heavily congested queueing systems may require
substantially more data deletion.



8.2 Design and Analysis for Steady-State Simulation 211

8.2.2 Fixed-Budget Problem

When we have a fixed budget of N observations, and no sense whether it is generous
or tight, the natural experiment design is to make a single replication (n = 1,m =
N) to have the best chance of overcoming the bias. We will again have two steps:
selection of a deletion point d, and estimation of the remaining error in the point
estimator.

8.2.2.1 Deletion with a Fixed Budget

We consider three options for choosing a deletion point d:

No deletion: As shown in Eq. (8.10), the bias component of MSE goes down as
1/m2, while variance only diminishes as 1/m. With no direct information about
the bias, deleting no data is a viable option.

Use system knowledge: Although we can treat steady-state simulation as an ab-
stract statistical problem, in applications we are simulating a real or conceptual
system that we understand well enough to model it. Insight about how long it
might take the real system to “warm up” can be used to set a deletion point. If a
factory starts empty, how many hours or days of production would be required to
ramp up to normal operations? If all echelons of a supply chain are fully stocked,
how many weeks would it take for orders, transportation and inventory levels to
start behaving normally? Answers to these questions provide deletion points.

Data-driven deletion point: A number of methods have been proposed for
choosing a deletion point based on the output data. These include the follow-
ing. Note that the first two approaches try to eliminate bias, while the third tries
to actually minimize the MSE of the resulting estimator.

• Plot the cumulative sample mean: Although we cannot average across repli-
cations to reveal the bias trend, we can plot ∑t

i=1Yi/t vs. t, for t = 1,2, . . . ,m,
and look for a point at which it stabilizes around a central value. This is often
done because it is easy, but it tends to delete many more observations than
necessary since the cumulative average retains all of the most biased obser-
vations. In a fixed-budget setting it is not typically a good idea to be overly
conservative with respect to bias since it results in a corresponding penalty
in terms of estimator variance. Schruben (1982) provides a single-replication
plot that is more sensitive to bias, but is less directly useful for determining a
deletion point.

• Test for bias: If a deletion point d can be chosen based on knowledge of the
system, or even a guess, then statistical tests have been proposed in which
the null hypothesis is H0 : E(Yd+1) = · · ·= E(Ym). See, for instance, Schruben
et al. (1983). A description of a number of these tests, and evaluation of their
performance, can be found in Cash et al. (1992).
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• Estimate the MSE-optimal deletion point: Although the MSE as a function
of d cannot be estimated directly, the marginal standard error rule (MSER,
White, 1997) minimizes the value of a statistic whose expectation is asymp-
totically proportional to MSE (Pasupathy & Schmeiser, 2010). Since it attacks
the stated problem directly, and is easy to implement, we describe MSER in
more detail below.

The MSER(d) statistic is

MSER(d) =
1

(m−d)2

m

∑
i=d+1

(
Yi −Y (m,d)

)2
(8.13)

and the estimated deletion point is chosen to minimize MSER(d). Specific rules
include

d̂ = argmind=0,...,�m/2	MSER(d) (8.14)

and

d̃ =min
{

d : MSER(d)≤min[MSER(d −1),MSER(d +1)]
}
. (8.15)

The choice d̂ minimizes MSER restricted to the first half of the output series, while
d̃ yields the first local minimum of MSER; both choices recognize that the MSER
statistic is quite variable when d is close to m and try to avoid choosing d too large
just because of output variability.

Clearly the bias and variance of the outputs Y1,Y2, . . . ,Ym influence the value of
MSER, but it is not immediately obvious how minimizing MSER relates to mini-
mizing MSE. Intuitively, either a strong trend in the mean of the series Y1,Y2, . . . ,Ym

(which suggests that the amount of deletion should be large) or substantial marginal
variance Var(Yi) (which suggests that the amount of deletion should be small) will
cause (8.13) to be large, so minimizing MSER balances these contributions. Pasu-
pathy and Schmeiser (2010) showed that, under very general conditions, for every
d = 0,1,2, . . .

lim
m→∞

MSE(Y (m,d))
E(MSER(d))

= c,

where c is a constant that depends on the output process. That is, for large m, MSE
and MSER are proportional, in expectation, so that minimizing the expected value
of MSER is equivalent to minimizing MSE. Of course, the expected value of MSER
is not known, so we minimize the statistic instead.

Exercise 5 asks you to show that

m

∑
i=d+1

(
Yi −Y (m,d)

)2
=

m

∑
i=d+1

Y 2
i − 1

m−d

(
m

∑
i=d+1

Yi

)2

.
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Fig. 8.3 The MSER(d) statistic for the M/G/1 example with run length m = 500 customers. In
this example d̂ = d̃ = 88

Using this formula, the MSER statistic can be computed in one pass through the
data by starting from the end of the series and working backward to the beginning:

1. Set s = 0,q = 0
2. For d = m−1 to 0

a. s = s+Yd+1

b. q = q+Y 2
d+1

c. MSER(d) =
(
q− s2/(m−d)

)
/(m−d)2

3. Next d

Figure 8.3 shows a plot of MSER(d) for one replication of m= 500 waiting times
from the M/G/1 simulation of Sect. 4.3. In this case d̂ = d̃ = 88, which suggests
that estimating the steady-state waiting time by averaging the last 500− 88 = 412
values will minimize the MSE of the estimate.

8.2.2.2 Error Estimation with a Fixed Budget

When we had n replications, we exploited the fact that

Var
(
Y (n,m,d)

)
=

Var
(
Y (1,m,d)

)
n

because replications allowed us to estimate Var
(
Y (1,m,d)

)
. The relationship be-

tween the variance of the sample mean and the variance of the component replica-
tions is one of the most important in all of statistics.
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When we only have a single replication, Y1,Y2, . . . ,Ym (perhaps after some dele-
tion), we can exploit a similar relationship, provided m is sufficiently large: Let
Y (m) be the overall sample mean (dropping d and n to simplify notation). Then we
know that Var

(
Y (m)

)
≈ γ2/m. Here is the key insight: For b < m, but still large,

Var
(
Y (b)

)
≈ γ2/b as well. Therefore, if both m and b are large,

Var
(
Y (m)

)
≈ b

m
Var(Y (b)). (8.16)

However, rather than making replications, we can estimate Var
(
Y (b)

)
by forming

k = m/b batch means as shown below:

Y, . . . ,Y︸ ︷︷ ︸
deleted

,Y1, . . . ,Yb︸ ︷︷ ︸
Y 1(b)

,Yb+1, . . . ,Y2b︸ ︷︷ ︸
Y 2(b)

, . . . ,Y(k−1)b+1, . . . ,Ykb︸ ︷︷ ︸
Y k(b)

.

We refer to b as the batch size, and k as the number of batches. The natural estimator
of Var

(
Y (b)

)
is then the sample variance of the batch means

S2(k) =
1

k−1

k

∑
j=1

(
Y j(b)−Y (m)

)2
.

This yields the batch means variance estimator V̂ar
(
Y (m)

)
= (b/m)S2(k), or equiv-

alently the batch means estimator of the asymptotic variance constant γ̂2 = bS2(k).
Finally, an approximate confidence interval for μ is

Y (m)± t1−α/2,k−1
γ̂√
m

which is algebraically equivalent to

Y (m)± t1−α/2,k−1
S(k)√

k
. (8.17)

The development above made use of a lot of “≈” arguments. When might this be
a good approximation? Recall from Eq. (5.7) that

γ2 = σ2

(
1+2

∞

∑
i=1
ρi

)
.

Because the correlations have to be summable for γ2 to exist, we expect the au-
tocorrelations to diminish with i, and to be effectively 0 for i > b�, for some b�.

Therefore, σ2
(
1+2∑b�

i=1ρi

)
is a really good approximation of γ2. If the batch size

b ≥ b� (which of course means m > b� as well), then the relationship (8.16) holds.
Thus, the batch size needs to capture the correlation structure of the output process.
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For the confidence interval (8.17) to be asymptotically valid requires a bit more:
As the sample size m goes to infinity with the number of batches k fixed (so that
the batch size is also increasing), the batch means Y 1(b),Y 2(b), . . . ,Y k(b) need to
become independent and normally distributed, which can be shown to be true under
relatively mild conditions (e.g., Steiger and Wilson, 2001).

The problem of deciding when b is large enough is a difficult one. Obviously
the larger b is the more likely (8.16) is to hold. A number of data-driven algorithms
for selecting batch size have been published, with the goal of either delivering a
valid confidence interval or standard error estimate at the end. Some algorithms
also control the run length to achieve a fixed precision, while others assume the run
length is given. An example, with references to the broader literature, is Tafazzoli
and Wilson (2011).

The data-driven batching algorithms are sometimes complicated, meaning that
implementation could involve substantial effort. If the simulation budget N is really
fixed and cannot be extended, then the following procedure is sensible and relatively
simple to apply:

1. Make a single replication of length m = N.
2. Apply MSER to obtain a deletion point d (or for an even simpler procedure, set

d = 0).
3. Divide the remaining m−d observations into from 10≤ k ≤ 30 batches, looking

for a value of k that divides m− d close to evenly (if there are data left over,
delete from the beginning).

4. Compute the sample mean and form the batch means confidence interval (8.17).

The assumption behind this approach is that m = N is very large, large enough
that it is possible to estimate μ precisely and form an approximately valid confi-
dence interval (and possibly even large enough that data deletion is not necessary).
When this is the case, the analysis in Schmeiser (1982) shows that little is lost by
using a relatively small number of batches 10 ≤ k ≤ 30, while on the other hand
there is risk if the number of batches k is too large making the batch size b < b� (too
small).

The reason that little is lost provided k ≥ 10 can be understood by observing the
impact of number of batches on (8.17). Notice that the confidence interval depends
on the estimator γ̂2 of the asymptotic variance constant, γ2, and the batch means
variance estimator typically will be valid for any value of k small enough that b> b�.

So why not pick k = 2? Consider the ratio of t1−α/2,k−1 to z1−α/2 = t1−α/2,∞ for
1−α = 0.95, shown in Table 8.1. At k = 2 it is about 6.5 times larger than it would
be if k was very large. However, at k = 10 it is only 1.15 times larger, dropping to
1.04 times larger at k = 30 batches. Since the risk of an invalid confidence interval
increases as k increases, 10≤ k ≤ 30 is a good working range.

The method described here for estimating γ2 is usually called the nonoverlapping
batch means method, and it is one of many that have been proposed. An overview
can be found in Goldsman and Nelson (2006).

For the M/G/1 simulation of Sect. 4.3 we made a single replication of m =

30,000 customer waiting times. The minimum MSER(d) occurred at d̂ = d̃ = 0,
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Table 8.1 Relative impact of number of batches k on the 0.975 quantile of the t distribution

k
t0.975,k−1

z0.975
2 6.48
5 1.42

10 1.15
20 1.07
30 1.04
60 1.02
∞ 1.00

which is not surprising with a long run for a system that exhibits little bias: ap-
parently the benefit from reducing the (small) bias with 30,000 observations was
not substantial relative to the increased variance from deleting data. These data
were then batched into k = 30 batches of size b = 1000 waiting times and the sam-
ple means computed from each batch. Applying the CI (8.17) yielded the 95% CI
2.24±0.22min.

What if an error of ±0.22min is considered too large? Ideally, the run length
m should be increased and the data are rebatched into 10 ≤ k ≤ 30 batches. If the
raw data were not retained, then additional batches of the same size b should be
generated, increasing k.

8.2.3 Batch Statistics

The preceding sections covered estimating the mean of a steady-state simulation
output process from discrete-time output data. However, performance measures
such as queue length and inventory level are continuous-time outputs, Y (t), 0 ≤
t ≤ T . In the fixed-budget, single-replication setting, continuous-time outputs can
be converted into discrete-time outputs using the batching transformation

Yi =
1
Δ t

∫ iΔ t

(i−1)Δ t
Y (t)dt (8.18)

for i = 1,2, . . . ,m where m = �T/Δ t	 and Δ t > 0 is a time interval. For instance, if
Y (t) is queue length, time t = 0 corresponds to 8 a.m., and Δ t = 15min, then Y7 is
the average queue length from 9:30 a.m. (time 90min) to 9:45 a.m. (time 105min).
Tools such as MSER and batch means can then be applied to Y1,Y2, . . . ,Ym. It is
important that Δ t be large enough that the value of Y (t) is likely to change one or
more times during the interval; otherwise the transformed processY1,Y2, . . . ,Ym may
exhibit extremely strong positive correlation with the same value appearing two or
more times in succession.

As shown at the end of Sect. 8.1 for across-replication data, the concept of batch-
ing can be applied to performance measures other than means and this is the case
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even for a single, long replication of a steady-state simulation provided the perfor-
mance measure θ can be consistently estimated by a statistic θ̂ that is a function of
stationary, but dependent data. The basic outputs from the replication are divided
into k batches of b individual observations, and from the jth batch we compute a
θ̂ j(b) statistic:

Y, . . . ,Y︸ ︷︷ ︸
deleted

,Y1, . . . ,Yb︸ ︷︷ ︸
θ̂1(b)

,Yb+1, . . . ,Y2b︸ ︷︷ ︸
θ̂2(b)

, . . . ,Y(k−1)b+1, . . . ,Ykb︸ ︷︷ ︸
θ̂k(b)

.

The performance measure θ is estimated by the average

θ(k) =
1
k

k

∑
j=1
θ̂ j(b)

and not by applying θ̂ to the entire data set; in the case of batch means the average of
the batch means is equal to the overall average, but this is not true for other statistics.

For example, suppose that we want to estimate the marginal variance σ2 =
Var(Y ). If Y1,Y2, . . . ,Ym is a stationary but possibly dependent output process (say,
after deletion) with Var(Yi) = σ2, then it can be shown under mild conditions that

1
m−1

m

∑
i=1

(
Yi −Y (m)

)2 a.s.−→ σ2

as m → ∞. That is, it is a consistent estimator even though the output data are de-
pendent. To apply the batching method, the batch statistics are

θ̂ j(b) =
1

b−1

jb

∑
i=( j−1)b+1

(
Yi −Y j(b)

)2
, j = 1,2, . . . ,k

the sample variance from within each batch of observations. The marginal variance
σ2 is estimated by

θ(k) =
1
k

k

∑
j=1
θ̂ j(b)

the average of the batch statistics, and a confidence interval is formed as in (8.17)
using the variance estimator

S2(k) =
1

k−1

k

∑
j=1

(
θ̂ j(b)−θ(k)

)2
.
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8.2.4 Steady-State Simulation: A Postscript

Two things about the steady-state simulation problem can be stated with confidence:
it is a difficult problem to solve, and there have been many, many attempts to solve
it. The tools presented in the previous sections were selected because they are easy
to use and they illustrate what we believe are the important concepts. There are,
however, other methods that may have significant advantages and new methods are
being invented regularly. The best way to research solutions past and present is via
the archive of the Proceedings of the Winter Simulation Conference at http://www.
wintersim.org/.

In any event, the important concepts are these:

1. There is a tradeoff between bias and variance, and both matter, as reflected in the
MSE.

2. Bias diminishes faster than variance with increasing run length, but does not
diminish at all with increasing numbers of replications. Thus, no solution will
have a very large number of short replications.

3. How you attack the steady-state simulation problem depends on whether you
can afford (usually in terms of time available) to treat it as a fixed-precision or a
fixed-budget problem. When data are cheap (i.e., fast) a fixed-precision approach
may waste data but it gives more assurance that you get what you want.

We suggested here that in the fixed-budget case statistical analysis favors one
long run (n = 1 replication of length m = N). However, the increasing availability
of cheap, parallel computing makes single-replication strategies less likely to be
employed in the future. For instance, if your personal computer has p cores, then
you can make n = p replications of length m = N in roughly the same time it takes
to make one. So why would you ever make just one? When one has to purchase
parallel computing from a service, then of course there is a cost to increasing p, but
that cost is declining rapidly.

8.3 Variance Reduction Using Control Variates

In this final section we consider the choice of estimator θ̂(x;T,n,U) as part of ex-
periment design. While sample means are often appropriate, sometimes we can do
better.

We have emphasized measuring and controlling estimation error through the
number of replications or run length, and for many simulations that approach is
sufficient. But estimation error typically declines as 1/

√
effort, where “effort” is

measured in replications or run length or both. Thus, the decline is slow and there
are problems for which the simulation experiment is too computationally expensive
to attain the level of error we want with the amount of simulation effort we can
afford or have time to spend. Examples include:

• Estimating the performance of thousands of alternatives so that it is not possible
to spend substantial simulation effort on each of them.

http://www.wintersim.org/
http://www.wintersim.org/


8.3 Variance Reduction Using Control Variates 219

• Estimating performance measures associated with rare events so that very long
simulations are required to observe even one occurrence of the event.

• Estimating performance parameters for which very little error can be tolerated
when the outputs themselves are highly variable.

Variance reduction techniques (VRTs) are strategies for reducing estimation error
without a corresponding increase in simulation effort. Common random numbers,
described in Chap. 9, is a VRT that reduces the variance of the estimated difference
between two systems’ performance measures relative to using independent simula-
tions. “Variance reduction” is always relative to what the variance would have been
had we not used the VRT.

VRTs often have to be carefully tailored to the specific simulation of interest.
Good references are Bratley et al. (1987), Glasserman (2004), Asmussen and Glynn
(2007) and Law (2007). Here we describe a VRT called control variates that, like
common random numbers, is widely applicable. In Sect. 9.11 we consider another
VRT called importance sampling.

Control variates apply when the goal is to estimate μY = E(Y ) for some simu-
lation output Y ; it can be motivated by a fact about variance: Let C be some other
random variable that is also observable in the simulation. Then

μY = E(Y ) = E[E(Y |C)] (8.19)

σ2
Y = Var(Y ) = Var[E(Y |C)]+E[Var(Y |C)]. (8.20)

Recall that E(Y |C), the conditional expected value of output Y given C, is it-
self a random variable. In the double-expectation result (8.19) and the variance-
decomposition result (8.20), the inner expectation is with respect to the conditional
distribution of Y given C, while the outer is with respect to the distribution of C.
Together these results imply that the random variable E(Y |C) is an unbiased estima-
tor of μY , it has no larger variance than Y , and it likely has smaller variance since
we expect E[Var(Y |C)] > 0. Intuitively, the stronger the association between Y and
C, the greater the variance reduction. Using E(Y |C) instead of Y to estimate μY is
a VRT. However, in most real problems we will not know a conditional expected
value E(Y |C) that we can exploit, so we use these results in a different way.

The equalities (8.19) and (8.20) imply that we can represent the simulation output
Y as follows (where we have listed the variance contribution below each term)

Y︸︷︷︸
σ2

Y

= E(Y |C)︸ ︷︷ ︸
Var[E(Y |C)]

+ ε︸︷︷︸
E[Var(Y |C)]

,

where ε = Y −E(Y |C), so that it has expected value 0, variance E[Var(Y |C)] and ε
is independent of E(Y |C) (independence is not obvious but can be shown). Because
we observe Y and C we have some hope of estimating the relationship E(Y |C) and
therefore (mostly) removing it as a contributor to variance. Control variates does
this by using a linear approximation

E(Y |C) = β0+β1(C−μC), (8.21)
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where μC = E(C) and is known, and β0 and β1 are constants. Then it follows imme-
diately that β0 = μY , since

μY = E(Y ) = E [E(Y |C)] = E[β0+β1(C−μC)] = β0.

This gives the control-variate model

Y = μY +β1(C−μC)+ ε . (8.22)

Is the representation (8.22) even plausible? Here is one justification: If the joint
distribution of (Y,C) is bivariate normal,

(
Y
C

)
∼ BVN

([
μY

μC

]
,

[
σ2

Y ρσYσC

ρσYσC σ2
C

])
(8.23)

where ρ is the correlation between Y and C, then it is known that

E(Y |C) = μY +β �
1 (C−μC),

where

β �
1 =

Cov(Y,C)

Var(C)
=
ρσYσC

σ2
C

(see, e.g., Kotz et al., 2000). If we remove all of the variance due to E(Y |C), then
the leftover variance is E[Var(Y |C)] = (1−ρ2)σ2

Y ≤ σ2
Y =Var(Y ), with the variance

decreasing the larger the value of the squared correlation between Y and C.
Of course, we cannot count on our outputs being jointly normal. But in a simula-

tion experiment we observe (Yi,Ci), i = 1,2, . . . ,n, across n replications and base our
analysis on (Y ,C). Then a multivariate version of the central limit theorem implies
that under mild conditions the sample means (Y ,C) will tend to be approximately
bivariate normal if n is large enough. This provides one justification for the approx-
imation (8.22).

When we have replications, the form of (8.22) suggests estimating β0 = μY via
least-squares regression. The regression formulation is

Y=

⎛
⎜⎜⎜⎝

Y1
Y2
...

Yn

⎞
⎟⎟⎟⎠=

⎛
⎜⎜⎜⎝

1 C1−μC

1 C2−μC
...

...
1 Cn −μC

⎞
⎟⎟⎟⎠
(
β0
β1

)
+

⎛
⎜⎜⎜⎝

ε1
ε2
...
εn

⎞
⎟⎟⎟⎠= Cβ + ε .

This gives the least-squares estimators
(
β̂0
β̂1

)
= β̂ = (C�C)−1C�Y
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of which β̂0 is the first element. In more detail,

β̂0 = Y − β̂1(C−μC), (8.24)

where

β̂1 =
∑n

i=1(Yi −Y )(Ci −C)

∑n
i=1(Ci −C)2

. (8.25)

We refer to β̂0 as a control-variate estimator of μY and C as a control. Expres-
sion (8.24) provides additional intuition for this approach: The term β̂1(C − μC)
adjusts the usual estimator Y based on the difference between C and its expected
value μC.

Does β̂0 have smaller variance than Y? Under very mild conditions β̂0 satisfies
the central limit theorem

√
n(β̂0−μY )

D−→ N
(
0,(1−ρ2)σ2

Y

)
(8.26)

as n → ∞ (Nelson, 1990). Thus, for large n

Var
(
β̂0
)
≈ (1−ρ2)σ

2
Y

n
≤ σ2

Y

n
= Var(Y ).

This shows that if we use the regression approach, then the bivariate normal result
holds in the limit even when (Y,C) are not bivariate normally distributed and β1
must be estimated.

To provide a measure of estimation error on β̂0 we can use the regression estima-
tor of the variance–covariance matrix of β̂ :

Σ̂ = V̂ar(β̂ ) = (Y�Y− β̂
�
C�Y)(C�C)−1/(n−2).

The (1,1) element is the estimated Var(β̂0), and an approximate confidence
interval is

β̂0± t1−α/2,n−2

√
Σ̂11.

Since Σ̂11 is the variance estimator for the intercept β0 in regression it is generated
by standard regression software. In detail, it is

Σ̂11 =
∑n

j=1

(
Yj − β̂0− β̂1(Cj −μC)

)2
n−2

(
1
n
+

(C−μC)
2

∑n
j=1(Cj −C)2

)
.
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This development makes clear that when we are looking for a control C two
things are essential: The expected value of C must be known, and C should be
strongly correlated with Y . Some possibilities from our standard examples follow:

8.3.1 M/G/1 Queue Control Variate

Recall that in the M/G/1 queueing simulation of Sect. 4.3 the output is the average
of the last m−d customer waiting times,

Y =
1

m−d

m

∑
i=d+1

Yi,

where

Y0 = 0 X0 = 0

Yi = max{0,Yi−1+Xi−1−Ai}, i = 1,2, . . . ,m

and we are interested in the steady-state expected waiting time μ = E(Y ). One pos-
sible control is the average difference between the service time of customer i− 1
and the interarrival time between customer i−1 and customer i:

C =
1

m−d

m

∑
i=d+1

(Xi−1−Ai).

For the parameter settings in Sect. 4.3 μC = 1−0.8=−0.2.
When we make n replications we observe a pair of averages (Y j,C j) on each one.

Therefore, the regression set up is

⎛
⎜⎜⎜⎝

Y 1

Y 2
...

Y n

⎞
⎟⎟⎟⎠=

⎛
⎜⎜⎜⎝

1 C1−μC

1 C2−μC
...

...
1 Cn −μC

⎞
⎟⎟⎟⎠
(
β0
β1

)
+

⎛
⎜⎜⎜⎝

ε1
ε2
...
εn

⎞
⎟⎟⎟⎠ .

Rerunning the example the control-variate estimator provides 95% confidence inter-
val [2.109,2.187] as compared to [2.101,2.196]without it. The estimated correlation
between the average waiting time Y and C is 0.648, a rather weak correlation which
explains why there is little difference in the confidence-interval widths.

8.3.2 Stochastic Activity Network Control Variate

Recall that in the stochastic activity network of Sect. 4.4 the output is the time to
complete the project

Y =max{X1+X4,X1+X3+X5,X2+X5}
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and we are interested in θ = Pr{Y > tp}. One possible control is C = X1+X3+X5,
the path with the longest expected value: Since X1,X3, and X5 are independent, ex-
ponentially distributed random variables each with mean 1, C has an Erlang distri-
bution with mean 3 and three phases. Using this fact we can show that

θC = Pr{C > tp}= (1+ tp + t2p/2)e
−tp

which is easy to compute. The regression set up in this case is
⎛
⎜⎜⎜⎝

I(Y1 > tp)
I(Y2 > tp)

...
I(Yn > tp)

⎞
⎟⎟⎟⎠=

⎛
⎜⎜⎜⎝

1 I(C1 > tp)−θC

1 I(C2 > tp)−θC
...

...
1 I(Cn > tp)−θC

⎞
⎟⎟⎟⎠
(
β0
β1

)
+

⎛
⎜⎜⎜⎝

ε1
ε2
...
εn

⎞
⎟⎟⎟⎠ .

Since the output and the control are indicator (0 or 1) random variables, they clearly
do not have a bivariate normal distribution; nevertheless, the central limit theorem
result implies that we can attain a variance reduction when we have a large number
of replications n.

Rerunning the example at tp = 5, the control-variate estimator provides a 95%
confidence interval [0.165,0.194] as compared to [0.140,0.186] without it. In this
experiment n = 1000. The estimated correlation between I(Y > tp) and I(C > tp) is
0.78, and there is a small, but noticeable reduction in confidence-interval width.

8.3.3 Asian Option Control Variate

This example is derived from Glasserman (2004, Chaps. 3 and 4).
Recall that in the Asian option example of Sect. 4.5 the goal was to estimate

ν = E
[
e−rT (X(T )−K

)+]

using the output Y = e−rT max
{
0, X̂(T )−K

}
where

X̂(T ) =
1
m

m

∑
i=1

X(iΔ t).

A closely related problem is estimating

νC = E
[
e−rT (X̃(T )−K

)+]
,

where

X̃(T ) =

(
m

∏
i=1

X(iΔ t)

)1/m
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is the geometric average of the asset values. The value of an Asian option based on
the geometric average is analytically solvable, so C = e−rT max{0, X̃(T )−K} is a
potential control. The formula for νC is given in the Exercises.

Rerunning the example the control-variate estimator provides a 95% confidence
interval [$2.17,$2.18] as compared to [$2.10,$2.29] without it. The estimated cor-
relation between Y and C is 0.999, which explains the dramatic reduction in the
confidence-interval width.

Appendix: Properties of Control-Variate Estimators

This appendix provides some small-sample (finite n) properties of control-variate
estimators. All of these results assume that the output and the control are linearly
related; we add assumptions as needed to obtain properties. These assumptions are
stronger than required for the central limit theorem result (8.26), but lead to results
that apply for finite n. Complete details can be found in Nelson (1990).

1. Under model (8.21), E(β̂1) = β1.

Proof. For convenience, let C� = (C1,C2, . . . ,Cn). Then

E(β̂1|C= c) =
∑E((Yi −Y )|C= c)(ci − c)

∑(ci − c)2

=
∑(μY +β1(ci −μC)−μY −β1(c−μC))(ci − c)

∑(ci − c)2

= β1.

So that, by the double expectation theorem, E(β̂1) = β1. ��

2. Under model (8.21), E(β̂0) = μY .

Proof. E(β̂0|C= c) = E(Y |C= c)−E(β̂1|C= c)(c−μC) = μY +β1(c−μC)−
β1(c− μC) = μY using the result above. Since this is independent of c the con-
clusion holds in general. ��

Thus, the control-variate estimator is unbiased under the assumed linear model.
When will it have smaller variance than Y? Notice that

Var(β̂0) = Var
[
E(β̂0|C)

]
+E

[
Var(β̂0|C)

]
= E

[
Var(β̂0|C)

]

since Var
[
E(β̂0|C)

]
= Var[μY ] = 0 from the proof of the result above. Still, this

expression is not easy to evaluate in general. Under the additional assumption
of constant conditional variance (Var(Y |C) = σ2), the following result can be
(tediously) derived:
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3. Under model (8.21) and the assumption of constant conditional variance,

Var(β̂0|C) = σ2
(
1
n
+

(C−μC)
2

∑(Ci −C)2

)
.

To complete the calculation we need to take the expectation of this result, which
depends on the distribution of C. If (Y,C) are jointly normally distributed with
correlation ρ , then we know that σ2 = (1−ρ2)σ2

Y and it can be shown that

E

(
(C−μC)

2

∑(Ci −C)2

)
=

1
n(n−3)

.

This leads to the following:
4. If (Y,C) are bivariate normal, then

Var(β̂0) =
(

n−2
n−3

)
(1−ρ2)σ

2
Y

n
.

Therefore, if ρ2 > 1/(n−2), then the control-variate estimator has smaller vari-
ance than the sample mean. Thus, provided the number of replications is not too
small the control-variate estimator will have smaller variance even if the correla-
tion is weak.

Exercises

1. Verify (8.6) and (8.7).
2. Show that for the AR(1) process the asymptotic MSE is

MSE
(
Y (n,m,d)

)
≈ (y0−μ)2ϕ2d+2

(m−d)2(1−ϕ)2 +
σ2

n(m−d)(1−ϕ)2 .

Then prove that for ϕ > 0 the asymptotic squared bias (y0− μ)2ϕ2d+2/(m−
d)2(1−ϕ)2 is decreasing in d for m large enough. Hint: Take the derivative
with respect to d.

3. Use the result in Exercise 2 to study the impact of dependence (as measured
by ϕ) and initial conditions (as measured by (y0−μ)2) on the optimal deletion
point d. A similar study was undertaken by Snell and Schruben (1985).

4. Using the result from Exercise 2, show that for the AR(1) process and m large

E(MSER(d))≈ (1−ϕ)2
(1−ϕ2)

(
(y0−μ)2ϕ2d+2

(m−d)2(1−ϕ)2 +
σ2

n(m−d)(1−ϕ)2
)
.

That is, the expected value of MSER is proportional to the asymptotic MSE.
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5. As an aid to computing the MSER statistic, show that

m

∑
i=d+1

(
Yi −Y (m,d)

)2
=

m

∑
i=d+1

Y 2
i − 1

m−d

(
m

∑
i=d+1

Yi

)2

.

6. For a covariance stationary process Y1,Y2, . . . ,Ym we know that the variance of
the sample mean is

Var(Y ) =
σ2

m

(
1+2

m−1

∑
k=1

(
1− k

m

)
ρk

)
,

where σ2 is the marginal variance and ρk is the lag-k autocorrelation. If we
have data, it would seem that we could estimate each term in this expression
directly. What problems can you identify with this direct approach?

7. Remote Order Taking (ROT) is proposing to replace the current drive-through
window ordering for a fast-food restaurant chain with the equivalent of a call
center. ROT promises lower cost and faster response. Before agreeing to this,
the corporate owner of the restaurant chain has asked for a proof-of-concept
study using data from seven of their stores in Columbus, Indiana.
The typical drive-through window has a single traffic lane featuring a menu-

board/order-entry station, a windowwhere the person taking orders also collects
payment, and a second window where the food is delivered to the customer.
ROT is proposing a service that will eliminate the need for the first window and
the corresponding employee by providing high-speed voice and data connec-
tions that will allow operators in Rapid City, South Dakota, to take orders and
communicate them to the restaurant. The second window will then be used to
collect payment and deliver the food to the customer.
This restaurant chain has high standards for customer service. When asked

by ROT, they quantified this by saying that they want the average response time
from when a drive-through customer’s car triggers the sensor at the order board
until that customer is greeted by the order taker to be 3 s or less, and the chance
that any customer’s response time is greater than 7 s be no more than 20%.
Whether or not ROT’s proposal is worthwhile depends on whether the num-

ber of operators required to achieve these two goals is significantly less than
one per store. The restaurant has provided data on the busiest 3-h period from
the seven stores in the Columbus area to allow ROT to do a proof-of-concept
study. You have been hired by ROT to simulate serving these seven Colum-
bus stores to determine the minimum number of operators required to meet the
service-level requirements.
Modeling the arrival process to each store as Poisson seems reasonable. From

a prior study, data on the time required to take an order and the time for a car
to clear the order board and the next car in line (if there is one) to pull up has
been collected; that data can be found on the book website in ROTData.xls.
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Store Average number of customers
number (11 a.m. to 2 p.m.)

1 36
2 15
3 45
4 26
5 36
6 36
7 45

Clearly, arrival rates will vary by time of day. Since we only have data on the
busiest period, treat this as a steady-state simulation where the long-run arrival
rate is the same as the busy period; staffing that can keep up over the long-run at
the heaviest load will certainly be adequate generally. Therefore, you will need
to deal with initial-condition bias.
Notice that the entire food-preparation and food-delivery function is outside

the scope of this project. You are only interested in order taking, and your goal is
to investigate how many operators would be required to serve the seven stores.

8. Suppose that Y1,Y2, . . . ,Ym is a covariance stationary process with mean μ . Let

σ̂2 =
1
m

m

∑
i=1

(Yi −μ)2

be the sample variance when the mean μ is known. Derive an expression for
E(σ̂2/m) and compare it to the expression in Exercise 6, the true variance of
the sample mean. Is σ̂2/m an unbiased estimator of Var

(
Y (m)

)
? Next do the

same analysis for

S2 =
1

m−1

m

∑
i=1

(
Yi −Y (m)

)2

the usual sample variance and compare E(S2/m) to the expression in Exercise 6.
9. When we only have a single replication Y1,Y2,Y3, . . . ,Ym of a steady-state sim-

ulation, an alternative to the MSER statistic for determining a deletion point is
to plot the cumulative average

Y ( j) =
1
j

j

∑
i=1

Yi

for j = 1,2,3, . . . ,m, and truncate at the point when this plot becomes flat. To
examine this idea, assume that the underlying output is an AR(1) process

Yi+1 = μ+ϕ(Yi −μ)+Xi+1

with y0 �= μ , ϕ > 0 and X1,X2, . . . i.i.d. with mean 0 and variance σ2. Provide
analysis that shows why this approach is conservative, meaning that it will tend
to give a larger deletion point than necessary.
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10. Recall the MA(1) surrogate process of Exercise 11 in Chap. 5:

Yi = μ+θXi−1+Xi

with X0 = x0 a fixed constant, and X1,X2, . . . i.i.d. with mean 0 and variance
σ2, and |θ | < 1. That exercise asked you to derive the asymptotic MSE of the
sample mean Y (m) = ∑m

i=1Yi/m with no data deletion. Extend your result to
obtain the asymptotic MSE for d ≥ 1. If m is fixed, could it ever be optimal
(minimize asymptotic MSE) to have d > 0, and if so what is the optimal d?

11. Recall the MA(1) surrogate process of Exercise 11 in Chap. 5:

Yi = μ+θXi−1+Xi

with X0 = x0 a fixed constant, X1,X2, . . . i.i.d. with mean 0 and variance σ2, and
|θ |< 1. For output data from an MA(1) process, compute the expected value of
the MSER(d) statistic as a function of d = 0,1,2, . . . ,m− 1. After how many
observations do we expect deletion?

12. In Exercises 2 and 10 you derived the asymptotic MSE for AR(1) and MA(1)
surrogate processes. Using these expressions you can approximate the MSE as
a function of the initial conditions, run length m, deletion point d and values for
the process parameters (ϕ,θ , etc.). Perform an empirical study to see how ef-
fective the minimum MSER statistic is at minimizing the MSE. In other words,
simulate various cases of the AR(1) and MA(1) processes, estimate a deletion
point using the minimum MSER rule, and evaluate how good the chosen dele-
tion point is using the known asymptotic MSE.

13. Recall the M/G/1 simulation of Sect. 4.3, and specifically the steady-state wait-
ing time Y . Using a single replication and batching, estimate and provide a 90%
confidence interval for the marginal variance and the 0.8 quantile of Y .

14. If you could initialize a steady-state simulation in “steady-state conditions,”
then there would be no initial-condition bias. Since this can rarely be done, it
has been suggested that two replications of the simulation could be made such
that the first is initialized in overloaded conditions, while the second is initial-
ized in underloaded conditions, and then the two replications could be averaged
to reduce the bias. For instance, the first replication of a queueing simulation
could be initialized with many customers in the system, while the second repli-
cation could be initialized empty and idle. Assuming that the underlying output
is an AR(1) process

Yi+1 = μ+ϕ(Yi −μ)+Xi+1

with y0 being a constant representing the initial conditions and Xi i.i.d. (0,σ2),
show mathematically whether or not this idea always reduces bias relative to
picking one fixed initial condition.

15. Work out what the variance-decomposition result (8.20) implies when (a)Y and
C are independent, and when (b) Y =C.
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16. Show that

β �
1 =

Cov(Y,C)

Var(C)
=
ρσYσC

σ2
C

minimizes the variance of the random variable μY +β �
1 (C−μC). This provides

another justification for the control-variate estimator.
17. For the SAN example, use a control-variate estimator to estimate μY = E(Y ),

the expected time to complete the project. Compare it to just using Y .
18. The control-variate estimator can employ more than one control, analogous to

using more than one explanatory variable in linear regression. Try this idea
on the M/G/1 simulation forming one control-variate based on the interarrival
times, and another based on the service times.

19. The control-variate estimator can employ more than one control, analogous to
using more than one explanatory variable in linear regression. Try this idea on
the SAN simulation forming controls for each of the three paths through the
network.

20. Specializing results in Glasserman (2004, Chap. 3) to our Asian option example
(where the value of the asset is recorded at m equally spaced time intervals of
length Δ t), it can be shown that

νC = e−δT ′
X(0)Φ(d)− e−rT ′

KΦ(d −σ
√

T ′),

where T ′ = (m+1)Δ t/2, σ2 = (2m+1)σ2/(3m), δ = (σ2−σ2)/2 and

d =
ln(X(0)/K)+(r−δ +σ2/2)T ′

σ
√

T ′ .

Use this result to implement the control-variate estimator for the Asian
call option. Test the effect of different numbers of discretization steps m =
8,16,32,64,128.



Chapter 9
Simulation Optimization and Sensitivity

We now focus on the problem of finding a good, or perhaps even the best, scenario
x from a collection of feasible scenarios; when we are optimizing, the terms “solu-
tions” and “systems” are synonyms for “scenario.” We will primarily consider the
formulation

min θ(x) (9.1)

x ∈ C,

where θ(x) is the performance measure of interest, and C is the feasible set or region
for the d-dimensional scenario variable x. The feasible region C is often defined
by a collection of constraints on x, but it may also be just a list of options. What
makes this a simulation optimization (SO) problem is the need to estimate the sce-
nario performance measure θ(x) using a simulation-based estimator θ̂(x;T,n,U). In
Sect. 9.8 we discuss the situation in which satisfaction of the constraint x ∈ C also
has to be estimated, but for now we assume feasibility can be established without
error. If the problem is more naturally formulated as a maximization, then stating it
as min−θ(x) converts it into the formulation (9.1).

Let x� denote the optimal scenario, which we initially assume is unique. Recall
that our performance estimator is denoted θ̂(x;T,n,U), where x is the scenario,
T is the stopping time (run length), n is the number of replications, and U are the
assigned pseudorandom numbers. To simplify notation let θ̂(x)= θ̂(x;T,n,U)when
we do not need to explicitly consider the other experiment design components T,n,
and U.

Howwe attack (9.1) depends on a number of things, including the type of feasible
region C (discrete or continuous, for instance), the number of feasible scenarios in
C (finite, countably infinite, uncountably infinite), and what we know about θ(x)
and θ̂(x). We can usually expect that θ̂(x) is an unbiased, or at least a consistent,
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estimator of θ(x). And the SO algorithm will simulate K scenarios x1,x2, . . . ,xK

(where K may be random) and choose as the best

x̂� = argmini=1,2,...,K θ̂(xi).

In other words, the algorithm returns the scenario with the sample best performance
among all of those it simulated, and the estimated objective function value of the
selected scenario is θ̂(x̂�). The number of feasible scenarios simulated will always
be finite, since we have to stop eventually. In some cases K may exhaust C, so that
we simulate all of the feasible scenarios, and in other cases x1,x2, . . . ,xK is a subset
of C that is generated by some sort of search.

As a specific example, consider a variation of the stochastic activity network
(SAN) problem introduced in Sect. 3.4 and simulated in Sect. 4.4. The SO version
of this problem is based on Henderson and Nelson (2006).

Recall that for the SAN

Y =max{A1+A4,A1+A3+A5,A2+A5}

is the total time to complete the project, where A j is the time required for activity j
(previously we denoted the activity times by Xj, but we use A j here to avoid confu-
sion with the scenario variable x). Suppose that activity j is exponentially distributed
with nominal mean τ j, but we can reduce the mean to x j at a cost of c j(τ j − x j). In
other words, c j is the cost per unit reduction in the mean time of activity j. Thus,
the project completion time as a function of the scenario x= (x1,x2,x3,x4,x5) is

Y (x) =max{A1(x1)+A4(x4),A1(x1)+A3(x3)+A5(x5),A2(x2)+A5(x5)},

where A j(x j) is exponentially distributed with mean x j. Let θ(x1,x2, . . . ,x5) =
E(Y (x)), the expected value of the time to complete the project. If we have a fixed
total budget b for the project, then the SO problem is

min θ(x1,x2, . . . ,x5) (9.2)
5

∑
j=1

c j(τ j − x j)≤ b

x j ≥ � j, j = 1,2,3,4,5,

where � j is the smallest achievable mean activity time for activity j. Notice that in
this formulation we can actually save cost by letting x j > τ j for some activities.

The natural objective function estimator for scenario xi = (xi1,xi2, . . . ,xi5) is

θ̂(xi) =
1
ni

ni

∑
j=1

Yj(xi),

where Y1(xi),Y2(xi), . . . are i.i.d. replications of the time to complete the project for
scenario xi.
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The size of the budget b, and the way in which we reduce the mean activity time
to xi, leads to very different problems:

• If we reduce the mean of activity i by allocating extra workers to the activity, and
our budget is so tight that we can only afford to add at most one worker to at
most one or two activities, then the number of feasible scenarios is small and we
can likely simulate them all.

• If b is very large relative to the cost of an individual worker, and each worker
assigned to activity i further reduces the mean time to complete the activity, then
there might be so many feasible scenarios that we cannot simulate them all even
though the number is finite. Therefore, the SO will require a search.

• If the reduction in mean activity time comes not from allocating workers, but
from allocating some sort of capacity or power, then we might be able to treat
xi as continuous valued, implying that there might be uncountably many feasible
scenarios.

We address all of these variations of SO in this chapter, as well as sensitivity
analysis around a chosen solution and applying a change of measure to the outputs
from a simulated solution to obtain estimates for an unsimulated one.

9.1 Errors in Simulation Optimization

Nomatter what algorithmwe use to search for and simulate the collection of feasible
scenarios x1,x2, . . . ,xK , there are three fundamental types of errors that can occur in
SO problems:

1. The optimal scenario is never simulated, meaning

x� �∈ {x1,x2, . . . ,xK}.

This is also the case in deterministic nonlinear optimization problems when the
feasible region cannot be exhausted, so we should not expect stochastic simula-
tion optimization to be any easier.

2. The best scenario that was simulated is not selected, meaning

x̂� �= xB = argmini=1,2,...,K θ(xi).

Because θ̂(xi) only estimates θ(xi), the best scenario that we simulated may not
have the best estimated objective function value, and this causes us to select an
inferior scenario. This error never occurs in deterministic optimization problems.

3. The estimated objective function value of the selected scenario is not very accu-
rate, meaning ∣∣∣θ̂(x̂�)−θ(x̂�)

∣∣∣ is large.
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Because we select the scenario with the smallest estimated value, there is a nat-
ural bias toward scenarios whose estimated performance is better (smaller) than
its true expected performance. Therefore, we tend to have an optimistic estimate
of how good the selected scenario actually is; that is, we tend to have

θ̂(x̂�)< θ(x̂�).

Restating these errors in the context of the SAN optimization problem (9.2), they
are:

1. The SO algorithm never discovers and simulates the best feasible setting of the
mean activity times x� = (x�1,x

�
2, . . . ,x

�
5).

2. The best setting actually simulated, xB, does not have the smallest estimated
mean project completion time among θ̂(xi), i = 1,2, . . . ,K.

3. The sample mean activity time of the selected scenario θ̂(x̂�) is not very close to
its true mean project completion time θ(x̂�).

Clearly we would like to control, measure, or eliminate Errors 1–3. Guaranteed
asymptotic convergence (see Sect. 9.1.1) is the primary way SO algorithms are de-
signed to address Error 1. Correct-selection guarantees address Error 2 and may also
address Error 3; see Sect. 9.1.2.

9.1.1 Convergence

Convergence guarantees say something about what would happen if the SO algo-
rithm was allowed to run forever. “Run forever” often implies exploring more and
more feasible scenarios and simulating them more and more thoroughly. We focus
on two particular definitions of convergence; for a broader discussion of conver-
gence see Andradóttir (2006a).

The typical SO algorithm is iterative, and on the rth iteration it reports an es-
timated optimal scenario x̂�r ,r = 1,2, . . . . An iteration could consist of simulating
new feasible scenarios, or refining the estimates of scenarios that have already been
simulated, or both. Notice that SO algorithms can and often do revisit scenarios that
have already been simulated to better estimate their objective function values, a fea-
ture that makes no sense for deterministic optimization. As a result, it need not be
the case that K = r (the number of distinct scenarios simulated need not be the same
as the number of iterations of the algorithm), and typically K � r.

A very natural definition of convergence for SO is

Pr
{
lim
r→∞

x̂�r = x�
}
= 1. (9.3)

An algorithm with this property is globally convergent with probability 1. There ex-
ist globally convergent simulation optimization algorithms, particularly for the case
when C contains a finite (even if very large) number of feasible scenarios. When the
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number of feasible scenarios is finite, convergence is usually proven by establishing
that every feasible scenario will be simulated infinitely often in the limit. A good
globally convergent algorithm assures global convergence even though it aggres-
sively pursues improving scenarios. Although nothing like global convergence may
actually happen in practice, it is reassuring to know that the algorithm would find
the optimal scenario in the limit.

Next we consider local convergence. To do so we need the concept of a neigh-
borhood of a feasible scenario x, denoted by N(x). The neighborhood of x is a
collection of feasible scenarios (so N(x)⊂ C) that are in some sense close to x. For
instance, if the components of x are integers (such as the initial level of inventory of
d products), then one definition of a neighborhood is scenarios that differ from x by
±1 in one component. That is, all scenarios of the form x± (0,0, . . . ,0,1,0, . . . ,0)
that are also feasible. A scenario x′ is locally optimal if

θ(x′)≤ θ(x) for all x ∈ N(x′);

that is, x′ has as good or better (smaller) performance than the scenarios in its neigh-
borhood. Of course, a scenario can be locally optimal but still not be very good
overall.

Let L ⊂ C be the set of locally optimal scenarios. Then local convergence is
convergence to L. One definition is

Pr{x̂�r �∈ L infinitely often}= 0. (9.4)

This means with probability 1 there is an iteration R such that for all iterations r ≥ R
the estimated optimal scenario x̂�r is a locally optimal scenario. Local convergence is
less satisfying than global convergence, but it also does not require that all feasible
scenarios are simulated even in the limit.

While a convergence guarantee, particularly a global convergence guarantee, is
clearly a desirable property, a convergent algorithm will still, in the end, simulate
only K < ∞ scenarios and return the one with the best estimated value. Correct-
selection guarantees, described in the next section, relate to what can be said about
the K simulated scenarios. When combined with a locally convergent algorithm,
correct selection can provide a statistical guarantee of optimality.

9.1.2 Correct Selection

“Correct selection” primarily addresses Error 2. Let xB = argmini=1,2,...,Kθ(xi) be
the best scenario of those actually simulated by the SO algorithm; xB = x� only if the
algorithm actually simulated x�, and xB may not even be locally optimal. However,
once the SO algorithm stops then selecting xB is the best that it can do.
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Consider the correct-selection event

CS = {select xB}

=
{
θ̂(xB)< θ̂(xi), i = 1,2, . . . ,K, i �= B

}

=
K⋂

i=1,i �=B

{
θ̂(xB)< θ̂(xi)

}
. (9.5)

CS requires that when the optimization algorithm terminates, the scenario with the
best estimated performance is actually the best of the scenarios that were simulated.
When this happens, we will make a correct selection, and we would like a guarantee
that Pr{CS} is high. Unfortunately, this sort of guarantee is affected by multiplicity,
which is the effect that K has on the probability of an event like CS. To get some
sense of this, consider two cases:

Independence: Suppose that the events
{
θ̂(xB)< θ̂(xi)

}
are independent. Then

Pr{CS}=
K

∏
i=1,i �=B

Pr
{
θ̂(xB)< θ̂(xi)

}
.

Thus, the more feasible scenarios xi that we explore, the smaller the probability is
that we select the correct one. For instance, if all of these events have probability
1−α , then Pr{CS}= (1−α)K−1. This is unfortunate because exploring broadly
increases the chance of uncovering the optimal scenario x�.

General but unknown dependence: Since the events
{
θ̂(xB)< θ̂(xi)

}
all de-

pend on the same θ̂(xB), it is unrealistic to think that they will be independent.
When they are dependent, and we know nothing more than that, then the best we
can say is that

Pr{CS} ≥ 1−
K

∑
i=1,i �=B

Pr
{
θ̂(xB)≥ θ̂(xi)

}
.

This is even more discouraging than the independent case since this lower bound,
which is known as the Bonferroni inequality, can become negative (and therefore
meaningless) if K is large.1

The curse of multiplicity is that exploring broadly (large K) makes it difficult
to select correctly because the statistical errors accumulate. There are two direct
ways to mitigate this problem and both attack the probability of making a mistake,

Pr
{
θ̂(xB)≥ θ̂(xi)

}
.

1 There are various expressions of the Bonferroni inequality, but the one we use here is
Pr{∩k

i=1Ei} ≥ 1−∑k
i=1 Pr{E c

i }, where Ei is an event and E c
i is its complement.
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Suppose we can design our SO algorithm to guarantee that

Pr
{
θ̂(xB)≥ θ̂(xi)

}
≤ α

K −1

for all xi �= xB. This means the chance of error in each comparison is very small.
Then the Bonferroni inequality guarantees that Pr{CS} ≥ 1− (K −1)α/(K −1) =
1−α . For instance, if our simulation optimization explores K = 1,001 feasible sce-
narios and we want 95% confidence, we have selected the best scenario of those
simulated and then we can achieve this if

Pr
{
θ̂(xB)≥ θ̂(xi)

}
≤ 0.05

1000
= 0.00005

for each alternative scenario xi. Not surprisingly, obtaining such a small level of
error typically requires a very large expenditure of simulation effort (replications or
run length), so this approach tends to be viable only when K is not too large.

The second approach tries to decrease Pr
{
θ̂(xB)≥ θ̂(xi)

}
by altering the joint

distribution of θ̂(xi;Ui), i = 1,2, . . . ,K, where we now need to reintroduce the ran-
dom numbers into the notation.

Suppose that we can represent the performance estimator as

θ̂(xi;Ui) = θ(xi)+ ε(Ui),

where ε(Ui) is a mean-zero random variable that accounts for the fact that the sim-
ulation output is stochastic. Notice that in this stylized representation the simulation
noise ε does not depend on the scenario xi. Therefore, if we use the same pseudo-
random numbers for each scenario, U1 = · · ·= UK = U, then

Pr
{
θ̂(xB;U)≥ θ̂(xi;U)

}
= Pr{θ(xB)+ ε(U)≥ θ(xi)+ ε(U)}
= Pr{θ(xB)≥ θ(xi)}= 0.

Thus, we never make a mistake no matter what K is!
We cannot expect the simulation noise to be independent of the scenario, or in-

dependent of the run length Ti or number of replications ni for that matter. But this
analysis does suggest that if the K scenarios behave similarly with respect to the
random numbers, then we can decrease the probability of selection error by assign-
ing the same random numbers to all scenarios. This technique is known as using
common random numbers and we explore it more fully in Sect. 9.2.

How does the probability of correct selection relate to convergence? When a
SO algorithm is globally convergent, but we cannot exhaust the feasible region C
(as will always be the case when x is continuous valued), then a correct-selection
guarantee only provides inference with respect to the scenarios x1,x2, . . . ,xK that
were actually simulated; it says nothing about the overall optimality. For a locally
convergent algorithm, a correct-selection guarantee can provide confidence that x̂�

is actually locally optimal provided all of its neighbors N(x̂�) have been simulated.
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Since the number of scenarios inN(x̂�) is typically much smaller than the number of
scenarios in C, simulating all neighbors is often possible. However, the inference is
regarding local optimality, not global. Only when the number of feasible scenarios is
small enough that we can simulate every x ∈ C does correct selection relate directly
to the overall optimality.

SO algorithms that do not exhaust the feasible scenarios C typically do not pro-
vide a correct-selection guarantee when they terminate. However, an (often small)
amount of additional simulation of x1,x2, . . . ,xK can be used to add this guarantee
and also control Error 3, which is that θ(x̂�) is estimated badly. This strategy is
known as “cleaning up” after the SO algorithm, and we describe one specific way
to do it later. See also Boesel et al. (2003).

9.2 Random-Number Assignment

Having established the objectives in SO, we now turn to experiment design. Recall
that we estimate the objective function θ(x) by θ̂(xi) = θ̂(xi;Ti,ni,Ui). Experiment
design consists of choosing the scenarios to simulate xi, i= 1,2, . . . ,K, the allocation
of simulation effort (ni,Ti), and the assignment of random numbers Ui to scenario
xi. We begin with random-number assignment.

The discussion of correct selection in Sect. 9.1.2 showed why the assignment
of random numbers to the simulation of alternative scenarios should be a part of
experiment design. Here we delve more deeply into that idea by first connecting
correct selection to variance reduction and then describing how random-number
assignment reduces variance.

We will assume two blocks of random numbers, say Ui and Uh, are independent
if i �= h. As a practical matter we know that Ui is actually a block of deterministic
pseudorandom numbers ui = (ui1,ui2, . . . ,uis). We assume that s is so large that if
we assign ui to some purpose we will never use all s pseudorandom numbers in the
block. We treat the random numbers Ui and Uh as independent because they actu-
ally correspond to nonoverlapping sequences of pseudorandom numbers ui and uh.
This allows us to “assign” either common or distinct blocks of random numbers to
scenarios even though “assigning” anything that is truly random is a contradiction.
The assignment is done by specifying seeds or streams as described in Sect. 6.5.3.

In Sect. 9.1.2 we focused on Pr
{
θ̂(xB)≥ θ̂(xi)

}
, the probability that the esti-

mated objective function value of the best scenario we simulated is larger than the
estimated objective function value of a scenario that is actually inferior. Since we
are minimizing, and since we select the scenario that appears to be the best, this
event corresponds to an incorrect selection.
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Suppose that these estimators are averages of a large number of more basic obser-
vations (e.g., replications) so that we are willing to treat them as normally distributed
due to the central limit theorem. Then

Pr
{
θ̂(xB)≥ θ̂(xi)

}
= Pr

{
θ̂(xB)− θ̂(xi)≥ 0

}

= Pr

⎧⎪⎪⎨
⎪⎪⎩
θ̂(xB)− θ̂(xi)− (θ(xB)−θ(xi))√

Var
[
θ̂(xB)− θ̂(xi)

] ≥ −(θ(xB)−θ(xi))√
Var

[
θ̂(xB)− θ̂(xi)

]

⎫⎪⎪⎬
⎪⎪⎭

= Pr

⎧⎪⎪⎨
⎪⎪⎩

Z ≥ θ(xi)−θ(xB)√
Var

[
θ̂(xB)− θ̂(xi)

]

⎫⎪⎪⎬
⎪⎪⎭
, (9.6)

where Z is a N(0,1) random variable. Since θ(xi)− θ(xB) > 0, Expression (9.6)

is an increasing function of Var
[
θ̂(xB)− θ̂(xi)

]
. Stated differently, the smaller the

Var
[
θ̂(xB)− θ̂(xi)

]
is, the smaller the probability of an incorrect selection (or the

greater the chance of a correct selection). This makes intuitive sense: the better our
estimate of the difference θ̂(xB)− θ̂(xi) is, as measured by variance, the more likely
we are to choose the one that is actually better.

The variance of the difference is2

Var
[
θ̂(xB)− θ̂(xi)

]
= Var

[
θ̂(xB)

]
+Var

[
θ̂(xi)

]
−2Cov

[
θ̂(xB), θ̂(xi)

]
. (9.7)

If each scenario xi is assigned independent random numbers Ui, then the estima-

tors are independent and Cov
[
θ̂(xi;Ui), θ̂(xB;Uh)

]
= 0. Common random numbers

mean letting Ui = UB = U. The desired effect so as to increase the probability of

correct selection is Cov
[
θ̂(xi,U), θ̂(xB,U)

]
> 0, which reduces the variance of the

difference and increases the probability of correct selection. This is the connection
between variance reduction and correct selection.

To gain some intuition, consider the output from the SAN simulation, rewritten
in terms of the random numbers (U1,U2,U3,U4,U5) needed to generate the expo-
nentially distributed activity times:

Y (x) = max{A1(x1)+A4(x4),A1(x1)+A3(x3)+A5(x5),A2(x2)+A5(x5)}

= max{− ln(1−U1)x1− ln(1−U4)x4,

− ln(1−U1)x1− ln(1−U3)x3− ln(1−U5)x5,

− ln(1−U2)x2− ln(1−U5)x5} ,

2 A basic result from mathematical statistics is that for random variables A and B, Var(A±B) =
Var(A)+Var(B)±2Cov(A,B).
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where x j is the mean time for activity j. The use of common random numbers means
that the simulations of scenarios xi and xh differ only in the values of x that multiply
− ln(1−U). Thus, a collection of random numbers (U1,U2,U3,U4,U5) that make
Y (xi) larger than its expected value will tend to make Y (xh) larger than its expected
value also. This effect is particularly easy to see if for xi we have xi1 = xi2 = · · · =
xi5 = xi, and for xh we have xh1 = xh2 = · · ·= xh5 = xh. Then

Y (xh) = max{− ln(1−U1)xh − ln(1−U4)xh,

− ln(1−U1)xh − ln(1−U3)xh − ln(1−U5)xh,

− ln(1−U2)xh − ln(1−U5)xh}
=

xh

xi
max{− ln(1−U1)xi − ln(1−U4)xi,

− ln(1−U1)xi − ln(1−U3)xi − ln(1−U5)xi,

− ln(1−U2)xi − ln(1−U5)xi}
=

xh

xi
Y (xi).

Therefore,
Cov[Y (xi),Y (xh)] =

xh

xi
Var[Y (xi)]> 0.

Although it is more difficult to show mathematically, the covariance is still posi-
tive (although perhaps not as large) even when xi and xh do not have this special
structure.

Two aspects of this example turn out to be important more generally: Notice that
the output Y (x) is monotonic in each of the random numbers (U1,U2,U3,U4,U5),
and the same random number was used for the same purpose when simulating sce-
narios xi and xh; e.g., we used Uj to generate activity time A j in each scenario.
Monotonicity is the result of two features of the simulation: (1) The inverse cdf
method A j = F−1(Uj) was used to generate the inputs A j and it is always nonde-
creasing in Uj, and (2) the structure of the simulation itself caused the output to be
monotonic in each of the inputs; that is, Y =max{A1+A4,A1+A3+A5,A2+A5} is
nondecreasing in each Ai. Monotonicity is central to inducing positive covariance,
and synchronization (using the same random number for the same purpose in each
scenario) tends to maximize the effect. This is shown formally in Glasserman and
Yao (1992) but also makes intuitive sense because positive covariance means that
the two quantities tend to go up and down together.

Sychronization is easy for the SAN simulation because each replication of each
scenario uses exactly five random numbers. Thus, if the same starting seed or
stream is assigned to each scenario, then the simulation of each scenario starts
with the random number (say) U1, and the jth replication uses the random num-
bersU( j−1)5+1,U( j−1)5+2,U( j−1)5+3,U( j−1)5+4,U( j−1)5+5 to generate activity times
A1,A2,A3,A4,A5, respectively, regardless the value of x.
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Unfortunately, for other simulations synchronization is not as easy. To illustrate
this, consider simulating two queueing systems that have the following features to
compare their mean waiting times:

1. They have identical renewal arrival processes.
2. Scenario x = 1 has one fast server, while scenario x = 2 has two slower ones.

Their service-time distributions are from the same family, but with different pa-
rameters.

3. Customers are not treated equally; instead, customers who are older are moved
to the head of the queue. We have an input distribution for customer age.

4. We will simulate n = 100 replications of each scenario, and each replication ends
after T = 8 h of simulated time.

Notice that the simulation does have some structural monotonicity: longer inter-
arrival times lead to shorter waiting times (monotone decreasing); and longer ser-
vice times lead to longer waiting times (monotone increasing). However, assigning
the same starting seed or stream to each scenario is not sufficient here. Table 9.1
shows what could happen if we do so and just consume the random numbers (RNs)
as needed by the simulation. Because the number of servers differs, rather quickly
RNs are being used for different purposes. For instance, U7 is used to generate a
customer age in scenario 1 and an interarrival time in scenario 2. Therefore, the
structural monotonicity of the queueing system is not fully exploited. Further, since
the first replication of scenario 1 consumes fewer random numbers than scenario
2 (because fewer customers are able to be served in T = 8 h), the synchronization
is even worse in the second replication. As we make more and more replications,

Table 9.1 A possible sequence of events and the random numbers consumed by the first and
second replications of scenarios 1 and 2 using a single random-number stream

Scenario 1 (one server) Scenario 2 (two servers)
Event RN Purpose Event RN Purpose
Arrival U1 Interarrival Arrival U1 Interarrival

U2 Age U2 Age
U3 Service time U3 Service time

Arrival U4 Interarrival Arrival U4 Interarrival
U5 Age U5 Age

U6 Service time
Arrival U6 Interarrival Arrival U7 Interarrival

U7 Age U8 Age
End service U8 Service time End service U9 Service time

...
...

...
...

...
...

End service U123 Service time End service U139 Service time

End of replication 1 End of replication 1
Arrival U124 Interarrival Arrival U140 Interarrival

U125 Age U141 Age
U126 Service time U142 Service time

...
...

...
...

...
...
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there will tend to be less and less synchronization, and smaller and smaller positive
covariance.

The reason for pseudorandom-number generators having multiple starting seeds
or streams is to facilitate synchronization. By assigning a distinct stream to each
input process (arrivals, age, and service time), we guarantee that each pseudoran-
dom number is used for the same purpose in each scenario. To maintain this syn-
chronization across replications, we also need distinct starting streams or seeds for
each replication. Thus, implementing common random numbers for the queueing
example requires 100× 3 = 300 starting seeds or streams for full synchronization,
which is easily doable with a pseudorandom-number generator like MRG32k3a in
L’Ecuyer (1999). See L’Ecuyer et al. (2002) for an efficient implementation of mul-
tiple streams.

Partial synchronization is better than no synchronization at all, but the benefits of
full synchronization can be substantial. Shechter et al. (2006) describe a simulation
that compares survival rates of an HIV cohort under two different treatment poli-
cies using independent simulations (different random numbers assigned to policies
1 and 2), and using common random numbers with partial synchronization and full
synchronization. Relative to independent simulations, using common random num-
bers with full synchronization reduced the variance of the difference estimate by
93%, but only by 37% with partial synchronization. See Kelton (2006) for further
discussion about synchronization strategies.

Clearly, variate generation via the inverse cdf also aids synchronization since
each input variate is a function of one U . However, it is not always essential. In
the queueing example the arrival-process input model is the same for scenarios 1
and 2. Thus, as long as the arrival process has a separate random-number stream,
each scenario will experience exactly the same sequence of arrivals no matter what
method is used to generate the interarrival times.

More care is required for the service times because the distribution changes.
When the distribution changes but remains in the same family, it is sometimes pos-
sible to view the inputs for both scenarios as a transformation of a common base
random variable. Examples include the normal distribution with mean μ and vari-
ance σ2 since if Z is N(0,1) then

μ+σZ

is N(μ ,σ2). Thus, as long as we generate the base Z using the same method and the
same stream in both scenarios 1 and 2, we achieve full synchronization (and strong
positive correlation). The same reasoning can be applied to lognormal variates, since
they are transformations of normals.

Even when there is no simple expression for the inverse cdf, approximations
and numerical inversion are possible (see Sect. 6.4). This will likely be slower than,
say, a rejection method, but the additional effort may be worthwhile if a signifi-
cant variance reduction can be achieved. When inversion is simply not possible,
then Kachitvichyanukul and Schmeiser (1990) show that there are ways to create
rejection-type algorithms that still maintain synchronization and monotonicity.
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While our focus here has been on the effect of common random numbers on the
probability of correct selection, the variance reduction is also relevant when the goal
is simply to estimate the difference in performance between two or more scenarios.
Suppose that we have just two scenarios, x1 and x2, for the mean activity times in the
SAN simulation, and we simulate n replications of each: Y1(x1),Y2(x1), . . . ,Yn(x1)
and Y1(x2),Y2(x2), . . . ,Yn(x2). Let D j = Yj(x1)−Yj(x2), j = 1,2, . . . ,n be the dif-
ferences between corresponding replications of the two scenarios. Then the paired-t
confidence interval for the difference θ(x1)−θ(x2) is

D± t1−α/2,n−1
SD√

n
, (9.8)

where

D =
1
n

n

∑
j=1

D j

and

S2D =
1

n−1

n

∑
j=1

(D j −D)2.

This CI is valid with or without common random numbers, provided that the D j

are approximately normally distributed or n is large. The effect of common random
numbers shows up in the Var[D j] = Var[Yj(x1)−Yj(x2)], which is estimated by S2D.
Thus, we expect S2D to be smaller, making the CI shorter, when common random
numbers are used, and this makes differences easier to detect.

The pairing of replications in (9.8) is important under common random numbers.
If we have synchronized correctly, then Yj(x1) and Yj(x2) are dependent and posi-
tively correlated, while Yj(x1) and Yh(x2) are independent for different replications
j �= h. Therefore, we can treat the D1,D2, . . . ,Dn as i.i.d.

For example, for the SAN we simulated two scenarios x1 = (1,1,1,1,1) and
x2 = (0.5,0.5,1,1.2,1.2)with and without common random numbers. Based on 100
replications the estimated correlation between Yj(x1) and Yj(x2) was 0.93, reducing
the half width of the confidence interval for the difference from ±0.46 to ±0.12
when the estimated difference is about D = 0.30.

9.3 Ranking and Selection

Suppose that there are only K possible scenarios x1,x2, . . . ,xK , and we would like
a guarantee of selecting the best among them. These scenarios arise either because
there are exactly K feasible scenarios and all of them will be simulated, or because
there are the K scenarios in C that were actually simulated during some sort of
search. In the SAN optimization these would be K settings for the mean activity
times that can be attained within the available budget.
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SO among a finite number of scenarios is usually termed “ranking and selec-
tion,” deriving its name from statistical procedures invented in the 1950s and 1960s
for industrial and biostatistics applications; see Bechhofer et al. (1995). In the orig-
inal context K was typically quite small. In the 1980s ranking and selection was
embraced by simulation researchers, leading to rapid advancement in theory and
widespread application; this section covers some basic foundations. Ranking-and-
selection procedures are particularly amenable to parallelization, a topic discussed
in a separate section of this chapter.

The formal proofs that the procedures presented in this section provide
their stated guarantees assume that the output data from each scenario xi,
Y1(xi),Y2(xi), . . . ,Yni(xi), are i.i.d. normally distributed with mean θ(xi) and finite
variance. Independence is assured if they are the results from different replications
and may be approximately correct if they are batch statistics from a single repli-
cation of a steady-state simulation (see Sect. 8.2). Further, in the procedures that
follow θ(xi) is estimated by the sample mean

θ̂(xi) = Y (xi;ni) =
1
ni

ni

∑
j=1

Yj(xi).

As in Sect. 9.1.2, we let xB denote the unknown best scenario; that is,

θ(xB) = min
i=1,2,...,K

θ(xi).

There are numerous procedures available for many variations of this type of prob-
lem, and asymptotic justifications for cases in which normality and independence
do not apply; some general references are Bechhofer et al. (1995), Frazier (2010),
Goldsman and Nelson (1998) and Kim and Nelson (2006). We present two proce-
dures that have been be useful in practice and that illustrate some key ideas.

9.3.1 Subset Selection

A subset selection procedure delivers a set of feasible scenarios I ⊆ {x1,x2, . . . ,xK}
with a guarantee that

Pr{xB ∈ I} ≥ 1−α.
In the best case I contains a single scenario, which is xB with probability at least
1−α . More typically, subset selection eliminates or screens out scenarios that (with
high statistical confidence) are not the best so that attention can be focused on
a much smaller group. The specific procedure below is particularly useful when
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x1,x2, . . . ,xK are the result of a search of C because it can allow the scenarios to
have different numbers of observations.

1. Given ni ≥ 2 observations from scenario xi, set

ti = t
(1−α)

1
K−1 , ni−1

the (1−α) 1
K−1 quantile of the t distribution with ni−1 degrees of freedom,

for i = 1,2, . . . ,K.
2. Calculate the sample means Y (xi;ni) and sample variances

S2(xi) =
1

ni −1

ni

∑
j=1

(
Yj(xi)−Y (xi;ni)

)2

for i = 1,2, . . . ,K, and also the threshold

Wih =

(
t2i

S2(xi)

ni
+ t2h

S2(xh)

nh

)1/2

for all i �= h.
3. Form the subset

I =
{
xi : Y (xi;ni)≤ Y (xh;nh)+Wih for all h �= i

}
.

The rule for which scenarios are included in the subset is simple: Include xi if

Y (xi;ni)≤ Y (xh;nh)+Wih, h �= i.

That is, we retain scenario xi if its sample mean is smaller than all of the other
sample means adjusted with a positive quantity Wih that accounts for estimation
error. Why does this work? The following argument is behind many subset selection
procedures:

Pr{xB ∈ I}
= Pr

{
Y (xB;nB)≤ Y (xh;nh)+WBh, h �= B

}
= Pr

{
Y (xB;nB)−Y (xh;nh)− [θ(xB)−θ(xh)]≤WBh − [θ(xB)−θ(xh)], h �= B

}
≥ Pr

{
Y (xB;nB)−Y (xh;nh)− [θ(xB)−θ(xh)]≤WBh, h �= B

}
. (9.9)

The Inequality (9.9) follows because−[θ(xB)−θ(xh)]≥ 0, so removing it from the
right-hand side makes the event more difficult to satisfy. The statistic

Y (xi;ni)−Y (xh;nh)− [θ(xi)−θ(xh)]

has mean 0 for all i �= h, allowing the Wih’s to be derived that give the desired prob-
ability based only on their variances.
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The formal proof of validity is in Boesel et al. (2003), and it assumes that com-
mon random numbers are not used in the experiment design. This makes sense be-
cause the number of observations from each scenario can be different so the repli-
cations from different systems cannot be paired. If the number of observations is
forced to be equal to n0, say, and common random numbers are employed, then the
procedure is valid if Wih is replaced with

W ′
ih =

(
t2

S2ih
n0

)1/2

with
t = t1−α/(K−1),n0−1

and

S2ih =
1

n0−1

n0

∑
j=1

(
Yj(xi)−Yj(xh)− [Y (xi;n0)−Y (xh;n0)]

)2
.

The effect of common random numbers is to reduce the size of the selected subset
since it reduces the variance of the difference that in turn reduces Wih. See Nelson
et al. (2001).

9.3.2 Selection of the Best

Subset selection is an analysis method that takes whatever output data are available
on the scenarios x1,x2, . . . ,xK and provides inference on which ones are not the
best. In this section we describe a design and analysis procedure that controls the
amount of simulation effort expended and delivers a single selection at the end. To
make this happen the user is required to specify the smallest difference in expected
performance that is practically important, which we will call δ . Here are some
examples:

In a queueing simulation where waiting times are on the order of tens of minutes,
a difference of less than 1/2min (30 s) in mean waiting time might not be practically
important, but a difference of more than that matters; therefore, we might set δ =
1/2min. In a reliability simulation where time to failure is on the order of weeks,
differences between scenarios of 12 h or more in mean time to failure might be
meaningful to the system designers; thus, we could set δ = 12 h. And in a project
planning optimization if the project takes a year or more to complete, then we might
be satisfied with a scenario xi that is not optimal if its mean time-to-completion
θ(xi) is no more than δ = 7 days longer than the optimal mean time θ(xB). The
choice of δ is entirely up to the user and depends on the situation.

Each iteration of the procedure below takes a single observation from scenarios
that have not yet been screened out, applies a type of subset selection, and continues
until there is only one scenario in the subset. It is valid with or without common ran-
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dom numbers and can be very efficient (i.e., terminate quickly) if common random
numbers are employed. The guarantee provided is that

Pr{select xB|θ(xi)−θ(xB)≥ δ , ∀i �= B} ≥ 1−α.

The specification of a practically significant difference δ is what allows the proce-
dure to guarantee to terminate in finite time. Such procedures are called indifference-
zone selection procedures and δ is what defines the indifference (not practically
important) zone.

1. Specify a common first-stage number of observations n0 ≥ 2. Set

η =
1
2

[(
2α

K −1

)−2/(n0−1)

−1

]
.

2. Let I = {x1,x2, . . . ,xK} be the set of scenarios still in contention, and let
t2 = 2η(n0−1). Obtain n0 observations Yj(xi), j = 1,2, . . . ,n0 from each
scenario xi ∈ I and compute Y (xi;n0). For all i �= h calculate

S2ih =
1

n0−1

n0

∑
j=1

(
Yj(xi)−Yj(xh)−

[
Y (xi;n0)−Y (xh;n0)

])2
,

the sample variance of the difference between scenarios i and h. Set r = n0.
3. Set Iold = I. Let

I =
{
xi : xi ∈ Iold and Y (xi;r)≤ Y (xh;r)+Wih(r),∀h ∈ Iold,h �= i

}
,

where

Wih(r) =max

{
0,
δ
2r

(
t2S2ih
δ 2

− r

)}
.

4. If |I|= 1, then stop and select the scenario in I as the best. Otherwise, take
one additional observation Yr+1(xi) from each scenario xi ∈ I, update the
sample means, set r = r+1, and go to Step 3.

This procedure, due to Kim and Nelson (2001), applies subset selection itera-
tively as new observations are obtained, with the threshold Wih(r) shrinking to 0 so
that eventually the scenario with the smallest sample mean is selected. Why does
this work?

Recall the correct-selection event

CS = {select xB}

=
{
θ̂(xB)< θ̂(xi), i = 1,2, . . . ,K, i �= B

}

=
K⋂

i=1,i �=B

{
θ̂(xB)< θ̂(xi)

}
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and consider the
Pr
{
θ̂(xB)< θ̂(xi)

}
.

Since we operate under the assumption that θ(xi)−θ(xB)≥ δ , we have

Pr
{
θ̂(xB)< θ̂(xi)

}

= Pr
{
θ̂(xB)− θ̂(xi)< 0

}

= Pr
{
θ̂(xB)− θ̂(xi)− [θ(xB)−θ(xi)]<−[θ(xB)−θ(xi)]

}

≥ Pr
{
θ̂(xB)− θ̂(xi)− [θ(xB)−θ(xi)]≤ δ

}
, (9.10)

where the Inequality (9.10) follows because we assume that the minimum difference
is ≥ δ . As in subset selection, the statistic

θ̂(xB)− θ̂(xi)− (θ(xB)−θ(xi))

has mean 0, and since δ is known, the procedure can be designed to provide the
desired guarantee by considering only δ , the variances, and the number of replica-
tions.

Remark 9.1. The indifference-zone formulation has dominated both the research
and practice of ranking and selection. A natural question is what happens if there are
one or more scenarios whose mean is within δ of the best? Clearly, the guarantee of
selecting the single best is compromised, but one would hope it might carry over to
selecting one of the δ -close alternatives; this is called a “good selection guarantee.”
Some procedures provide it, some do not, and for others the status is unknown. For
instance, the procedure by Kim and Nelson (2001) above appears to select a good
system in empirical evaluations, but there is no proof. See Eckman and Henderson
(2018a) for what is known about good selection guarantees at this time. For a related
but entirely indifference-zone-free formulation, see Fan et al. (2016).

9.3.3 Example

We illustrate these procedures with the SAN optimization, supposing that the project
budget allows reducing the mean activity time for only one activity; the feasible
scenarios are shown below:

x1 x2 x3 x4 x5
xi1 0.5 1 1 1 1
xi2 1 0.5 1 1 1
xi3 1 1 0.75 1 1
xi4 1 1 1 0.5 1
xi5 1 1 1 1 0.5
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For subset selection, we independently simulated all K = 5 scenarios for n = 100
replications, giving the following summary statistics:

x1 x2 x3 x4 x5
Y (xi,ni) 3.045384364 3.556953882 3.313437416 3.361689108 2.772924336
S2(xi) 2.318117804 2.627223846 2.946949109 2.915804886 2.099817647

Clearly, x5 has the smallest sample mean, but which others are close enough that
they cannot be eliminated from being the best? For confidence level 1−α = 0.95,
the subset selection procedure designed for use without common random numbers
gives the selected subset as I = {x1,x5}. Why is, say, x3 eliminated but not x1?

Notice that (1−α)1/(K−1) = 0.951/4 = 0.987, so the critical value for each sce-
nario is t2i = t20.987,99 = 5.145. Scenario x3 is eliminated because

Y (x3,n3) ≈ 3.313 �≤ Y (x5,n5)+
(

t23
S2(x3)

n3
+ t25

S2(x5)
n5

)1/2

≈ 2.773+

(
5.145

2.947
100

+5.145
2.100
100

)1/2

≈ 3.282.

However, x1 cannot be eliminated because

Y (x1,n1)≈ 3.045≤ Y (x5,n5)+
(

t21
S2(x1)

n1
+ t25

S2(x5)
n5

)1/2

≈ 3.250.

The guarantee is that the best scenario xB is either x1 or x5 with 95% confidence. In
fact, it is easy to see that θ(x1) = θ(x5), and a bit more difficult to see that they are
the best scenarios, so this is a correct selection.

Next we applied selection of the best at confidence level 1−α = 0.95, n0 = 10
initial replications from each scenario, practically significant difference δ = 0.1, and
using common random numbers. The relevant constants are

η =
1
2

[(
2α

K −1

)−2/(n0−1)

−1

]
=

1
2

[(
2(0.05)

4

)−2/9

−1

]
≈ 0.635

and t2 = 2η(n0−1)≈ 11.429. At each iteration the procedure compares the sample
means of all scenarios to each other. Comparison between, say, scenarios x1 and x5
requires the sample variance of the difference S215 ≈ 0.294, giving the decreasing
threshold

W15(r) = max

{
0,
δ
2r

(
t2S215
δ 2

− r

)}

= max

{
0,

0.1
2r

(336.2− r)

}
.
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The thresholds W12(r),W13(r), and W14(r) are computed in a similar fashion. We
eliminate scenario x1 at iteration r if

Y (x1;r) �≤ Y (xh;r)+W1h(r)

for some other scenario h �= 1.
The procedure selected x5 as the best after 171,10,33,109,171 replications from

x1,x2,x3,x4,x5, respectively. This means that x2 was eliminated after the initial
sample, and then (in order) x3,x4 and x1 were eliminated. Why was scenario x1
eliminated if it is equivalent to x5? Because after 171 replications the procedure was
able (with 95% confidence) to decide that x5 is either the best or within δ = 0.1 of
the best, and that is all that is required to make a correct selection.

9.3.4 The Rate-Optimal Allocation

From the procedures presented above it is clear that the efficiency of a ranking-
and-selection procedure in the normally distributed output case depends (at least)
on the means θ(x1),θ(x2), . . . ,θ(xK) and variances σ2(x1),σ2(x2), . . . ,σ2(xK) of
the K scenarios, whether or not we employ common random numbers, and how we
allocate the replications n1,n2, . . . ,nK . By “efficiency” we mean the total number of
replications required to reach a selection, or the size of the retained subset in subset
selection. The means and variances are defined by the problem, as is (to some extent)
the effect of common random numbers. What is under our control is the allocation
of replications.

Previously we let Y (xi,ni) denote the sample mean of system i when allocated ni

replications. Here we let N be the total number of replications to allocate, and write
ni = βiN where βi ≥ 0 and ∑K

i=1βi = 1. We ignore the obvious need for rounding
the ni to integers since we are going to let N → ∞. What is the optimal choice for
the β ’s?

To define “optimal” we need an objective. The one we consider here is having
limN→∞Pr{x̂� �= xB} go to 0 at the fastest possible rate, where x̂� is the selected
scenario and xB is the true best, which we assume is unique. Notice that Pr{x̂� �= xB}
is the probability of an incorrect selection. Any allocation with all βi > 0 will drive
the probability of incorrect selection to 0 as N →∞; see Exercise 8.We are interested
in the choice that sends it to 0 as rapidly as possible.

To ease the notation overload in what follows, we let i denote scenario xi, B de-
note the best scenario xB, and use subscripts like θi, σi, andY i rather than arguments
like θ(xi), σ(xi), and Y (xi,ni).

Glynn and Juneja (2004) showed that in the normally distributed output case,
when all scenarios are simulated independently, the rate-optimal β ’s satisfy the fol-
lowing balance equations:

(
βB

σB

)2

= ∑
i �=B

(
βi

σi

)2

(9.11)
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(θi −θB)
2

σ2
i
βi

+
σ2

B
βB

=
(θ j −θB)

2

σ2
j
β j

+
σ2

B
βB

, ∀i, j �= B. (9.12)

Even though none of the terms in the equations above are known in practice, it is
nevertheless a profound result as it characterizes how the true means and variances
affect the optimal allocation, and it provides a target for implementable procedures
to try to attain.

Exercise 9 asks you to show that in the special case that δ > 0, θB = θ−δ , θi = θ
for all i �= B, and σ2

i = σ2 for all i, the rate-optimal allocation is

βi = β =
1

(K −1)+
√

K −1
, ∀i �= B (9.13)

βB = β
√

K −1. (9.14)

Notice that in this equal-variance indifference-zone-like case, the probability of in-
correct selection is driven to 0 at the fastest rate if the best scenario is simulated√

K −1 more often than the others.

Remark 9.2. Glynn and Juneja (2004) actually derive a more general result with
(9.11)–(9.12) falling out for the special case of normally distributed outputs. The
key is applying a large deviation result like Theorem 5.2. Here we use Theorem 5.2
to sketch out the approach for normally distributed output. This remark may be
skipped without loss of continuity.

Consider the special case of K = 2 scenarios so that only (9.11) matters. Since
we are minimizing, the probability of incorrect selection is Pr{Y B −Y i ≥ 0} where
i �= B. Notice that

Y B −Y i ∼ N

(
θB −θi,

1
N

(
σ2

B

βB
+
σ2

i

βi

))

and θB −θi < 0. From Cramér’s Theorem 5.2

lim
N→∞

1
N
ln
[
Pr{Y B −Y i ≥ 0}

]
=−I(0) =− (θB −θi)

2

2
(
σ2

B
βB

+
σ2

i
βi

) ,

where the last term on the right-hand side comes from applying I(0) for the normal
distribution. Therefore, the best possible rate results from maximizing I(0), which
is equivalent to minimizing the denominator σ2

B/βB +σ2
i /βi, where βB = 1− βi.

Exercise 10 asks you to show that the minimum occurs when (βB/σB)
2 = (βi/σi)

2,
which matches (9.11).
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9.3.5 Bayesian Procedures

There are two basic paradigms in designing for correct selection: frequentist (de-
scribed above) and Bayesian. Bayesian ranking and selection consist of a sequence
of decisions; the decisions include which scenario x to simulate next, and possibly
whether or not to stop the procedure and select a scenario. The key to making good
decisions is that in the Bayesian formulation uncertainty about θ(x) is represented
as a prior probability distribution on its value, which is updated using Bayes rule
to a posterior distribution as simulation observations are obtained. A good starting
point for Bayesian ranking and selection is Frazier (2010).

An advantage of the Bayesian formulation is its flexibility; many kinds of infor-
mation or knowledge about the problem can be incorporated into the prior beliefs,
leading to substantial gains in efficiency. In addition, the procedure can be driven by
different objectives: maximizing the posterior probability of correct selection and
minimizing the expected opportunity cost (suboptimality) for the selected scenario
under a given simulation budget are two examples. Bayesian procedures are partic-
ularly appropriate for fixed-budget settings.

No procedure, frequentist or Bayesian, can dominate in all situations. Bayesian
procedures are often more efficient in terms of the total number of observations
required to make a selection but the algorithm itself may have substantial compu-
tational overhead and may not be easily implemented in parallel. Bayesian proce-
dures do not provide (or intend to provide) the correct-selection guarantee that the
frequentist procedures do. However, recent advances have shown strong links be-
tween Bayesian inspired procedures and desirable frequentist behavior; see Chen
and Ryzhov (2019), Frazier (2014), and the discussion that follows.

Bayesian statistics is a deep, subtle, and important topic not easily summarized.
The goal here is to provide a gentle introduction that is easy to follow by leaving
out lots of details and also to present a procedure that gives the flavor of a Bayesian
approach and its connection to frequentist probability of correct selection.

The Bayesian formulation begins by treating a specific problem with un-
known means θ(x1),θ(x2), . . . ,θ(xK) as an instance of a random problem
Θ(x1),Θ(x2), . . . ,Θ(xK), where the capitalΘ indicates a random variable. The joint
probability distribution ofΘ(x1),Θ(x2), . . . ,Θ(xK) provided by the analyst is called
the prior. In what follows we assume that the variances σ2(x1),σ2(x2), . . . ,σ2(xK)
are known, for simplicity.

Of course the specific problem is not actually random—the true means are im-
plied by the simulation code—but uncertainty about the problem is captured in the
prior. After obtaining simulation outputs from one or more scenarios, Bayes rule
provides the mathematical and computational machinery to reduce our uncertainty
about the problem by updating the prior given the new information; the update is
called the posterior. The posterior then provides guidance as to what scenarios to
simulate next. Obtaining additional outputs and updating the posterior continue un-
til either we run out of time or the posterior implies sufficient confidence to select a
scenario.
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To describe an algorithm, let H denote the history of the algorithm up to the
current iteration, by which we mean a record of which x’s were simulated and the
outputs Y (x) that were obtained. By “posterior” we mean the conditional distribu-
tion of {Θ(x1),Θ(x2), . . . ,Θ(xK)} given the prior and H . Since the posterior is a
distribution, we can compute probabilities, expectations, etc. with respect to it. One
posterior summary measure that has seen wide use is expected improvement (EI).
Let xi and x j be two scenarios. For a minimization problem the EI of selecting xi

over selecting x j is
E [max{0,Θ(x j)−Θ(xi)}|H ] . (9.15)

Let us examine (9.15) carefully: Θ(xi) and Θ(x j) are random variables represent-
ing our uncertainty about the performance of scenarios xi and x j. In a minimization
problem, max{0,Θ(x j)−Θ(xi)} is how much smaller Θ(xi) is than Θ(x j), if it
is smaller. EI averages this over the conditional (posterior) distribution of Θ(xi)
andΘ(x j), given the history. A scenario with large EI relative to other solutions is a
solution worth simulating to obtain a better estimate of its performance. EI was orig-
inally introduced in Jones et al. (1998) for deterministic computer experiments, and
extended to stochastic simulation in the form we use it here by Salemi et al. (2019).

The following ranking-and-selection algorithm due to Chen and Ryzhov (2019)
is called mCEI; it is easily modified to allow unknown variances. In mCEI one
scenario is simulated on each iteration: either the solution with the largest EI relative
to the sample best solution, or the sample best solution if its number of replications
is out of balance. In the algorithm n(x) is the number of replications obtained from
solution x up through the current iteration.

1. Simulate all scenarios for n0 ≥ 1 replications, let Y (x1),Y (x2), . . . ,Y (xK)
be the sample means, and let x̂� = argminxY (x), the scenario with the best
sample mean. Update H .

2. Let x′ = argmaxx �=x̂�E [max{0,Θ(x̂�)−Θ(x)}|H ], the scenario with the
largest EI relative to x̂�.

3. Check whether (
n(x̂�)
σ(x̂�)

)2

< ∑
x �=x̂�

(
n(x)
σ(x)

)2

.

If yes, then simulate x̂�; otherwise simulate x′.
4. Update the sample means and H .
5. Let x̂� = argminxY (x). If the budget has been expended, then return x̂� as

the selected solution; otherwise go to Step 2.

Remarkably, Chen and Ryzhov (2019) show that mCEI, which is inspired by
Bayesian reasoning, converges to the frequentist rate-optimal allocation of Glynn
and Juneja (2004) as the budget goes to infinity. This not only indicates that it
is efficient with respect to frequentist probabililty of incorrect selection, but also
provides a connection between frequentist and Bayesian perspectives.
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Fig. 9.1 A sample path of the mCEI algorithm applied to the SAN problem. Each ◦ represents one
replication obtained from scenario x1,x2, . . . ,x5. Initially n0 = 10 replications are obtained from
each scenario

Recall the SAN example in Sect. 9.3.3 with K = 5 scenarios. Figure 9.1 shows
one sample path of a modified mCEI algorithm in which n0 = 10 initial replications
are used to estimate the means and variances, and both of these are updated as addi-
tional replications are obtained. The budget is 500 replications, the same as given to
the subset procedure, and nearly the same as consumed by the select-the-best proce-
dure, in Sect. 9.3.3. Recall that x1 and x5 are statistically equivalent and superior to
the others. Notice that the two superior systems are simulated more frequently, but
no systems are completely eliminated.

Remark 9.3. EI is just one of many possible ways to exploit the posterior distribution
to drive a ranking-and-selection procedure. Functionals like EI are sometimes called
“acquisition functions” because they specify which scenarios to simulate (acquire)
next. Critical is that the acquisition function can actually be computed with respect
to the posterior. Exercise 11 asks you to show that calculating EI for the case of
Chen and Ryzhov (2019) is easy.

9.3.6 Cleaning Up After Simulation Optimization

The procedures described in this section can be used for simulation optimization
when {x1,x2, . . . ,xK} are the only feasible scenarios and all of them will be simu-
lated. When this is the case, the three types of the SO error—failure to simulate the
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optimal scenario, failure to select-the-best scenario that was simulated, and poorly
estimating the performance of the selected scenario—can all be managed.

On the other hand, when {x1,x2, . . . ,xK} is only a subset of the feasible sce-
narios, then failure to simulate the optimal scenario can only be addressed in an
asymptotic sense, as described in the discussion on convergence in Sect. 9.1.1. The
other two SO errors can, however, still be controlled. We will focus on the second
one, selection error, since it is the most critical.

At the end of a SO search, the output data that have been generated are

Yj(xi), j = 1,2, . . . ,ni, i = 1,2, . . . ,K. (9.16)

Since SO algorithms often revisit scenarios and accumulate observations on each
visit, there is no reason to believe that the ni’s will be equal, which limits the effec-
tiveness of common random numbers.

Boesel et al. (2003) proposed the idea of “cleaning up” after an SO algorithm
terminates by starting with the data (9.16) and doing as little additional simulation
as possible to obtain a correct-selection guarantee. The approach consists of two
steps:

1. Apply a subset selection procedure to (9.16) to reduce (typically greatly) the
number of scenarios that are competitive to be the best. The subset selection
procedure described Sect. 9.3.1 is particularly useful for clean up because it can
start from unequal sample sizes ni, and it only requires that the sample means
and sample variances from all K scenarios be retained, not all of the raw data.

2. Apply a selection-of-the-best procedure to the scenarios in the subset. The pro-
cedure presented here could be used, but others described in Boesel et al. (2003)
are easier to apply.

Boesel et al. (2003) showed that certain combinations of subset selection and se-
lection of the best can be formally proven to deliver an overall correct-selection
guarantee. Xu et al. (2010) later showed that a precise estimation guarantee (the
third SO error) can be added in some cases. However, the analysis in these pa-
pers assumes that the data in (9.16) satisfy the first-stage-sample assumptions of
the subset or selection-of-the-best procedure. Eckman and Henderson (2018b) note
that when these outputs are obtained by running an optimization algorithm, then
the assumptions may not be strictly satisfied, which can compromise the statistical
guarantees. Nevertheless, even applied informally clean-up will greatly improve SO
performance.

Remark 9.4. Instead of “cleaning up” one might hope to manage selection error at
every iteration of the SO search, so that whenever the algorithm terminates there is
a statistical guarantee that the current sample best scenario is the best of those sim-
ulated up to that iteration. Hong and Nelson (2007a) showed that this is possible but
computationally expensive unless K is small. Rapid progress in uncovering better
and better scenarios in a large feasible space C typically requires less simulation
effort than is required to guarantee that the sample best scenario is the best at all
iterations. This is why we recommend the clean-up approach after the SO search.
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9.4 Adaptive Random Search

We now consider simulation optimization problems such as (9.1) for which C is
discrete and finite but contains far too many scenarios to simulate them all. Adap-
tive random search provides a framework for attacking such problems within which
asymptotic convergence can be proven while still allowing for algorithms that ag-
gressively pursue improving scenarios. We first describe adaptive random search at
a high level and then provide a specific algorithm.

An adaptive random search algorithm is iterative, with the iterations indexed by
i = 1,2, . . . . On the ith iteration, the algorithm has a probability distribution Pi(x) on
the scenarios x ∈ C. This distribution is used to sample one or more scenarios from
C. The distribution Pi(·) may (and usually will) depend on its “memory” of some or
all of the scenarios that have been simulated in previous iterations and perhaps the
output data obtained from simulating them.

The distinction between sampling scenarios and simulating them is important:
“Sampling” means randomly choosing a scenario x from C, while “simulating” a
scenario means generating output performance data. Adaptive random search algo-
rithms have a simulation allocation rule that specifies how much simulation effort
(e.g., how many replications) to expend on a sampled scenario, and also a value
V (x) for each simulated scenario. Most often V (x) = θ̂(x), its estimated perfor-
mance, but it can be other measures such as the number of times x has been visited
by the search.

Initialize: Set the iteration counter to i = 1.
Sample: Choose an estimation set, which is a collection of scenarios Ei ⊂ C where

some or all of the scenarios were chosen by sampling according to Pi(·) and
others were retained from previous iterations.

Simulate: Apply the simulation allocation rule to simulate the scenarios x ∈ Ei.
Evaluate: Update the valueV (x) for all x∈ Ei and choose as x̂�i+1 the scenario with

the best value V (x).
Iterate: Update the algorithm memory, let i = i+1, and go to Sample.

Notice that the algorithm contains no stopping rule, which makes sense for prov-
ing asymptotic convergence. When a specific algorithm is applied, stopping may
occur when the simulation budget is exhausted or when progress appears to slow.

The sampling distribution Pi(·) and simulation allocation rule work together to
guarantee asymptotic convergence. When no strong structural properties of θ(x) are
known, then global convergence usually requires that all scenarios inC are simulated
infinitely often in the limit. For local convergence a scenario and all of its neighbors
must be simulated infinitely often for any scenario that appears to be locally optimal.
See Andradóttir (1999, 2006b) and Hong and Nelson (2007a) for specific conditions
that insure global and local convergence, respectively, of adaptive random search
algorithms.
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Three types of sampling distributions Pi(·) are common:

• A distribution that puts positive probability on a small number of feasible sce-
narios in a neighborhood of x̂�i . Typically, Pi(·) and the neighborhood structure
connect C so that any scenario is reachable from any other scenario after a suffi-
cient number of iterations.

• A distribution that puts positive probability on a “promising” subset of C that
may be large or small but is not necessarily a neighborhood of x̂�i . Typically such
distributions use memory in an intelligent way to concentrate the search. The
algorithm described below is of this type.

• A distribution that puts positive probability on all of C. Typically the distribution
changes as a function of the iteration and the memory, focusing probabilistically
on promising regions of C.

To illustrate some of the key ideas in adaptive random search we describe the
adaptive hyperbox algorithm (AHA) of Xu et al. (2012). This algorithm is applica-
ble when the components of x are integer-ordered decision variables and the neigh-
borhood of x is defined to be all feasible scenarios that differ from x by ±1 in one
component. For instance, in two dimensions the scenario x = (3,7) has neighbors
{(2,7),(4,7),(3,6),(3,8)}. Under mild conditions AHA can be shown to converge
to a locally optimal scenario (i.e., a scenario that is better than all of its feasible
neighbors).

Here is the AHA implementation of adaptive random search:
Value: AHA uses the estimated objective function value θ̂(x) accumulated over

all output data generated for scenario x. The key technical assumption is that
θ̂(x) converges with probability 1 to θ(x) as the amount of simulation effort
(replications or run length) goes to infinity.

Memory: AHA remembers all scenarios that have been simulated during the course
of the search and their estimated objective function values accumulated over all
output data generated.

Distribution Pi(·): AHA puts positive probability on scenarios that are feasible and
are in or on a hyperbox that surrounds x̂�i , the simulated scenario with the best
estimated objective function value on iteration i. The hyperbox is defined by sce-
narios that have been simulated and are closest to x̂�i in one or more coordinate.
All other feasible scenarios have probability 0. A fixed number of scenarios are
sampled on each iteration, and revisiting scenarios is allowed.

Estimation set Ei: For the estimation set AHA includes the current sample best x̂�i
and any scenarios sampled from Pi(·).

Simulation allocation rule: AHA requires that whenever a scenario is in the esti-
mation set it must receive additional simulation (replications or run length).

Figure 9.2 illustrates how AHA works in a feasible region similar to the SAN
optimization problem except that it is only in two dimensions. On the first iteration
the three scenarios indicated by • are randomly sampled from within the feasible
C, all are simulated according to the simulation allocation rule, and the scenario
indicated by x̂�1 is the sample best. Therefore, the other two • scenarios are used to
build the hyperbox. Scenarios for the next iteration are sampled from the intersection
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Feasible region C

First hyperbox

Second
hyperbox

Fig. 9.2 First iteration (• scenarios) and second iteration (◦ scenarios) of the adaptive hyperbox
algorithm

of the hyperbox with C; this provides the ◦ scenarios that are simulated along with x̂�1
according to the simulation allocation rule. Of these four scenarios, the one indicated
by x̂�2 is now the sample best, so the scenarios that are closest in each coordinate
direction are used to define the second hyperbox.

It is easy to see that if there was no simulation error (θ̂(x) = θ(x)), then the
hyperbox would continue to shrink until it surrounds a single scenario with θ(x�)
value less than or equal to all of its neighbors; that is, a locally optimal scenario.
Even with simulation error this will happen in the limit because the estimates θ̂(x)
of an apparently locally optimal scenario and its neighbors converge to their true
expected values as the number of iterations (and therefore simulation effort) goes to
infinity.

9.5 Statistical Learning

We now consider simulation optimization problems such as (9.1) for which the fea-
sible region C is (typically) a bounded convex subset of ℜd . Examples include a C
that contains the integer values in a bounded convex region, or one that is contin-
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uous and defined by (say) linear constraints. In any event C contains far too many
scenarios to simulate all of them.

Section 9.4 described adaptive random search, which leads to algorithms that
can be proven to converge to a globally or locally optimal scenario in the limit, but
may have disappointing finite time performance, especially when the budget is tight
relative to the size of C. The rationale for adaptive random search is the belief that
good scenarios tend to cluster in C, so whenever a good scenario is discovered one
should concentrate the search around it. What we call “statistical learning” makes
formal, and stronger, assumptions about the spatial relationship among feasible sce-
narios and exploits it in hopes of making more rapid progress. The formalism we
exploit here is the spatial Gaussian process (GP), as described in Sect. 5.2.5.3; how-
ever, others are possible including polynomial regression models; see, for instance,
Chapter 4 in Fu (2015).

At a high level, the idea is simple: Treat the unknown objective function θ(x)
as a realization of a GP G(x) with mean function m(x) = E[G(x)] and covariance
function C(x,x′) = Cov[G(x),G(x′)]. As we search C by simulating scenarios x and
observing noisy estimates of their performance, Y (x) = G(x)+ ε(x), we update the
conditional distribution of G(·) using Eqs. (5.14)–(5.15) and refine the search based
on this learned information. For instance, choosing the next scenario to simulate
via expected improvement (EI) as described in Sect. 9.3.5 still applies. This generic
approach is sometimes called Bayesian optimization.

Imposing spatial covariance among all scenarios allows the search to learn about
unsimulated scenarios via the ones that have been simulated and therefore is ideal
for search. Although choosing the prior mean function to be an unknown constant,
m(x) =m, seems to work well, the choice of covariance function C(·, ·) is critical as
it implies properties of the objective function surface θ(x). For instance, the popular
squared-exponential covariance function

C(x,x′) = τ2 exp

(
d

∑
i=1
βi(xi − x′i)

2

)
(9.17)

implies that θ(x) is infinitely continuously differentiable in ℜd ; see Santner et al.
(2003). Notice also that (9.17) has d + 1 tuning parameters τ ,β1,β2, . . . ,βd whose
values (along withm) are typically estimated from an initial experiment; their values
also matter.

Simulation optimization via statistical learning is an active research area with
new developments regularly. Excellent tutorials include Frazier (2010, 2018).

9.6 Searching in Improving Directions

We now consider simulation optimization problems such as (9.1) for which the
objective function θ(x) is continuous and differentiable in x, and C is (typically)
a convex subset of ℜd . Many algorithms for deterministic nonlinear optimization
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problems search C for (at least locally) optimal scenarios by moving in improving
directions based on the gradient of θ(x):

∇θ(x) =
(
∂θ(x)
∂x1

,
∂θ(x)
∂x2

, . . . ,
∂θ(x)
∂xd

)
.

For simulation optimization we can try to estimate ∇θ(x), just as we estimate θ(x)
itself, and then incorporate it into some sort of steepest descent algorithm such as
stochastic approximation (e.g., Fu (2006)). Gradient estimators are also useful in
their own right for sensitivity analysis; see Sect. 9.10. Our approach in this section
is to provide enough understanding of gradient estimation so that the reader can nav-
igate the vast literature on this subject. More so than any other topic in this book, the
mathematical conditions required for provable correctness of gradient estimators are
difficult to explain and verify; good general references are Fu (2006) and L’Ecuyer
(1990).

Recall that the basic output from the SAN optimization (9.2) can be expressed in
two ways:

Y (x) = max{A1(x1)+A4(x4),

A1(x1)+A3(x3)+A5(x5),

A2(x2)+A5(x5)} (9.18)

= max{− ln(1−U1)x1− ln(1−U4)x4,

− ln(1−U1)x1− ln(1−U3)x3− ln(1−U5)x5,

− ln(1−U2)x2− ln(1−U5)x5} , (9.19)

where (U1,U2,U3,U4,U5) are the pseudorandom numbers needed to generate the
exponentially distributed activity times (A1,A2, . . . ,A5), and θ(x) = E(Y (x)). We
will illustrate key ideas for gradient estimation by estimating the first component of
the gradient, ∂θ(x)/∂x1, which is the partial derivative of the mean time to complete
the project with respect to the mean of the first activity time, x1. Precisely the same
ideas apply to the other components x2,x3,x4,x5.

9.6.1 Finite Differences

Representation (9.19) and the definition of derivative suggest a natural approxima-
tion. Let

Y (x+Δx1) = max{− ln(1−U1)(x1+Δx1)− ln(1−U4)x4,

− ln(1−U1)(x1+Δx1)− ln(1−U3)x3− ln(1−U5)x5,

− ln(1−U2)x2− ln(1−U5)x5} ,
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which is the time to complete the project when the mean time for activity 1 is x1+
Δx1 (the term Δx1 is used to denote the vector (Δx1,0,0, . . . ,0)�). Then form the
finite-difference (FD) estimator

FD(x1) =
Y (x+Δx1)−Y (x)

Δx1
. (9.20)

Notice that we intentionally used common random numbers—the same
(U1,U2,U3,U4,U5) for each scenario—which makes sense because FD(x1) esti-
mates the difference between the mean time to complete the project for scenarios
x+Δx1 and x. Typically we would average FD(x1) estimators from across n > 1
replications to estimate ∂θ(x)/∂x1.

FD gradient estimators are easy to understand and implement. However, there are
substantial disadvantages: From a computational perspective, at least n(d +1) sim-
ulations are required to estimate the gradient in all d coordinate directions; this can
be a substantial burden if the optimization algorithm needs to repeatedly estimate
the gradient as it searches. Also FD is biased because

E(FD(x1)) =
θ(x+Δx1)−θ(x)

Δx1
,

while the derivative is the limit as Δx1 → 0. However, we cannot make Δx1 too
small because this causes numerical error as well as high variance since

Var [(Y (x+Δx1)−Y (x))/Δx1] = Var [Y (x+Δx1)−Y (x)]/Δx21 .

Common random numbers can provide substantial help with the variance problem
and should virtually always be used (see Glasserman and Yao (1992)).

9.6.2 Infinitesimal Perturbation Analysis

Suppose that we fix the pseudorandom numbers at (u1,u2,u3,u4,u5). If either
− ln(1−u1)x1− ln(1−u4)x4 or − ln(1−u1)x1− ln(1−u3)x3− ln(1−u5)x5 is the
longest path, then it will also be on the longest path at x+Δx1 for Δx1 small enough.
And since nothing is random, the limit Δx1 → 0 of the FD estimator is easy to cal-
culate:

lim
Δx1→0

Y (x+Δx1)−Y (x)
Δx1

= lim
Δx1→0

− ln(1−u1)(x1+Δx1)− (− ln(1−u1)x1)
Δx1

= − ln(1−u1)

=
− ln(1−u1)x1

x1
=

A1(x1)
x1

. (9.21)
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If neither of these is the longest path, then the difference does not depend on Δx1
and

lim
Δx1→0

Y (x+Δx1)−Y (x)
Δx1

= 0. (9.22)

These two cases together comprise the infinitesimal perturbation analysis (IPA) gra-
dient estimator

IPA(x1) =
A1(x1)

x1
I{A1(x1) is on the longest path} . (9.23)

Notice that IPA(x1) requires no additional simulation, just an additional calculation.
Another heuristic argument that ends up at the same place is this: To estimate

∂θ(x)/∂x1 it makes some sense to use ∂Y (x)/∂x1. If A1 is on the longest path, then
we can apply the chain rule to get

∂Y (x)
∂x1

=
∂Y (x)
∂A1

× ∂A1(x1)
∂x1

= 1×− ln(1−U1) =
A1(x1)

x1
.

If A1 is not on the longest path, then the derivative is again 0.
We have not established that IPA(x1) is a good gradient estimator (it is), but the

reason it “works” is that, with probability 1, Y (x) is continuous, differentiable, and
bounded in a neighborhood of x for any fixed x. Analogous IPA gradient estimators
exist for x2,x3,x4,x5, and they can all be computed simultaneously from a single
replication. Of course, to estimate the gradient we average IPA(x1) over n > 1 repli-
cations.

More generally, the validity of IPA gradient estimation hinges on the validity of
an interchange of differentiation and expectation:

∂θ(x)
∂xi

=
∂E[Y (x)]
∂xi

?
= E

[
∂Y (x)
∂xi

]
.

Technical conditions that allow this interchange are easy to state but often not as
easy to verify for a simulation model.

9.6.3 Likelihood Ratio

One problem with FD is the need for d+1 simulations to estimate the full gradient.
The following simple observation can get it down to 1.

Let f j(a j|x j) = exp{−a j/x j}/x j be the exponential distribution of the activity
time A j, j = 1,2, . . . ,5 for a fixed scenario x. Thus, the joint distribution of the activ-
ity times is given by∏5

j=1 exp{−a j/x j}/x j. Also let g(a) =max{a1+a4,a1+a3+
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a5,a2 + a5} where a = (a1,a2,a3,a4,a5). Consider the expectation of a weighted
version of the project completion time Y (x):

E

[
Y (x)

f1(A1|x1+Δx1)
f1(A1|x1)

]
= E

[
Y (x)

exp{−A1/(x1+Δx1)}/(x1+Δx1)
exp{−A1/x1}/x1

]

=
∫ ∞

0
· · ·

∫ ∞

0
g(a)

f1(a1|x1+Δx1)
f1(a1|x1)

5

∏
j=1

f j(a j|x j)da

=
∫ ∞

0
· · ·

∫ ∞

0
g(a) f1(a1|x1+Δx1)

5

∏
j=2

f j(a j|x j)da

= E[Y (x+Δx1)] = θ(x+Δx1).

Notice that A1 ∼ exponential with mean x1, but by appropriately reweighting the
output Y (x) we can estimate θ(x+ Δx1) from the observations generated under
setting x. The weight f1(A1|x1+Δx1)/ f1(A1|x1) is sometimes called the likelihood
ratio because it can be interpreted as the relative likelihood of the observation A1

if the mean was x1 +Δx1 as compared to x1. Therefore, from a single simulation
replication we can get a finite-difference estimator:

Y (x)
f1(A1|x1+Δx1)

f1(A1|x1)
−Y (x)

Δx1
=

Y (x)
f1(A1|x1)

× f1(A1|x1+Δx1)− f1(A1|x1)
Δx1

.

As we did with FD to motivate IPA, we can now take the limΔx1→0. Notice that

lim
Δx1→0

f1(A1|x1+Δx1)− f1(A1|x1)
Δx1

=
∂ f1(A1|x1)
∂x1

by definition. Therefore, the likelihood ratio (LR) gradient estimator is

LR(x1) =
Y (x)

f1(A1|x1)
∂ f1(A1|x1)
∂x1

= Y (x)
∂ ln f1(A1|x1)

∂x1
. (9.24)

For the exponential distribution of activity 1

∂ ln f1(A1|x1)
∂x1

=
∂
∂x1

(
−A1

x1
− lnx1

)
=

A1

x21
− 1

x1
=

A1− x1
x21

.

To estimate the gradient we average LR(x1) over n > 1 replications. Clearly we can
do the same thing for x2,x3,x4,x5. Again there are technical conditions that need
to be satisfied for this to be a valid gradient estimator, and they are satisfied in this
example. For LR to be applicable x must be the parameter of an input distribution.
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9.6.4 Weak Derivative

We motivate this gradient estimator by wishful thinking. Recall that FD(x1)
comes from simulating A1 from distribution f1 with mean x1+Δx1 and also with
mean x1, and then computing (Y (x+Δx1)−Y (x))/Δx1. FD(x1) has expectation
(θ(x+Δx1)−θ(x))/Δx1, which is not quite what we want. The wishful thinking

is that there exist two other distributions for A1, say f (1)1 and f (2)1 , and a scaling
constant Δ(x1), that are just right, meaning

E

[
g(A(1)

1 ,A2,A3,A4,A5)−g(A(2)
1 ,A2,A3,A4,A5)

Δ(x1)

]
=
∂θ(x)
∂x1

.

That is, we do two simulations, like FD, generating A2,A3,A4,A5 from their respec-

tive exponential distributions with means x2,x3,x4,x5, but we generate A1 from f (1)1

for the first simulation, from f (2)1 for the second one, and then take a scaled finite
difference.

Fortunately, it turns out that a magic triple (Δ(x), f (1), f (2)) exists for many com-
mon distributions (see Fu (2006), Table 1, noting that his c = 1/Δ(x)). These are
called weak derivatives (WD). For instance, for the exponential distribution with
mean x a weak derivative is

(
Δ(x), f (1)(a), f (2)(a)

)
=

(
x,

a
x2
e−a/x,

1
x
e−a/x

)
.

Note that ae−a/x/x2 is an Erlang-2 distribution with mean 2x.
Think of WD as a FD gradient estimator with no bias. As with FD, common

random numbers should be used for the two (or in general 2d) simulations.

9.6.5 Linear Regression

To motivate the linear regression gradient estimator, suppose for the moment that
Y (x) = β0+β�x+ ε where β0 is a constant, β is d × 1 vector of constants, and ε
is a mean-zero, finite-variance random variable representing the stochastic simula-
tion variability. Then clearly ∇θ(x) = ∇E(Y (x)) = β . An unbiased estimator β̂ of
β can be obtained by simulating n replications at each of m ≥ d + 1 design points
(x1,Yj(x1)),(x2,Yj(x2)), . . . ,(xm,Yj(xm)), j = 1,2, . . . ,n, and employing linear re-
gression. We refer to this as the REG gradient estimator.

Of course for a complex stochastic simulation global linearity of E(Y (x)) as a
function of x is probably too much to expect. However, near a fixed x0 approximate
linearity through design points close to x0 might be plausible, and standard regres-
sion diagnostics can be applied to check this. Notice that the total simulation effort
is n×m replications.
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In the special case when x is a parameter of an input random variable, as it is in
our SAN example, Wieland and Schmeiser (2006) observed that it may be possible
to employ regression to estimate the entire gradient from n replications at x0, just
as it is possible to do so with IPA and LR. Suppose that, in addition to Y (x0), the
simulation generates another d ×1 random variable X that has two key properties:

1. E(X) = x0.

2.

(
Y (x0)
X

)
has a multivariate normal distribution.

As a consequence of property 2, the conditional expected value of Y (x0) given the
observed value of X has the form E[Y (x0)|X] = β0+β�X, and therefore

E[Y (x0)] = β0+β�E[X] = β0+β�x0. (9.25)

See Sect. 5.2.5.1 and specifically Eq. (5.10). Equation (9.25) implies that
∇E(Y (x0)) = β and further that β can be estimated via linear regression of Yj(x0)
on X j, j = 1,2, . . . ,n.

Remark 9.5. Conditions 1 and 2 are sufficient but not necessary to employ the REG
method of gradient estimation. If X is consistent for x0, and the conditional expec-
tation E[Y (x0)|X] is approximately linear then REG will tend to provide a useful
estimate.

When might Conditions 1 and 2 hold at least approximately? In the SAN exam-
ple x� = (x1,x2, . . . ,x5) are the means of the activity times X� = (A1,A2, . . . ,A5)
so Condition 1 pertains. Clearly Condition 2 does not hold as the activity times
are exponentially distributed. However, batching the replications (Yj(x0),X j), j =
1,2, . . . ,n, as described in Sect. 8.2.3 will improve the approximation of multivariate
normality; batching can be a key tool to facilitate the regression method.

Wieland and Schmeiser (2006) focused on situations when a maximum likeli-
hood estimator of x0 can be formed within each replication of the simulation from
many observations. Consider for instance simulating the M/G/1 queue of Sect. 3.2
when the service times have a lognormal distribution with parameters x0 = (μ0,σ2

0 ).
Each replication might generate hundreds to thousands of i.i.d. service times from
which the MLE X� = (μ̂, σ̂2) can be computed within each replication. Then since
MLEs are asymptotically normally distributed, Conditions 1 and 2 may be approxi-
mately satisfied.

9.6.6 Choice of Gradient Estimator

The appropriate gradient estimator depends very much on specifics of the simula-
tion. The following discussion provides some guidance, but more detailed references
like Fu (2006) and L’Ecuyer (1990) should be consulted.
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FD is always applicable provided θ(x) is differentiable and θ̂(x) has finite vari-
ance in a neighborhood of x. Of course, FD requires a minimum of d+1 simulations
and a choice of Δx. Common random numbers should always be used. At the cost
of 2d simulations a better estimator uses central differences

CD(x1) =
Y (x+Δx1)−Y (x−Δx1)

2Δx1
.

If d is small or gradient estimates are only needed for a few scenarios x, then FD
and CD are attractive.

IPA, LR, and REG have the advantage of saving computational effort since they
can be computed from a single simulation no matter what the dimension of x. IPA
tends to have smaller variance, but the conditions under which it is appropriate are
sometimes difficult to verify and IPA can require more significant programming to
implement (notice that in the SAN optimization IPA necessitated determining which
activities were on the longest path). IPA gradient estimators are most often available
when the simulation output itself can be represented—either directly or via the chain
rule—as a differentiable function of x1.

LR gradient estimators, on the other hand, are most often available when x1 can
be represented as a parameter of an input distribution. When LR gradient estimators
exist, then computing them only requires reweighting the output of interest with a
weight that is a function of the input distribution. LR gradient estimators tend to
have larger variance than IPA, especially when x is the parameter of more than one
random variate per replication because the weight is a product of the input distri-
bution for each instance (e.g., x is the mean service time in a queue that simulates
1000 customers per replication so the weight will involve the product of the service
time distribution 1000 times).

Like LR, single-run REG gradient estimators apply when x can be represented
as the parameters of input distributions. Unlike LR, REG is most appropriate when
more than one random variate with x as its parameter is generated per replication.
REG estimators can be low variance and employ only ubiquitious linear regression
software to compute. However, they require retaining the values of the input random
variates generated during the replications.

Like LR and REG, WD gradient estimators can be considered when x is a pa-
rameter of an input distribution. WD gradient estimators do not save simulations
relative to FD and will be most useful when the input whose distribution has pa-
rameter x appears only once per replication, as it did in the SAN simulation. WD
gradient estimators tend to have low variance when common random numbers are
employed.

Just like the simulation response estimator θ̂(x;T,n,U) itself, the variance of
the gradient estimator depends on the number of replications and, for a steady-state
simulation, the run length. The number of replications or run length required to get
a precise estimate of θ(x) may or may not be sufficient to obtain a precise estimate
of its gradient.
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9.6.7 Steepest Descent

Gradient-based search for SO is beyond the scope of this book, other than to describe
the simplest method known as stochastic approximation,3 which is a method of
steepest descent: Starting from an initial scenario x0, implement the recursion

xi+1 = xi −ai∇̂θ(xi), (9.26)

where ai is a sequence such that ai → 0, but ∑∞i=1 ai = ∞; setting ai = a/i for a
positive constant a is a common choice. The intuition is that when ∇θ(xi) = 0 a
stationary point has been reached that is at least a local minimum, while having
ai → 0 (but not too fast) mutes the impact of variability in the gradient estimator
∇̂θ(xi).

Stochastic approximation can be sensitive to the choice of sequence ai, so it is
often made adaptive. A second issue is that on some iterations xi+1 may end up
outside the feasible region C; then there must be some way to project it back into C.

For instance, the constraints for the SAN optimization are

5

∑
j=1

c j(τ j − x j)≤ b

x j ≥ � j, j = 1,2,3,4,5.

If ∑5
j=1 c j(τ j − xi+1, j)> b, then we might instead use x′i+1, which is the perpendic-

ular projection of xi+1 onto the plane ∑5
j=1 c j(τ j − x j) = b, provided it also satisfies

the lower bound constraints. Exercise 5 asks you to work this out.

9.7 Optimizing the Sample Average Problem

In SO our goal is to minimize θ(x) using a simulation-based estimator θ̂(x;T,n,U)
of the objective function; we will assume that the replication stopping time T is
not a factor and drop it from the notation. Given fixed values for the number of
replications n and, most importantly, the random numbers U = u, consider solving
instead the optimization problem

min θ̂(x;n,U= u) (9.27)

x ∈ C.

In words, the objective of the optimization problem in (9.27) is to minimize the
value of the estimator θ̂(x;n,U = u) as a function of x. With the random numbers
fixed, this is a deterministic optimization problem and it seems plausible that if n

3 The name stochastic gradient descent is another name for this method, particularly when applied
in a machine learning context.
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is large enough then the optimal solution to (9.27) should be close to the optimal
solution of the SO problem. This approach is called sample average approximation
(SAA).

For instance, the output from replication j of the SAN simulation can be ex-
pressed as

y j(x) = max{a1 j(x1)+a4 j(x4),

a1 j(x1)+a3 j(x3)+a5 j(x5),

a2 j(x2)+a5 j(x5)}
= max

{
− ln(1−u1 j)x1− ln(1−u4 j)x4,

− ln(1−u1 j)x1− ln(1−u3 j)x3− ln(1−u5 j)x5,

− ln(1−u2 j)x2− ln(1−u5 j)x5
}
,

where we have made Y,A and U lowercase to indicate that there are no random
variables left after the random numbers are fixed. The objective of the corresponding
SAA problem is

min θ̂(x;n,U= u) =min
1
n

n

∑
j=1

y j(x).

In many cases the SAA problem is a difficult nonlinear optimization problem
without apparent structure and therefore cannot be readily solved. But in some SO
problems, such as the SAN optimization (9.2), solving the SAA problem is easy. In
fact, if we replace the max operator by three inequality constraints, then the SAA
problem can be formulated as a linear program:

min
1
n

n

∑
j=1

y j (9.28)

y j ≥ − ln(1−u1 j)x1− ln(1−u4 j)x4
y j ≥ − ln(1−u1 j)x1− ln(1−u3 j)x3− ln(1−u5 j)x5
y j ≥ − ln(1−u2 j)x2− ln(1−u5 j)x5, j = 1,2, . . . ,n

b ≥
5

∑
k=1

ck(τk − xk)

xk ≥ �k, k = 1,2, . . . ,5.

This linear program has n+5 decision variables y1,y2, . . . ,yn,x1,x2, . . . ,x5 and 3n+
6 constraints (remember that all of the − ln(1− ui j) terms are fixed constants and
therefore are coefficients in the linear program). Thus, the SAA problem can be
solved even for a very large number of replications, n.

Let x̂�n be the optimal solution to the SAA problem (9.27) based on n repli-
cations. Then what matters is whether θ(x̂�n) is close to θ(x�), and in particular
does θ(x̂�n)→ θ(x�) as n → ∞? The various conditions that guarantee convergence
are quite technical, so we present just one set here. A comprehensive reference is
Shapiro et al. (2009).
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Suppose that for any x ∈ C we have θ̂(x;n,U) → θ(x) with probability 1 as
the number of replications n → ∞; that is, θ̂(x;n,U) satisfies a strong law of large
numbers as is often the case for averages across replications (see Sect. 5.2.2). From
here on we will assume that θ̂(x;n,U) is an average across i.i.d. replications and
E[θ̂(x;n,U)] = θ(x).

Although pointwise convergence might seem like enough, it is insufficient for
convergence of the optimal value θ(x̂�n) → θ(x�) in general because x̂�n is not a
fixed value of x, but rather the solution to the SAA problem over all x ∈ C. A more
comprehensive form of convergence is needed, in particular θ̂(x;n,U)→ θ(x) uni-
formly for all x ∈ C.

Uniform convergence means that, for any ε > 0, with probability 1, there exists
an n′ such that

sup
x∈C

∣∣∣θ̂(x;n;U)−θ(x)
∣∣∣≤ ε

for all n ≥ n′. For pointwise convergence this n′ can depend on x; for uniform con-
vergence it has to be independent of x, although it can depend on the particular
sequence of random numbers U. What it means is that when the number of replica-
tions is large enough, the estimator θ̂(x;n;U) is uniformly close to θ(x) for all x.
As a practical matter, if the estimator θ̂(x;n;U) is continuous in x with probability
1, and θ(x) is bounded, then we will have uniform convergence. Verifying this has
to be done problem by problem.

When it applies, SAA can be a powerful SO method because it turns a stochas-
tic problem into a deterministic one to which we can apply sophisticated linear and
nonlinear optimization techniques. A drawback is that the computational require-
ments to solve the SAA problem can increase substantially in n, and we want n
large to obtain a good approximation.

9.8 Stochastic Constraints

Recall again the formulation of the simulation optimization (SO) problem that
opened this section:

min θ(x)
x ∈ C .

What makes it a SO problem is the need to estimate θ(x) using a stochastic sim-
ulation. We have assumed that for any scenario x we can determine with certainty
whether x is feasible (x ∈ C) or infeasible (x �∈ C). For many practical problems
this is not possible. For instance, in the service center simulation of Sect. 4.6, the
objective was to minimize staffing costs subject to two constraints:

Percentage of simple orders entered in ≤10min is at least 96%.
Percentage of special orders entered in ≤10min is at least 80%.

Given a staffing scenario x, satisfaction of these constraints has to be estimated.
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For the service center the objective function (minimize staffing cost) was deter-
ministic, but more generally we have to estimate it as well. So we expand the SO
formulation to include stochastic constraints, specifically

min θ(x) (9.29)

x ∈ C

c�(x)≥ q�, �= 1,2, . . . ,v, (9.30)

where θ(x),c1(x),c2(x), . . . ,cv(x) must all be estimated. For the purposes of this
section we assume that for any scenario x we can observe simulation outputs
Y (x),C(1)(x),C(2)(x), . . . ,C(v)(x) with the property that

E(Y (x)) = θ(x)

E
(

C(�)(x)
)
= c�(x), �= 1,2, . . . ,v

so that it makes sense to estimate θ(x) and c�(x) by sample averages.
For example, in the service center simulation letC(1)(x) be the observed fraction

of simple orders arriving between 8 a.m. and 4 p.m. and that are entered in ≤10min,
and let C(2)(x) be the corresponding fraction for special orders, under staffing sce-
nario x. Then the stochastic constraints are

c1(x) = E
(

C(1)(x)
)
≥ 0.96

c2(x) = E
(

C(2)(x)
)
≥ 0.80.

To simplify the presentation we will focus on the case of v = 1 stochastic constraint
c(x)≥ q that is estimated by the simulation output C(x).

Constraints nearly always represent limits on our ability to minimize the ob-
jective θ(x); stated differently, if the constraints could be relaxed or removed, then
scenarios could be chosen to make θ(x) even smaller. In the service center we could
certainly assign fewer staff if, say, only 50% of the orders needed to be entered in
10min or less. Therefore, at the optimal scenario x� we expect the constraints to be
tight (c(x�) = q) or nearly so. A key message of this section is that using simulation-
based estimates to decide if c(x)≥ q when the constraint is tight, or nearly so, is a
more difficult problem than estimating the value of θ(x).

We will not recommend specific algorithms for dealing with stochastic con-
straints; instead, we make clear the difficulties that arise when including them. This
section is somewhat advanced and can be skipped without loss of continuity.

9.8.1 Feasibility

When there are a relatively small number of scenarios to consider, then a reasonable
strategy is to first decide which of them are feasible and next conduct a simulation
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experiment to find the best among the feasible ones. How hard is it to decide if a
scenario x is feasible?

Suppose that for scenario x we run n i.i.d. replications to obtain observations of
the constrained output C1(x),C2(x), . . . ,Cn(x). In the service center simulation this
might be the observed fraction of simple orders entered in≤10min for staffing level
x from n replications (days). We then decide constraint satisfaction by checking

C(x)
?
≥ q.

Let σ2(x) = Var(C(x)) and assume the usual case that 0< σ2(x)< ∞. Then by
the central limit theorem (Sect. 5.2.2)

Pr{C(x)≥ q} = Pr

{√
n
(
C(x)− c(x)

)
σ(x)

≥
√

n(q− c(x))
σ(x)

}

n→∞−→ Pr{N(0,1)≥ λ}, (9.31)

where N(0,1) represents a standard normal random variable. There are three cases
for λ :

1. If x is infeasible, then q− c(x) > 0, so λ is ∞ and (9.31) is 0. This is what we
want.

2. If x is feasible but not tight, then q− c(x) < 0, so λ is −∞ and (9.31) is 1. This
is also what we want.

3. If x is tight, then q − c(x) = 0, so λ is 0 and (9.31) is 1/2. This means that
no matter how much simulation we do, we cannot determine with certainty if a
constraint is tight, which implies that it will also be difficult when the constraint
is close to being tight.

When checking feasibility of stochastic constraints, there are two types of errors:
declaring a scenario feasible when it is infeasible, and declaring a scenario infeasible
when it is feasible. Often, however, the seriousness of the error depends on the
difference q− c(x). In the service center if we declare that a staffing policy x is
feasible when in fact c1(x) = 0.77, then this is certainly a more serious error than
declaring x′ feasible when c1(x′) = 0.94.

A practical way to address this difficulty is to expand the concept of feasibility.
Choose two additional cut-offs, q− and q+ such that q− < q < q+. If the value of
c(x) ≥ q+, then scenario x is desirable; if c(x) ≤ q−, then scenario x is unaccept-
able, while if q− < c(x) < q+, then secenario x is acceptable. We then run experi-
ments that allow us to be confident that the scenarios we declare feasible include all
of the desireable ones and some or all of the acceptable ones, but does not include
unacceptable scenarios. By allowing the slack to declare acceptable scenarios to be
feasible—whether or not they are actually feasible—we avoid the difficulty with
tight constraints.

Andradóttir and Kim (2010) and Batur and Kim (2010) provide formal proce-
dures to accomplish this. Informally, we can estimate c(x) precisely enough, as
measured by a confidence interval C(x)±H, so that we can feel confident that x
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is in the desirable to acceptable range (we do not have to separate them), or in the
unacceptable range; we retain the former and discard the latter.

Returning to the service center example, if the requirement of at least 96% of all
simple orders being entered in ≤10min is not a firm requirement, then we might
set q− = 0.92 and q+ = 0.98, for instance. This means that we want to be highly
confident of declaring staffing scenarios that achieve 98% entry as feasible, to dis-
card scenarios that are worse than 92%, and are willing to consider scenarios that
achieve greater than a 92% but necessarily a 96% service level.

9.8.2 Constraint-Guided Search

Here we consider SO problems that require a search, rather than exhausting all pos-
sible scenarios. One approach is to represent violation of the stochastic constraints
as a penalty. Two cases in this setting are particularly important.

Suppose that it is physically possible to violate the constraints, but the greater the
violation the less desirable the scenario is. This is certainly true in the service center
example. We might then reformulate the SO problem as

min θ(x)+
v

∑
�=1

p� (q�− c�(x)) (9.32)

x ∈ C,

where p�(·) is a penalty function that is 0 if c�(x)≥ q� and increasing in q�− c�(x)
otherwise. For instance,

p� (q�− c�(x)) = β�max{0,q�− c�(x)} .

This converts the SO problem (9.32) with stochastic constraints into a SO problem
with deterministic constraints to which the methods described elsewhere in this sec-
tion can be applied. Clearly the choice of the penalty function is important; in the
service center problem it should convert underachieving the service level into a dol-
lar cost (since the primary objective is staffing cost). Beyond that, there is a subtle
statistical issue that should be noted.

Returning to the case of v = 1 constraint, suppose we have n replications of the
simulation at scenario x. How do we estimate the Objective (9.32)? A natural (and
valid) estimator is

Y (x)+ p
(
q−C(x)

)
. (9.33)

If the penalty function p(·) is continuous around q− c(x), then this estimator con-
verges to the desired objective θ(x)+ p(q− c(x)) as n → ∞ by the strong law of
large numbers and the continuous mapping theorem (see Sect. 5.2.4).
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However, one might be tempted to compute the penalty on each replication and
use

1
n

n

∑
j=1

[Yj(x)+ p(q−Cj(x))] . (9.34)

This estimator will converge to

E [Y (x)+ p(q−C(x))] �= θ(x)+ p(q− c(x))

unless p(·) is linear. And since the penalty function is nonnegative, even a strictly
feasible scenario may have a positive penalty in the limit.

Now suppose that we really want to enforce feasibility, at least asymptotically.
Then instead of penalizing the objective function as in (9.32) we penalize the esti-
mated value of the scenario. To describe this approach, recall that search algorithms
work iteratively attempting to find better and better scenarios as the number of iter-
ations increases. Let i = 0,1,2, . . . be the iteration index, and let ni(x) be the total
number of replications obtained from scenario x through iteration i (search algo-
rithms can and often do revisit scenarios). Then in the case of a single constraint we
might define the estimated value of scenario x through iteration i to be

θ̂(x) = Y (x)+βimax
{
0,q−C(x)

}
,

where the averages include all observations j = 1,2, . . . ,ni(x). Notice that the co-
efficient βi depends on the iteration i (it might also depend on ni(x)) because we
want the penalty to grow as the search progresses so that, at least asymptotically,
infeasible scenarios are not competitive. The point to be made here is that one needs
to be careful about using the simple prescription that βi →∞ as i →∞. Here is why:

Suppose that the number of replications at scenario x, ni(x), goes to infin-
ity as the number of iterations goes to infinity. What happens to the penalty
βimax

{
0,q−C(x)

}
? It makes intuitive sense and can be proven formally us-

ing the strong law of large numbers (see Sect. 5.2.2) that if x is infeasi-
ble, then βimax

{
0,q−C(x)

} a.s.−→ ∞, while if x is feasible but not tight then

βimax
{
0,q−C(x)

} a.s.−→ 0, even though βi → ∞.
But this is misleading. Consider the probability of a penalty larger than, say,

δ > 0:

Pr
{
βimax

{
0,q−C(x)

}
> δ

}

≥ Pr
{
βi
(
q−C(x)

)
> δ

}

= Pr

{
C(x)−q <− δ

βi

}

= Pr

{√
ni(x)

(
C(x)− c(x)

)
σ

<

√
ni(x)
σ

(
q− c(x)− δ

βi

)}
.
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Using a central limit theorem argument similar to Sect. 9.8.1 the random variable on
the left-hand side is asymptotically N(0,1). Consider three cases for the right-hand
side:

1. If x is infeasible, then we want this probability to get large quickly. Since q−
c(x) > 0 and δ > 0, this means we would like βi to become large quickly (big
penalty), so βi → ∞ is fine.

2. If x is feasible but not tight, then we want this probability to get small quickly
(no penalty). Since q−c(x)< 0 and δ > 0, we would like βi to remain small and
ideally go to 0.

3. If x is tight, then we also want this probability to get small quickly (no penalty).
Since q− c(x) = 0, we need βi to go to 0 to avoid a penalty.

Thus, contrary to the simple prescription, we actually want βi → ∞ only for in-
feasible scenarios (whose identities we do not know in advance), suggesting that
penalties should adapt to the observed (in)feasibility.

9.9 Parallelizing Simulation Optimization

The potential benefit of executing portions of the SO algorithms described in
Sects. 9.3–9.8 in parallel is obvious, but—as described in Sect. 5.3—achieving the
full potential of parallel simulation, including statistically valid inference, is not
straightforward. To date the greatest successes in parallel SO with statistical guar-
antees have come in the ranking-and-selection setting (Sect. 9.3), but the discussion
here applies more generally.4

To avoid the need to specify any particular computer architecture we consider a
“processor” to be a computational engine capable of executing one “job” at a time;
therefore, a parallel computer system is one that can execute more than one job
simultaneously. As a working representation we use the master–worker architecture
illustrated in Fig. 5.6 consisting of p+ 1 processors with all communication going
through the master. Worker to worker communication may also make sense and we
do not prohibit it.

We define job j as an ordered list that specifies the simulation replications to
obtain, if any, and non-simulation calculations to perform, if any:

Job j = {(X j,N j,U j),(P j,C j)},

where

• X j = {xi j} is a set of scenarios to be simulated;
• N j = {nxi j} is the number of replications to obtain from each scenario in X j;
• U j is the block of pseudorandom numbers assigned to the replications (for as-

signing pseudorandom numbers in parallel see Sect. 6.5.3);

4 This section is based on Hunter and Nelson (2017).
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• P j is a list of jobs whose completion must precede the calculations C j; and
• C j is a list of non-simulation calculations to perform.

Some jobs may only specify simulation replications, others may only specify non-
simulation calculations, and yet others may specify both. The execution of a job
requires wall-clock time, which may include set-up time (e.g., the time for commu-
nication from the master to a worker) as well as execution time for replications or
calculations. By “wall-clock time” we mean the time required to complete the SO,
not the clock that is internal to the simulation.

From this perspective, a SO algorithm creates a sequence of jobs to be executed,
J = {Job j: j = 1,2, . . . ,M}, where M may be random or even infinite in an al-
gorithm without a specific stopping condition. A parallel SO algorithm executes
more than one job at a time, which may reduce wall-clock time to complete J but
may (and likely will) require synchronization of jobs so that the requirements of
(P j,C j) are respected (i.e., so that non-simulation calculations have access to the
simulation replication results that they need from preceding jobs).

As a simple illustration, consider the subset selection procedure of Sect. 9.3.1
when common random numbers are employed and we obtain n replications from
each system. This algorithm can be represented as K simulation jobs, followed by
one calculation job to compute the pairwise comparisons and return the subset I; we
indicate whether a worker or the master performs each job below:

Subset Selection

Job1 = {(x1,n,U),( /0, /0)} worker
Job2 = {(x2,n,U),( /0, /0)} worker

...
Jobk = {(xK ,n,U),( /0, /0)} worker
JobK+1 = {( /0, /0, /0),({Job1,Job2, . . . ,JobK},{Steps 2–3 of subset})}. master

In parallel, simulation jobs are assigned to idle workers until Job1,Job2, . . . ,JobK

are all completed; then the master executes the single computation JobK+1 to com-
pute pairwise comparisons and return the surviving subset. Notice that there is only
one job that requires synchronization, the last one. If K and p are large, then the
speed-up will be substantial: in fact, except for the last job the speed-up is linear in
the number of workers, p. Of course, the workers are entirely idle, while the master
executes JobK+1, which may take significant wall-clock time if K is large.

Unfortunately, SO algorithms often gain replication efficiency by employing syn-
chronization steps that hinder computational efficiency when executed in parallel.
Consider the selection-of-the-best algorithm of Sect. 9.3.2. After simulating all K
scenarios for an initial n0 replication, this algorithm is essentially repeated iteration
of the subset-selection jobs above until the size of the subset is 1 (see Steps 3–4 of
select the best).

Specifically, on each iteration, the workers execute |I| simulation jobs—one
for each surviving scenario—of one replication each, followed by a pairwise-
comparison job on the master when all |I| simulation jobs have completed. Notice
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that every time the master undertakes a comparison job, the p workers are idle un-
til the new set I of survivors is determined. Further, both the master and many of
the workers may be idle waiting for the last few simulation jobs to complete on
each iteration. When |I| < p, some workers are always idle. Finally, each replica-
tion from each scenario requires set-up time for communication between the master
and worker (i.e., the scenario to simulate and the result to return), which in total
may take significant wall-clock time. All of this is computationally inefficient.

Parallel SO is a rapidly evolving research area, with the generic goals of being
fast, cheap, and effective. In an attempt to provide a more precise formulation of
the goals, Hunter and Nelson (2017) defined fixed-precision and fixed-budget for-
mulations of ranking and selection, but the concepts apply to SO more generally.
Their formulations recognize that there is often a cost to purchase parallel comput-
ing time, and therefore the number of parallel processors to rent and for how long
become part of the SO algorithm.

Define the following additional quantities:

• T (J ) is the wall-clock time (possibly random) when a SO algorithm specified
by the jobs J terminates.

• c(p,s) is the cost to purchase p processors for s time units.
• G is some desirable “good event,” such as correct selection of the optimal sce-

nario, and B is some “bad event,” such as choosing a scenario whose expected
value is unacceptably far from that of the optimal scenario.

One possible goal for a fixed-precision SO algorithm is

min
p,J

E [βtT (J )+βcc(p,T (J ))] s.t. Pr{G} ≥ 1−α.

In words, choose the jobs J and the number of parallel processors p to minimize
the expected value of a weighted average of the wall-clock time to complete the
optimization and the cost to purchase the computer time, subject to a guarantee on
the good event occurring. Typically one of βt or βc is 0. One possible goal for a
fixed-budget SO algorithm is

min
p,J

E [Loss(B,J )] s.t. c(p,T (J ))≤ b.

Here “Loss” is some measure of regret if the bad event occurs, such as the size of the
optimality gap when an inferior scenario is chosen. While no SO algorithm of which
we are aware directly attacks these goals, they emphasize that there is an interplay
between the algorithm and the processor capacity that all parallel SO algorithms
must address in some way.

Remark 9.6. Notice that we have not discussed obtaining replications from the same
scenario x in parallel from multiple processors due to the bias issues described in
Sect. 5.3. However, there will be settings in which parallelizing replications of the
same scenario is advantageous, and by delaying computations C until all specified
simulation jobs P are completed the bias can be avoided at the cost of idling pro-
cessors.
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Remark 9.7. To the best of our knowledge there are not yet comprehensive refer-
ences on parallel simulation optimization, although there are a number of papers on
parallel ranking and selection. Pei et al. (2020) provide an entry into that literature,
as well as discussing and evalutating the computational issues using parallel subset
selection as the baseline for comparison.

9.10 Sensitivity Analysis

Section 7.2.3 introduced the concept of sensitivity analysis for the properties of a
simulation output Y (x) with respect to some decision variables or parameters x,
contrasting it with input uncertainty. In this section we use the term “sensitivity
analysis” to mean evaluating what happens to Y (x) when x is perturbed locally from
some nominal value x0.

Let the generic argument be x� = (x1,x2, . . . ,xd), with x�0 = (x10,x20, . . . ,xd0)
the nominal setting, and θ(x) = E(Y (x)). If θ(x) is differentiable in x, then the
gradient at x0,

∇θ(x0)� =

(
∂θ(x)
∂x1

,
∂θ(x)
∂x2

, . . . ,
∂θ(x)
∂xd

)∣∣∣∣
x=x0

,

is a local sensitivity measure. Therefore, the gradient estimation methods described
in Sect. 9.6 can be exploited to estimate it.

To illustrate, recall that in the SAN example where x� = (x1,x2, . . . ,x5) are the
means of the exponentially distributed activity times (A(x1),A(x2), . . . ,A(x5)), and
Y (x) is the time to complete the network. Thus, the ∂θ(x0)/∂xi is the increase in
the expected value of the time to complete the project per unit increase in the mean
of activity i. Or, if our goal is to speed up the project, then −∂θ(x0)/∂xi is the
decrease in the expected value of the time to complete the project per unit decrease
in the mean of activity i.

When x refers to input model parameters, as in the SAN example, interpreting
the gradient can be a problem when the distribution has more than one parameter.
For instance, suppose that activity 1 has a gamma distribution with parameters x� =
(x1,x2) = (α,β ). Alhough we can estimate the gradient of E(Y (x0)) with respect to
the shape and scale parameters, they are less meaningful than sensitivity with respect
to the mean of activity 1. Unfortunately, the mean of activity 1 is x1/x2 = α/β , so
there are infinitely many ways that (x1,x2) can change to increase the mean by one
unit.5 Which one do we want?

Jiang et al. (2019) suggest selecting an interpretable direction for the change in
the input parameters x, and then using directional derivatives to estimate the change
in the output property as the input changes along the chosen direction. For instance,
if we represent the mean of the gamma distribution as μ(x1,x2) = x1/x2, then the

5 This is one of two common ways to parameterize the gamma distribution.
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steepest ascent direction—that is, the direction along which the mean of the gamma
distribution changes the fastest—is the gradient direction

d� = ∇μ(x1,x2)� =

(
1
x2
,−x1

x22

)
.

This direction can be interpreted as the best or worst case, depending on the context.

Jiang et al. (2019) propose an interpretable sensitivity measure

d�∇θ(x1,x2)
d�∇μ(x1,x2)

, (9.35)

which is the ratio of the rate of change of θ(x) with respect to x relative to the rate
of change of μ(x1,x2) with respect to x, as x moves along the direction in which
the mean changes the fastest. The numerator can be estimated using the methods
of Sect. 9.6, while the denominator can be derived or computed for the given input
distribution. See Exercise 15.

Notice that the central idea is more general: the sensitivity of any property of
Y (x) for which we can estimate gradients, with respect to any property of the input
model for which we can compute gradients, along any chosen direction d, can be
estimated in the same way. See Exercise 14.

Remark 9.8. A quite different situation occurs when the goal is to assess which el-
ements of x� = (x1,x2, . . . ,xd) have a signficant impact on E(Y (x)) globally as x
varies across a feasible region or region of operability x ∈ C. Classical experiment
designs, including fractional-factorial and factor-screening designs, were created to
sort the elements of x into significant vs. insignificant effects with statistical confi-
dence. These experiment designs can be substantially more efficient than investigat-
ing each element of x one at a time, as measured by the number of simulation runs
required. A good general reference is Tamhane (2009). However, these classical
methods from the statistics literature tend to assume data are scarce or expensive,
which is not always the case in simulation. Factor-screening designs created specifi-
cally for simulation provide more control over the power for detecting significant el-
ements of x by obtaining simulation outputs sequentially; see, for instance, Sanchez
et al. (2009).

9.11 Change of Measure

We typically think of the input distributions that drive the simulation as being tied to
the real world, either as it exists or as it will exist after we alter it. Here we discuss
the powerful insight that you can simulate under one set of input distributions (prob-
ability measures) but reweight the simulation outputs so that they represent perfor-
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mance under a different set of input distributions; this is referred to as a “change of
measure.” Why would we want to do this? There are at least four contexts of interest
(Dong et al. , 2018):

Importance Sampling: A better (lower variance) estimator may be obtained by
simulating with other than the target input distributions, often input distributions
for which rare but important events are more likely to occur.

Metamodeling: To make predictions over a range of possible input models based
only on simulations at a smaller set of distributions.

Changing inputs: Because the real world is changing, the appropriate input mod-
els may change, but as they change we would like to leverage some or all of the
simulations executed under previous input models.

Target inputs: The real-world inputs are not changing, but our knowledge of their
distribution improves as more and more real-world data are revealed, and again
we would like to leverage some or all of the simulations executed under previous
input models.

The reader may recognize that change of measure appeared in Sect. 9.6.3 for like-
lihood ratio gradient estimation. For consistency we borrow the notation from that
section.

Let A(x) be an m×1 input random vector with joint parametric density function
f (a|x), where x is a vector of distribution parameters.6 We include the distribution
parameters x as part of the notation A(x) to make clear the input distribution used
to generate it. In Sect. 9.6.3, A(x) was a vector of exponentially distributed random
variables with means x� = (x1,x2,x3,x2,x5) representing the m = 5 activity times
for the SAN. For a fixed set of parameters x, represent the simulation output by
Y (x) = g(A(x)) for some function g withA(x)∼ f (a|x). Our focus is on the random
variable

g(A(x))
f (A(x)|x0)
f (A(x)|x) = Y (x)W (x0|x), (9.36)

where x0 is also a legitimate set of parameters for f . Throughout this section we
refer to f (a|x) as the nominal distribution used for the simulation, and f (a|x0) as
the target distribution for which we would actually like results. We assume that the
support of f does not depend on its parameters, so that if f (A|x) = 0 then so does
f (A(x)|x0). Clearly,

E

[
g(A(x))

f (A(x)|x0)
f (A(x)|x)

]
=
∫

· · ·
∫ [

g(a)
f (a|x0)
f (a|x)

]
f (a|x)da= E[Y (x0)].

That is, even though the inputs A(x) were generated using input distribution
parameters x, the output Y (x) weighted by the likelihood ratio W (x0|x) =
f (A(x)|x0)/ f (A(x)|x) has the same expectation as if we had simulated using pa-
rameters x0. Notice that although the expected values are the same, the distributions

6 If A was a discrete-valued random variable, then the same development applies using its mass
function.
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of the random variables Y (x0) and Y (x)W (x0|x) are not the same, which is the key
to importance sampling being able to reduce variance.

Recall that for the SAN the distribution of the time to complete the ith
activity is exponential with mean xi, implying density function f (ai|xi) =
exp{−ai/xi}/xi. If we are interested in the mean time to complete the project,
then g(a) = max{a1 + a4,a1 + a3 + a5,a2 + a5}; if we are interested in the
probability that the time to complete the project exceeds tp, then g(a) =
I (max{a1+a4,a1+a3+a5,a2+a5}> tp). In either case, an unbiased estimator
for the expected value under parameter x0 can be obtained by simulating activity
times A(x)� = (A1,A2, . . . ,A5)∼ f (a|x) and recording

g(A1,A2, . . . ,A5)
5

∏
i=1

exp{−Ai/x0i}/x0i

exp{−Ai/xi}/xi
. (9.37)

In practice we make n i.i.d. replications A1(x),A2(x), . . . ,An(x), apply (9.37) to
each, and average the results.

Notice that by simulating only at a nominal setting x, we can map out the entire
expected-value surface as a function of x0. The top two plots in Fig. 9.3 show re-
sults from first simulating 10,000 replications of the SAN with activity time means
x� = (1,1,1,1,1), and then applying the change of measure to obtain estimates for
x�0 = (1,1,x03,1,1) with x03 ranging from 0.6 to 1.4; estimates of E[Y (x0)] and
Pr{Y (x0) > 4} are shown along with 95% confidence intervals. The bottom plot
also shows estimates of Pr{Y (x0)> 4} but with nominal mean x� = (1,1,0.7,1,1)
instead. The likelihood ratio when only changing x30 simplifies to

W (x0|x) =
exp{−A3/x03}/x03
exp{−A3/x3}/x3

=
x3
x03

exp{−A3(1/x03−1/x3)}.

To reiterate, all of the results in the plots were obtained by simulating at a single
value of x3 and then applying the change of measure.

Two observations jump out: The widths of the confidence intervals are not uni-
form across all values of x03 in any plot, and the value chosen as the nominal setting
affects the precision of the estimates (compare the bottom two plots).

What makes a good nominal distribution to which to apply a change of measure?
The answer depends on the purpose of the simulation, in particular whether the goal
is to construct a metamodel in x0 as in the example above, or to achieve a variance
reduction at a particular x0. We focus on finding a good choice to achieve a variance
reduction.

Suppose now that we want to estimate Pr{Y (x0) > 9} when x�0 = (1,1,1,1,1);
project completion times greater than 9 are rare. Based on 1000 replications we
obtain a point estimate of 0.0050± 0.0044, implying substantial error in the es-
timate: not even the first significant digit is certain. Simulating instead at x� =
(2,2,2,2,2)—making the rare event of exceeding 9 much more likely—and then
applying the change of measure, we obtain 0.0075± .00049, roughly an order of
magnitude less error. This is the promise of importance sampling.
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Fig. 9.3 Change-of-measure metamodel for mean time to complete the SAN (top) and probability
it takes longer than 4 time units (bottom two) with 95% confidence intervals as a function of the
mean of activity 3. The arrow indicates the nominal value of x3 = 1 (top two) or x3 = 0.7 (bottom)

More generally (not just for the SAN example), the change-of-measure estimator
based on n i.i.d. replications is

Ŷ (x0) =
1
n

n

∑
i=1

g(Ai(x))
f (Ai(x)|x0)
f (Ai(x)|x)

=
1
n

n

∑
i=1

Yi(x)Wi(x0|x). (9.38)

Let μ(x0) = E[Y (x0)]. Then by direct application of the defintion of variance (see
Exercise 19)

Var[Ŷ (x0)] =
1
n

[∫
· · ·

∫
(g(a) f (a|x0))2

f (a|x) da−μ(x0)2
]
. (9.39)

To estimate (9.39) we use the sample variance in the usual way, since (9.38) is the
average of i.i.d. outputs Yi(x)Wi(x0|x), i = 1,2, . . . ,n.

Apparently the variance (9.39) will be small if the ratio (g(a) f (a|x0))2/ f (a|x)
tends to be small across the range ofA. In particular, in regions where (g(a) f (a|x0))2
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is large, we want the nominal distribution f (a|x) also to be large; this is what we
mean by choosing a nominal distribution that assigns more probability to “impor-
tant” regions. In fact, one can show that the variance-minimizing choice of nominal
distribution f (a|x) is proportional to |g(a)| f (a|x0). Unfortunately, knowing this is
not as helpful as it might seem, because g is typically not a simple function as in the
SAN example, but rather is implied by a complex computer code.

The SAN is also a nice problem for change of measure for another reason: each
replication generates exactly five independent inputs (activity times), so the likeli-
hood ratio for each replication is the product of exactly five terms. Consider instead
the waiting times of the first m customers in an M/G/1 queue:

Yi(x) =max{0,Yi−1(x)+Si−1(x)−Ai(x)}, i = 1,2, . . . ,m,

where Si is the service time of the ith customer, Ai is the interarrival time between
customers i−1 and i, x are the parameters of the service-time and interarrival-time
distributions with densities fS(s|x) and fA(a|x), respectively, and Y0 = X0 = 0. We
know fA is an exponential distribution, and suppose that fS is Weibull, so x� =
(λ ,α,β ). We compute the sample mean, Y (x) = ∑m

i=1Yi(x)/m, but would like to
apply a change of measure to obtain an estimate under a different set of parameters
x0. The likelihood ratio by which we multiply Y (x) is

W (x0|x) =
fA(A1|x0)
fA(A1|x)

m

∏
i=2

fS(Si−1|x0) fA(Ai|x0)
fS(Si−1|x) fA(Ai|x)

. (9.40)

It can be shown (e.g., Owen (2019)) that the variance of W (x0|x) will tend to in-
crease exponentially in m, which may make the change of measure useless if the
number of simulated customers m is large, a common situation in queueing simu-
lation. This illustrates that change-of-measure strategies can fail, and good ones are
often problem dependent. For instance, since the M/G/1 queue is regenerative (see
the Appendix in Chap. 5), and regenerative cycles are independent, the change of
measure can be computed and applied individually to each (relatively short) cycle
rather than globally to the overall sample mean as in (9.40). See for instance Goyal
et al. (1987).

Importance sampling is a powerful variance reduction technique that can make
some rare-event estimation problems possible that would be impossible otherwise;
on the other hand it can go horribly wrong and inflate variance (see Fig. 9.3). Fortu-
nately there is a vast literature on effective importance sampling for many classes of
problems. For excellent general references and pointers into the literature see Owen
(2019) and Asmussen and Glynn (2007). Dong et al. (2018) discuss the other three
reasons for using change of measure, metamodeling, changing inputs, and target
input.

Remark 9.9. That f (a|x) and f (a|x0) have the same suppport is a sufficient con-
dition to use change of measure, but not necessary. The weaker condition that
g(a) f (a|x0) �= 0 whenever f (a|x0)> 0 is adequate.
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Exercises

1. Recall the paired-t confidence interval (9.8) for the difference θ(x1)− θ(x2).
Show that

S2D = S2(x1)+S2(x2)−2S(x1,x2),

where S2(x1) and S2(x2) are the marginal sample variances, and

S(x1,x2) =
1

n−1

n

∑
j=1

(
Yj(x1)−Y (x1)

)(
Yj(x2)−Y (x2)

)

is the sample covariance. This shows how the paired-t interval captures the
effect of common random numbers.

2. Consider the following five scenarios for the mean activity times in the SAN
example. Make 100 replications of each one and apply subset selection with
95% confidence to see which if any can be eliminated from being the best in
terms of the smallest expected value of the time to complete the project. Now
repeat with 200 replications of each.

x1 x2 x3 x4 x5
xi1 0.5 1 1 0.3 1
xi2 1 0.5 1 1 1
xi3 1 1 0.5 1 1
xi4 1 1 1 0.4 1
xi5 1 1 1 1 0.5

3. For the same scenarios as in Exercise 2, apply the selection-of-the-best proce-
dure to find the scenario with the smallest expected completion time with 95%
confidence. Use n0 = 10 and δ = 0.1. Run the experiment with and without
using common random numbers and comment on the number of replications
required to reach a decision in each case.

4. Implement all of the gradient estimators described in this chapter for the SAN
example. Using τ j = c j = 1 and � j = 0.5 for j = 1,2,3,4,5, and b = 1, select
several feasible settings for x and estimate the gradient using each method.
Compare the methods in terms of the variability of the gradient estimates. Use
Δx = 0.1 in FD.

5. When applying stochastic approximation to the SAN optimization, suppose that
at iteration i we find ∑5

j=1 c j(τ j −xi+1, j)> b. First derive x′i+1, the perpendicu-

lar projection of xi+1 onto the plane∑5
j=1 c j(τ j−x j) = b. Then provide a refine-

ment that insures that x′i+1 also satisfies the lower bound constraints x′i+1, j ≥ � j,
j = 1,2,3,4,5; this need not be a point that is on the plane, but it should be
feasible.

6. Using each of the gradient estimators described in this chapter, implement a
stochastic approximation search for the optimal mean activity times for the
SAN example using the parameters in Exercise 4. Suggested settings for this
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problem are ai = 1/i, starting scenario x� = (1,1,1,1,1), and at least 50 repli-
cations per gradient estimate, but you should experiment with these values.

7. Using linear programming software, solve the SAA problem (9.28) using τ j =
c j = 1 and � j = 0.5 for j = 1,2,3,4,5, and b = 1. Use n = 10 replications if
you have to set it up manually, and n = 10,100,1,000 if you can automate the
set- up.

8. For the setting described in Sect. 9.3.4 when there is a unique best scenario,
prove that any allocation with all βi > 0 will drive the probability of incorrect
selection to 0 as N → ∞. Hint: When there is a unique best, then there is an
ε > 0 such that θi − θB ≥ ε for all inferior scenarios i. Now apply the strong
law of large numbers to show that for large enough N the best will be always
be identified.

9. For the special case of θB = θ − δ , θi = θ for all i �= B, and σ2
i = σ2 for all i,

derive (9.13) and (9.14) from (9.11) and (9.12).
10. Recall Remark 9.2. For the special case of K = 2 show that the rate-optimal

allocation satisfies (βB/σB)
2 = (βi/σi)

2.
11. If Z ∼ N(0,1), then it can be shown that E[max{0,μ +σZ}] = μΦ(μ/σ)+

σφ(μ/σ), whereΦ and φ are the standard normal cdf and density, respectively.
In the Bayesian ranking-and-selection setting of Chen and Ryzhov (2019)
the posterior distribution of (Θ(xi),Θ(x j)) given the history H is normal
with meansY (xi),Y (x j), variances σ2(xi)/n(xi),σ2(x j)/n(x j), and covariance
zero. Use this fact to derive an expression for EI.

12. Many programming languages, including Python, have the capability to paral-
lelize loops on any computer with multiple cores/threads, provided the com-
putations within each iteration of the loop do not interact. The subset selec-
tion procedure is a good candidate for such parallelization, since the simulation
jobs Job1,Jobk2, . . . ,JobK in Sect. 9.9 do not interact. With a little care the
same is true for select the best. Using whatever language you have available,
parallelize the simulation loops for these two ranking-and-selection algorithms,
and evaluate the speed-up as K increases using the language’s tools for timing
computations.

13. A convenient test problem for simulation optimization is the following: Con-
sider an M/M/1 queue with arrival rate λ and service rate (not mean) x. Sup-
pose that it costs $c1 per unit of service rate, and $c2 per unit of steady-state
mean time spent in the system (that is, it costs more to have faster service but
it also costs more to deliver slow service). Using results for the M/M/1 queue,
the mean total cost is c1x+ c2/(x−λ ). Thus, test problems for minimizing the
mean cost using simulation optimization can be created with known solutions.
Reasonable choices are λ = 1, 1.2≤ x ≤ 21, c1 = 1, and c2 = 36, where x can
be treated as continuous or discrete. Use this problem to practice some of the
simulation optimization methods in this chapter.

14. The sensitivity measure (9.35) might be called “mean sensitivity to mean.” Ex-
tend the definition to “mean sensitivity to variance;” that is, the sensitivity of
the expected value of the output to the variance of the input. Assume that the
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input has a gamma distribution and we will use the steepest ascent direction for
the variance of the input.

15. For the SAN example, suppose that activity 3 has a gamma distribution with pa-
rameters (α0,β0) = (2,2), while all of the other activities are exponentially dis-
tributed with mean 1. Using one of the gradient estimation methods in Sect. 9.6
estimate the sensitivity of the mean time to complete the project to the mean
and variance of activity 3 along the steepest ascent direction in each case. You
will need the result from Exercise 14.

16. For the SAN example in Sect. 9.11, run intensive simulations at each x3 value
in Fig. 9.3 to estimate the true values of E[Y (x0)] and Pr{Y (x0)> 4}. Compare
these to the results from simulating only at nominal x� = (1,1,1,1,1) using
10,000 replications and then applying the change of measure.

17. Following on from Exercise 16, try the nine settings of x� = (1,1,x3,1,1) to
find one that minimizes the maximum of the nine confidence interval halfwidths.

18. For the SAN example in Sect. 9.11, run intensive simulations at each x3
value in Fig. 9.3 to estimate the true values of E[Y (x0)] and Pr{Y (x0) > 4}.
Compare these to the results from simulating 5000 replications at nominal
x� = (1,1,0.7,1,1) and 5000 at x� = (1,1,1.2,1,1) and then averaging the
results after applying the change of measure. See Dong et al. (2018) for other
ways to use change of measure to combine results from more than one nominal
simulation.

19. Derive Eq. (9.39). Suppose that g(a)> 0 for all a. Show that the nominal den-
sity f �(a) = g(a) f (a|x0)/μ(x0) leads to a zero-variance importance-sampling
estimator. Going further, show that the variance-minimizing distribution f � is
proportional to |g(a)| f (a|x0) in general.



Chapter 10
Simulation for Research

This book is about simulation modeling, programming, and experimentation for the
purpose of systems analysis. However, stochastic simulation is also a tool that can be
used to support basic research in domains such as simulation, optimization, queue-
ing, financial engineering, statistical learning, healthcare, production planning and
logistics. In this chapter we cite some papers that demonstrate effective application
of simulation in research and use them to highlight general principles and practices.
We start with two important distinctions.

The first distinction is between a practitioner’s experiment and a researcher’s ex-
periment. This book is written primarily from the point of view of the practitioner’s
experiment. The practitioner has a real problem to solve and has some limit on how
much time or effort they can expend to solve it. The practitioner will try to build
an appropriate simulation model or models, will perform the simulation experiment
using the best methods they know or have access to, and will use the results to solve
their problem. If they learned simulation from this (or many other) books then they
will also try to assess the quality of their answer (e.g., via a confidence interval) or
they will use a procedure that is designed to deliver a certain level of quality (e.g.,
a ranking-and-selection procedure with a guaranteed probability of correct selec-
tion). They will, however, only have a vague sense as to whether they got the “right
answer” to their problem based on what happens when they apply their simulation
results in the real world.

The researcher’s experiment, on the other hand, is driven by an abstract research
question whose answer may be useful in practice, but is not the answer to a specific
practical problem. Because it is not directly tied to the real world, which is messy, a
research question can be formulated and answered very precisely. The researcher’s
experiment may, and often will, involve solving the same problem repeatedly for
simulated instances that differ through some controllable experimental factors and
in the random numbers used in the simulation. For instance, Sect. 10.1 below de-
scribes generating random optimization problems of a particular type and solving
each instance with the same algorithm to assess the algorithm’s performance over a
space of problems.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
B. L. Nelson, L. Pei, Foundations and Methods of Stochastic Simulation,
International Series in Operations Research & Management Science 316,
https://doi.org/10.1007/978-3-030-86194-0 10
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Unlike the practitioner’s experiment, the researcher’s experiment frequently in-
volves simulating scenarios for which the answer is known in advance; knowing
the answer facilitates a better evaluation. For example, Sect. 10.3 describes an ex-
perimental study of new ranking-and-selection procedures. Ranking-and-selection
procedures are supposed to discover the best scenario with a guaranteed probability
of correct selection. The achieved probability of correct section for a new procedure
can be estimated by applying it repeatedly (with different random numbers) to sim-
ulated scenarios for which the true best scenario is already known. This contrasts
with the practitioner who will apply ranking and selection once on a collection of
scenarios for which the best is not known and then actually implement their selec-
tion.

A second distinction is between simulation experiments that support research as
opposed to illustrations or examples. What is the difference? A successful experi-
ment allows the researcher to make statements about cases, scenarios, or problems
that they did not try based on cases, scenarios, or problems that they did try. To
accomplish this an experiment must be designed so as to provide inference about
a well-defined space of cases, scenarios, or problems. An illustration, on the other
hand, is a specific case, scenario, or problem that helps the reader understand how a
method is implemented and how the results should be interpreted.

This book is full of illustrations, starting with those in Chap. 3 that were used to
demonstrate simulation methods throughout the book. These illustrations were (we
hope) useful for learning and understanding the methods, but by themselves they do
not prove that the methods work more generally.

In the following sections we provide some guidelines for generating random test
problems, conducting robustness studies, linking experimental factors and measur-
ing and controlling error in a research simulation experiment. We also comment on
the need for reproducible results. In addition to the research papers cited, this chap-
ter also draws on Sect. 3 of Goldsman et al. (2002) which discusses evaluation of
simulation output analysis procedures.

10.1 Random Test Problems

Simulation is often used to generate random test problems to support saying some-
thing general about the performance of a solution method. Consider the following
example:

The two-dimensional knapsack problem is a deterministic (and difficult) combi-
natorial optimization problem of the form

max
n

∑
j=1

c jx j (10.1)

n

∑
j=1

ai jx j ≤ bi, i = 1,2

x j ∈ {0,1}, j = 1,2, . . . ,n,
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where ci > 0 and ai j ≥ 0. Think of c j as the value of selecting the jth item (x j = 1),
while a1 j and a2 j are two types of “costs” for selecting it (e.g., weight and price),
and the totals of these “costs” are constrained by b1 and b2, respectively.

Hill and Reilly (2000) compared the performance (speed and quality of solution)
of a heuristic and a convergent algorithm for solving (10.1) by applying them to a
large number of randomly generated test problems. A test problem is specified by
providing values for c j,ai j,b j, and n. Hill and Reilly (2000) fixed the number of
items at n = 100 and set bi to be a specified fraction of ∑n

j=1 ai j. This left them with
the need to decide how to randomly generate values of ci and ai j to draw meaningful
comparisons.

A prescription that seems reasonable is to select uniform distributions for c j,a1 j

and a2 j, and then to randomly and independently generate the necessary values. We
call these “completely random test problems.” Assuming that we are comfortable
setting the ranges on these uniform distributions, then the space specified by the
ranges will be randomly covered. But is that enough?

Hill and Reilly (2000) showed conclusively that the answer is “no” by demon-
strating that correlation across the coefficients (c j,a1 j,a2 j) can have a dramatic
effect on optimization performance, and these correlations have a practical mean-
ing. For instance, a strong positive correlation between ai j and c j means that if the
jth item is valuable, then it also tends to be costly; and this makes the problem hard
because desirable items tend to break the budget. Similarly, strong negative corre-
lation between a1 j and a2 j means that an item that is inexpensive relative to the
budget b1 tends to be expensive relative to budget b2; this also makes the problem
difficult. Further, the correlation structure affects the heuristic and convergent algo-
rithm differently. While some problems that exhibit these features will be generated,
by chance, for completely random test problems, they will be rare and their effect
will be averaged over all of the (mostly) low-correlation test problems. Therefore,
this important, and practically justifiable, feature will not be identified.

Hill and Reilly (2000) illustrates our first principle of simulation for research:

Research principle 1. Completely random cases, scenarios, or problems are not
necessarily relevant ones. Instead, generate test cases, scenarios, or problems that
have features that are representative of the space of interest.

Hill and Reilly (2000) carefully controlled the strength of the correlations in
their random test problems via a designed experiment. This allowed them to make
much stronger statements about how the solutions methods will behave in practice.
Variate-generation methods such as NORTA (Sect. 6.3.2) can be used to induce such
correlation.

This example also illustrates an obvious, but important second principle:

Research principle 2. If you are comparing things, use common random numbers.

Hill and Reilly (2000) could have generated the test problems to evaluate the
heuristic independently from those used to evaluate the convergent algorithm. That
is, they could have chosen the correlation settings at which they wanted to do exper-
iments, but used different random numbers to actually generate the coefficients for
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the problems solved by the heuristic and for the problems solved by the convergent
algorithm. The comparisons would still have been with respect to the same problem
space, but not with respect to precisely the same knapsack problems. If they had
used independent test sets, then some of the observed differences in performance
would have been due to solving different test problems; this source of variation is
eliminated by using common random numbers since the problem sets will be iden-
tical.

10.2 Robustness Studies

Simulation experiments are also used to assess the robustness of a research result.
By “robustness” we mean the ability of the procedure, method, or concept to per-
form as expected across a wide range of conditions.

Controlled experimentation is a topic addressed by the statistical design of exper-
iments; see, for instance Montgomery (2009). Experiment design starts by identify-
ing the factors that might affect the performance of a product, process, or treatment
and then varies these factors in a systematic fashion. Careful identification of the ap-
propriate factors, both favorable and unfavorable, is critical to a study of robustness,
as illustrated in the following example.

Iravani et al. (2005) proposed indices for measuring the structural flexibility of
a manufacturing or service operation. Flexibility in their context is the capability
of the operation to satisfy multiple types of demand with available resources in
the face of changing demand and resource capacity. The “structural” in structural
flexibility refers to the choice of how many and which types of demand that each
resource can satisfy. In a manufacturing setting where there are N factories and K
types of products (e.g., car models), structural flexibility depends on which of these
products each factory can produce. In a service setting like a call center where there
are N agents and K types of calls, structural flexibility depends on which types of
calls each agent is cross-trained to handle. Iravani et al. (2005) proposed an easy-
to-compute structural flexibility index for strategic-level comparison of competing
system designs, an index that should predict which system design would be most
productive in a changing and unpredictable real-world environment.

In brief, Iravani et al. (2005) represented a system design as a graph from re-
sources {S1,S2, . . . ,SK} to demand types {D1,D2, . . . ,DN} with an arc from Sk →
D j if resource k can satisfy some demand of type j. Their two structural flexibil-
ity (SF) indices are functions of the number of nonoverlapping paths through this
network by which excess capacity to satisfy demand type i can be redirected to sat-
isfy demand of type j, and also the number of different resources that can satisfy
demand of type j, for i, j = 1,2, . . . ,K. The research question is, how robust is this
simple measure for ranking the performance of system designs relative to the types
of real-world systems to which it might be applied?

To answer this question Iravani et al. (2005) employed a designed simulation ex-
periment. The key to designing an experiment that convincingly establishes robust-



10.3 Linking Experimental Factors 291

ness is that it varies factors that are not inputs to the SF measure, but do represent
what occurs in the real world. These included the following:

Physical flow in the system: An open, parallel queueing environment (such as a
call center) and a closed serial queueing environment (such as a production line
operating with a constant work in process or WIP) were chosen.

How close the system is to capacity: Congestion levels were controlled in the
open queueing system by setting the demand arrival rate to achieve specific lev-
els of utilization, and in the closed system by setting the WIP to achieve different
levels of jobs/worker.

Uncertainty in the environment: Short-term fluctuations and long-term changes
were considered:

Short-term variation: Interarrival times and processing times were modeled
as having gamma distributions, with different levels of variability attained by
setting their coefficient of variation (standard deviation divided by the mean).

Long-term variation: Shocks randomly inject a persistent change in demand.
Shocks that increase one type of demand at the expense of another, and shocks
that simply increase one type of demand were included.

The simulation experiment was conducted on pairs of system designs to see if
the one with the higher SF index (which is computable without simulation) was also
the one with the higher productivity (as estimated via simulation).

This paper illustrates another research principle:

Research principle 3. Run a designed experiment that identifies and controls fac-
tors that might influence the outcome, both favorably and unfavorably, and that are
actually encountered in practice.

10.3 Linking Experimental Factors

In physical experiments the operable range for each experimental factor, such as
temperature, pressure, or dosage, can often be set based on the nature of the system.
Unfortunately, this may not be the case when evaluating, say, a new simulation out-
put analysis method that is supposed to apply to any problem in a large and diverse
class. Therefore, rather than independently specifying a range for each factor, it may
be better to link the ranges of the factors in meaningful ways. Here we provide one
illustration.

Ranking-and-selection procedures are simulation optimization methods whose
objective is to discover the best simulated system, in terms of largest or smallest true
expected performance, with some guaranteed probability of correct selection. See
Sect. 9.3 for background on ranking and selection. Nelson et al. (2001) proposed and
then empirically evaluated ranking-and-selection procedures created for simulation
optimization problems where the number of alternative scenarios K is moderate (up
to 500). Their interest was primarily in computational efficiency of the procedures as
measured by the number of simulation replications required to deliver the guarantee.
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A number of factors in addition to K can affect the efficiency of a ranking-and-
selection procedure; Nelson et al. (2001) focused on four: The values of the true
means, μ1,μ2, . . . ,μK , the output variances of each scenario, σ2

1 ,σ2
2 , . . . ,σ2

K , the ini-
tial (“first stage”) number of replications obtained from each scenario n0, and the
size of the indifference-zone parameter δ . Recall that ranking and selection pro-
cedures are often sequential and therefore have multiple stages, and that δ is the
smallest practically significant difference in mean performance that the user is in-
terested in detecting. In their experiments, Nelson et al. (2001) linked these factors
to allow general conclusions to be drawn.

Notice that a ranking-and-selection problem will be computationally easy if the
mean values are widely separated, and if the variances of the outputs are small while
δ is large relative to the differences in the means. On the other hand, if the means are
close, the variances large, and the difference we care about is small, then a great deal
of simulation effort will be required to guarantee finding the best. These insights are
useful for linking the factors.

Nelson et al. (2001) let μ1 = δ be the largest mean (bigger was better in their
paper) and anchored the experiment design to this value. They considered a number
of configurations of the means, including:

Slippage configuration: μ1 = δ , or a multiple of δ , and μ2 = μ3 = · · ·= μK = 0.
This is a difficult configuration since all inferior scenarios are tied for second
best.

Monotone decreasing means: μ1 = δ , and μi = μ1− (i−1)δ/τ , i = 2,3, . . . ,K,
with τ = 1,2,3. These are easier configurations since many scenarios are sub-
stantially inferior to the best.

They then set δ = dσ1/
√

n0, a multiple of the standard deviation of the first-stage
sample mean of the best system, varying d = 1/2,1,2. This ties the separation be-
tween the best and the rest to the precision with which we can estimate the mean of
the best.

Finally, for the variances of the systems, they considered situations in which the
variance of the best system is higher or lower than the inferior systems, as follows:

Common variance configuration: σ2
2 = σ2

3 = · · · = σ2
K = σ2 and σ2

1 = ρσ2,
with ρ = 1/2,2.

Unequal variance configuration: Variances increase as the mean decreases, σ2
i

= |μi − δ |+ 1, and variances decrease as the mean decreases, σ2
i = 1/(|μi −

δ |+1), i = 1,2, . . . ,K.

Notice that the number of factors has now been effectively reduced to three:
The number of scenarios K and first-stage sample size n0, both factors for which a
reasonable range of operability can be determined, and σ2

1 , the variance of the output
from the best system, which can be set to any fixed value (say 1) because all of the
other factors are relative to it. Thus, conclusions from the empirical study are with
respect to the relative relationships among the means, variance, and indifference-
zone of a simulation optimization problem, not their actual values.
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Research principle 4. When there are no natural ranges of operability for your
factors, link them so that they are large or small relative to each other.

Nelson et al. (2001) generated simulation output data directly from normal and
lognormal distributions; this made it easy to control the experimental factors de-
scribed above, and to know which scenario is actually the best. Controlling experi-
mental factors is often easier with surrogate models than with realistic discrete-event
simulations; surrogate models have characteristics like realistic simulations but are
simple, tractable, and controllable. In this book we have often used the AR(1) as a
surrogate for output from a steady-state simulation.

While well-chosen surrogate models share characteristics with real simulations,
we cannot be certain that they include all characteristics that appear in, say, a com-
plex supply chain simulation, and that might matter. For this reason, running ex-
periments with models that are less controllable, but a step closer to realism, is
often appropriate. Tractable queueing models (e.g., M/M/∞, M/G/1), simple in-
ventory models (e.g., (s,S) inventory model with Poisson demand) and simple fi-
nancial options (e.g., European call or put) are common choices. A great source of
test problems for simulation optimization is the SimOpt library https://github.com/
simopt-admin/simopt/wiki.

Research principle 5. Since it may not be possible to anticipate all important fac-
tors, include some realistic examples along with the controllable surrogate models.

10.4 Controlling Error in Research Simulations

Recall the Pollaczek–Khinchine formula (Eq. (3.4)) which gives the steady-state ex-
pected waiting time in an M/G/1 queue. A related formula provides the steady-state
expected number of customers in the queue:

q =
λ 2(σ2+ τ2)
2(1−λτ) =

ρ2(c2+1)
2(1−ρ) ,

where λ is the arrival rate of the Poisson arrival process and (τ ,σ2) are the mean
and variance of the service-time distribution; or equivalently ρ = λτ is the traffic
intensity (a measure of system load), and c = σ/τ is the coefficient of variation
of the service time. Typically we use this formula to predict the expected number
in the queue given estimates for λ ,τ , and σ2. However, it is clear that if instead
we had estimates of the service-time parameters (τ ,σ2) and the average number of
customers in the queue q then we could use this formula to solve for what the arrival
rate λ must have been. Having this estimated arrival rate we could then predict what
the expected number in the queue would be if we changed the service process (e.g.,
lowered the mean service time, τ).

Whitt (1981) considered a more general version of this situation: Suppose that the
congestion in a real-world queueing system can be observed, as well as the queue’s

https://github.com/simopt-admin/simopt/wiki
https://github.com/simopt-admin/simopt/wiki
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service process, but the arrival process—which may be a very general stationary
arrival process—is not observed or easily characterized. We want to know what the
expected number in the system would be if the same arrival process encountered an
altered service process, new equipment or people, for instance.

Whitt’s goal was to use the available information to construct a robust, simple,
and tractable renewal-process approximation of the unknown arrival process that
could then be the input to a queueing model. “Robust” in this context means that the
queueing model will provide an accurate approximation of the steady-state conges-
tion under the new service process; “simple” means that we only need two moments
(arrival rate and the coefficient of variation of the time between arrivals) to fit the
approximating renewal process; while “tractable” means that using this approximat-
ing renewal process we can compute the steady-state expected number in the system
using something like a Pollaczek–Khinchine formula.

For instance, suppose that the observable queueing system is a G/M/1: general
stationary arrival process G (which may include dependence), exponential service-
time distribution and one server. The service rate and some measures of congestion
for this system are observable. The altered system will be a G/M′/1, where M′ is an
exponentially distributed service process with a different service rate. The new sys-
tem will be approximated by a GI/M′/1 queue; GI denotes “general, independent”
which means a renewal arrival process. The objective is to have GI approximate G in
such a way that the GI/M′/1 gives accurate congestion predictions for the G/M′/1.
A key point of the paper is that the quality of the arrival-process approximation is
judged by how accurately the queueing model predicts steady-state congestion.

To provide a fair evaluation, Whitt (1981) considered queues with arrival pro-
cesses that were not of the same type as his approximating renewal processes. For
instance, the Poisson arrival process was one of his approximations. Therefore, the
M/M/1 queue was not an interesting test case because the true arrival process and
the approximating arrival process are of the same type (Poisson). Instead, his test
cases had arrival processes for which the steady-state expected number in system is
not known.

How do you evaluate the accuracy of an approximation when you do not know
the true value that it is approximating? Whitt (1981) used simulation to estimate
the true expected number in the queue for his test cases; simulation is another form
of approximation. To be valid, the error in the simulation estimate has to be small
enough that it can be considered insignificant. A feature of simulation is that we can
quantify the error in our estimates, and we can drive this error to 0 by increasing the
run length or number of replications. Section 8.1 described methods for controlling
the error in this way.

Research principle 6. If you reduce the standard error or confidence interval
width enough, then the simulation estimate is effectively the same as the true value.

To be more concrete, suppose that Whitt’s approximation is considered good
enough if it has no more than 10% error relative to the true value:

|qapprox−qtrue|
qtrue

?
≤ 0.1.
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Instead of the true value, we have q̂true, a simulation estimate of it; q̂true has esti-
mated error of, say,±H, which depends on the run length or number of replications.
This error must be made small enough that we can conclude that the approximation
is, or is not, within 10% relative error even considering the estimation error. Stated
differently, the ratio above should be satisfied, or not satisfied, for every possible
value of qtrue such that q̂true−H ≤ qtrue ≤ q̂true+H. In Whitt (1981) this meant
that different run lengths were required depending on the traffic intensity in the sim-
ulated queue.

We next consider a different aspect of controlling error, and a different paper.
Sections 10.1–10.3 described choosing and controlling the important factors in a
research simulation. This is not enough, however, when empirical evaluation of per-
formance is estimated through repeated trials, as is common in the study of new sta-
tistical procedures. The illustration we will use is the evaluation of control-variate
estimators, which were described in Sect. 8.3.

In brief, a control-variate estimator β̂0 is an alternative to the sample mean Ȳ
for estimating the expected value μY = E(Y ). As the number of replications goes
to infinity, control-variate estimators are asymptotically consistent for μY and have
smaller variance than Ȳ ; but in finite samples they may be biased and could have
larger variance. Suppose we wanted to study how control-variate estimators behave
when the sample size is small. We might be interested in properties such as bias,
E(β̂0− μY ), and variance, Var(β̂0). Since there is an associated confidence interval

for μY , β̂0± t1−α/2,n−2

√
Σ̂11, we might also be interested in its coverage probability

and how well Σ̂11 works as an estimator of Var(β̂0). Experiments such as the ones
described below were used to study control-variate estimators in Nelson (1990).

Listing the factors that might affect the performance of control-variate estimators
would provide a number of instances to simulate (see Nelson (1990)). Most likely
we would select instances for which μY is known. For a particular instance, simu-

lating it one time yields one set of estimates β̂ (1)
0 , Σ̂ (1)

11 , and β̂
(1)
0 ± t1−α/2,n−2

√
Σ̂ (1)
11 ,

where we use a superscript (i) to indicate the ith trial. To estimate bias and
variance, we need multiple trials or “macroreplications” of the same instance,

β̂ (1)
0 , β̂ (2)

0 , . . . , β̂ (m)
0 . These will be i.i.d. because they are simulations of the same

problem instance, but with different random numbers on each macroreplication. The
bias, variance, and coverage of the control-variate estimator for this instance can be
estimated, respectively, by

b̂ =
1
m

m

∑
i=1
β̂ (i)
0 −μY = β̄0−μY

S2
β̂0

=
1

m−1

m

∑
i=1

(
β̂ (i)
0 − β̄0

)2

p̂ =
1
m

m

∑
i=1

I

{
μY ∈ β̂ (i)

0 ± t1−α/2,n−2

√
Σ̂ (i)
11

}
.
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Each of these is an estimate, and therefore subject to error, but they are also aver-
ages of i.i.d. observations so we know how to measure and control the error to be
small enough to support the conclusions we want to reach; m should not be chosen
arbitrarily.

For instance, suppose that we set 1−α = 0.95, meaning 95% confidence inter-
vals. Even if the confidence interval has the desired coverage, the standard error of
p̂ is

√
(0.95)(0.05)/m. If m = 30 then two times this standard error is≈0.08, which

means we cannot really distinguish coverage of 0.95 from 0.87. To get coverage
estimates with approximately two decimal places of precision we need m to satisfy

2

√
(0.95)(0.05)

m
< 0.01

or m ≈ 1900.
What about assessing the quality of Σ̂11? Similar to the situation in Whitt (1981),

the true Var(β̂0) is not known. However, S2
β̂0

is an unbiased estimator of it, since it is

a direct estimator based on i.i.d. observations of β̂0. Therefore, an estimator of the
bias of Σ̂11 is

1
m

m

∑
i=1
Σ̂ (i)
11 −S2

β̂0
.

The analysis described above is embedded within the larger experiment that
varies the factors that affect control-variate estimators; that is, it is an experiment
nested inside an experiment. While the practitioner faces one problem instance, and
solves it m = 1 times, the researcher creates (systematically or randomly) many in-
stances, and simulates each to an acceptable level of error to draw valid conclusions.
This gives the research principle

Research principle 7. Measure and control the error in your research experiment
using nested simulations.

10.5 Reproducibility of Results

Research papers include research results, and our trust in those results is bolstered
by external evaluation by experts before acceptance for publication, the so-called
peer review process. For instance, when the result is a new theorem, then a proof
of the theorem is included so that it can be verified (or reproduced) by the peer
reviewers.

For quantitative fields a “theorem-proof” result is the most convenient for estab-
lishing reproducibility because the theorem and the proof are both contained within
the paper. However, important results are increasingly supported by the analysis of
data, whether real-world data or data synthetically generated by (say) a simulation.
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Standards for reproducibility of such results has lagged far behind our ability to col-
lect, create, and analyze data, but there are now intense efforts to catch up. In the
simulation community the ACM Transactions on Modeling and Computer Simula-
tion or TOMACS (see https://dl.acm.org/journal/tomacs/) is one of the leaders in this
effort.

Standards for reproducibility of results are evolving so quickly so that it is fruit-
less to give a specific prescription here. Instead we list a few basic principles that
seem likely to remain relevant even as software, documentation, and archiving tools
evolve:

Research principle 8. Separate or distinguish the input data that defines each test
case, scenario, or problem from the algorithms that generate simulated responses,
and archive the input files that define each test case, scenario, or problem rather
than altering a single input set.

In research that employs simulation it is rare that there is only a single test case,
scenario, or problem. Typically there are many that differ in systematic ways such as
the number of systems K in ranking and selection, or the correlation in a randomly
generated knapsack problem. Extreme (bad) practices that thwart reproducibility
include creating a single piece of code that is edited for each test case, scenario or
problem considered, or creating an entirely separate piece of code for each test case,
scenario, or problem in which all inputs are “hard coded” into the algorithm.

Research principle 9. The input data for a test case, scenario, or problem in-
cludes the random-number seeds or streams, and they should always be set rather
than accepting software defaults.

Nearly all software that has the capability to run stochastic simulations has a
default setting for the random-number seeds or streams. However, these are not
always fixed seeds or streams, and even when they are it is not always obvious what
triggers them to be reset to their default starting values. One should always set and
record the seeds or streams used.

Research principle 10. Archive a script for describing how the experiments were
executed and analyzed.

Generation and analysis of data is not always a one-step process (see the next
principle). Further, specific versions of some software may be required. You may
need such a script to reproduce results yourself, and reviewers will certainly need it
if asked to reproduce your results.

Research principle 11. As far as possible, separate the data-generation aspect of
the simulation from the analysis of it.

If your experiments compare, say, the variance of control-variate estimators to
sample means, then it is tempting to write code that generates the data, computes
the estimators, computes the estimated variances, and saves only the final values.

https://dl.acm.org/journal/tomacs/
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Contrast this with generating all output data and retaining it; computing both esti-
mators from the data and retaining them; and then computing the sample variances
and retaining them. The latter approach facilitates asking different questions of the
data at a later time, diagnosing where an error occurred if one is later suspected, as
well as facilitating the examination of results by others without having to actually
run the simulation.

In addition to facilitating reproducibility, practicing these research principles has
a side effect of helping you find mistakes or bugs in your own work.
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