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Preface

To make decisions optimally is one of the basic desires of a human being. In (relatively rare!)
situations where one can quantify both candidate decisions (i.e., to represent them as points x
varying in certain well-defined set X) and the criteria we are interested in (that is, to represent
these criteria as real-valued function of x € X), the problem of optimal decision making falls in
the scope of Mathematics, specifically, the area called Optimization. A part of Optimization is
Mathematical Programming interested in the optimization problems of the form

max {fo(z):z € X} (%)

where the feasible set X is a subset of the space R™ of real n-dimensional vectors x, and the
objective f is a real-valued function. A typical description of the feasible set X of a Mathematical
Programming (MP) problem is by a finite system of constraints f;(x) < g;:

X={zeR": fi(x) <bj, 1 <i<m},

where f;(x) are given real-valued functions of n variables x, and b; are given reals. Thus, a
generic MP problem (or MP program) is of the form

mgx{f(x) s filx) <bi,i=1,..,m} O]

In other words, Mathematical Programming deals with the case when our candidate decisions
can be encoded by vectors z of certain dimension n and we are interested in finitely many criteria
represented by real-valued functions f(x), fi(z), ..., fm(x). Since in general it is impossible to
optimize simultaneously more then one criteria (usually, you cannot simultaneously be as wealthy
as possible and as healthy as possible), (!) treats the criteria “asymmetrically:” we impose
bounds on all but one of the criteria and optimize the remaining criterion (optimize health, not
allowing wealth to become too low, so to speak).

Linear Optimization (called also Linear Programming) is part of Optimization Theory han-
dling Linear Optimization problems, those where the objective f(x) and the constraints f;(z)
are linear functions of x:

n n
flz)=cle = chajj, fi(z) =alx = Zaijxj.
j=1 j=1

LO is the simplest and the most frequently used in applications part of Mathematical Program-
ming. Some of the reasons are:

e reasonable “expressive power” of LO — while the world we live in is mainly nonlinear,
linear dependencies in many situations can be considered as quite satisfactory approxima-
tions of actual nonlinear dependencies. At the same time, a linear dependence is easy to
specify, which makes it realistic to specify data of Linear Optimization models with many
variables and constraints;

e existence of extremely elegant, rich and essentially complete mathematical theory of LO;

e last, but by far not least, existence of extremely powerful solution algorithms capable to
solve to optimality in reasonable time LO problems with tens and hundreds of thousands
of variables and constraints.
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In our course, we will focus primarily on “LO machinery” (LO Theory and Algorithms), leaving
beyond our scope practical applications of LO which are by far too numerous and diverse to be
even outlined in a single course. The brief outline of the contents is as follows:

1. LO Modeling

e examples of LO models

e “calculus” of LO models — collection of tools allowing to recognize and implement the
possibility to pose an optimization problem as an LO program

2. Descriptive Theory of LO

e geometry of LO programs

e existence and characterization of optimal solutions
e theory of systems of linear inequalities

e LO duality

3. Operational aspects of LO

e Traditional Simplex-type algorithms
e Ellipsoid Algorithm and Complexity of LO

4. Introduction to Conic Programming

e Conic programs and Conic Duality

e Interior Point polynomial time algorithms for Linear and Semidefinite Optimization.

I apologize in advance for possible typos and will be extremely grateful to those bringing the
typos, or whatever other shortcomings of the Notes, to my attention.

Arkadi Nemirovski,

December 1, 2011 — March 20, 2023
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CONTENTS 1

Main Notational Conventions

Vectors and matrices. By default, all vectors in this course are column vectors. Usually,
we utilize “MATLAB notation:” a vector with coordinates x1, ..., T, is written down as = =
[€1;...;x,]. More generally, if A, ..., A, are matrices with the same number of columns, we write
[A1;...; Ap] to denote the matrix which is obtained when writing Ay beneath A;, As beneath
Ao, and so on. If Ay, ..., A, are matrices with the same number of rows, then [Aj, ..., A;,] stands
for the matrix which is obtained when writing As to the right of A1, A3 to the right of As, and
so on. For example,

[1,2,3,4] = [1;2;3;4]7,

[[1=2;3»4L[5,6;7,8H=[1,2,5,6;3,4,7,8]:[1 2 5 6]

3 4 7 8

Diag{Ai, Ag, ..., Ay, } denotes the block-diagonal matrix with the diagonal blocks Aj, ..., A;,. For
example,

1 2

Diag{[1,2],3,[4,5;6,7]} =

S =~
~ Ot

where blank spaces are filled with zeros.

For a square nonsingular matrix A, A=7 means [A~1]T.

The zero vectors and matrices are, as always, denoted by 0; if we have reasons to point
out the sizes of a zero vector/matrix, we write something like 03x4. The unit m X m matrix is
denoted by I or I,,.

We write A > B (or, which is the same, B =< A) to express the fact that A, B are symmetric
matrices of the same size such that A — B is positive semidefinite; A > B (or, which is the same,
B < A) means that A, B are symmetric matrices of the same size such that A — B is positive
definite. We abbreviate “if and only if” to “iff.”
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Lecture 1

Introduction to LO: Examples of LO
Models

In this lecture , we define the main entity we are interested in our course — a Linear Optimiza-
tion problem, provide a number of instructive examples and address the question of when an
optimization problem can be posed as an LO one.

1.1 LO Program: Definition

1.1.1 An LO program

A Linear Optimization problem, or program (called also Linear Programming problem /program,
abbreviations LO and LP) is the problem of optimizing a linear function ¢’ x of an n-dimensional
vector x under finitely many linear equality and nonstrict inequality constraints. For example,
the following Mathematical Programming problems

1 +x2 <20
mndx;:q 3 —x2 = 5 (1.1.1)
! r1,T2 > 0
and
2$1 Z 20 — o
. X1 — Ty = 5
max 4 + 29 : 2 > 0 (1.1.2)
i) S 0
are LO programs. In contrast to this, the optimization problems
r1+az2 < 20
min < exp{zi}: < x1—2x2 = 5 (1.1.3)
! x1,x2 = 0
and
ixy > 20— 1x0,1=2,3,...
. r1 — T2 = 5
max § o1+ 2 > 0 (1.1.4)
i) S 0
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are not LO programs: (|1.1.3)) has a nonlinear objective, and (|1.1.4) has infinitely many con-

straints.

A careful reader could say that is “the same” as (since the exponent
is monotone, it is the same what to minimize, x; or exp{x1}). Similarly, (1.1.4) is
“the same” as , since for ;1 > 0, the infinitely many constraints ix1 + xo > 20,
1 = 2,3, ... are equivalent to the single constraint 2z; + zo > 20. Note, however,
that we classify optimization problems according to how they are presented, and not
according to what they can be equivalent/reduced to.

Now, we can somehow “standardize” the format in which an LO program is presented. Specifi-
cally,

e cvery linear equality /inequality can be equivalently rewritten in the form where the left
hand side is a weighted sum Z;L:1 a;z; of variables x; with coefficients, and the right hand
side is a real constant; e.g., 2x; > 20 — x5 is equivalent to 2z + zo > 20;

e the sign of a nonstrict linear inequality always can be made ”<”, since the inequality
>_ja;jz; > b is equivalent to 3 [—a;]z; < [-b];

e a linear equality constraint ) 0Ty = b can be represented equivalently by the pair of
opposite inequalities >, a;jz; < b, Y [—ajlz; < [-D];

e to minimize a linear function ) _; ¢;z; is exactly the same to maximize the linear function

Zj [—¢j]w;.

Canonical form of an LO program. In view of the above observations, every LO program
can be equivalently written down as a problem of maximizing a linear objective under finitely
many nonstrict linear inequality constraints of the 7 < ”-type, i.e., in the canonical form

Opt = max {2?21 i 2?21 aijx; <bj, 1<i< m}
[ “term-wise” notation]

_ To. T '
& Opt—mgx{c zialr <b,1<i<mj (1.1.5)

[ “constraint-wise” notation]
< Opt= max{cTa: Az < b}
x

[ “matrix-vector” notation]
T. T T

where ¢ = [c1;...; ¢, @i = [@in; .. Ginl, A= [a1;a5;...;a,,], b= [b1;...; bm].
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Standard form of an LO program. An LO program in the standard form reads

N oagxs =0, 1<i<m
Opt = max N oCiT ZJ:I R ==
P x {Zﬂ—l (A z;>20,7=1,...,n

“term-wise”
notation
T .
a;rx=0b;,1<i<m
< Opt=max{cle: ¢ Vo=
P x { 2;>20,1<j5<n

[ “constraint-wise”

(1.1.6)

notation
< Opt = max{cT:c cAr=0b,x > 0}
X

“matrix-vector”
notation

where ¢ = [c1;...;¢n), @i = [ai1; . ain], A= [aT;al;..;al], b= [b1;...;bm]. As compared with
, in the standard form of an LO all “general” linear constraints are equalities, and the
inequality constraints are sign constraints, specifically, the restrictions of nonnegativity, imposed
on all variables. The standard form is as “universal” as the canonical one:

Observation 1.1.1 FEvery LO program can be straightforwardly converted into an equivalent
program in the standard form.

Proof. We lose nothing by assuming that the original form of the program is the canonical one,
specifically,

max{eTy : Py < p} O
y

(note change in the notation). Now, to say that Py < p is exactly the same as to say that
Py + u = p for certain nonnegative vector u; in addition, every real vector y can be represented
as the difference of two nonnegative vectors: y = v — w. It follows that (!) is equivalent to the
problem
Tr,.._ T . - —p—
max {c z:=¢ [v—w]: Az:=Pv—-w)+u=b:=px >0}

r=[u;v;w]

which is an LO in the standard form. O

In the sequel, when investigating the “geometry” of LO, it will be more convenient to use the
canonical form of an LO program; the standard form is preferable when presenting traditional
LO algorithms.

1.1.2 LO Terminology

We are about to present the most basic “vocabulary” of LO. For the sake of definiteness, in our
presentation we refer to the canonical format of an LO program (|1.1.5)), leaving the “translation”
to the case of a program in the standard form to the reader. The vocabulary is as follows:

e The variable vector = in is called the decision vector of the program; its entries x;
are called decision variables. The linear function ¢!z is called the objective function (or
just objective) of the problem, and the inequalities aiTx < b; are called the constraints.
Sometimes, with slight abuse of wording, we refer to the vector c itself as to the objective;
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e The structure of , given the way we are writing the problem down, reduces to the
sizes m (number of constraints) and n (number of variables). The data of an LO program is
the collection of numerical values of the coefficients in the cost vector (or simply objective)
¢, in the right hand side vector b and in the constraint matrix A;

e A solution to is an arbitrary value of the decision vector. A solution z is called
feasible if it satisfies the constraints: Axz < b. The set of all feasible solutions is called the
feasible set of the program; the program is called feasible, if the feasible set is nonempty,
and is called infeasible otherwise;

e Given a program (1.1.5)), there are three possibilities:

— the program is infeasible. In this case, its optimal value Opt, by definition, is —oo
(this convention is logical, since in the case in question one cannot point out a feasible
solution with the value of the objective > —o0);

— the program is feasible, and the objective is not bounded from above on the feasible
set, meaning that for every real a one can point out a feasible solution x such that
c'z > a. In this case, the program is called unbounded, and its optimal value Opt
is, by definition, +ooc.

The program which is not unbounded is called bounded; a program is bounded iff
its objective is bounded from above on the feasible set (e.g., due to the fact that the
latter is empty);

— the program is feasible, and the objective is bounded from above on the feasible set:
there exists a real a such that ¢Zz < a for all feasible solutions z. In this case, the
optimal value Opt is the supremum, over the feasible solutions, of the values of the
objective at a solution.

Thus, to say that Opt = 5 means to say two things: first, there does not
exist feasible solution with the value of the objective > 5, and, second, for
every € > 0 there exists a feasible solution with the value of the objective
>5—e.
— a solution to the program is called optimal, if it is feasible, and the value of the
objective at the solution equals to Opt. A program is called solvable, if it admits an
optimal solution.

Remarks. A. The above terminology is aimed at the maximization LO in the canonical form.
The terminology in the case of a minimization problem “mirrors” the one we have described,
specifically,

e the optimal value of an infeasible program is 400,

e the optimal value of a feasible and unbounded program (unboundedness now means that the
objective to be minimized is not bounded from below on the feasible set) is —oo, while the
optimal value of a bounded and feasible L.O is the infimum of values of the objective at feasible
solutions to the program.

B. The notions of feasibility, boundedness, solvability and optimality can be straightfor-
wardly extended from LO programs to arbitrary MP ones. With this extension, a solvable
problem definitely is feasible and bounded (why?), while the inverse not necessarily is true, as
is illustrated by the program

Opt = max {—exp{—=z} : 2 > 0},
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where the optimal value — the supremum of the values taken by the objective at the points of
the feasible set — clearly is 0; this value, however, is not achieved — there is no feasible solution
where the objective is equal to 0 = Opt, and, as a result, the program is unsolvable. Thus, in
general, the facts that an optimization program has a “legitimate” — real, and not oo — optimal
value, is strictly weaker that the fact that the program is solvable (i.e., has an optimal solution).
In LO the situation is much better; eventually we shall prove that an LO program is solvable iff
it is feasible and bounded.

1.2 Examples of LO models

Here we present a short series of (mostly) standard examples of LO problems. In every one
of them, we start with certain semi-verbal story and then “translate” this story into an LO
program; this is called modeling — building a mathematical model, in our case, of the LO type,
of a “practical” situation. It should be stressed that in applications of Optimization modeling
plays the crucial role: on one hand, we need to end up with a model which is not “oversimplified,”
that is, captures all important for the application in question relations and dependencies between
the entities involved, and, on the other hand, is not too complicated, so that we can specify all
the relevant data and process the resulting problem numerically at a reasonable computational
cost. A proper balance between these two conflicting goals requires both deep understanding of
the subject area to which the application belongs and good knowledge of optimization theory
and algorithms. This being said, note that modeling per se, being a “go-between for reality and
Mathematics,” is beyond the scope of our course.

1.2.1 Examples of LO models in OR
1.2.1.1 Diet problem

There are n types of products and m types of nutrition elements. A unit of product
# j contains p;; grams of nutrition element # i and costs c¢;. The daily consumption
of a nutrition element # i should be at least a given quantity b; and at most a given
quantity b;. Find the cheapest possible “diet” — mixture of products — which provides
appropriate daily amounts of every one of the nutrition elements.

Denoting z; the amount of j-th product in a diet, the LO model of the problem readsﬂ

min > =16 [Diet’s cost to be minimized]
x
subject to
Z%zl DijTj = Q, 1<i<m bounds' c?n the contents (1.2.1)
> i1 PijTy < b; of nutrition elements

. one cannot use negative
r;>20,1<j5<n [ & }

amounts of products

'Here and in the subsequent examples, we do not bother to convert the model into a specific form, e.g.,
the canonical one, since this (completely straightforward and “mechanical”) process would only obscure the
construction of a model. Note that existing LO solvers also do not require from a user to input the problem in
certain particular form and use preprocessors to convert an LO program into the format directly accessible for the
solver. A “standard” format is convenient when investigating LO’s as “mathematical beasts,” not when building
LO models!
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The Diet problem is one of the first LO models, and today it is routinely used in many areas,
e.g., in mass-production of poultry. As about nourishment of human beings, the model is of no
much use, since it completely ignores factors like food’s taste, food diversity requirements, etc.

Here is the optimal daily human diet as computed by the software at
https://neos-guide.org/case-studies/om/the-diet-problem/
(when solving the problem, I allowed to use all 64 kinds of food offered by the code):

Food Serving Cost
Raw Carrots 0.12 cups shredded | 0.02
Peanut Butter 7.20 Thsp 0.25
Popcorn, Air-Popped | 4.82 Oz 0.19
Potatoes, Baked 1.77 cups 0.21
Skim Milk 217 C 0.28

Daily cost $ 0.96

1.2.1.2 Production planning

A factory consumes R types of resources (electricity, raw materials of various kinds,
various sorts of manpower, processing times at different devices, etc.) and produces
P types of products. There are n possible production processes, j-th of them can
be used with ‘“intensity” x; (you may think of these intensities as of fractions of
the planning period (say, 1 month) during which a particular production process is
used). Used at unit intensity, production process # j consumes A,; units of resource
r, 1 <r < R, and yields C); units of product p, 1 < p < P. The profit of selling
a unit of product p is ¢p. Given upper bounds by, ...,br on the amounts of various
recourses available during the planning period, and lower bounds di, ...,dp on the
amount of products to be produced, find a production plan which maximizes the
profit under the resource and the demand restrictions.

Denoting by z; the intensity at which production process j is used, the LO model reads:

n
max (25:1 cpij> xj [profit to be maximized]
subject to
Z": Ayjz; <b,1<r<R [ upper bounds on consumed ]
j=1

resources should be met
(1.2.2)

p, 1L<p< P [

n
> Cpjzj > d
j=1
n
Yox; <1
j=1

lower bounds on products’
yield should be met

total intensity should be < 1 and
intensities must be nonnegative

zj >20,1<j5<n

Note that the simple model we have presented tacitly assumes that all what is produced can be
sold, that there are no setup costs when switching from one production process to another one,
that products are infinitely divisible (we produce needles rather than Boeings, so to speak), and
makes a lot of other implicit assumptions.
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1.2.1.3 Inventory

An inventory operates over the time horizon 1,...,T (say, T days) and handles K
types of products.

e Products share common warehouse with storage space C'. The space required to
store a unit of product k in the warehouse is ¢, > 0, and the holding cost (the
per-day cost of storing a unit of product k in the warehouse) is hy.

e The inventory is replenished via ordering from a supplier; a replenishment order
sent in the beginning of day t is executed immediately, and ordering a unit of product
k costs oy.

e The inventory is affected by external demand which amounts to dy, units of product
k in day t. While backlogged demand is allowed, a day-long delay in supplying a
customer by unit of product k costs py.

Given the initial amounts so, k = 1, ..., K, of products in warehouse, all the cost
coefficients (which are nonnegative) and the demands dtkﬂ we want to specify the
replenishment orders vy, (vy, is the amount of product k& which is ordered from the
supplier at the beginning of period t) in such a way that at the end of period T' there
is no backlogged demand, and we want to meet this requirement at as small total
inventory management costs as possible.

In order to convert this story into an LO model, we first introduce the state variables s
representing the amount of product k in the warehouse at the end of period ¢ (or, which is the
same, at the beginning of period ¢ 4 1); we allow these state variables to be negative as well as
positive, with a negative value of sy interpreted as “at the end of period ¢, the inventory owes
the customers |sy| units of product k.” With this convention, our problem can be modeled as
the optimization program

min U
Uw,s
subject to
K T
U= 3> [oxvi + hx max([ss, 0] + pp max[—sy, 0]] (a)
k=1t=1 (1.2.3)

(

Sth =81k + Vi —dy, 1 <t <T, 1<k <K (b)
Z,i(:l cpmax(sy, 0] <C, 1 <t<T (c)
st > 0,1<k<K (d)
v >0, 1<EkE<K1<t<T (e)

(the s-variables sy, have t > 1, sg being part of problem’s data). In this model,
e the variable U is the overall inventory management cost which we want to minimize;

e constraint (a) expresses the fact that U indeed is the overall inventory management cost
— the total, over the K products and the T' days, ordering cost (opvy), holding cost
(hx max[s, 0]), and penalty for backlogged demand (pr max[—sy,0]) associated with
product k and period ¢. Further, constraints (b) express the evolution of states, constraints
(c) express the restrictions on the space available for storing the products.

2The latter assumption — that the demands are known in advance — more often than not is unrealistic. This
issue will be addressed in the mean time, when speaking about LO problems with uncertain data.
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The implicit assumptions underlying the latter claims are as follows: the re-
plenishment orders vy, are issued in the beginning of day ¢ and are executed
immediately. As a result, the amount of product k£ in the inventory in the be-
ginning of day ¢ jumps from s;_; 3 to s;_1 % + v,. Immediately after this, the
demands dy, of day t become known and the products are shipped to the cus-
tomers, which reduces — again immediately! — the inventory level by dy, so that
the resulting level s;_j ; + vy, — dyg, if nonnegative, is the amount of product %
stored in the inventory during day t, otherwise the modulus of this level is the
backlogged demand on product k£ during day ¢.

From the story we have just told we see, first, that the states sy of the inventory,
as defined above, evolve according to (b). Second, our expenses, associated with
product &, in day ¢ include the ordering cost opvs, and on the top of it, either
the holding cost hgsy (this is so if sy, is nonnegative), or the penalty pg[—su| for
backlogged demand (when sy is negative). We see that (a) correctly represents
the expenses. Further, we see that the “physical” amount of product k stored
in the warehouse during day ¢ is max[sy, 0], so that (¢) correctly represents the
restriction on the space available for storage of products.

e constraint (d) expresses equivalently the requirement that at the end of the planning period
(i.e., at the end of day T') there is no backlogged demand.

e finally, constraints (¢) express the implicit assumption that we can only order from the
supplier, while return of products to the supplier is forbidden.

Note that we lose nothing when replacing the equality constraint a) with the inequality
constraint
K T
U > Z Z [0k + hi max|[sy, 0] + pr max|[—sy, 0]] (a)
k=1 t=1
which corresponds to minimizing an upper bound U on the actual inventory management cost;
since nothing prevents us from setting this bound to be equal to the right hand side in a)
(which in any case will be enforced by minimization), the modified in this way problem is
equivalent to the original one. In the remaining discussion, we assume that a) is replaced
with (a').

We have modeled our verbal problem by (a slightly modified version of) (|1.2.3)); note, how-
ever, that the resulting model is not an LO program, due to the presence of nonlinear in our
design variables terms max[+s,0]. We are about to demonstrate (pay maximal attention to
this construction!) that we can handle this type of nonlinearities via LO. Specifically, assume
that we have a constraint of the form

agTermy (y) + ... + aprTermps(y) < b, ("

where «y are nonnegative constant coefficients, b is a constant, and every term Termy(y) is either
a linear function of our design variables y (let it be so for L < £ < M), or is a piecewise linear
function of the form

Termy(y) = max[alyy + big, adyy + bag, ..., agzy + by (%)

(the latter is the case for 1 < ¢ < L).
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Note that converted equivalently to the form of (!), all constraints (a'), b-e)
are of this form, which is an immediate corollary of the nonnegativity of the cost
coefficients h, pr. and the space coeflicients cy,.

Now, let us replace every piecewise linear term Termy in (!) with a new decision variable wy
(“slack variable” in the slang of LO) and augment this action by imposing the constraints

we > aly + by, 1<v<p

on the original and the slack variables. As a result, the constraint (!) will be replaced by the
system

So¢oy awwg + 3000y awTermy(y) < b

wy > aly+by, 1<v<pl<l<L

of linear in the variables y, wi,...,wy inequalities. Taking into account that a,...,ap are
nonnegative, it is clear that this system says about our original variables y exactly the same as
the constraint (!), meaning that y can be extended, by properly chosen values of slack variables
wy, 1 <€ < L, to a feasible solution of the system iff y satisfies (!). If now (!) is a constraint in
certain optimization problem, then, augmenting the variables of the problem by slack variables
wy and replacing the constraint in question with the above system, we arrive at an equivalent
problem where the nonlinear constraint in question is replaced with a system of linear constraints.
If all constraints with nonlinearities in an optimization problem admit the outlined treatment,
we can apply the outlined procedure “constraint by constraint” and end up with an LO which
is equivalent to the original problem.

Let us apply this recipe to problem ((1.2.3)) (with constraint (a) replaced with (a’), which, as
we remember, keeps the problem intact up to equivalence). Specifically, we introduce the slack
variables (upper bounds) yy, for the quantities max[sy, 0] and zy, for the quantities max|[—sy, 0]
and replace the nonlinearities with these upper bounds, augmenting the resulting system of
constraints with linear constraints (constraints (f), (g) below) expressing equivalently the fact
that y, 24 indeed are upper bounds on the corresponding nonlinearities. The resulting program

reads
min U
U7U7S7y72

subject to

K T
U> > > lokvw + hiy + przl
=1i=1

(
St = St—1h + Uk — A, 1L <t ST 1< E<S K ( (1.2.4)
K Gy <C,1<t<T (
st > 0,1 <k<K (d)
v >0, 1<k<K1<t<T (
Yk > Stky Yk > 0,1 <k <K,1<t<T (
2tk > =Sk, 2k > 0,1 <kE< K 1<t<T (9)

and is an LO program which is equivalent to (1.2.3) and thus models our inventory problem.
Warning: The outlined “eliminating nonlinearities” heavily exploits the facts that
(1) () is a constraint with piecewise linear nonlinearities which are maxima of linear forms,
(2) all the nonlinearities are to the left of 7 < ”-sign, and
(3) the coefficients at these nonlinearities are nonnegative.
Indeed, assume that we are given a constraint with the terms which are either linear functions
of the variables, or piecewise linear functions “maximum of linear terms” multiplied by constant
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coefficients. We always can rewrite this constraint in the form of (!), but the coefficients at
nonlinearities in this constraint not necessarily should be nonnegative. Of course, we can “move
the coefficients into the nonlinearities”, noting that

cmax[al y + by, ..., agy + by)

is either max|caly + cby, ..., cagy +b,] when ¢ > 0, or min[ca y + cby, ..., cagy + bp] when ¢ < 0.
Now all nonlinearities have coefficients 1 and are to the left of ” < ”, but there, in general, are
two types of them: maxima of linear forms and minima of linear forms. The above construction
shows that

If all the nonlinearities in the constraint
Term; (x) + ... + Termps(x) < b ("

are maxima of linear forms, we can eliminate them at the cost of introducing slack
variables and converting (!) into a system of linear inequalities. The number of slack
variables we need is equal to the number of nonlinearities we are eliminating, and
the number of linear inequalities we end up with is by one greater than the total
number of linear forms participating in the nonlinearities.

The situation changes dramatically when among the nonlinearities are minima of linear forms.
Given such a nonlinearity, say, min[alTy + b1, ...,agy + by], we can, of course, replace it with
a slack variable w at the cost of augmenting the list of constraints by the constraint w >
min[af z + by, ...,agm + bp] (“isolating” the nonlinearity, so to speak). The difficulty is that
now this additional constraint cannot be immediately reduced to a system of linear inequalities:
instead of expressing the fact that w is > the maximum of aiTx + b; over i, that is, that w >
alx + b AND w > alx +by AND ... AND w > agsc + b, (which is just a system of p linear
inequalities on w and y), we need to express the fact that w is > the minimum of a!z + b; over
i, that is, that w > al x4+ by OR w > alz 4+ by OR ... OR w > agzv + by, which is not a system
of linear inequalities on w,y. Of course, it is possible to eliminate nonlinearities of the min-type
by “branching” on them: to eliminate nonlinearity w > min[af x + by, ..., a;‘f:ﬁ + by, we build
p uncoupled problems where this nonlinearity is substituted subsequently by every one of the
linear inequalities w > a;r:n + b;, ¢ = 1,...,p. However, if we have several “bad” — requiring
branching — nonlinearities in an optimization problem, when eliminating all of them, we need
to consider separately all combinations of the above substitutions across the bad nonlinearities.
As a result, if in the original problem we have K “bad” piecewise linear nonlinearities and
k-th of them involves p; linear functions, their elimination results in the necessity to consider
separately N = pipo...px “LO variants” of the original problem. Since the number of variants
grows exponentially fast with the number of bad nonlinearities, this approach, at least in its
outlined straightforward form, can be used only when K and p;, 1 <14 < K, are small.

1.2.1.4 Transportation and Network Flows

There are I warehouses, i-th of them storing s; units of product, and J customers,
Jj-th of them demanding d; units of product. Shipping a unit of product from ware-
house i to customer j costs c;;. Given the supplies s;, the demands d; and the costs
C;j, we want to decide on the amounts of product to be shipped from every ware-
house to every customer. Our restrictions are that we cannot take from a warehouse
more product than it has, and that all the demands should be satisfied; under these
restrictions, we want to minimize the total transportation cost.
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Introducing decision variables x;;, with x;; being the amount of product to be shipped from
warehouse ¢ to customer j, the story can be modeled by the LO program

ming ), ; CijTij [transportation cost to be minimized]
subject to
. we should respect capacities
ijl Tij S s, L<isT [ of the Warehoﬂses ’ ]
S wij=dj,j=1,..,J  [we should satisfy the demands]
you cannot ship negative
amount of product }

(1.2.5)

i >0,1<:<I1,1<5<J [

We end up with what is called a transportation problem. Note that when building the model
we have assumed implicitly that the product is infinitely divisible.

A far-reaching generalization of the transportation problem is the multicommodity network
flow problem as follows. We are given a network (an oriented graph) — a finite set of nodes
1,...,n along with a finite set I" of arcs — ordered pairs v = (i, j) of distinct (i # j) nodes. We say
that an arc v = (i, j) starts at node i, ends at node j and links node i to node j. As an example,
you may think of a road network, where the nodes are road junctions, and the arcs are the
one-way segments of roads “from a junction to a neighboring one;” a 2-way road segment can be
modeled by two opposite arcs. (Of course, many other interpretations of a network are possible).
Now imagine that there are NV types of “commodities” moving along the network, and let sg;
be the “external supply” of k-th commodity at node i. This supply can be positive (meaning
that the node “pumps” into the network sx; units of commodity k), negative (the node “drains”
from the network |sy;| units of commodity k) and zero. You may think of k-th commodity as
about the stream of cars originating within a time unit (say, one hour) at a particular node
(say, at GaTech campus) and moving to a particular destination (say, Northside Hospital); the
corresponding sy; are zeros for all nodes ¢ except for the origin and the destination ones. For
the origin node 14, sg; is the per hour amount ¢ of cars leaving the node for the destination in
question, while for the destination node i, sg; = —¢, so that |sg;| is the per hour amount of cars
of given origin arriving at the destinationﬂ Now, the propagation of commodity k through the
network can be represented by a vector f* with entries fff indexed by the arcs of the network;
ffj is the amount of the commodity moving through the arc 7. Such a vector is called a feasible
flow, if it is nonnegative and meets the conservation law as follows: for every node i in the
network, the total amount of the commodity k arriving at the node plus the supply si; of the
commodity k at the node equals to the total amount of the commodity k leaving the node:

Z f§i+8ki: Z fiIZa

peP(i) q€eQ(7)

where P(i) is the set of all nodes p such that (p,4) is an arc in the network, and (i) is the set
of all nodes ¢ such that (i,¢) is an arc in the network.
The multicommodity flow problem reads: Given
e a network with n nodes 1,...,n and a set I' of arcs,
e a number K of commodities along with supplies si; of nodes i = 1,...,n to the flow of
commodity k, k=1,..., K,
e the per unit cost cy, of transporting commodity k through arc v,
e the capacities h, of the arcs,

3In our static “traffic illustration” we assume implicitly that the traffic is in steady state.
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find the flows f1, ..., f& of the commodities which are nonnegative, respect the conservation law
and the capacity restrictions ( that is, the total, over the commodities, flow through an arc does
not exceed the capacity of the arc) and minimize, under these restrictions, the total, over the
arcs and the commodities, transportation cost.

In our “traffic illustration,” you may think about a shipping cost ¢, as about the time
required for a car to travel through arc v (with this interpretation, c;- should be independent of
k), in which case the optimization problems becomes the problem of finding social optimum —
the routing of cars in which the total, over all cars, traveling time of a car is as small as possible.

To write down an LO model of the problem, let us define the incidence matrix P = [P;,] of
a network as the matrix with rows indexed by the nodes i = 1, ..., n of the network and columns
indexed by the arcs v € I' of the network, with the entry P,

— equal to 1 when the arc v starts at node 1,
— equal to —1 when the arc v ends at node 1,
— equal to 0 in all remaining cases.
For example, the incidence matrix of the graph

2
3
1
4
is
1 1 0 0
-1 0 1 0
P= 0 -1 -1 1
0 0 0 —1
indexes of rows, top—bottom: nodes 1,2,3,4
indexes of columns, left-right: arcs (1,2),(1,3),(2,3),(3,4)

With this notation, the conservation law for a flow f, the supplies being s1,..., s,, reads
(check it!)

ZP”JC’V = 5 :=[81;...;8p).
¥

Now we can write down an LO program modeling the multicommodity flow problem:

ming i SR > ver Chny JX [total transportation cost]
subject to
flow conservation law for the
Pfk =gk .= k=1,...,. K .
= (5155 Sl T [ flow of every commodity ] (1.2.6)

fff >0,1<k<K,yeTl [ flows must be nonnegative |

K ¢k o r we should respect bounds
21 fyshy e [ on capacities of the arcs

Note that the transportation problem is a very specific case of the multicommodity flow problem.
Indeed, in the situation of the transportation problem, let us start with I 4+ J-nodal graph with
I red nodes representing warehouses and J green nodes representing the customers, and IJ arcs
leading from every warehouse to every customer; the arc from i-th warehouse to j-th customer
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has infinite capacity and transportation cost c;;. Further, let us add to this graph one extra node,
called source, and I arcs linking the source and the warehouses. The arc “source-warchouse #:”
is assigned with zero transportation cost and capacity s; (the amount of product in warehouse
i). Finally, let there be a single commodity, with external supply equal to D = Z}]zl d; at the
source node and equal to —d; at the green node # j (the node representing j-th customer); see
figure Clearly, the resulting single-commodity version of the multicommodity flow problem

(1.2.6)) is nothing but the transportation problem (|1.2.5)).

S1

'Dl

0 D,
D3

Y,

F igure 1.1: Network Flow reformulation of the transportation problem
ming {ZiQ’jSS Cijttij 0 s Wiy < 51,0 <2, Y g @iy = dj,§ <3, w5 2 0,i < 2,5 < 3}
Arc capacities: s; in arcs (0, S;), ¢ < 2, +00 in arcs (S;, D;)
External supplies: d1 + d2 +d3 at O, —d; at Dj, j < 3, zeros at S;, ¢ <2
Transportation costs: zeros in (O, S;), @ < 2, ¢;5 in (S;,D;),1<2,j<3

LO programs on networks form a special, extremely nice part of LO. Here is one of the most
beautiful problems of this type — the Maximal Flow problem as follows: We are given a network
with arcs vy assigned with nonnegative capacities h. One of the nodes is designated as source,
another one — as sink. We are looking at the maximal flow from source to sink, that is, for the
largest s such that the external supply “s at the source, —s at the sink, zero at all other nodes”
corresponds to certain feasible flow respecting the arc capacity bounds.

The LO model of this problem reads:

max s s s [total flow from source to sink to be maximized]
subject to
s, i is the source node
> Pinfy =4 —s, iis the sink node [flow conservation law] (1.2.7)

0, for all other nodes
fy>0,v €T [flows in the arcs should be nonnegative]
fy < hy,y €T [we should respect arc capacities]

The beauty of Network Flow problems stems from the fact that one can utilize additional and
very specific structure coming from the associated network; as a result, numerous Network
Flow LO’s admit specialized highly efficient solution algorithms which within their scope by far
outperform “general purpose” LO methods.

1.2.2 Engineering examples

Traditionally, LO models and algorithms were considered as part of Operations Research and as
such were primarily associated with decision-making applications. Power of LO in engineering
applications was realized essentially later, and “penetrating” of LO in these areas seems to be
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still in progress. Applications of this type include synthesis of linear controllers for discrete time
linear dynamical systems, and various applications in Data Mining and Signal Processing. Here
we present just two illustrations, one of them teaching us important “modeling tricks,” and the
other one selected due to its crucial role in sparsity-oriented Signal Processing. Application to
synthesis of linear controllers relies on LO duality and will be considered in section [3.3.

1.2.2.1 Fitting parameters in linear regression models

Imagine that we have observed m pairs “input a; € R"™ to a “black box” — output y; € R of
the black box.” Sometimes we have reasons to believe that this output is a corrupted by noise
version of the “existing in the nature, but unobservable, ideal output” y; = aiTx* which is just
linear function of the inputs (this is called “linear regression model”). Our goal is to convert
actual observations a;,y;, 1 < ¢ < m, into estimates of the unknown vector of parameters z*.
This problem would be easy, if there were no observation errors (y; were exactly equal to aiTx*)
and we were possessing a rich enough set of observations, so that among the vectors aq, ..., an,
(“regressors” in the terminology of linear regression) there were n = dim x* linearly independent.
In this case the “true” vector of unknown parameters would be a solution to the system of linear
equations y; = a;fpx, 1 < i < 'm, in variables z, the solution to this system being unique (since
among the vectors aq, ..., a,, there are n linearly independent); it remains to note that to find
the unique solution to a solvable system of linear equations is a simple Linear Algebra problem.

The situation changes dramatically when there are observation noises and/or the number n
of “degrees of freedom” of the regression model — the dimension of the vector of parameters, or,
which is the same, of the regressor vectors a; — is larger than the number m of observations.

Because of observation noises, the system

a;fpac:yi, i=1,...m ()
in variables x can become infeasible (this will be typically the case when m > n) and even when
feasible, it is unclear what is the relation of its solution(s) to the true value of the parameter
vector (which now is not a solution to the system). Likewise, with a non-unique solution (this
will be typically the case when m < n), it is unclear which one of the solutions to the system to
take — and this is so even if there are no observation errors, that is, when we know in advance
that the true vector of parameters is among the solutions to the system.

There exists a wide (and constantly extending) spectrum of various techniques for parame-
ter estimation in a linear regression, differing from each other primarily in what is our a priori
information on the nature of the observation errors, the structure of the true vector of param-
eters, etc.; some of these techniques heavily utilize LO. For example, we can choose a simple
“discrepancy measure” — a kind of distance between the vector of outputs Ax = [alTx; .;al x)
of our hypothetical model (here A is the m x n matrix with the rows af,...,al ) and the vector
of observed outputs y = [y1;...; Ym], and look for the vector of parameters which minimizes this

discrepancy. This amounts to the necessity to solve the optimization problem
min ¢(Az,y), (*)
€T

where ¢(u,v) is the discrepancy between vectors u and v. Note that this approach does not
make much sense when the number of observations m is less than the number n of unknown
parameters (think why); it is used, if at all, when m > n.
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There are two simple cases when the outlined problem reduces to LO. The first is the case
when we are interested in the uniform fit:

d(u,v) = [|[u — v = 1912&&1);“ u; — vjl.

The second case corresponds to the £y fit

dim u

d(u,v) = [lu —vlj; = Z |u; — vil.
=1

e With the uniform fit, (x) reads

min max |a} z — y;l;
z 1<i<m

while literally this is not an LO program, we can easily convert it to the LO form by introducing
slack variable 7 which should be an upper bound on all the quantities |a! = — ;| and minimizing
this bound. The resulting problem reads

min{T:aiTx—yi§T,yi—a?x§7,1§i§m},
T,

which is an LO program.
e with the ¢;-fit, (%) reads

m
m{&nZ]a?m—yﬂ, (1.2.8)
i=1

which again is not an LO program. There are two ways to convert it into LO — a good and a
bad one. The good way is to note that |r| = max[r, —7], that is, |a] 2 — y;| is the maximum of
two linear forms of z, and to use the trick we remember from processing the inventory problem;
the resulting LO equivalent to the problem of interest reads

m

min{g wi:a?x—yigwi,yi—a?wgwi,lgigm}.

T,Ww —
1=

m

A bad way is to note that »_ |r;| = max
i—1 e1=*t1,e0==%1,...,emm==%1

1=
problem of interest down as an LO solely in the original variables z, augmented by a single slack
variable 7, specifically, as

>, €iri, which allows to write the

m
min {7‘ tT > Zei[aiTx —yi] Veo =+l ea =1, ...,6p = :I:l} . (1.2.9)
T, i—1

While being legitimate, this conversion indeed is bad, since we end up with an LO with 2™
linear constraints; numerical handling the resulting LO program will be completely impractical
already for m = 10, and will be impossible for m = 30.
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1.2.2.2 Sparsity-oriented Signal Processing and ¢; minimization

Compressed Sensing addresses, essentially, the same linear regression problem as above, but in
the case opposite to the one we have just considered, specifically, when the number of observa-
tions m is much less than the number n of unknown parameters. Thus, we are in the situation
when the m-dimensional vector of observations is obtained from an unknown n-dimensional
vector of parameters x* according to

y = Ax", (!

(for the time being, there is no observation error), and A is a given m X n sensing matrix. Our
goal is to recover x* given y, and the Compressed Sensing situation is the one where m < n. At
a first glance, our goal is unreachable: when m < n, (!), treated as a system of linear equations
in variables x, is heavily underdetermined: if solvable, it has infinitely many solutions, including
those which are very far from each other, since the solution set of (1), if nonempty, is unbounded
(why?). It follows that we have no chances to recover the true solution, unless we augment
the observations with certain additional information. In Compressed Sensing, this additional
information is the one of sparsity of x*, specifically, the a priory knowledge of an upper bound
s < m on the number of nonzero entries in z*.

Note that in many applications we indeed can be sure that the true vector of parameters z*
is sparse. Consider, e.g., the following story about signal detection (from the applied viewpoint,
this story is not of “linear regression” flavor, but the mathematical model looks exactly the
same).

There are n locations where signal transmitters could be placed, and m locations with
the receivers. The contribution of a signal of unit magnitude originating in location j
to the signal measured by receiver i is a known quantity A;;, and signals originating
in different locations merely sum up in the receivers; thus, if x* is the n-dimensional
vector with entries «; representing the magnitudes of signals transmitted in locations
j =1,2,...,n, then the m-dimensional vector y of measurements of the m receivers
is y = Ax*. Given this vector, we intend to recover x*.

Now, if the receivers are hydrophones registering noises emitted by submarines in certain part of
Atlantic, tentative positions of submarines being discretized with resolution 500 m, the dimension
of the vector z* (the number of points in the discretization grid) will be in the range of tens
of thousands, if not tens of millions. At the same time, the total number of submarines (i.e.,
nonzero entries in z*) can be safely upper-bounded by 50, if not by 20.

It should be added that typical images and audio signals, when represented by their coeffi-
cients in properly selected basesE] admit tight sparse approximations, making sparsity-oriented
signal recovery extremely promising, literally revolutionary, technique in, e.g., Medical Imag-
ing, where it allows to reduce by significant factor the acquisition time in procedures like MRI
without sacrificing quality of the resulting images{ﬂ

In view of the just outlined “signal processing” interpretation of the situation we are in,
in the sequel we use the words “true signal” as an equivalent to the words “the true vector of
parameters.”

4specifically, wavelet bases, whatever this means, in the case of images, and in the Fourier basis in the case of
audio signals.

SExcellent outline of the role of Compressed Sensing in Medical Imaging can be found in the Gauss Prize
lecture of one of the founders of Compressed Sensing, David Donoho, https://www.bing.com/videos/search?q=
donoho+Gauss+lecture&view=detail&mid=42235C42695AFBBEAA4E42235C42695AFBBEAA4E&FORM=VIRE


https://www.bing.com/videos/search?q=donoho+Gauss+lecture&view=detail&mid=42235C42695AFBBEAA4E42235C42695AFBBEAA4E&FORM=VIRE
https://www.bing.com/videos/search?q=donoho+Gauss+lecture&view=detail&mid=42235C42695AFBBEAA4E42235C42695AFBBEAA4E&FORM=VIRE
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Given in advance that * has at most s < m nonzero entries, the possibility of exact recovery
of x* from observations y becomes quite natural. Indeed, let us try to recover x* by the following
“brute force” search: we inspect, one by one, all subsets I of the index set {1,...,n} — first the
empty set, then n singletons {1},...,{n}, then @ 2-element subsets, etc., and each time try
to solve the system of linear equations

y = Az, xj =0 when j & I;

when arriving for the first time at a solvable system, we terminate and claim that its solution
is the true vector z*. It is clear that we will terminate before all sets I of cardinality < s are
inspected. It is also easy to show (do it!) that if every 2s distinct columns in A are linearly
independent (when m > 2s, this indeed is the case for a matrix A in a “general position”E[),
then the procedure is correct — it indeed recovers the true vector x*.

A bad news is that the outlined procedure becomes completely impractical already for
“small” values of s and n because of the astronomically large number of linear systems we need
to proces&ﬂ A partial remedy is as follows. The outlined approach is, essentially, a particular
way to solve the optimization problem

min{nnz(z) : Az =y}, (%)

where nnz(z) is the number of nonzero entries of a vector x. At the present level of our knowl-
edge, this problem looks completely intractable (in fact, we do not know algorithms solving the
problem essentially faster than the brute force search), and there are strong reasons to believe
that it indeed is intractable. Well, if we do not know how to minimize under linear constraints
the “bad” objective nnz(x), let us “approximate” this objective with one which we do know how
to minimize. The true objective is separable: nnz(z) = > | &(x;), where £(s) is the function
on the axis equal to 0 at the origin and equal to 1 otherwise. As a matter of fact, the separable
functions which we do know how to minimize under linear constraints are sums of convex func-
tions of 1, ..., x, ﬂ The most natural candidate to the role of convex approximation of £(s) is
|s|; with this approximation, (x) converts into the ¢1-minimization problem

n
min { [zl == > lal Az =y o, (1.2.10)
j=1

SHere and in the sequel, the words “in general position” mean the following. We consider a family of objects,
with a particular object — an instance of the family — identified by a vector of real parameters (you may think
about the family of n X n square matrices; the vector of parameters in this case is the matrix itself). We say
that an instance of the family possesses certain property in general position, if the set of values of the parameter
vector for which the associated instance does not possess the property is of measure 0. Equivalently: randomly
perturbing the parameter vector of an instance, the perturbation being uniformly distributed in a (whatever
small) box, we with probability 1 get an instance possessing the property in question. E.g., a square matrix “in
general position” is nonsingular.

"When s = 5 and n = 100, this number is &~ 7.53¢7 — much, but perhaps doable. When n = 200 and s = 20,
the number of systems to be processed jumps to ~ 1.61e27, which is by many orders of magnitude beyond our
“computational grasp”; we would be unable to carry out that many computations even if the fate of the mankind
were dependent on them. And from the perspective of Compressed Sensing, n = 200 still is a completely toy size,
by 3-4 orders of magnitude less than we would like to handle.

8 A real-valued function f(s) on the real axis is called convex, if its graph, between every pair of its points, is
below the chord linking these points, or, equivalently, if f(z+ Xy —=z)) < f(z)+A(f(y) — f(z)) for every z,y € R
and every A € [0, 1]. For example, maxima of (finitely many) affine functions a;x + b; on the axis are convex. For
more detailed treatment of convexity, see Section
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which, as we know, is equivalent to the LO program

n
rgrcuurjl ij:Ax:y,xjgwj,—xjﬁwj,lﬁjﬁn
i=1

For the time being, we were focusing on the (unrealistic!) case of noiseless observations. A
realistic model is that the observation contains noise &:

y=Az" +¢

and we know an upper bound ¢ on the “magnitude” ||£]| of the noise. In this case, /1 minimization
becomes
min {]lals : | Az — y]| < 8} (1.2.11)

When || - || is either || - ||oo, O || - ||1, the latter problem again reduces to LO, specifically, to the
LO program

n
. —0<[Az—y; <4, 1<i<m
T ;wj'{—wjémjéwj,léjén

when || - || = || - ||, and to the LO program

—zi<[Az —yl; <z, 1<i<m

n
min g wijte Yoz <4
T,W,2 .
i=1 —wj <z Sw;, 1<j<n

when || - [ = [| - [l1-

1.2.2.3 * How good is /1 minimization in the Compressed Sensing context?

s-goodness and nullspace property. Let us say that a sensing matrix A is s-good, if in the noiseless
case £1 minimization ({1.2.10|) recovers correctly all s-sparse signals . It is easy to say when this is the case:
the necessary and sufficient condition for A to be s-good is the following nullspace property:

1
V(ze R": Az=0,2#0,I C {1,...,n},Card(I) < s): Z |zi| < §Hz||1 (1.2.12)

el

In other words, for every nonzero vector z € Ker A, the sum ||z||s,1 of the s largest magnitudes of entries in
z should be strictly less than half of the sum of magnitudes of all entries.

The necessity and sufficiency of the nullspace property for s-goodness of A can be derived “from
scratch” — from the fact that s-goodness means that every s-sparse signal x should be the
unique optimal solution to the associated LP min, {||wl||; : Aw = Az} combined with the LP
optimality conditions. Another option, which we use here, is to guess the condition and then to
prove that it indeed is necessary and sufficient for s-goodness of A. The necessity is evident:
if the nullspace property does not take place, then there exists 0 # z € Ker A and s-element
subset I of the index set {1,...,n} such that if J is the complement of I in {1,...,n}, then
the vector z; obtained from z by zeroing out all entries with indexes not in I along with the
vector z; obtained from z by zeroing out all entries with indexes not in J satisfy the relation
el > 31zl = lllzrll + 2]l that i,

z2lly = [|z]]1-
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Since Az = 0, we have Az; = A[—z;], and we conclude that the s-sparse vector z; is not
the unique optimal solution to the LP min,, {||w||; : Aw = Azr}, since —z is feasible solution
to the program with the value of the objective at least as good as the one at z;, on one hand,
and the solution —z is different from z; (since otherwise we should have z; = z; = 0, whence
z = 0, which is not the case) on the other hand.

To prove that the nullspace property is sufficient for A to be s-good is equally easy: indeed,
assume that this property does take place, and let z be s-sparse signal, so that the indexes of
nonzero entries in x are contained in an s-element subset I of {1,...,n}, and let us prove that if
Z is an optimal solution to the LP (1.2.10)), then Z = x. Indeed, denoting by J the complement
of I, setting z = ¥ — x and assuming that z # 0, we have Az = 0. Further, in the same notation
as above we have

e e e P A PR e o

(the first inequality is due to the Triangle inequality, the second — due to the nullspace property,
the equality is due to x; = 0, that is, z; = Z5), whence ||z|1 = ||z]l1 < ||Z1]l1 + |Zs]| = ||Z]|1,
which contradicts the origin of Z.

From nullspace property to error bounds for imperfect /; recovery. The nullspace
property establishes necessary and sufficient condition for the validity of ¢ recovery in the noiseless case,
whatever be the s-sparse true signal. We are about to show that after appropriate quantification, this property
implies meaningful error bounds in the case of imperfect recovery (presence of observation noise, near-, but
not exact, s-sparsity of the true signal, approximate minimization in (1.2.11])).

Let us associate with an m X n sensing matrix A and positive integer s the quantity

30(4) = min {3 ¢ l}o1 < 72l V= € Ker 4} (1.2.13)

Nullspace property says that A is s-good if and only if

vs(A) < 1/2. (1.2.14)
We claim that for a given A, s and norm || - || on R™ there exists 8 < oo such that
12lls.2 < BllAz[l +7s(A)l|z]l1 V2 € R™. (1.2.15)

Indeed, let P be orthogonal projector on Ker A. For some oo < oo and all z we have ||(I—P)z||; <
af|A(I — P)z|| and A(I — P)z = Az, whence

12lls,0 - < (= P)zllsp + [|Pz]s,1
< (I = P)z|l1 +vs(A)||Pz||; [due to Pz € Ker A]
< = P)zlly +s(Allzll + (11 = P)z[|1]
< (L+s (AN = Pzl + 75 (A)|z]h
<a(l +%(A))|| Al = P)z ||+ 7s(A)l 2]
—A
= a1 +7(A)) [[Az]| + s (A=
—_————
B
From now on we fix some norm || - || on R™ and denote by 3,(A) = f, . (A) the smallest 3 satisfying

(T.2.19).

Now consider imperfect ¢; recovery x — y — T, where

1) « € R™ can be approximated within some accuracy p, measured in the ¢; norm, by an s-sparse signal,
or, which is the same,
lz =2 <p

where z° is the best s-sparse approximation of = (to get this approximation, one zeros out all but the
s largest in magnitude entries in z, the ties, if any, being resolved arbitrarily);
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2) y is a noisy observation of z:
y=Az+mn, nll <6
3) Z is a p-suboptimal and e-feasible solution to (1.2.11)), specifically,

2]l < g+ min {Jlwl)y : |Aw —yll2 <6} & [|AZ -y < e

Theorem 1.2.1 Let A, s be given, and let the relation
Vz | zlls1 < BllAZ| + vllzllt (1.2.16)

hold true with some parameters v < 1/2 and 3 < co (as definitely is the case when A is s-good, v = v5(A)
and 3 = fs.|(A)). Then for the outlined imperfect £ recovery the following error bound holds true:

268(6 4 €) + p+2p

7 <
[~z < 222

, (1.2.17)

i.e., the recovery error is of order of the maximum of the “imperfections” mentioned in 1) — 3).

Proof. Let I be the set of indexes of the s largest in magnitude entries in z, J be the complement of I, and
z =7 — x. Observing that z is feasible for (1.2.11]), we have H}jn{”w“l s ||Aw — yll2 < 6} < ||z||1, whence

2]l < p+ [zl
or, in the same notation as above,

1l = Zrll = (25l = 2l —p

<llz1llx >|lzslli—2llz sl

whence
lzslli < p+lzrlls +2)l2 ]l

so that
21 < g+ 20zl + 2]z |1 (a)

We further have
21l < BllAz| + =],

which combines with (a) to imply that
Iz2lly < BlIAz]| + 7w + 2[ 21l + 2[[z s 1],

whence, in view of v < 1/2 and due to ||z ;|1 < p,

|2rll <

S [BIl A= +~v[w + 2p]] -

Combining this bound with (a), we get

l2lls < 420+

=g 814+ 2l + 2]

Recalling that z = Z — = and that therefore | Az|| < ||[Az — y|| + ||AZ — y|| < + ¢, we finally get

& = @l < 1+ 2p+ ———[B16 + €] + Al + 20]. 0

1— 2y
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Compressed Sensing: Limits of performance. The Compressed Sensing theory demonstrates
that

1. For given m,n with m < n (say, m/n < 1/2), there exist m X n sensing matrices which are s-good for
the values of s “nearly as large as m,” specifically, for s < O(I)W ﬂ Moreover, there are natural
families of matrices where this level of goodness “is a rule.” E.g., when drawing an m X n matrix at
random from the Gaussian or the +1 distributions (i.e., filling the matrix with independent realizations
of a random variable which is either Gaussian (zero mean, variance 1/m), or takes values +1/,/m with
probabilities 0.5 E[) the result will be s-good, for the outlined value of s, with probability approaching
1 as m and n grow. Moreover, for the indicated values of s and randomly selected matrices A, one has
Bs. |12 (A) < O(1)4/s with probability approaching one when m,n grow.

2. The above results can be considered as a good news. A bad news is, that we do not know how to
check efficiently, given an s and a sensing matrix A, that the matrix is s-good. Indeed, we know that
a necessary and sufficient condition for s-goodness of A is the nullspace property vs(A4) < 1/2; this,
however, does not help, since the quantity ~,(A) is difficult to compute: computing it via its definition
requires, on a close inspection, solving N = 2° (’;) LO programs, which is an astronomic number already
for moderate n unless s is really small, like 1 or 2. And no alternative efficient way to compute 7,(A)

is known.

As a matter of fact, not only we do not know how to check s-goodness efficiently; there still is no
efficient recipe allowing to build, given m, an m X 2m matrix A which is provably s-good for s larger
than O(1)y/m — a much smaller “level of goodness” then the one (s = O(1)m) promised by theory
for typical randomly generated matricesE-] The “common life" analogy of this pitiful situation would
be as follows: you know that with probability at least 0.9, a brick in your wall is made of gold, and at
the same time, you do not know how to tell a golden brick from a usual oneE]

Verifiable sufficient conditions for s-goodness. As it was already mentioned, we do not know
efficient ways to check s-goodness of a given sensing matrix in the case when s is not really small. The
difficulty here is standard: to certify s-goodness, we should verify ({1.2.14]), and the most natural way to do

9From now on, O(1)’s denote positive absolute constants — appropriately chosen numbers like 0.5, or 1, or
perhaps 100,000. We could, in principle, replace all O(1)’s by specific numbers; following the standard mathe-
matical practice, we do not do it, partly from laziness, partly because the particular values of these numbers in
our context are irrelevant.

Yentries “of order of 1/4/m” make the Euclidean norms of columns in m x n matrix A nearly one, which is the
most convenient for Compressed Sensing normalization of A.

"Note that the naive algorithm “generate m x 2m matrices at random until an s-good, with s promised by the
theory, matrix is generated” is not an efficient recipe, since we do not know how to check s-goodness efficiently.

12This phenomenon is met in many other situations. E.g., in 1938 Claude Shannon (1916-2001), “the father
of Information Theory,” made (in his M.Sc. Thesis!) a fundamental discovery as follows. Consider a Boolean
function of n Boolean variables (i.e., both the function and the variables take values 0 and 1 only); as it is easily
seen there are 22" function of this type, and every one of them can be computed by a dedicated circuit comprised of
“switches” implementing just 3 basic operations AND, OR and NOT (like computing a polynomial can be carried
out on a circuit with nodes implementing just two basic operation: addition of reals and their multiplication). The
discovery of Shannon was that every Boolean function of n variables can be computed on a circuit with no more
than Cn~'2" switches, where C' is an appropriate absolute constant. Moreover, Shannon proved that “nearly all”
Boolean functions of n variables require circuits with at least cn™ 12" switches, ¢ being another absolute constant;
“nearly all” in this context means that the fraction of “easy to compute” functions (i.e., those computable by
circuits with less than cn~12" switches) among all Boolean functions of n variables goes to 0 as n goes to co. Now,
computing Boolean functions by circuits comprised of switches was an important technical task already in 1938;
its role in our today life can hardly be overestimated — the outlined computation is nothing but what is going
on in a computer. Given this observation, it is not surprising that the Shannon discovery of 1938 was the subject
of countless refinements, extensions, modifications, etc., etc. What is still missing, is a single individual example
of a “difficult to compute” Boolean function: as a matter of fact, all multivariate Boolean functions f(z1,...,Zn)
people managed to describe explicitly are computable by circuits with just linear in n number of switches!
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it, based on computing 7,(A), is blocked: by definition,

vs(A) = mzaX{HzHSJ Az =0, z]1 <1} (1.2.18)

that is, 75(A) is the maximum of a convex function ||z||s,1 over the convex set {z : Az = 0, ||z|1 < 1}.
Although both the function and the set are simple, maximizing convex function over a convex set typically is
difficult. The only notable exception here is the case of maximizing a convex function f over a convex set X
given as the convex hull of a finite set:

N
X = Conv{v!, .., oV} := {Z vt A > O’Z)‘i =1}.
i=1 i

In this case, a maximizer of f on the finite set {v!,...,v™'} (this maximizer can be found by brute force
computation of the values of f at v?) is the maximizer of f over the entire X (check it yourself or see Section
2.1.3).
Given that the nullspace property “as it is” is difficult to check, we can look for “the second best thing”
— efficiently computable upper and lower bounds on the “goodness” s.(A) of A (i.e., on the largest s for
which A is s-good).
Let us start with efficient lower bounding of s.(A), that is, with efficiently verifiable sufficient conditions
for s-goodness. One way to derive such a condition is to specify an efficiently computable upper bound 7,(A)
on v5(A). With such a bound at our disposal, the efficiently verifiable condition 75(A) < 1/2 clearly will be
a sufficient condition for the validity of (1.2.14)).
The question is, how to find an efficiently computable upper bound on «;(A), and here is one of the
options:
s (A) = max {|[z[|s,1 : Az = 0, [[z[s <1}
=VH e R"™*": ~4(A) = max {1 — HT Az||s1 : Az =0, ]]2]|s <1}
< max {[[[1 = HT Alz||s « 2]l < 1}
= max [ - B ALzl Z = {2 |12l < 1},

We see that whatever be “design parameter” H € R™*", the quantity vs(A) does not exceed the maximum
of a convex function ||[I — HT A]z||5.1 of z over the unit ¢1-ball Z. But the latter set is perfectly well suited
for maximizing convex functions: it is the convex hull of a small (just 2n points, + basic orths) set. We end
up with
VH € R™" : v4(A) < max ||[I — H' A]z||s1 = max ||Col;[I — HT A]|[s.1,
2€Z 1<j<n

where Col;(B) denotes j-th column of a matrix B. We conclude that

vs(A) <75(A) := mhi,nmax [|Col;[I — HTA]HSJ (1.2.19)
j

(H)

The function W(H) is efficiently computable and convex, this is why its minimization can be carried out
efficiently. Thus, 75(A) is an efficiently computable upper bound on ~5(A).
Some instructive remarks are in order.

1. The trick which led us to 75 (A) is applicable to bounding from above the maximum of a convex function
f over the set X of the form {z € Conv{v!,..., vV} : Az = 0} (i.e., over the intersection of an “easy
for convex maximization” domain and a linear subspace). The trick is merely to note that if A is m xn,
then for every H € R"™*" one has

<i<N

mg;ax{f(x) tz € Conv{v',..,v"}, Az =0} < na f(I — HY Az]v®) Q)

Indeed, a feasible solution x to the left hand side optimization problem can be represented as a convex
combination ). A;v*, and since Az = 0, we have also z = ), \;[] — HT AJv?; since f is convex, we
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have therefore f(x) < max f([I — HT AJv?), and (!) follows. Since (!) takes place for every H, we

arrive at

. 1 N _ 5. T Al
mgx{f(x).me(]onv{v sV LAz =0} <7 = 121%)5\[]‘([] H" A*),

and, same as above, 7 is efficiently computable, provided that f is efficiently computable convex
function.

. The efficiently computable upper bound 74(A) is polyhedrally representable — it is the optimal

value in an explicit LP program. To derive this problem, we start with important by itself polyhedral
representation of the function ||z||s,1:

Lemma 1.2.1 For every z € R"™ and integer s < n, we have

n
| 2]ls.1 = min {St +) wit |z <ttw, 1<i<nw> o} : (1.2.20)
w,t

i=1

Proof. Indeed, if (w,t) is feasible for (1.2.20), then |z;| < w; + t, whence the sum of the s largest
magnitudes of entries in z does not exceed st plus the sum of the corresponding s entries in w, and
thus — since w is nonnegative — does not exceed st + »_.w;. Thus, the right hand side in is
> the left hand side. On the other hand, let |z;,| > |zi,| > ... > |z:.| be the s largest magnitudes
of entries in z (so that i1, ...,is are distinct from each other), and let ¢ = |z;_ |, w; = max][|z;| — ¢, 0].
It is immediately seen that (¢,w) is feasible for the right hand side problem in and that
st+) ,w; = Z;Zl |zi;| = ||2]|s,1- Thus, the right hand side in is < the left hand side. O

Lemma straightforwardly leads to the following polyhedral representation of 75(A):

Vs(4) = mhirn max ||Col;[I — HT A]||5.1
J , .
. —’wf—t]S[I—HTALJS’LUf“FtJVL]
= min <7: % , : 2 )
Howi b7 wl >0V, st;+ >, w] < TV

. The quantity 71 (A) is exactly equal to v1(A) rather than to be an upper bound on the latter quantity.

This fact can be easily verified via what is called LO Duality (it will be out subject in Lecture . Right
now the reader just should take the claim for granted.

Observe that an optimal solution H to the problem

71(A) = minmax|[T, — HT A, 5
Z7J

can be found column by column, with j-th column h? of H being an optimal solution to the LP
min e; — ATl

where ¢e; is the j-th standard basic orth in R™. This is in a nice contrast with computing 7(A) for

s > 1, where we should solve a single LP with O(n?) variables and constraints, which is typically much

more time consuming that solving O(n) LP's with O(n) variables and constraints each, as it is the case

when computing 71 (A4).

Observe also that if p, ¢ are positive integers, then for every vector z one has ||2||pq,1 < ¢||2||p,1. and

in particular ||z]|s,1 < s||z][1,1 = s|/z|loo. It follows that if H is such that 7,(A) = max ||Col;[I —
J

HT A]||p.1, then Fpe(A) < gmax ||Col;[I — HT A]|[,1 < ¢9p(A). In particular,
j

Vs(4) < s71(A),
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meaning that the easy-to-verify condition

is sufficient for the validity of the condition
¥s(A) < 1/2
and thus is sufficient for s-goodness of A.

4. Assume that A and s are such that s-goodness of A can be certified via our verifiable sufficient condition,
that is, we can point out an m X n matrix H such that

7 := max||Col;[I — HT A||s1 < 1/2.
J
Now, for every n x n matrix B, any norm || - || on R™ and every vector z € R™ we clearly have
121 < |max oL (B 21

(why?) Therefore form the definition of ~, for every vector z we have |[[I — HT A]z|[s1 < 7|z||1, so
that

1zllsx < [IHT Azllsn + [ — HT Ale|ls1 < Sm?X|COIj[H]”*] [Az]| + ~lz]l1,

where ||h]l, = max hTy
y:llyll<1
meaning that H certifies not only the s-goodness of A, but also an inequality of the form ((1.2.16f) and
thus — the associated error bound ((1.2.17)) for imperfect ¢, recovery.

1.2.2.4 * Supervised Binary Machine Learning via LP Support Vector Machines.

Imagine that we have a source of feature vectors — collections = of n measurements representing, e.g., the
results of n medical tests taken from patients, and a patient can be affected, or not affected, by a particular
illness. “In reality,” these feature vectors x go along with labels y taking values +1; in our example, the label
—1 says that the patient whose test results are recorded in the feature vector x does not have the illness in
question, while the label +1 means that the patient is ill.

We assume that there is certain dependence between the feature vectors and the labels, and our goal is
to predict, given a feature vector alone, the value of the label. What we have in our disposal is a training
sample (x%,y"), 1 <i < N of examples (z*,y’) where we know both the feature vector and the label; given
this sample, we want to build a classifier — a function f(z) on the space of feature vectors z taking values +1
— which we intend to use to predict, given the value of a new feature vector, the value of the corresponding
label. In our example this setup reads: we are given medical records containing both the results of medical
tests and the diagnoses of N patients; given this data, we want to learn how to predict the diagnosis given
the results of the tests taken from a new patient.

The simplest predictors we can think about are just the “linear” ones looking as follows. We fix an affine
form w” xz+b of a feature vector, choose a positive threshold y and say that if the value of the form at a feature
vector z is “well positive” —is > v — then the proposed label for = is +1; similarly, if the value of the form at
x is “well negative” —is < —~, then the proposed label will be —1. In the “gray area” —y < w2z +b < v
we decline to classify. Noting that the actual value of the threshold is of no importance (to compensate a
change in the threshold by certain factor, it suffices to multiply by this factor both w and b, without affecting
the resulting classification); we from now on normalize the situation by setting the threshold to the value 1.

Now, we have explained how a linear classifier works, but where from to take it? An intuitively appealing
idea is to use the training sample in order to “train” our potential classifier — to choose w and b in a way
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which ensures correct classification of the examples in the sample. This amounts to solving the system of
linear inequalities

wlz? +b>1VE < Ny’ =+1) & wla’ +b < —1V(i : y' = —1),
in variables w and b, which can be written equivalently as
y(wla' +b) >1Vi=1,.. N.
Geometrically speaking, we want to find a “stripe”
~l<wlz+b<1 (%)

between two parallel hyperplanes {z : w'z+b = —1} and {2 : wTz+b = 1} such that all “positive examples”
(those with the label +1) from the training sample are on one side of this stripe, while all negative (the label
—1) examples from the sample are on the other side of the stripe. With this approach, it is natural to look
for the “thickest” stripe separating the positive and the negative examples. Since the geometric width of the

stripe is % (why?), this amounts to solving the optimization program
w*w

milr)l {||w\|2 = VuwTw: y(wlz" +b)>1,1<i < N} ; (1.2.21)

The latter problem, of course, not necessarily is feasible: it well can happen that it is impossible to separate
the positive and the negative examples in the training sample by a stripe between two parallel hyperplanes. To
handle this possibility, we can allow for classification errors and minimize a weighted sum of |Jw||2 and total
penalty for these errors. Since the absence of classification penalty at an example (x%,y%) in our context is
equivalent to the validity of the inequality y*(w? 2 + b) > 1, the most natural penalty for misclassification of
the example is max[1 — y* (w2’ 4+ b), 0]. With this in mind, the problem of building “the best on the training
sample” classifier becomes the optimization problem

i=1

N
milr)l{|w||2 + A max(l yi(w%ub),m}, (1.2.22)

where A > 0 is responsible for the “compromise” between the width of the stripe (x) and the “separation
quality” of this stripe; how to choose the value of this parameter, this is an additional story we do not touch
here. Note that the outlined approach to building classifiers is the most basic and the most simplistic version
of what in Machine Learning is called “Support Vector Machines.”

Now, is not an LO program: we know how to get rid of nonlinearities max[1 — 3 (w” 2% + b), 0]
by adding slack variables and linear constraints, but we cannot get rid from the nonlinearity brought by the
term ||w||2. Well, there are situations in Machine Learning where it makes sense to get rid of this term by
“brute force,” specifically, by replacing the || - |2 with || - ||;. The rationale behind this “brute force” action
is as follows. The dimension n of the feature vectors can be large. In our medical example, it could be in
the range of tens, which perhaps is “not large;” but think about digitalized images of handwritten letters,
where we want to distinguish between handwritten letters "A” and "B;" here the dimension of = can well
be in the range of thousands, if not millions. Now, it would be highly desirable to design a good classifier
with sparse vector of weights w, and there are several reasons for this desire. First, intuition says that a
good on the training sample classifier which takes into account just 3 of the features should be more “robust”
than a classifier which ensures equally good classification of the training examples, but uses for this purpose
10,000 features; we have all reasons to believe that the first classifier indeed “goes to the point,” while the
second one adjusts itself to random, irrelevant for the “true classification,” properties of the training sample.
Second, to have a good classifier which uses small number of features is definitely better than to have an
equally good classifier which uses a large number of them (in our medical example: the “predictive power”
being equal, we definitely would prefer predicting diagnosis via the results of 3 tests to predicting via the
results of 20 tests). Finally, if it is possible to classify well via a small number of features, we hopefully have
good chances to understand the mechanism of the dependencies between these measured features and the
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feature which presence/absence we intend to predict — it usually is much easier to understand interaction
between 2-3 features than between 2,000-3,000 of them. Now, the SVMs (|1.2.21)), (|1.2.22]) are not well suited
for carrying out the outlined feature selection task, since minimizing ||w]||2 norm under constraints on w (this

is what explicitly goes on in ((1.2.21)) and implicitly goes on in ((1.2.22)}'°)) typically results in “spread” optimal

solution, with many small nonzero components. In view of our “Compressed Sensing” discussion, we could
expect that minimizing the £1-norm of w will result in “better concentrated” optimal solution, which leads us
to what is called “LO Support Vector Machine.” Here the classifier is given by the solution of the || - ||;-analogy

of (|1.2.22]), specifically, the optimization problem

N
milr)l{|w||1 + A max|l —yi(wai—l-b),O]}. (1.2.23)

i=1

This problem clearly reduces to the LO program

min { Z?:l v+ )‘Zi\il §i:

w,b,v,§

(1.2.24)
—ujgwjgvj,1§jgn7§izo,gizl—yi(w%wb),1§¢§N}.

Concluding remarks. A reader could ask, what is the purpose of training the classifier on the training
set of examples, where we from the very beginning know the labels of all the examples? Why a classifier
which classifies well on the training set should be good at new examples? Well, intuition says that if a simple
rule with a relatively small number of “tuning parameters” (as it is the case with a sparse linear classifier)
recovers well the labels in examples from a large enough sample, this classifier should have learned something
essential about the dependency between feature vectors and labels, and thus should be able to classify well new
examples. Machine Learning theory offers a solid probabilistic framework in which “our intuition is right”, so
that under assumptions (not too restrictive) imposed by this framework it is possible to establish quantitative
links between the size of the training sample, the behavior of the classifier on this sample (quantified by the
[l - |]2 or || - |1 norm of the resulting w and the value of the penalty for misclassification), and the predictive
power of the classifier, quantified by the probability of misclassification of a new example; roughly speaking,
good behavior of a linear classifier achieved at a large training sample ensures low probability of misclassifying
a new example.

1.3 What can be reduced to LO

Looking at the collection of LO models we have presented, we see that mathematical models
which finally can be formulated as LO programs not always “are born” in this form; we became
acquainted with several tricks which, with luck, allow to convert an non-LO optimization problem
into an equivalent LO program. This section is devoted to “in-depth” investigating of these
tricks.

13To understand the latter claim, take an optimal solution (w., bs) to (1.2.22), set A = Zivzl max([1 -y (wlz’ +
b.), 0] and note that (w.,bs) solves the optimization problem

N
. . i T i
r{ﬂng{ﬂwb : E max[l —y'(w” z' +b),0] < A}

i=1

(why?).
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1.3.1 Preliminaries

We start with several useful, although “philosophical,” remarks. What we are interested in our
course is mathematics of Linear Optimization, so that the main entities to be considered are
specific functions and sets. Say, an LO program is the program of maximizing a linear function
cI'z over a polyhedral subset X of R™, that is, over the solution set {x € R" : Az < b} of a finite
system of nonstrict linear inequalities in n variables x. Now, sets and functions are abstract
“mathematical beasts;” the concept of a set is the basic mathematical concept which we do not
define in terms of simpler conceptﬂ the concept of a function is a derivative of the concept
of a seﬁ, and both these concepts have nothing to do with particular representations of these
entities; representations are by far not the same as the entities being described. For example,
the segment [—1, 1] of the real line is a set, and this set admits various representations, e.g.,

e the representation as a solution set of the system of two linear inequalities ¢ > —1, x < 1
in real variable z,

e the representation as the set of all values taken by the function sin(z) on the real axis,
and countless variety of other representations. Similarly, a linear function f(z) = = on the real
axis can be represented as f(r) = x, or f(x) = x + sin?(z) + cos?(z) — 1, and in countless
variety of other forms. Thus, we should distinguish between sets/functions as abstract “objects
of our perceptions and our thoughts” and their concrete representations, keeping in mind that a
particular “object of our thoughts” admits many different representations. We should distinguish
well between properties of an object and properties of its particular representation. For example,
the nonemptiness is a property of the set [—1, 1], while the number of linear inequalities (namely,
2) in its representation as the solution set of the system z > —1,z < 1 in real variable z
clearly is a property of the representation in question, not of the set, since the same set can be
represented as the solution set of a system of, say, 10 linear inequalities (add to the previous
system inequalities z < 3, x < 4,...,x < 10). In a sense, nearly all we intend to do in our course
(or, wider, what a significant part of Mathematics is about), is to understand how to derive
conclusions on properties of the “abstract beasts” — sets and functions — from representations
of these beasts in certain concrete format. This is a highly challenging and highly nontrivial
task, even when speaking about such a simple, at a first glance, property as emptiness

Now, the abstract form of an optimization problem with n real decision variables is mini-
mizing a given real-valued function f(x) over a given feasible set X C R™; LO deals with this
abstract problem in the particular case when f is linear, and X is polyhedral, and even in this
particular case deals not with this problem per se, but with particular representations of the
entities involved: f as c’'z, X as {x : Az < b}, with explicitly - just by listing the values of the
coefficients — given data ¢, A,b. As it was already mentioned, the “maiden” representation of a
problem, the one in which the problem “is born,” not always is the one required by LO; most

!4YWhether one believes that the concept of a set is an abstract “derivative” of our experience in thinking
of /handling various collections of “physical” entities, or, following Plato, thinks that this concept is a shadow of
certain “idea” existing in some ideal sense, no one offers a formal definition of this fundamental concept, just
illustrates it. Perhaps the best illustration is the famous citation from George Cantor, the founder of Set Theory:
“By a ”set” we mean any collection M into a whole of definite, distinct objects m (which are called the ”elements”
of M) of our perception [Anschauung] or of our thought.”

154 function f defined on a set X and taking values in a set Y can be identified with its graph, which is the
subset of X XY := {(z,y) : € X,y € Y} comprised by pairs (z, f(z)); a subset F' of X x Y indeed represents a
function, if every z € X is the first component of exactly one pair from F'.

16T illustrate the point: the Great Fermat Theorem merely states that the set with extremely simple repre-
sentation (quadruples of positive integers z,y, z,p with p > 2 satisfying the equation z? 4+ y? = 2P) possesses an
extremely simple property of being empty.
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typically, the initial representation is in the Mathematical Programming form
max {fo(z) :z e X ={z: fi(zx) <0,i=1,...,m}} (MP)
€T

with explicitly given (analytically or algorithmically) functions fo, fi,...,fm. Thus, we need tools
allowing (a) to recognize the possibility of translating a representation of the form (MP) in an
LO representation, and (b) to implement the translation when its possibility is recognized. Or
goal in the rest of this section is to develop a toolbox of this type.

A reader might ask what for all this “scholastics” about the difference between
optimization problems and their representations, and why we intend to operate with
representations of mathematical entities rather than to work directly with these
entities. The answer is very simple: an algorithm (and at the end of the day we
want the problem to be processed and thus need algorithms) by its nature cannot
work with abstract mathematical entities, only with their representations; to some
extent, the same is true for human beings, as can be witnessed by everybody with
even a minimal experience in solving mathematical problems, no matter which ones,
building proofs or crunching numbers.

1.3.2 Polyhedral Representations of Sets and Functions: definitions and
Fourier-Motzkin elimination

When converting an optimization problem (MP) with explicitly given objective and constraints
into an equivalent LO program, our goal is twofold: (a) to end up with a linear objective
represented as ¢!y, and (b) to end up with a feasible set represented as {y : Ay < b} (we write
y instead of x, keeping in mind the possibility to augment the original decision variables with
slack ones). It is easy to achieve the first goal: to this end it suffices to add a slack variable ¢
and to rewrite (MP) equivalently as

H}Uaix{t it — fO(I) < val(x) < 07 7fm(x) < O}a

the objective in the resulting problem is linear in the new design vector [z;t], and the constraints
are “as explicitly given” as those in the original problem. To save notation, assume that this
transformation is done in advance, so that the problem we intend to convert into an LO program
from the very beginning is of the form

mi}I(lch,X ={zeR": fi(x) <0,1 <i<m}. (1.3.1)
xe

Thus assumption “costs nothing” and allows us to focus solely on the constraints and on the
feasible set X they define.

Now, our experience with slack variables suggests a good formalization of the informal task
“to end up with a feasible set represented as {y : Ay < b},” specifically, as follows.

Definition 1.3.1 [Polyhedral representation of a set] A polyhedral representation (p.r.) of a
set X C R is a representation of the form

X={zeR":3weR’: Pr+ Quw < r}, (1.3.2)
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i.e., it is a finite system of nonstrict linear inequalities in variables x,w such that x € X iff x
can be extended, by properly chosen w, to a feasible solution of the system.

Geometrically, polyhedral representation of X means the following: we take a set, given by
an explicit system Px 4+ Qw < r of linear inequalities, in the space of x, w-variables and project
this set onto the subspace of x-variables; the system Px + Qw < 7 polyhedrally represents X iff
the projection is exactly X.

The role of polyhedral representability in our context stems from the following evident fact:

Observation 1.3.1 Given a polyhedral representation of a set X € R™, we can imme-
diately and straightforwardly convert problem into an LO program, specifically, into the
program,

max {cTa: :Pr+4+ Quw < r} .

W

Example: Let us look at the linear regression problem with ¢1-fit (problem ({1.2.8))) which we
now rewrite as a problem with linear objective

m
nT{ixn{T : Z]a?m—yil ST}.

=1

The feasible set of this problem admits an immediate polyhedral representation:

{[:U;T] Sy lzTa; — y;l ST} (13.3)
={lz;7]: 3w : —w; <alr—y; <wji=1,...,m > " w; <71} e

which allows to rewrite the problem equivalently as the LO program

m
min {7’ ewy < aiTx —y <w;i=1, ...,m,Zwi < T} . (1.3.4)
i=1

x,T,w
This is exactly what we did with the problem of interest in the previous section.

1.3.2.1 Fourier-Motzkin elimination

We have seen that all we need in order to convert an optimization program with linear objective
into an LO program is a polyhedral representation of the feasible set X of the problem. This
need is easy to satisfy if X is a polyhedral set represented as {x : Az < b}. A polyhedral
representation of a set is something more flexible — now we do not want to represent X as the
solution set of a system of linear inequalities, only as a projection of such a solution set onto
the space where X lives. At this point, it is unclear whether the second type of representation
indeed is more flexible than the first one, that is, we do not know whether the projection of
a polyhedral set in certain R™ onto a linear subspace is or is not polyhedral. The answer is
positive:

Theorem 1.3.1 Fvery polyhedrally representable set is polyhedral.

This important theorem can be obtained as a byproduct of the conceptually simple Fourier-
Motzkin elimination scheme.
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Fourier-Motzkin elimination scheme. Let X = {z : 3w : Px + Qw < r},
that is, X is the projection on the space of z-variables of the polyhedral set Q =
{[z;w] : Px+ Qw < r} in the space of x,w-variables. We want to prove that X
can be represented as the solution set of a finite system of linear inequalities solely
in variables x. Let w = [wy;...;wg]. We start with eliminating from the polyhedral
description of X the variable wy. To this end, let us set z = [z;wy;...; wg_1], so that
the system of linear inequalities Pz + Qw < r can be rewritten in the form

alz + bwp < ¢, 1<i<m. (S)

Let us “color” an inequality of the system in red, if b; > 0, in green if b; < 0, and
in white, if b; = 0, and let I,, I, and I, be the sets of indices of red, green and
white inequalities, respectively. Every red inequality can be rewritten equivalently
as wi < ¢;/b; — asz/ b, =: eiTz + f;, and every green inequality can be rewritten
equivalently as wy > ¢;/b; — aiTz /bi =: eiTz + f;. It is clear that z can be extended,
by a properly chosen wy, to a feasible solution of (S) if and only if, first, z satisfies
every white inequality and, second, every “red” quantity el z + f; (which should be
an upper bound on wy) is > every “green” quantity e;fpz + fi (which should be a
lower bound on wy). In other words, z can be extended to a feasible solution of (.5)
if and only if z satisfies the system of linear inequalities

afszZ'WGIw;e;TFz—i—fiZe;*pz—i—fj V(iel,jely,). (5

We see that the projection of () on the space of the variables z, w1, ..., wg_1 is the
solution set @)’ of a finite system of linear inequalities in these variables; note that X
is the projection of @’ on the space of x-variables, that is, we have built a polyhedral
representation of X using k — 1 slack variables w1, ..., wg_1. Proceeding in the same
fashion, we can eliminate one by one all slack variables, thus ending up with a desired
“free of slack variables” polyhedral representation of X.

Note that the Fourier-Motzkin elimination is an algorithm, and we can easily convert
this algorithm into a finite algorithm for solving LO programs. Indeed, given a LO
program max;{c’z : Az < b} with n variables x1,...,7, and augmenting these
variables by a new variable 7, we can rewrite the program equivalently as

max {7: Az < b,7 — 'z <0}. (P)

y=[r;z]

The set of feasible values of 7 — those which can be extended by properly chosen
x to feasible solutions of (P) — is the projection of the feasible set of (P) on the
T-axis; applying the above elimination scheme, we can represent this set as the set
of solutions of a finite system S of nonstrict linear inequalities in variable T alone.
It is immediately seen that the solution set of such a system

either is empty,

or is a ray of the form 7 < 3,

)
)
¢) or is a nonempty segment a < 7 < 3,
) or is a ray of the form 7 > «,

)

or is the entire T-axis.
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Given §, it is easy to recognize which one of these cases actually takes place, and what
are the corresponding « and . In the case of (a), (P) is infeasible, in the cases (d,e)
(P) is feasible and unbounded, in the cases (b,c) it is feasible and bounded, j is the
optimal value in (P), and 7 = 3 is a feasible solution to S. Starting with this solution
and using the elimination scheme in a backward fashion, we can augment 7 = 8 by
values of the variables 1, ..., z,, one at a time, in such a way that [7 = §;x1;...; 2,
will be feasible (and then optimal) for (P). Thus, we can identify in finite time the
“feasibility status” (infeasible/feasible and unbounded /feasible and bounded) of (P)
and point out, also in finite time, an optimal solution, provided that the problem is
feasible and bounded.

Note that as a byproduct of our reasoning, we see that our former claim a feasible
and bounded LO program admits an optimal solution indeed is true.

A bad news is that the outlined finite algorithm for solving L.O programs is of purely
academic value; as a practical tool, it can handle extremely small problems only,
with few (like 2-3) variables and perhaps few tens of constraints. The reason is that
every step of the elimination scheme can increase dramatically the number of linear
constraints we should handle. Indeed, if the original system (S) has m inequalities,
half of them red and half of them green, after eliminating the first slack variable we
will get a system of m; = m?/4 inequalities, at the second step we can get as many
as m% /4 = m* /64 inequalities, and so on; now take m = 16 and look what happens
after 5 steps of the recurrence m := m?/4.

The fact that a polyhedrally representable set is polyhedral and thus can be represented by a
system of linear inequalities not involving slack variables in no sense diminishes the importance of
slack variables and polyhedral representations involving these variables. Indeed, the possibility
to represent the set of interest as the solution set of a finite system of linear inequalities is not all
we are looking for when building LO models; we definitely do not want to handle astronomically
many inequalities. In this latter respect, adding slack variables (i.e., passing to general-type
polyhedral representations) can result in dramatic reduction in the number of linear inequalities
we need to handle as compared to the case when no slack variables are used. E.g., when speaking
about linear regression with ¢; fit, we have seen that the problem indeed can be rewritten
equivalently as an LO in the original variables z, 7 of , specifically, as the LO .
Note, however, that the latter LO has n + 1 variables and as many as 2™ constraints, which is
astronomically large already for moderate m. In contrast to this, the LO program , while
involving “slightly more” variables (n + m + 1), has just 2m + 1 constraints.

What is ahead. Observation [1.3.1] suggests that a good way to understand what can be
reduced to LO is to understand how to recognize that a given set is polyhedral and if it is the
case, how to point out a polyhedral representation of the set. It does not make sense to pose
this question as a formal mathematical problem — we could recognize polyhedrality only by
working with certain initial description of the set; we have assumed that this is a description
by m “explicitly given” constraints f;(x) < 0, but the words “explicitly given” are too vague
to allow for well-defined constructions and provable results. Instead, we are about to develop a
kind of “calculus” of polyhedral representations, specifically, to indicate basic examples of p.r.’s,
augmented by calculus rules which say that such and such operations with polyhedral sets result
in a polyhedral set, and a p.r. of this set can be built in such and such fashion from the p.r.’s
of the operands. As a result of these developments, we will be able to conclude that a set which
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is obtained by such and such sequence of operations from such and such “raw materials” is
polyhedral, with such and such p.rﬂ

One last remark before passing to calculus of polyhedral representability. In optimization,
feasible sets usually are given by finite systems of constraints f;(x) < 0, that is, as the intersection
of sublevel sets of several functionﬁ In order to catch this phenomenon, it makes sense to
introduce the notion of a polyhedrally representable function (p.r.f. for short). This notion is a
kind of “derivative” of the notion of a polyhedral set, and the corresponding definitions are as
follows.

Definition 1.3.2 Let f(x) be a function on R™ taking real values and the value +oc.

(i) The domain Dom f of f is the set of all x where f(x) is finite;

(ii) The epigraph of f is the set Epi{f} = {[z;7] € R" x R: 2z € Dom f,7 > f(x)};

(iii) f 4s called polyhedrally representable, if its epigraph Epi{f} is a polyhedral set, so that
for appropriate matrices P, Q and vectors p,r it holds

{los7) 2 € Dom f7 > f(a)} = {lwir] : 3w: Po v rp+ Qu< ). (135)

We refer to a polyhedral representation of the epigraph of f as a polyhedral representation (p.r.)
of f itself.

Observation 1.3.2 A sublevel set {z : f(x) < a} of a p.r.f. (polyhedrally representable func-
tion) f is a polyhedral set, and a p.r. of this set is readily given by a p.r. of the function,

specifically, (1.3.5) implies that
{x:f(z)<a}={x:[r;a] € Epi{f}} ={z:3w: Pr+Quw <r —ap}.

Example: Consider the function f(z) = |lz|; = >, |2i] : R® — R. This function is
polyhedrally representable, e.g., by the p.r.

Epi{f)} = A{lzi7]:7 2200, [}

= {lz;7]:Fw: —w; <z <w, 1 <i<n, >t w < T

Remarks. Some remarks are in order.

A. Partially defined functions. Normally, a scalar function f of n variables is specified by
indicating its domain — the set where the function is well defined, and by the description of f as a
real-valued function in the domain. It is highly convenient to combine both components of such a
description in a single description by allowing the function to take “a fictional” value +oo outside

'"The outlined course of actions is very typical for Mathematics. We know what a differentiable function is —
there is a formal definition of differentiability expressed in terms of a function as a “mathematical beast”, without
reference to any particular representation of this beast. This definition, however, does not allow to recognize
differentiability even when function is given by an analytic formula of a simple structure (since the formula can
contain nonsmooth components which in fact cancel each other, but this cancellation is very difficult to discover),
not speaking about the case when the function is given in a more complicated fashion. What we routinely use to
establish differentiability and to compute derivatives is the usual calculus, where we start with “raw materials”
— elementary functions like In, sin, exp, etc., where we check differentiability and compute the derivatives “by
bare hands,” by working with the definition of the derivative. We then augment the “raw materials” by calculus
rules which explain us when an operation with functions, like multiplication, addition, taking superposition, etc.,
preserves differentiability and how to express the derivatives of the result via derivatives of the operands, thus
getting a key to differentiating a huge spectrum of functions, including quite complicated ones.

18 A sublevel, or a Lebesgues, set of a function f is, by definition, a set of the form {z : f(z) < a}, where a is a
real.
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of the actual domain. A reader should not look for something “mystical” in this approach: this
is just a convention allowing to save a lot of words. In order to allow for basic operations with
partially defined functions, like their addition or comparison, we augment our convention with
the following agreements on the arithmetics of the “extended real axis” R U {+o0}.

e Addition: for a real a, a + (+00) = (+00) + (+00) = 400.
e Multiplication by a nonnegative real A: X - (+00) = 400 when A > 0, and 0 - (+00) = 0.
e Comparison: for a real a, a < +00 (and thus a < 400 as well), and of course +00 < +00.

As far as operations with +oo are concerned, our arithmetic is severely incomplete — operations
like (+00) — (4+00) and (—1) - (+00) remain undefined. Well, we can live with it.

B. Convexity of polyhedral sets and polyhedrally representable functions. A
set X € R" is called convex, if whenever two points x,y belong to X, the entire segment
{z+ANy—2)=(1—-XNz+Ay:0<X<1} belongs to X.

To understand the link between the informal — verbal — and the formal — algebraic
— parts of this definition, note that when x,y are two distinct points, then all points
(1 = X)z + Ay form, geometrically, the line passing through x and y, and the part of
this line corresponding to the range 0 < A\ <1 of A “starts” at x (A = 0) and “ends”
at y (A = 1) and thus is exactly what is natural to call “the segment linking z,y.”
When z = y, the above line, same as its part corresponding to the range 0 < A <1 of
values of A, collapses to the singleton {z} which again is the only natural candidate
to the role of “segment linking z and z.”

A function f: R™ — RU{+o0} is called convex iff its epigraph is convex, or, which is the same
(*check why),

V(z,y e R\, A€ [0,1]): f(1 =Nz + Xy) < (1= N)f(z) + Af(y).

To complete the terminology, a function f taking values in R U {—oc} is called concave, if — f
is convex (in this description, and everywhere else, —(—o00) = o0). In view of this definition,
handling concave functions reduces to handling convex ones, and we prefer to stick to this
possibility in the sequel. Note that there is no notion “concave set.”

One can immediately verify (do it!) that a polyhedral set is convex, whence a polyhedrally
representable function also is convex. It follows that

e lack of convexity makes impossible polyhedral representation of a set/function,

e consequently, operations with functions/sets allowed by “calculus of polyhedral repre-
sentability” we intend to develop should be convexity-preserving operations.

To illustrate the latter point: taking intersection of two sets and taking maximum or sum of two
functions are convexity-preserving operations, and indeed we shall see them in our calculus. In
contrast to this, taking union of two sets and taking minima or difference of two functions not
necessarily preserve convexity, and we shall not see these operations in our calculus.

C. Structure of a proper polyhedrally representable function. A function f : R" —
R U {+o0} is called proper, if Dom f # (), i.e., the function is finite at least at one point.

Proposition 1.3.1 A proper function f(x): R™ — R U {+o0} is polyhedrally representable if
and only if the domain of the function is a nonempty polyhedral set, and in this domain f is
piecewise linear — it is the maximum of finitely many affine functions.
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Proof. In one direction: if D = {x € R" : Az < b} is a nonempty polyhedral set and
filx) = aiT:n +b;, 1 <14 <1, is a nonempty finite collection of affine functions, then the function

+00 ,x & D
max; fz(.%') , T € D

o) = {

is p.r.:
{li7] 7 = f@)} = {fas 7] Aw < b7 > filw),i < T},

In the opposite direction: if f is proper p.r.f., then Epi{f} is polyhedrally representable and
therefore is polyhedral, Thus,

Epi{f} = {[;7] : a] z + bi7 < ¢;,i < I}.

We claim that all b; are nonpositive. Indeed, f is proper, that is, for some z the solution set of
system of inequalities b;7 < ¢; — a;fpfc, i < I, in variable 7 should be a ray of the form [w, c0) with
some real w; this, of course, is impossible when some of b; are positive. Let J = {i : b; < 0} and
Jo = {i:b; =0}. We claim that J # (). Indeed, otherwise the set {7 : alz + b;7 < ¢;,i < I} for
every x would be, depending on x, either empty, or the entire real line, which definitely is not
the case for intersections of the epigraph of a proper function with the “vertical lines” z = const.
The bottom line of our observations is that

EmU}Zﬂxﬂrﬁ@SqJeJ?TZmywwﬂﬁi—%R
1€

that is, the domain of f is nonempty polyhedral set, and on this domain f is piecewise linear.
O

The fact that a polyhedrally representable function is just a piecewise linear function re-
stricted onto a polyhedral domain does not nullify the usefulness of the notion of a p.r.f. In-
deed, similarly to the case of polyhedral sets, a p.r. function f(x) admitting a “compact”
p.r. can require astronomically many “pieces” aiTa: + b; in a piecewise linear representation
flx) = mZaX[a;Fx + ;] (think of f(z) =), |zi]).

1.3.3 Polyhedral Representations of Sets and Functions: Calculus

The “raw materials” in our calculus are really simple:

e “clementary” polyhedral sets are those represented as X = {z € R" : a’x < b} (when
a # 0, or, which is the same, the set is nonempty and differs from the entire space, such a
set is called half-space);

e “elementary” polyhedrally representable functions are just affine functions represented in
the standard form

fx)=aTz+b
An affine function indeed is a p.r.f., since its epigraph

{lws7]: 7> f(2)}

is a solution set of a linear inequality in variables x, 7 and thus is polyhedral.
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Calculus of polyhedral representability: sets. The basic rules here are as follows:

S.1.

S.2.

S.3.

S.4.

Taking finite intersections: If the sets X; C R", 1 < i < k, are polyhedral, so is their
intersection, and a p.r. of the intersection is readily given by p.r.’s of the operands.
Indeed, if

X;={zeR": ' : Px+Qu' <r},i=1,..,k,

then

k
ﬂXZ- ={z:3w=[wh. ;w": Pz +Qu' <r,1<i<k},
i=1
which is a polyhedral representation of [ Xj.
i

Taking direct products. Given k sets X; C R their direct product X1 X ... X X is
the set in R™ T *+" comprised of all block-vectors z = [z!;...; :z:k] with blocks 2 belonging
to X;, i = 1,....,k. E.g., the direct product of k segments [—1,1] on the axis is the unit
k-dimensional box {z € RF: -1 < x; < 1,9 = 1,...,k}. The corresponding calculus rule
is as follows:

If the sets X; C R™, 1 < i < k, are polyhedral, so is their direct product, and a p.r. of
the product is readily given by p.r.’s of the operands.

Indeed, if

X; = {xz e R" : Juw': Pa' + Q' < ri},i=1,..,k,
then
={r=[2z%. ;2" Fw = [wh; .. ;w0 P2t + Q' <ry, 1 <i <k}

Taking affine image. If X C R" is a polyhedral set and y = Az +b: R" - R™ is an
affine mapping, then the set Y = AX +b:={y=Ax+b:x € X} C R™ is a polyhedral,
with p.r. readily given by the mapping and a p.r. of X.

Indeed, if X = {z: Jw : Px 4+ Qw < r}, then

Y ={y:3d[z;w]: Pr+Quw <r,y= Az + b}
={y:Jz;w]: Pr+Qw <r,y — Az < b, Ax —y < —b}.

Since Y admits a p.r., Y is polyhedral (Theorem [1.3.1)).

Note: This is the point where we see the importance of slack variables (i.e., the advantage
of general-type polyhedral representations X = {z : Jw : Pz + Qw < r} as compared to
straightforward ones X = {x : Az < b}). When taking intersections and direct products of
“straightforwardly represented” polyhedral sets, building a straightforward representation
of the result is easy; when taking affine image of the set as simple as the k-dimensional unit
box, a straightforward representation of the result exists, but is, in general, intractable,
since it can require an exponential in k number of linear inequalities.

Taking inverse affine image. If X C R" is polyhedral, and x = Ay +b: R™ — R" is
an affine mapping, then the set Y = {y € R™ : Ay +b € X} C R™ is polyhedral, with
p.r. readily given by the mapping and a p.r. of X.

Indeed, if X = {z: 3w : P+ Qw < r}, then

Y ={y:3w: P[Ay+b+ Quw <r} ={y: Jw: [PAly+ Qw < r — Pb}.
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Taking arithmetic sum: If the sets X; C R", 1 < i < k, are polyhedral, so is their
arithmetic sum X1 + ...+ X :={x =21+ ...+ z; : x; € X;,1 <i <k}, and a p.r. of the
sum is readily given by p.r.’s of the operands.

Indeed, the arithmetic sum of the sets X1, ..., X} is the image of their direct product under
linear mapping [z!; ,xk] — ' + ... + 2, and both operations preserve polyhedrality.
Here is an explicit p.r. for the sum: if X; = {z: Jw' : Pix + ini <r;}, 1 <i<k, then

X1 + ...+ Xk
= {z: 3z, . 2F Wt P Pt Qi <1, 1<i<k,x =Y 2t}
i=1
and it remains to replace the vector equality in the right hand side by a system of two
opposite vector inequalities.

Calculus of p.r. functions. Here the basic calculus rules read:

F.1.

F.2.

F.3.

Taking linear combinations with positive coefficients. If f; : R” — R U {+o0} are
pr.f’s and \; > 0, 1 < i < k, then f(z) = Zle Aifi(x) is a p.r.f., with a p.r. readily
given by those of the operands.

Indeed, if {[x;7] : 7 > fi(z)} = {[z;7] : 3w’ : Pw + 7p; + Qiw’ < 1;}, 1 < i <k, are p.r.’s
of fi,..., fx, then

=

i 7] s 7 > 3 Aifi(e)}
(7] s Fty, ot it > filx), 1 <i <k, Y, Nty <7}
[z;7] : Tty oy b, w0l o W

Pz +tipi + Qiw' <1, 1 <0 <k, >0 Nty < 7}

{
{

Direct summation. If f; : R™ — R U {+o0}, 1 < i < k, are p.r.f.’s, then so is their
direct sum

k
f([xl; ,wk]) = Zfl(azz) cR™MFt 3 R U {+o0}
i=1

and a p.r. for this function is readily given by p.r.’s of the operands.
Indeed, if {[z%;7] : 7 > fi(z%)} = {[2%; 7] : Jw' : Pa' + 7p; + Qiw® < 1}, 1 < i <k, are
p.r.’s of f;, then

x';.
= {[zY.ab 7] 3y, et > fila), 1 <0 < k>t <7}
{[zt .2k 7] Ty, oty wh, W

P’ + tipi + Qiw' <71, 1 <i <k, t; <7}

Taking maximum. If f; : R" — R U {400} are p.r.f.’s, so is their maximum f(x) =
max|[f1(x), ..., fr(z)], with a p.r. readily given by those of the operands. In particular, a
piecewise linear function max[al x + by, ...,al x + by,] is a p.r.f.

Indeed, if {[x;7] : 7 > fi(2)} = {[z; 7] : Fw' : Pix + 7p; + Qiw® < 1;}, 1 <i <k, then

{[z; 7] : 7 > max; fi(z)} 4
= {[z; 7] : Jw', . wh P4 mpi + Qiw' < riy 1 < i < k)

Note that this rule mirrors the rule on p.r. of the intersection of polyhedral sets, due to

Epi{max; f;} = (), Epi{ fi}.
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F.4.

F.5.

Affine substitution of argument. If a function f(x) : R® - RU{+oc} is a p.r.f. and
x=Ay+0b:R™ — R" is an affine mapping, then the function g(y) = f(Ay +b) : R™ —
R U {+o0} is a p.r.f., with a p.r. readily given by the mapping and a p.r. of f.

Indeed, if {[z;7] : 7> f(z)} = {[z;7] : Jw : Pr +7p+ Qw < r} is a p.r. of f, then

{lys7): 7= f(Ay +b) = {[y; 7] : Jw : P[Ay +b] + 7p + Qu < r}
= {[y;7] : 3w : [PAly + 7p+ Qu < r — Pb}.

Note that this rule mirrors the rule on p.r. of the inverse affine image of a polyhedral set,
since Epi{f(Ay + b)} is the inverse image of Epi{f} under the affine mapping [y; 7] —
[Ay + b; 7).

Theorem on superposition. Let fi(z) : R" - R U {400}, i < m, be p.r.f.’s, and let
F(y) : R™ — RU{+0o0} be a p.r.f. which is nondecreasing w.r.t. every one of the variables
Y1, .-, Ym. Then the superposition

g(z) = { F(fi(2), o fm(@)), filz) < +00,1<i<m

400, otherwise

of F and fy, ..., f; Is a p.r.f., with a p.r. readily given by those of f; and F'.
Indeed, let

7] > fil2)} = {[z; 7] s Jw' : P + i + Qiwt < 1),
;7= Fy)} =A{ly; 7] : Fw: Py +7p+ Qu <7}

be p.r.’s of f; and F. Then

(%)
{[zs7]: 7 > g(a:)}/:\{[x,ﬂ Yty e Ym sy > fi(z), 1 < i <m,
.F(yla'“vym) < T}

- {[.’E,T} : 3y7w17 "'7wm7w : -ZDZ:E +y2pl + inz S Tiy 1 S 1 S m,
Py+1mp+ Quw < r},

where (x) is due to the monotonicity of F'.

Note that if some of f;, say, fi, ..., fx, are affine, then the superposition theorem remains
valid when we require the monotonicity of F' w.r.t. the variables yy1, ..., ym only; a p.r.
of the superposition in this case reads

{lzsr] i 7 > g(2)}
— {[7): Wt i > filw), k1< i <m,
F(fl(x)v"'afk:(x)’yk-i-la"'aym) < 7-}
= {[$7T] : Elyla "'7ym7wk+17 "‘mevw ‘Y= fl(x)v 1 S { S ka
Px +yipi + Qiw' <rik+1<i<m,Py+71p+Qu <r},

and the linear equalities y; = fi(x), 1 < i < k, can be replaced by pairs of opposite linear
inequalities.

Note that when taking superposition, some monotonicity requirements on the outer func-
tion are natural, since otherwise this operation does not preserve convexity (think of
superposition of f(z) = max|z1,x2] and F(y) = —y).
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1.4 * Fast Polyhedral Approximation of the Second Order Cone

We have seen that taking projection onto a subspace can convert a polyhedral set X = {z € R" : Az < b}
which is “simple” — is defined by a moderate number of linear inequalities — into a polyhedral set Y which is
“complex” — its representation in the form {y : By < b} requires a much larger number of linear inequalities.
An example, already known to us, is

k
Vi={yeR": Y |yl <1}
i=1
. k
:{yERk:Hw:—wigyiSwilgzghzizlwigl}.

Here the left hand side set Y C R” is represented as the projection onto the y-plane of the set

k
X:{[y§w]:_wigyigwilﬁiﬁk,Zwigl}
=1

which “lives” in R?* and is given by 2k + 1 linear inequalities; it can be proved that every representation of
Y in the form {y : Cy < c} requires at least 2" linear inequalities.

Given this observation, a natural question is whether it is possible to approximate well a non-polyhedral
set Y by the projection X of a “simple” polyhedral set X in higher dimension. The motivation here might
be (and, as far as the construction we intend to present, actually was) the desire to approximate well the
problems of optimizing a linear objective over Y (which is not an LO program, since Y is non-polyhedral) by
the problem of minimizing the same objective over the close to Y set X’; the latter problem reduces to an LO
program with the simple polyhedral feasible set X and thus is within the grasp of LO algorithms.

The answer to our question depends, of course, on what is the set Y we want to approximate. We
intend to demonstrate that when Y is a n-dimensional ball, the answer to the above answer is affirmative.
Specifically, we intend to prove the following

Theorem 1.4.1 [Fast polyhedral approximation of the Second Order cone] Let
L' ={[x;7] e R" xR : 7 > ||zo := VaTla}

(this set is called the (n + 1)-dimensional Second Order (a.k.a. Lorentz, or Ice-Cream) cone). For every n
and every e € (0,1/2) one can explicitly point out a system

Pr+1p+Quw <0 (1.4.1)

of homogeneous linear inequalities in the original variables x, T and slack variables w such that
— the number I(n, €) of inequalities in the system is < O(1)nln(1/e),
— the number V (n, €) = dim w of slack variables in the system is < O(1)nlIn(1/¢),
and the projection R

L™ = {[z;7] : 3w : P+ 7p+ Quw < 0} (1.4.2)
of the solution set of this system on the space of (x, T)-variables is in-between the second-order cone and its
“(1 + €)-extension:”

L+l — {lr;7] e R" x R: 7 > ||z||2}

= 1.4.
c Ll cLrtl={z;7]e R"xR: (1 +e)7 > |z|2} (1.4.3)

To get an impression of the constant factors in the Theorem, look at a sample of values of I(n,¢),

V(n,e):
n e=10""1T \ e=10"9 e=10"1
Vn,e) | I(N,e) || V(n,e) | I(n,e) || V(n,e) | I(n,e€)
4 6 17 31 69 70 148
16 30 83 159 345 361 745
64 133 363 677 1458 1520 3153
256 543 1486 2711 5916 6169 12710
1024 2203 6006 10899 | 23758 24773 | 51050
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You can see that V(n,e) ~ 0.7nIn 2, I(n,e) ~2nIn i

Several comments are in order.

A. When € = 1.e-17 or something like, a usual computer cannot distinguish between 1 and 1+¢, so that with
such an €, L™t “for all practical purposes’ is the same as the Lorentz cone L™*!. On the other hand, with
€ = 1.e-17 the numbers of inequality constraints and slack variables in the polyhedral representation of L by
the system are moderate multiples of n (indeed, while 10717 is “really small,” In(1017) ~ 39.1439 is
a quite moderate number).

B. After we know how to build a fast polyhedral approximation of the Second Order cone, we know how to
build such an approximation for a Euclidean ball BE = {z € R™ : ||z|2 < R}. Indeed, from it follows
that the projection Ef onto the x-plane of the polyhedral set

{lz;w] : Pz + Qw < —Rp}

in the space of (x,w)-variables is in-between BZ and B{TOR

BE ¢ B ¢ B(1+9R, (1.4.4)

C. In principle, there is nothing strange in the fact that a “good" non-polyhedral set Y in R™ can be
approximated, within a whatever accuracy, by a polyhedral set. Such a possibility definitely exists when Y is
a closed and bounded convex set, as it is the case with the ball Bff. Let us focus on this case; to simplify
notation, w.l.o.g. let us set R = 1 and B,, = B}. It is intuitively clear (and indeed is true) that given
an € > 0 and taking a dense enough finite “grid” x1,...,zx on the boundary of B, that is, on the unit
sphere S,,_1 = {& € R"™ : ||z]l2 = 1}, the polytope bounded by the tangent to S,,_1 at z; hyperplanes
{z:2F(x —2;) =0}, 1 <i < N, will contain B,, and be contained in B1™<. The problem, however, is how
many hyperplanes should we take for this purpose, and the answer is as follows: For every polyhedral set
B C R™ such that B, C BcC Bt the number N of linear inequalities in a “straightforward” polyhedral
representation B = {z € R" : Cx < ¢} is at least exp{O(1)nIn(1/¢)}, provided ¢ < 0.1. We see that a
“straightforward” approximation of B,, within a fixed accuracy ¢, say € = 0.1, by a solution set of a system of
linear inequalities requires an exponential in n, and thus astronomically large already for moderate n, number
of inequalities. In contrast to this, to approximate B,, within the same accuracy by the projection onto the
space where B,, lives of a solution set of a system of linear inequalities requires just linear in n numbers of
inequalities and slack variables.

It is highly instructive (and not difficult) to understand where the exponential in n lower bound
on a number IV of linear inequalities in a system in variables x € R™ with the solution set well
approximating B,, comes from. Assume that a polyhedral set B = {z € R" : alz < b;,1 <
i < N}, is in-between B, and (1 + €)B,, = BL*¢, where € is not too large, say, ¢ < 0.1.
W.l.o.g. we can assume that a; # 0 and then normalize a; to ensure that ||a;||2 = 1 for all ¢,
which we assume from now on. Now, b; should be > 1, since otherwise the constraint afm <b;
would cut off B,, a nonempty set (due to max,cp, alx = |la;||2 = 1) and thus the inclusion
B, C E would be impossible. By the same token, if b; > 1, then, replacing it with 1, we
do not affect the validity of the inclusion B,, C B and only decrease B, thus preserving the
validity of the inclusion BcC Blt<. The bottom line is that we lose nothing by assuming that
B = {r e R" :alx < 1,1 <i < N}, with all a; being unit vectors.

Now, to say that B = {z 1 alz < 1,i < N} C BL*¢ is exactly the same as to say that
B:={z:alz < (1—¢),i < N} C B,. Thus, we are in the situation when

BC B, C B,

so that the boundary S;,_; of B,, should be contained in the set E\(int B). The latter set is
contained in the union, over i < N, of the “stripes” P, = {x € R" : (1 —¢) < al'z < 1},

whence also
H

N
n 1 U n 1 (*)
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Geometrically, H; is a “spherical hat,” and all these hats are congruent to the set
H ={reR": 2"z =1,2,>1—¢}.

Denoting . the (n — 1)-dimensional “spherical area” of H, and by « the area of the entire S,,_;
and taking into account that Hy, ..., Hy cover S, _1, we get

Nag>a= N> ()
aE

It remains to bound from below the ratio a/c. Let us start with bounding «. from above.
The projection of the spherical hat H, onto the plane 2, = 0 is (n — 1)-dimensional ball of
radius r = \/17 (1—€)2 = V2e—¢2 < V/2e. When ¢ is < 0.1, this projection, up to a
factor O(1), preserves the (n — 1)-dimensional volume, so that o > O(1)r"~15,_1, where
Bn—1 |s the (n — 1)-dimensional volume of B} ;. Now, the projection of the “northern part”
{x : 2Tz = 1,2, > 0} of S,_; onto the plane x,, = 0 is B._;, and this projection clearly
reduces the (n — 1)-dimensional volume; thus, o > 28,,_;. We end up with N > O(1)r~(»=1 >
O(1)(2¢)~ =172 > exp{O(1)n1n(1/e)}, as claimed.
A rigorous reasoning goes as follows. Assume that n > 3. Let 7/2 — ¢ be the “altitude angle”
of a point e on S,_1, that is, ¢ is the angle between e and the direction of n-th coordinate axis.
Then H. is the set of all points on the unit sphere S,—1 for which ¢ > ¢o = asin(r). Denoting
by yn—1 the (n — 2)-dimensional volume of S,_2, we clearly have ae = v,—1 fod)o sin"~?(¢)d¢ and
a =21 f?sin""2(¢)de. Tt follows that

e < o f70sin" 2 (0) 222 dp = vy (n — D)~ cos™(6(0)) sin™ " (do)
=Yn—1(n— 1)L eos™H(po)r" T = yu_1(n —1)7H1 — e) Lpn—l

At the same time, it can be easily checked numerically that cos(z) > 0.99 exp{—z?/2} when 0 <
x < 0.5, whence
o= 2,)/”_1 fO‘Ir/Q Sinn_2(¢)d¢ — 2fyn_1 foﬂ'/2 COSn_2(¢)d¢
1/2
> 1989 1 [ exp{—*(n — 2)/2}do
0
1
3

=1.98v,-1(n—2)"Y2 [ exp{—s*/2}ds

0
=198y, 1(n—2)"Y2(1 +¢,) I3 exp{—s*/2}ds
= 0.99v271yn_1(n — 2) V21 + €,),

where €, — 0 as n — oco. Thus,

N > Oé/Oée > 0.99(1 + en)\/ﬂ(n — 2)*1/2(71 _ 1)(1 _ 6)Tf(nfl)
> 0.99v27(1 4 §,)/n(2¢)~ (172

with §, — 0 as n — oo. We see that for large n (on a closest inspection, “large” here means n > 10)
it definitely holds N > 2n1/2(2e)7<"71>/2, provided € < 0.1. When n = 100 and € = 0.1, this lower
bound on N is as large as 7.9e35.

D. In fact, it is well known that the Euclidean ball B,, can be easily approximated by the projection of a very
simple polyhedral set — just a box — "living” in higher-dimensional space. Specifically, it is not difficult to
prove that if Dy = {z € RV : ||z]|oc < 1} is the unit box in R, N > n, then a “random projection”

of Dy on R is, typically, close to a Euclidean ball in R™, with the discrepancy going to 0 as N/n grows.
The precise statement is as follows: if A,, 5 is a random matrix with independent standard (zero mean, unit

variance) Gaussian entries and n, N, € are linked by the relation € > O(1),/ 4 In (%) then, with probability
approaching 1 as n grows, the set A, yDxn C R" is in-between two concentric Euclidean balls with the ratio
of radii < 1+e.

The advantages of the result stated in Theorem as compared to this well-known fact are twofold:
first, the numbers N —n of “slack variables” and 2NN of inequality constraints in the “e-accurate” polyhedral
approximation of B,, are “nearly” of order of ne~2 (in fact, by a logarithmic in 1/¢ factor worse), while Theorem
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speaks about “much more compact” e-approximate representation of an n-dimensional ball, with the
numbers of slack variables and inequality constraints of order of n1n(1/€). Second, the construction underlying
Theorem is explicit and thus possesses not only academic, but also a practical value (see below). In
contrast to this, in spite of the provable fact that a random projection of a box, under the assumptions of the
“random projection” statement, with high probability is close to a ball, no individual examples of projections
with this property are known (cf. the story about sensing matrices with high level of goodness). This being
said, it should be mentioned that in the “random projection” approximation of a ball, the polyhedral set
we are projecting is centrally symmetric, which is important in certain academic applications. In contrast to
this, the construction underlying Theorem [1.4.1] approximates a ball by the projection of a highly asymmetric
polyhedral set; whether results similar to those stated in Theorem can be obtain when projecting a
centrally symmetric polyhedral set, this is an interesting open academic problem.
E. Theorem essentially, says that “for all practical purposes,” a conic quadratic optimization problem,
that is, an optimization problem P with linear objective and (finitely many) conic quadratic constraints, that
is, constraints of the generic form

|Az 4+ bl < Tz +d (%)

is an LO program (a rigorous statement reads “problem P can be approximated in a polynomial time
fashion by an LO program;” eventually, we shall understand what “polynomial time fashion” means). Indeed,
Theorem says that “for all practical purposes” the set ||u||2 < 7 is polyhedrally representable with an explicit
(and “short”) polyhedral representation. But then, by calculus of polyhedral representability, the same is true
for the feasible set of () (rule on inverse affine image) and thus for the feasible set of P (rule on taking finite
intersections), so that P reduces to an LO program.

Now, “expressive abilities” of conic quadratic problems are surprisingly rich. E.g., a quadratic constraint
of the form

2T AT Az <vTz +¢

is equivalent (check it!) to the conic quadratic constraint
I242;1 —bTx — (]|ls <14+ bT2 + ¢

some constraints which do not look quadratic at all, e.g., the constraints in variables z, t

n
Hxi_m <7,xz>0
i=1

where m; > 0 are rational numbers, or
n

Hx:” >1,2>0

i=1
where m; > 0 are rational numbers and >, m; < 1 can be reduced, in a systematic way, to a system of
conic quadratic constraints in the original variables x, 7 and additional slack variables. Theorem states
that “for all practical purposes” (or, scientifically, up to a polynomial time approximation) the rich expressive
abilities of conic quadratic programs are shared by the usual LO'’s.

As a more striking example, consider the exponential function exp{xz}. The exponent which “lives” in

a computer is somehow different from the exponent which lives in our mind: the latter is well-defined and
nonzero on the entire real axis. The former makes sense in a moderate segment of values of z: if you ask
MATLAB what is exp{—800}, the answer will be 0, and if you ask what is exp{800}, the answer will be +o0.
Thus, “for all practical purposes,” the “real life" exponent exp{z} can be considered as the restriction of the
“ideal” exponent which lives in our mind on a finite, and even not very large, segment —7T < x < T. Now,
for the “ideal” exponent we have

exp{z} = (exp{2*e})”,
and when |z| < T and 2¥ > T, exp{2~ "z} is pretty close to 1 + 27 %z. It follows that

| <T = expi{z} =~ 1+2_kx2k.
|z| p
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Note that the right hand side function, restricted onto the segment [T, T] with 7' < 2*, can be expressed
via a “short series” of linear and quadratic inequalities and a single linear equation:

{[z;7] eR?: -T <2z <T,7>(1 +27kz)2k}
—T<zx<Tuy=1+2Fx

=< [x;7) € R? : Jug, ug,y ooy U, sy ’ .

)€ ORI g < ud Sugy e uf g Supyuy <7

Now, the quadratic inequality u? < v in variables u,v, as we already know, can be represented by a conic

quadratic constraint and thus, “for all practical purposes,” can be represented by a short system of linear

constraints in u, v and additional variables. As a result, the exponent which “lives in a computer” is, for all

practical purposes, a polyhedrally representable function. The precise statement is as follows:

Given T > 0 and ¢ € (0,1), one can point out an explicit system of linear inequalities in
scalar variables x,T and additional variables w such that

e the number of inequalities in the system, same as the dimension of the vector w, are
bounded by polynomials in T and In(1/¢);

e the projection of the solution set of the system on the 2D plane of x,T-variables is the
epigraph Epi{f} of a function f(x) (which thus is polyhedrally representable) such that
Dom f = [-T,T] and

2] < T = exp{a} < f(z) < (14 ¢) exp{a}.

Remark 1.4.1 The result we have just formulated is correct, but to interpret it as the justification
of the claim that the exponent which lives in the computer “for all practical purposes,” whatever
it means, is a p.r.f. contains some cheating. Indeed, when explaining why the exponent which
lives in computer, let us call it Exp(s), is a function with bounded (and not too large) domain,
we referred to the fact that floating point operations are imprecise, and with their standard
implementation we do have exp {800} = oo and exp{—800} = 0. However, when speaking
about high accuracy p.r. approximation of Exp(-), we acted as if the operations involved into
building this approximation were operations of precise real arithmetics. In fact, these operations
involve close to 1 number 1+27%z, and for k like few tens and x, say, of order of one the standard
floating point arithmetics will handle such a number with significant loss of accuracy. Thus, in
principle the same argument which justifies our interest in Exp(s) as a ‘“real life substitution
of exp{s}” can be used against the conclusion that Exp(-) is, “for all practical purposes,”
polyhedrally representable. Luckily, this potential threat is indeed just potential; it can be shown
[4, Section 2.3.6] that the outlined construction in slightly refined form allows to build p.r.f.
which, when computed via the standard floating point arithmetics, approximates exp{s} in
the range |s| < 700 with relative error < 2e—11.

It follows that when solving a Geometric Programming problem — an optimization problem with linear objective
and finitely many constraints of the form

k
Zexp{aiTx—i—bi} <1 Q)
i=1

(perhaps augmented by linear constraints), we can “regularize” the problem by replacing every constraint (!)
with the system of constraints

k
0>w; >a]z+b,w; > -Texp{w;} <u;, 1 <i<k» u<1 (1

i=1

where u;, w; are slack variables and 7' is a once for ever fixed moderate constant (say, 7' = 60). As far as
actual computations are concerned, this regularization does not alter the constraint.
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Indeed, whenever z can be extended by properly chosen u;, w;, to a feasible solution of (!!),

x is clearly is feasible for (!), and “nearly vice versa.” Specifically, assuming that x is feasible

for (1) and setting w; = max{—T,alx + b;}, u; = exp{w; }, we get a solution to (!!!) which

satisfies all constraints in (!!) except, perhaps, the last of them, >, u; < 1; instead of the

latter constraint, its “slightly weakened” version ) . u; < 1+ kexp{—T} is satisfied. With

T = 60 and k as large as 10%, one has kexp{—T} < 1.e-17, so that computer cannot tell the

difference between validity of the actual and the weakened versions of the last constraint in

(m.
We have seen that “numerically speaking,” the regularized problem is the same as the original Geometric
Programming program. On the other hand, the only nonlinear constraints in the regularized problem are
exp{w; } < u;, and w; is restricted to sit in [T, 0]. It follows that we can approximate every one of nonlinear
constraints, in a polynomial time fashion, by a “short” system of linear inequalities and thus reduce the original
Geometric Programming problem to an LO one.

We do not claim that the best way to solve real-world conic quadratic and Geometric Programming
problems is to approximate them by LO's; both these classes of problems admit dedicated theoretically (and
to some extent, also practically) efficient solution algorithms which can solve practical problems faster than
LO algorithms as applied to the LO approximations of these problems. What is good and what is bad in
practice, it depends on the available software. Two decades ago, there were no efficient and reliable software
for medium-size (few thousands of variables) conic quadratic problems, and Theorem was a byproduct of
attempts to handle these problems with the existing software. Today there exists efficient and reliable software
for solving conic quadratic and Geometric Programming problems, and there is basically no necessity to reduce
these problems to LO. This being said, note that the outlined “fast polyhedral approximation” results are of
definite theoretical interest.

”

Proof of Theorem Let € > 0 and a positive integer n be given. We intend to build a
polyhedral e-approximation of the Second Order cone L™*1. W.l.o.g. (think why) we may assume that n is
an integer power of 2: n = 2% xk € N.
1° The key: fast polyhedral approximation of L3. Consider the system of linear inequalities in
variables y1, y2, y3 and additional variables £&7,77, 0 < j < v (v is a parameter of the construction) as follows:

\y1|

|y , .

cos (gr) €97 + sin (g ) 7! =1

[ sin (72) €+ cos (i)t 0 I T
Ys

tan (575) €

Note that (1.4.5]) can be straightforwardly rewritten equivalently as a system of linear homogeneous inequalities
0¥ [y;w] <0 (Sv)

v (1.4.5)

=
—
[ N
T S
INIA IV IV IV

in variables y € R? and additional variables w, specifically, as follows. First, we add slack variables and
associated linear constraints to eliminate the nonlinearities | - | which are present in (a) and in (b); second,
we use the equality constraints in (b) to eliminate the variables £/, 1 < j < v. The numbers of variables and
linear inequalities in the resulting system (.S,) clearly are < O(1)v. (S,) is a p.r. of the polyhedral set

Y ={y e R®: 3w : T [y;w] < 0}.

Lemma 1.4.1 Y is a polyhedral x(v)-approximation of L3 = {y € R3 : y3 > \/y? + y2}:

L CcY cLy,, ={yeR®: (1+x(v)ys > \/v} + 13} (1.4.6)
with
)= ——— 1. (1.4.7)



46 LECTURE 1. INTRODUCTION TO LO: EXAMPLES OF LO MODELS

X2 X2
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%0 ~ %0
o left: arg(P) > 6; o right: arg(P) < 6;

Figure 1.2: From P = [¢7;17] to Pt = [¢7TL; 7 *1]: 1) Q is obtained from P by rotation by
the angle 0; = m/2772 clockwise; 2) Q' is the reflection of Q w.r.t. the abscissa axis; 3) PT is a
point on the line QQ’ above both Q and @’.

Proof. We should prove that

(i) If y € L3, then y can be extended to a solution to (1.4.5);

(ii) If y € R® can be extended to a solution to (1.4.5)), then ||[y1;y2][l2 < (1 + x(v))ys.

Let P; = [€7;17], 0 < j < v. System can be considered as a set of geometric constraints on the
points [y1;y2], Po, ..., P, on the 2D plane, namely, as follows (in the story below, we treat x; as the abscissa,
and x5 as the ordinate on the 2D plane where the points live):

e (a) says that Py should belong to the first quadrant, and its coordinates should be > the magnitudes
of the respective coordinates in [y1;y2].

o (b) says that the link between P; and Pj; should be as follows (see figure [1.2):

— given P = P;, we rotate the vector P; clockwise by the angle 7/29+2 and then reflect the resulting
point w.r.t. the xj-axis, thus getting a pair of symmetric to each other w.r.t. this axis points
Q=0, Q' =qQ}

— PT = P;, is a point on the vertical line passing through Q, Q" which is above both these points

j
(i.e., the ordinate of P is > the ordinates of @ and of Q).

e (c) says that the point P, should belong to the triangle A = {0 < 21 < y3, 72 < tan(r/2" )z}

Now observe that from this description it follows that points associated with feasible solution to ((1.4.5] satisfy

; <||Plle < ||Pille < ... <||P)le £ ——————~
Ilyiiyelll2 < [[Poll2 < [[Prll2 < .. < [[P]l2 < cos(m 2 ¥
which proves (ii). On the other hand, if y3 > ||[y1, y2]||2, then, setting Py = [|y1];|y2|] and specifying for all
j Pjy1 as either Q;, or Q;, depending on which one of these points has a larger ordinate, we get

Y3 > lyisvallle = | Pollz = - = | Py |2 O]

We claim that what we get in this way is a feasible solution to . This is clearly true when y; =y = 0;
assuming that the latter is not the case, observe that by construction we have satisfied the constraints ([1.4.5|a-
b). To prove that .c) is satisfied as well, let us look at the arguments ¢, of the points P; (the angles
between the direction of the x1-axis and the directions of vectors Pj). Py lives in the first quadrant, and thus
¢o < /2. Since Qo is obtained by rotating Py clockwise by the angle 7/4, Qj is symmetric to Qo w.r.t. the



1.4. * FAST POLYHEDRAL APPROXIMATION OF THE SECOND ORDER CONE 47

x1-axis and P; is the member of the pair Qg, Qf living in the first quadrant, the argument ¢; of P; satisfies
0 < ¢y < 7/4. Similar reasoning, applied to P; in the role of Py, results in 0 < ¢o < /8, and so on, resulting
in 0 < ¢, < /2”1, Since P, lives in the first quadrant, ||P,|2 < y3 by (!) and the argument of P, is
< m/2v*+!, P, belongs to the triangle A, that is, (1.4.5/c) does take place. (i) is proved. O

20, From n = 2 to n = 2". Now we are ready to approximate the Second Order cone

L' ={[z;7] e R" xR:7 > /o2 + ... + 22}

where n = 2%. To this end, let us first add to the 2% variables z; = 2z (“variables of generation 0") 2%~!

variables x} (“variables of generation 1"), treating x} as the “child” of variables x3, ;, 29, of generation 0,
add in the same fashion 2772 variables of generation 2, children of variables of generation 1, and so on, until
arriving at two variables of generation k — 1. By definition, the child of these two variables is 7 = . Now
let us impose on the resulting 2n — 1 variables z¢ of all generations the constraints

llsitysasi e < af, 1< < 1 <i<2v (148)

It is clear (look at the case of n = 4) that the projection of the solution set of this system on the plane of
the original variables x; = :1:?, T is nothing but L™t Now let us choose positive integers vy, v9,...,V and

approximate the 3-dimensional Second Order cones given by

515 25:]ll2 < xf“
as explained in Lemma that is, let us replace every one of the constraints in (1.4.8) by the system of
linear inequalities
v [ A=l . =1, 0. ¢
i 2)[9521'—1;9521' s w;] < 0.

As a result, 1' will be replaced by a system S of linear inequalities in 2n — 1 variables xf and additional
variables w!. Denoting by I(v) and by V(v) + 3 the number of rows, respectively, columns in the matrix P(*)
(so that I(rv) < O(1)v and V(v) < O(1)v), the numbers of variables and constraints in S are, respectively,

V =2n+21W (1) + 2572V (12) + ... + V(1) < O(1) X5, 25 oy, (1.4.9)
I=2"1(11) + 2572V (1) + .. + V() < O(1) X5, 25 Fuy. o
Invoking Lemma, it is clear that the projection L of the feasible set of S onto the space of x, T-variables
satisfies the inclusions in Theorem [L.4.1] with the factor

v =1+ x(r1)) (1 + x(v2))-..(1 + x(vx))

in the role of the desired factor (1 + €). It remains to choose v, ..., vy in way which ensures that v < 1+,
minimizing under this condition the sum J := >";_, 2“1, which, according to , is responsible for the
sizes (number of variables and number of constraints) of S. Setting v, = O(1)In(x/€) with appropriately
chosen O(1), we get x(v¢) < €/(2k), whence 7 < 1 + ¢ provided ¢ < 0.1. With this choice of v, we
get J < O(L)nln(k/e) < O(1)nln(ln(n)/e) (recall that k = log,n), which, up to replacing In(1/¢) with
In(In(n)/e), is what is stated in Theorem[L.4.1] To get what is announced in the Theorem exactly, one needs
to carry out the optimization in vy, more carefully{T_g]; we leave this task to the reader. O

¥ 0ur current choice of v, distributes the overall “budget of inaccuracy” € among all cascades £ = 1, ...,  of our
approximation scheme equally, and this is clearly nonoptimal. Indeed, the number 2% of 3-dimensional Second
Order cones we should approximate in cascade £ rapidly decreases as ¢ grows, so that in terms of the total number
of linear inequalities in the approximation, it is better to use relatively rough approximations of the 3D cones in
cascades with small ¢ and gradually improve the quality of approximation as ¢ grows.



48 LECTURE 1. INTRODUCTION TO LO: EXAMPLES OF LO MODELS

How it works. Setting y3 = 1 in (S,), we get a system (7},) of n, < O(1)v linear inequalities in
variables y € R? and in m,, < O(1)v additional variables in such a way that the projection of the solution set
P” of this system onto the 2D plane of y-variables “approximates the unit circle By within accuracy x(v),”
meaning that the projection is in-between the unit circle By and its (14 x(v))-enlargement BQHX(”). Here we
illustrate the related numbers. To get a reference point, note that the perfect n-vertex polygon circumscribed
around By approximates By within accuracy

1 2
en)=—— -1~ —.
( cos(m/n) 2n?2

e P2 lives in R? and is given by 12 linear inequalities. Its projection onto 2D plane approximates By

within accuracy 5.e-3 (as 16-side perfect polygon).

e PS lives in R'? and is given by 18 linear inequalities. Its projection onto 2D plane approximates Bs
within accuracy 3.e-4 (as 127-side perfect polygon).

e P'2 Jives in R'® and is given by 30 linear inequalities. Its projection onto 2D plane approximates By
within accuracy 7.e-8 (as 8,192-side perfect polygon).

e P?* [ives in R3% and is given by 54 linear inequalities. Its projection onto 2D plane approximates By
within accuracy 4.e-15 (as 34,209,933-side perfect polygon).

1.5 Exercises

Exercise 1.1 1) Draw the feasible set of the LO program

max Io

Z1,T2

s.t.
xr1 — 2%2 S 0
201 — 3w < 2
r1 — T2 § 3
—x1 + 219 < 2
—2x1+ 22 <0

and find the optimal value and an optimal solution to the problem.

2) Now assume that the objective is replaced with cos(¢)z1 + sin(¢)z2, where ¢ is chosen at
random, according to the uniform distribution on [0, 27]. What is the probability to get, as an
optimal solution, the same point as in the original problem?

Exercise 1.2 [rucksack problem| There are n goods available to you; the maximal available
volume of good j is v; > 0, and the value of good j per unit of volume is ¢; > 0. You have a
rucksack of volume v and want to fill it with goods to get as large total value of the rucksack
as possible. Build an LO model of the resulting problem and present an elementary scheme for
generating optimal solution.

Exercise 1.3 A 24/7 calling center works as follows: every agent works 5 days in a row and
has two days rest, e.g., every week works Tuesday-Saturday and rests on Sunday and Monday.
The numbers of agents working every day of a week should be at least given numbers dy, ..., d7.
The manager wants to meet this requirement with the minimal possible total number of agents
employed, by deciding what will be the days off of the agents. Assuming that d; are large, so
that we can ignore integrality restrictions, formulate manager’s problem as an LO program.
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Exercise 1.4 The water supply system in a town includes pump station, tank and a distribution
network. At every given hour, the pump station can pump the water partly into tank, and partly
— directly into the distribution network. To pump a gallon of water, it takes one unit of electrical
energy, and the cost of energy consumed in hour ¢ is ¢; dollars per unit (usually, for night hours
¢t is less than for day hours). The demand for water in hour ¢, 0 < ¢ < 23, is d; gallons, and this
demand can be partly satisfied from the tank, and partly — from the station, no matter what
are the parts. At the beginning of hour 0, the tank is empty, same as it should be empty at
the end of hour 23. The capacity of the tank is C gallons. We want to decide how much water
should be pumped every hour ¢, 0 < ¢ < 23, into the network and into the tank in order to meet
the demand at the lowest possible energy cost. Build an LO model of the situation.

Exercise 1.5 Run experiment as follows:

1. Pick at random in the segment [0, 1] two “true” parameters 6; and 67 of the regression
model
y = b+ O1z;

2. Generate a sample of N = 1000 observation errors &; ~ P, where P is a given distribution,
and then generate observations y; according to

yi =05 + 012 + &, v = i/N;

3. Estimate the parameters from the observations according to the following three estimation

schemes:
uniform fit : 100,005 01,00] = argming max |y; — [0y + 0124]]
1<i<N
least squares fit : [0p2;012] = argming > (y; — [6o + O12:])?
1<i<N
£1 fit : [90’1; (91’1] = argming Z |y1 — [90 + 911‘1”
1<i<N

and compare the estimates with the true values of the parameters.
Run 3 series of experiments:
e P is the uniform distribution on [—1, 1];

e P is the standard Gaussian distribution with the density \/% exp{—t2/2};

e P is the Cauchy distribution with the density m

Try to explain the results you get. When doing so, you can think about a simpler problem,

where you are observing N times a scalar parameter 6* according to y; = 0* + &, 1 <i < N,
and then use the above techniques to estimate 6*.

Exercise 1.6 In the below list, mark by P the polyhedral sets, and by PR — the polyhedral
representations. For those polyhedral sets which in the below list are not given by polyhedral
representations, point out their polyhedral representations.

1. X =A{[z1;22] : 1 + 22 < 0}

2. X = {[x1;22] : max[z1, x2] <0}



50

10.
11.
12.
13.
14.

15.

. X

- X =A{[z1, 2]
- X = {[z1; 2]
- X = {[z1; 2]
- X = {[z1; 7]
X = {[z1; 2]
= {[z1;22] :
X = {[z1; 2]
X ={[z1; 2] :
X ={[z1; 2] :
X = {[z1;22] :
X = {[z1;22] :
X = {[z1;22]
X = {[z1:29] -

::c%—kx%

C 2 2
tx] + x5
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: max[zy, x2] > 0}
: minfzq, x2] <0}

: min[zy, x2] > 0}

<1}
~1}

—1<21<1,-1<z <12} +23 <1}

<

1<z <1,-1<ay< 1,23+ 23 <2}

|z1] + |z2| < 1}
|z1] — |72| < 1}
|x1| + 22 < 1}

21| =22 <1}

cxy — |xo] < 1}

—Xr1 — |.7}2| S 1}

Exercise 1.7 Represent the projection X of the polyhedral set
V={zeR: -1<m+a<1,-1<m+a3<1,—1 <z +3 <121 +29 + 33 <2}
onto the x1, zo-plane by a system of linear inequalities in the variables x1, zo.

Exercise 1.8 In the below list, mark by P the polyhedrally representable functions, and build
their polyhedral representations.

L f(z1,22) =0
2. f(xy,29) =21 — X9
3. f(x1,x2) = max|zy, x2]
4. f(x1,22) = min[zy, 2]
5. f(z1,22) = 1 — max[z1, z2]
6. f(x1,x2) =1 — min[xy, x9)

| max[zi,22], max[zri,z2] <1
7 flan ) = { +00, otherwise

[ max[zi,z2], min[z,x9] <1
8 flwy, o) = { +o0, otherwise

_ mil’l[l’l,xﬂ, Ty 2 27'I1 <0
9. flay, o) = { +00, otherwise
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10. f(xq, 9, x3 ax[r1, x2] + max|[x, x3]

11. f(xzq, 29,23 max|[z1, xg] — max|xy, 3]

12. f(x1,x2,23 ax[z1, 2] + minfzy, 3]

) =
) =
) =
) = max|[z1, ¥2] — min[z, v3]
14. f

x1,x2) = max[xr] + max[xe, x3], T3 + max[zry, z2]]

15. f

1, 2) = max[|z1], |2]]

I
I
I
13. f(x1, 29,3
I
i
16. f(

x1,T2) = | max[xy, xa)|

Exercise 1.9 In the below list, some problems can be posed as LO programs. Identify these
problems and reformulate them as LO programs.

1.
min {max|[|2x1 + 3xa|, |r1 — x2|] : |21] + 2 max|xy, z2] < 1}
Z1,T2

2.
max {max[|2x1 + 3z, |21 — x2|] : |x1| + 2 max[z1, z2] < 1}
T1,2

3.

21113}6)2( {2min[z; 4+ x9,2x9] — |21 — z2| : max[|z1 — 2x2|, |xa|] — 222 < 1 — |21}

Exercise 1.10 [computational study] Generate at random and solve 1000 of LO problems

5 5
;Iézlm{}g chxj : Zaijﬁj < b;,i <10
=1 =

to get impression what are the chances to get solvable/infeasible/unboundsed instance. Draw the
entries in the data, independently of each other, from the uniform distribution on {—1,1}.
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Lecture 2

Polyhedral Sets and their Geometry

An LO program
Opt = max {c'z : Az < b} (2.0.1)

is the problem of maximizing a linear objective over the set
X ={xeR": Az <b}

given by finitely many non-strict linear inequalities. As we remember, sets of this form are called
polyhedral, and their geometry plays crucial role in the theory and algorithms of LO. In this
lecture , we make the first major step towards understanding the geometry of a polyhedral set;
our ultimate goal is to establish the following fundamental result:

Theorem [Structure of a polyhedral set] A nonempty subset X in R" is polyhedral if and only
if it can be represented via finitely many “generators” vi,...,u; € R", r1,...,ry € R™ according
to

I J
X = a::Z)\Z-vZ-+Z,ujrj:A¢20,Z)\i:1;uj20
i=1 j=1 i

The statement of Theorem is illustrated on figure Eventually it will become clear why this
result indeed is crucial, and “on the way” to it we will learn numerous notions and techniques
which form the major bulk of the theoretical core of LO.

2.1 Preliminaries: Linear and affine subspaces, convexity

2.1.1 Linear subspaces

Here we recall some basic facts of Linear Algebra; the reader is supposed to be well acquainted
with these facts, so that we just list them.

2.1.1.1 Linear subspaces: Definition and examples

Recall that a linear subspace of R™ is a nonempty subset L of R™ which is closed w.r.t. taking
linear operations: addition and multiplication by reals. Thus, L C R” is a linear subspace iff it
possesses the following three properties:

o LA

53
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C C ‘
% /:z
y y o d)

Figure 2.1: From a polyhedral set to its generators and back.

a) polyhedral set X in R?

b) the v-generators of X are the points A, B, C, and the set {30, \iv; : A > 0,3, \i = 1} is the triangle AABC
c) the r-generators of X are the directions of rays OP (parallel to CE) and OQ (parallel to BF'), and the set
{Z?Zl w;r; : p > 0} is the angle ZPOQ

d) to get X back from generators, one sums up points from the triangle AABC and the angle ZPOQ.

e [closedness with respect to additions] Whenever x,y € L, we have z +y € L

e [closedness w.r.t. multiplications by reals] Whenever € L and A € R, we have Az € L.

From closedness w.r.t. additions and multiplications by reals it clearly follows that a linear
subspace is closed w.r.t. taking linear combinations of its elements: whenever z1,...,xz € L
and A1, ..., \x € R, the vector Zle Aix;, called the linear combination of the vectors x; with
coefficients );, also belongs to L. Linear subspaces of R™ are exactly the nonempty subsets of
R" closed w.r.t. taking linear combinations, with whatever coefficients, of their elements (why?)

Examples of linear subspaces in R™:

e the entire R"™ clearly is a linear subspace. This is the largest linear subspace in R™:
whenever L is a linear subspace, we clearly have L C R"™

e the origin {0} clearly is a linear subspace. This is the smallest linear subspace in R™:
whenever L is a linear subspace, we have {0} C L. Indeed, since L is nonempty, there
exists x € L, whence 0 =0-x € L as well.

e The solution set
{z : Az =0} (2.1.1)

of a homogeneous system of linear equations with an m x n matrix A. This set clearly is
a linear subspace (check it!). We shall see in a while that every linear subspace in R™ can
be represented in the form of (2.1.1)), and, in particular, is a polyhedral set.

2.1.1.2 Calculus of linear subspaces
There are several important operations with linear subspaces:

1. Taking intersection: if L1, Lo are linear subspaces of R", so is their intersection L1NLsy. In

fact, the intersection [\ Lo of a whatever family {Lq}aca of linear subspaces is a linear
acA
subspace (check it!)
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Note: the union of two linear subspaces L1, Lo is not a linear subspace, unless one of the
subspaces contains the other one (why?)

2. Taking arithmetic sum: if Ly, Ly are linear subspaces in R", so is the set L1 + Ly = {z =
x1+ a2 :x1 € L1,x9 € Lo} (check it!)

3. Taking orthogonal complement: if L is a linear subspace in R", so is its orthogonal com-
plement — the set L+ = {y : y"2 = 0Vx € L} of vectors orthogonal to all vectors from
L.

4. Taking linear image: if L is a linear subspace in R™ and A is an m X n matrix, then the set
AL :={Axz : z € L} C R™ — the image of L under the linear mapping z — Az : R — R™
— is a linear subspace in R™ (check it!)

5. Taking inverse linear image: if L is a linear subspace in R™ and A is an n x k matrix, then
the set A™'L = {y € R¥ : Ay € L} - the inverse image of L under the linear mapping
y +— Ay :RF — R™ — is a linear subspace in R* (check it!)

6. Taking direct product: Recall that the direct product X; x ... x X of sets X; C R™,
1 <i < kis the set in R™* ™ comprised of all block vectors z = [z; ...; 2] with blocks
2' € X;, 1 <i < k. When all X; are linear subspaces, so is their direct product (check it!)

The most important “calculus rules” are the relations

a) (LYH)* =1L
b) LNL-={0}, L+L+=R"
14+ Lo)t = LiNLy (2.1.2)

(
()
(@ (
(d) (
(&)
where L, Ly, Lo C R" (in (a-d)) and L; C R™ (in (e)) are linear subspaces, and A is an arbitrary
m X n matrix.

L
ALYt = (AT thatis {y: yT Az =0Vor e L} = {y: ATy e L}
Ly X o x L)t = L x .. x L

Comment on b). Let L be a linear subspace in R". The fact that L + L+ = R”"
means that every z € R" can be decomposed as x = xy + 2,1 with 27, € L and 2,1 € L*; in
particular, x7, is orthogonal to 2;1. Since LN L+ = {0}, the decomposition of = into a sum of
two vectors, one from L and one from L', is unique (check it!), and both x; and z;. linearly
depend on x. The components zy, and x;1 of x are called orthogonal projections of x onto L
and L+, respectively, and the mapping = — z, is called the orthogonal projector onto L. Since
zr, and z;1 are orthogonal, we have the identity

T

213 == 2"z = ||z ]|3 + oL |3

2.1.1.3 Linear subspaces: linear span, dimension, linear independence, bases

Linear span. For every nonempty set X C R", the set of all linear combinations, with finitely
many terms, of vectors from X is a linear subspace (why?), and this linear subspace (called the
linear span Lin(X) of X) is the smallest, w.r.t. inclusion, of the linear subspaces containing X:
Lin(X) is a linear subspace, and

X CcLin(X)CL
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whenever L is a linear subspace containing X.

Linear span of an empty set. In the above definition of Lin(X), X C R™ was assumed to be
nonempty. It is convenient to assign with the linear span the empty set as well; by definition,
Lin(@) = {0}. This definition is in full accordance with the standard convention that a sum
with empty set of terms is well-defined and is equal to 0, same as it is consistent with the above
claim that Lin(X) is the smallest linear subspace containing X.

When L = Lin(X), we say that L is spanned (ore, more rigorously, linearly spanned) by the
set X C R"; thus, a linear subspace L is spanned by a set iff L is exactly the set of all linear
combinations of vectors from X (with the convention that a linear combination with empty set
of terms is equal to 0).

Linear independence. Recall that a collection x1, ...,z of vectors from R" is called linearly
independent, if the only linear combination of these vectors equal to 0 is the trivial one — all
coefficients are equal to O:

k
d Nwi=0=X=0,i=1,..,k

=1

An equivalent definition (check equivalency!) is that z1,..., 2y are linearly independent if and
only if the coefficients in a linear combination of 1, ..., z; are uniquely defined by the value of
this combination:

k k

Z)\ixi = Z,uixi 54 /\i = s, 1= 1, ...,k.
i=1 i=1

By definition, an empty (i.e., with & = 0) collection of k vectors is linearly independent. Clearly,

a nonempty linearly independent collection is comprised of distinct and nonzero vectors.

Dimension and bases. A given linear subspace L can be represented as a span of many
sets (e.g., L = Lin(L)). The fundamental fact of Linear Algebra is that L always is spanned
by a finite set of vectors. Given this fact, we immediately conclude that there exist “minimal
w.r.t. inclusion finite representations of L as a linear span”, that is, finite collections {1, ..., %}
comprised of k points which linearly span L (i.e., every vector from L is a linear combination of
vectors 1, ..., x ), and such that when eliminating from the collection an element, the remaining
vectors do not span the entire L. The following fundamental fact of Linear Algebra provides us
with more details on this subject:

Theorem 2.1.1 Let L be a linear subspace of R™. Then

(i) There exist finite collections w1, ...,z which span L and are “minimal” in this respect
(i.e., such that eliminating from the collection one or more elements, the remaining vectors do
not span L ). All minimal finite collections of vectors spanning L, when nonempty, are comprised
of distinct from each other monzero vectors and have the same cardinality, called the dimension
of L (notation: dim L), and are called linear bases of L. The only linear subspace of R"™ spanned
by empty set of vector is the trivial linear subspace {0}; its dimension, by definition, is 0.
(ii) Let L be a nontrivial (i.e., distinct from {0} ) linear subspace in R™. A collection x1, ..., z) of
k wvectors from L is a linear basis in L if and only if this collection possesses one of the following
equivalent to each other properties:

(i.1) The collection spans L, and the vectors of the collection are linearly independent;
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(i.2) The vectors x1, ...,k form a maximal w.r.t. inclusion linearly independent collection of
vectors from L, that is, x1, ...,z are linearly independent, but adding to the collection one more
vector xpy1 from L yields a linearly dependent collection of vectors;

(i.3) Ewvery vector x from L admits exactly one representation as a linear combination of
vectors i, ..., Tk, that is, for every x there exists exactly one collection of coefficients A, ..., Ag
(called the coordinates of x in the basis x1, ...,xx) such that x = Zle Ai;.

(iii) One has {0} # L = Lin(X) for certain X iff L admits a linear basis comprised of vectors
from X.

(iv) For every n x n nonsingular matrix A, vectors Axy, ..., Axy form a basis in the image
AL = {Ax : x € L} of L under the linear mapping x — Ax iff x1,...,x form a basis in L.

The dimension of a linear subspace satisfies several basic relations:

(@) 0<dimL<n

b) Ly C Ly = dim L; < dim Lo, the inequality being strict unless L; = Ly
) dim (L1 + LQ) + dim (L1 N LQ) =dim L1 + dim Lo
) dim L+dim L+ =n
e) dim(AL) < dim L, with equality when A is square and nonsingular
f) dim(Lj x ... x L) =dim Ly + ... + dim L

where L, L1, Ly C R" (in (a-e)) and L; C R™ (in (f)) are linear subspaces.

)

(2.1.3)

S8

(
(
(
(
(

Examples: e dim R"” = n, and R" is the only subspace of R" of dimension n. Bases in R" are
exactly the collections of n linearly independent vectors (or, if your prefer, collections of columns
of n X n nonsingular matrices), e.g., the standard basis comprised of basic orths ey, ..., e,, where
e; has a single nonzero entry, equal to 1, namely, in the position ¢. The coordinates of x € R™
in this standard basis are just the entries of x.

e dim {0} = 0, and {0} is the only subspace of R" of dimension 0. The only basis of {0} is the
empty set.

e The dimensions of all proper (distinct from {0} and R") linear subspaces of R" are integers
>1land <n-—1.

e The dimension of the solution set L = {x : Az = 0} of a system of m linear equations with n
variables x is n — Rank A. One way to see it is to note that this solution set is nothing but the
orthogonal complement to the linear span of the (transposes of the) rows of A; the dimension
of this span is Rank(A) (definition of rank), and it remains to use the rule (2.1.3]d).

2.1.1.4 “Inner” and “outer” description of a linear subspace

We have seen that a linear subspace L C R"™ of dimension k can be specified (in fact, in many
ways, unless L = {0}) by a finite set which spans L. This is a kind of an “inner” description of
L: in order to get L, one starts with a finite number of vectors from L and then augments them
by all their linear combinations.

There is another, equally universal way to specify a linear subspace: to point our a system
of homogeneous linear equations Az = 0 such that the solution set of this system is exactly L:

Proposition 2.1.1 (i) L C R" is a linear subspace if and only if L is a solution set of a (finite)
system of homogeneous linear equations Ax = 0; in particular, a linear subspace is a polyhedral
set.

(ii) When L is a linear subspace of RN, the relation L = {x : Az = 0} holds true if and only
if the (transposes of the) rows of A span L*.
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Proof. We have already seen that the solution set of a system of homogeneous linear equations
in variables x € R"™ is a linear subspace of R™. Now let L be a linear subspace of R". It is
immediately seen (check it!) that

(1) If aq, ..., an, span a linear subspace M, then the solution set of the system
r=0,1=1,...m (%)
is exactly M+*.

It follows that choosing a1, ..., an, to span L+, we get, as a solution set of (x), the linear subspace
(LH)* = L, where the concluding equality is nothing but (2.1.2la). Thus, every linear subspace
L indeed can be represented as a solution set of (x), provided that m and a4, ..., a,, are chosen
properly, namely, a1, ..., a,, span L. To see that the latter condition is not only sufficient, but
also necessary for the solution set of () to be L, note that when L = {z : al2 =0, i =1,...,m},
we definitely have a; € L*, and all which remains to verify is that ay, ..., a,, not only belong
to LT, but also span this linear subspace. Indeed, let M := Lin{ay,...,an}. By (!), we have
Mt ={x:alx=0,i=1,...,m} = L, whence M = (M+)+ = L+, as claimed. O

A representation L = {x : Az = 0} of a linear subspace L is a kind of “outer” description of
L — one says that in order to get L we should delete from the entire space all points violating
one or more constraints in the system Az = 0.

Comments. The fact that a linear subspace admits transparent “inner” and “outer” represen-
tations, whatever simple it looks, is crucial: in some situations, these are inner representations
which help to understand what is going on, while in other situations outer representations do
the work. For example, when passing from two linear subspaces L1, Lo to their sum Lj + Lo,
an inner representation of the result is readily given by inner representations of the operands
(since the union of two finite sets, the first spanning L; and the second spanning Lo, clearly
spans Lj + L9); at the same time, there is no equally simple way to get an outer representation
of L1 4+ Lo from outer representations of the operands Li, Ls. When passing from the sum of
two subspaces to their intersection L1 N Lo, the situation is reversed: the outer representation
of L1 N Lo is readily given by those of L1 and Ly (put the systems of homogeneous equations
specifying L; and Ly into a single system of equations), while there is no equally simple way
to build a spanning set for Ly N Lo, given spanning sets for L; and Lo. In the sequel, speaking
about entities more complicated than linear subspaces (affine spaces and polyhedral sets), we
will systematically look for both their “‘inner” and “outer” descriptions.

2.1.2 Affine subspaces
2.1.2.1 Affine subspace: definition and examples

Definition 2.1.1 [Affine subspace] A set M C R™ is called affine subspace, if it can be rep-
resented as a shift of a linear subspace: for properly chosen linear subspace L C R™ and point
a € R™ we have

M=a+L:={z=a+yyeli={zr:x—acL}. (2.1.4)

It is immediately seen (check it!) that the linear subspace L participating in (2.1.4) is uniquely
defined by M, specifically, L = {z =z —y : x,y € M}; L is called the linear subspace parallel
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to the affine subspace M. In contrast to L, the shift vector a in is not uniquely defined
by M, and one can use in the role of a an arbitrary point from M (and only from M).

A linear subspace of R™ is a nonempty subset of R™ which is closed w.r.t. taking lin-
ear combinations of its elements. An affine subspace admits a similar description, with affine
combinations in the role of just linear ones.

Definition 2.1.2 [Affine combination| An affine combination of vectors xy, ..., xy is their linear
combination Ef::l Xiwi with unit sum of coefficients: Zle A=1.

The characteristic property of affine combinations as compared to plain linear ones is that when
all vectors participating in the combination are shifted by the same vector a, the combination
itself is shifted by the same vector:

Zle Aixz; is affine combination of x1, ..., %
4
k k
Ai(x; +a) = <E )\ia:i> + aVa.
=1 i=1

)

Proposition 2.1.2 A subset M of R™ is an affine subspace iff it is nonempty and is closed
w.r.t. taking affine combinations of its elements.

Proof. Assume M is an affine subspace. Then it is nonempty and is representable as M = a+ L
with L being a subspace. If now z; = a + u;, i = 1,..., k, are points from M (so that u; € L)
and Aq,...,\r sum up to 1, then Zle Nz = Zle Aiv; + a, and Y, Aju; € L since L is a
linear subspace and u; € L for all ¢. Thus, M is nonempty and is closed w.r.t. taking affine
combinations of its elements.

Vice versa, let M be nonempty and closed w.r.t. taking affine combinations of its elements,
and let us prove that then M is an affine subspace. Let us fix a point a in M (this is possible, since
M is nonempty), and let L = M —a = {y—a:y € M}. All we need to prove is that L is a linear
subspace, that is, that L is nonempty (which is evident, since 0 = a —a € L due to a € M) and
is closed w.r.t. taking linear combinations. Indeed, when x1, ...,z € L (that is, y; = z;+a € M

for all 4) and p; are reals, we have x = Y pix; = > pi(ys —a) = (1 =, pi)a + >, iy — a.

(2 7
Since a € M and all y; € M, the combination y = (1 — >, ui)a + >, piy; (which clearly has
coefficients summing up to 1) is an affine combination of vectors from M and as such belongs
to M. We see that © = y — a with certain y € M, that is, x € L. Thus, L indeed is a nonempty
subset of R" closed w.r.t. taking linear combinations of its elements. O

Task 2.1 Proposition states that a nonempty subset M of R™ closed w.r.t. taking affine
combinations of its elements is an affine subspace. Prove that the conclusion remains true when
closedness w.r.t. taking all affine combinations of the elements of M is weakened to closedness
w.r.t. taking only two-term affine combinations Az + (1 — X)y of elements of M. Geometrically:
a nonempty subset M of R™ is an affine subspace if and only if along with every two distinct
point x,y € M, M contains the entire line passing through these points.
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Examples of affine subspaces in R":

e The entire R" is an affine subspace; its parallel linear subspace also is R", and the shift
point a can be chosen as any vector;

e A singleton {a}, with a € R", is an affine subspace; the shift vector is a, the parallel linear
subspace is {0};

e The solution set of a solvable system of linear equations in variable x € R" is an affine
subspace in R™:

M :={z: Az =b} # 0 = M is an affine subspace

Indeed, as Linear Algebra teaches us, “the general solution to a system of linear equa-
tions is the sum of its particular solution and the general solution to the corresponding
homogeneous system:” is a solves Az = b and L = {z : Az = 0} is the solution set of the
corresponding homogeneous system, then

M:={z: Az =0b}=a+ L,

and L is a linear subspace by its origin. Thus, a (nonempty) solution set of a system of
linear equations indeed is an affine subspace, with the parallel linear subspace being the
solution of set of the corresponding homogeneous system.

Note that the reasoning in the latter example can be inverted: if L = {z : Az = 0} and a € R",
then a + L = {z : Az = b := Aa}, that is, every shift of the solution set of a homogeneous
system of linear equations is the set of solutions to the corresponding inhomogeneous system
with properly chosen right hand side. Recalling that linear subspaces in R" are exactly the same
as solution sets of homogeneous systems of linear equations, we conclude that affine subspaces of
R"™ are nothing but the solution sets of solvable systems of linear equations in variable x € R",
and in particular every affine subspace is a polyhedral set.

2.1.2.2 Calculus of affine subspaces

Some of basic operations with linear subspaces can be extended to affine subspaces, specifically

1. Taking intersection: if My, My are affine subspaces in R™ and their intersection is
nonempty, this intersection is an affine subspace. Moreover, if {M,}aca is a whatever

family of affine subspaces and the set M = [ M, is nonempty, it is an affine subspace.
acA
Indeed, given a family of sets closed w.r.t. certain operation with elements of the set (e.g., taking

affine combination of the elements), their intersection clearly is closed w.r.t. the same operation;
thus, intersection of an arbitrary family of affine subspaces is closed w.r.t. taking affine combina-
tions of its elements. If, in addition, this intersection is nonempty, then it is an affine subspace

(Proposition [2.1.2)).

2. Taking arithmetic sum: if M7, Mo are affine subspaces in R"”, so is the set My + My =
{r =z1 4+ 29: 21 € M1,29 € M2} (check it!)

3. Taking affine image: if M is a linear subspace in R™, A is an m X n matrix and b € R™,
then the set AM +b:= {Az+b: 2 € M} C R™ — the image of M under the affine
mapping x — Az 4+ b: R"™ — R™ — is an affine subspace in R™ (check it!).

In particular, a shift M +b={y=x+b: 2z € M} (b € R") of an affine subspace M C R"
is an affine subspace.
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4. Taking inverse affine image: if M is a linear subspace in R", A is an n x k matrix, and
b € R" and the set {y € R*¥ : Ay +b € M} — the inverse image of L under the affine
mapping y — Ay +b : RF — R" — is nonempty, then this inverse image is an affine
subspace in R¥ (check it!)

5. Taking direct product: if M; C R™ are affine subspaces, ¢ = 1,...,k, then their direct
product Mj x ... x My, is an affine subspace in R™ "+ (check it!)

2.1.2.3 Affine subspaces: affine span, affine dimension, affine independence, affine
bases

Affine span. Recall that the linear span of a set X C R" is the set comprised of all linear
combinations of elements from X, and this is the smallest w.r.t. inclusion linear subspace
containing X . Similarly, given a nonempty set X C R", we can form the set Aff(X) of all affine
combinations of elements of X. Since affine combination of affine combinations of elements of
X is again an affine combination of elements of X (check it!), Aff(X) is closed w.r.t. taking
affine combinations of its elements. Besides this, Aff(X) D X, since every x € X is an affine
combination of elements from X: x = 1-x. Thus, Aff(X) is a nonempty set closed w.r.t. taking
affine combinations of its elements and thus is an affine subspace (Proposition . As we
have seen, this affine subspace contains X; it is clear (check it!) that Aff(X) is the smallest
w.r.t. inclusion affine subspace containing X:

) # X C M, M is affine subspace = X C Aff(X) C M.

The set Aff(X) is called the affine span (or affine hull) of X; we say also that X affinely spans
an affine subspace M if M = Aff(X).
As it should be clear in advance, there is a tight relation between linear and affine spans:

Proposition 2.1.3 Let ) # X C R", and let a € X. Then Af(X) = a+ Lin(X —a). In
particular, X affinely spans an affine subspace M if and only if X C M and the set X — a, for
some (and then — for every) a € X, linearly spans the linear subspace L to which M is parallel.

Proof. Let a € X. By definition, Aff(X) is comprised of all vectors representable as z =
Zle Xiz; with some k, some z; € X and some \; with >, A\; = 1; for = of the outlined form, we

k
have x—a = ) A\j(z;—a). In other words, the linear subspace L to which Aff(X) is parallel (this
i=1
linear subspace is exactly the set of all differences x — a with € Aff(X)) is exactly the set of
affine combinations of vectors from X —a. Since the latter set contains the origin (due to a € X),
the set of all affine combinations of vectors from X — a is exactly the same as the set Lin(X —a)
of all linear combinations of the points from X — a (take a linear combination ), ui(x; — a) of
vectors from X —a and rewrite it as the affine combination ), pi(x; —a)+ (1=, i) (a —a) of
vectors from the same set X —a). Thus, L = Lin(X — a) and therefore Aff(X) = a+ Lin(X —a)
for whatever a € X. a

Affine independence. Recall that a collection of k£ > 0 vectors z1,...,x; is called linearly
independent iff the coefficients of a linear combination of 1, ..., x; are uniquely defined by the
value of this combination. The notion of affine independence mimics this approach: specifically,
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a collection of k 4+ 1 vectors xg, ...,z is called affine independent, if the coefficients of every
affine combination of zg, ...,z are uniquely defined by the value of this combination:

k k
Z)\ﬂiZZM%,ZMZZMizleZM, 0<i<k.
i=0 i=0 i i

Equivalent definition of affine independence (check equivalency!) is: xg,...,z) are affinely in-
dependent iff the only linear combination of xq,...xy which is equal to 0 and has zero sum of
coefficients is the trivial combination:

k k
D Aimi=0> A=0=X=00<i<k
=0 1=0

As it could be easily guessed, affine independence “reduces” to linear one:

Lemma 2.1.1 Let k > 0, and let zg, ..., xx be a collection of k41 vectors from R™. This collec-
tion is affinely independent iff the collection x1 — xg, x2 — g, ..., T — To is linearly independent.

Proof of Lemma: There is nothing to prove when k& = 0, since in this case the system of
vectors x1 — T, ..., £ — Tg is empty and thus is linearly independent, and at the same time the
only solution of the system Z?:o Az =0, Z?:o A =01is \g = 0. Now let £ > 1. Assuming that
the vectors z1 —x, ..., T — o are linearly dependent, so that there exists nonzero p = [p1;...; fux]
with Zle wi(z; —x9) = 0, we get a nontrivial solution \g = — Zle iy A1 = [41, .oy Al = g tO

the system
k k
> Aimi=0,3 X=0 (%)
i=0 i=0

that is, xg, ..., xx are not affinely independent. Vice versa, assuming that xg, ..., i are not affinely
independent, (%) has a nontrivial solution Ag, ..., \g. Setting pu; = A\;, 1 < i < k, and taking into
account that \g = — Zle Ai by the last — the scalar — equality in (), the first equality in (x)
reads Zle wi(z; —xo) = 0. Note that not all u; = A\;, i = 1, ..., k, are zeros (since otherwise we

would have also A\g = — Zle Ai = 0, that is, Ao, ..., Ax are zeros, which is not the case). Thus, if
xg, ..., Tf are not affinely independent, x1 — zg, ..., £x — Tg are not linearly independent. Lemma
is proved. O

Affine dimension and affine bases. By definition, the affine dimension of an affine subspace
M = a + L is the linear dimension of the parallel linear subspace L. It is also convenient to
define affine dimension of an arbitrary nonempty set X C R"™ as the affine dimension of the affine
subspace Aff(X). In our course, we will not use any other notion of dimension, and therefore
from now on, speaking about affine dimension of a set, we shall skip the adjective and call it
simply “dimension”.

Remark: The above definitions and convention should be checked for consistency,
since with them, some sets (namely, affine subspaces M) are within the scope of two
definitions of affine dimension: the first definition, applicable to affine subspaces, says
that the affine dimension of an affine subspace M is the dimension of the parallel
linear subspace, and the second definition, applicable to all nonempty sets, says that
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the affine dimension of M is the affine dimension of Aff(M), i.e., is the dimension
of the linear subspace parallel to Aff(M). Fortunately, these two definitions are
consistent in the intersection of their scopes: since M = Aff(M ) for an affine subspace
M, both definitions of the affine dimension for such an M say the same.

The convention to skip “affine” when speaking about affine dimension could have
its own potential dangers, since some sets — specifically, linear subspaces — again are
in the scope of two definitions of dimension: the first is the dimension of a linear
subspace L (the minimal cardinality of a spanning set of L) and the second is the
affine dimension of a nonempty set. Fortunately, here again the definitions coincide
in their common scope: affine dimension of a linear subspace L is, by definition,
the dimension of the linear subspace parallel to Aff(L); but for a linear subspace L,
Aff(L) = L and L is the linear subspace parallel to Aff(L), so that both definitions
again say the same.

The bottom line is that we have associated with every nonempty subset X of R" its dimension
dim X, which is an integer between 0 and n. For a linear subspace X, the dimension is the
cardinality of a minimal finite subset of X which (linearly) spans X or, equivalently, the maximal
cardinality of linearly independent subsets of X; for an affine subspace X, the dimension is the
just defined dimension of the linear subspace parallel to X, and for an arbitrary nonempty subset
X of R"™ the dimension is the just defined dimension of the affine span Aff(X) of X. When
X is in the scope of more than one definition, all applicable definitions of the dimension are
consistent with each other.

Affine bases. Let M = a + L be an affine subspace. We definitely can represent M as
Aff(X) for a nonempty set X (which usually can be chosen in many different ways), e.g., as
M = Aff(M). An immediate corollary of Theorem and Proposition is that M
can be represented as Aff(X) for a finite collection X = {xo,...,x} where k& > 0. Indeed,
by Proposition a necessary and sufficient condition to have M = Aff({zo,x1,...,zx}) is
xo € M and Lin(X — x¢) = L (check it!). In order to meet this condition, we can take as x
an arbitrary point of M and select k£ and a finite set of vectors dy, ..., d; in such a way that this
set linearly spans L; setting x; = x9 + d;, 1 < i < k, we get a finite set X = {xy, ..., xx} which
meets the above necessary and sufficient condition and thus affinely spans M. This reasoning
clearly can be inverted, leading to the following result:

Proposition 2.1.4 An affine subspace M = a + L is affinely spanned by a finite set X =
{zo, ...,z } if and only if xo € M and the k vectors x1 — xg, T2 — X0,...,T — To linearly span L.
In particular, the minimal in cardinality subsets X = {xo,...,xp} which affinely span M are of
cardinality k +1 = dim M + 1 and are characterized by the inclusion xo € M and the fact that
T1 — XQ, ..., T — Tg 1S a linear basis in L.

Note that “in particular” part of the latter statement is readily given by Theorem [2.1.1

The minimal w.r.t. inclusion collections xq, x1, ...,z of vectors from an affine subspace M
which affinely span M have a name — they are called affine bases of the affine subspace M. It is
a good and easy exercise to combine Proposition Lemma and Theorem to get
the following “affine” version of the latter Theorem:

Theorem 2.1.2 Let M be an affine subspace of R"™. Then
(i) There exist finite collections xy, ..., xx which affinely span M and are “minimal” in this respect
(i.e., such that eliminating from the collection one or more elements, the remaining vectors do
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not affinely span M ). All minimal finite collections of vectors affinely spanning M are comprised
of distinct vectors from M and have the same cardinality, namely, dim M + 1; these collections
are called affine bases of M.

(ii) A collection xy, ...,z of k + 1 vectors from M is an affine basis in M if and only if this
collection possesses one of the following equivalent to each other properties:

(ii.1) The collection affinely spans M, and the vectors of the collection are affinely indepen-
dent;

(ii.2) The vectors xg, ...,z form a mazimal w.r.t. inclusion affinely independent collection
of vectors from M, that is, xg, ...,z are affinely independent, but adding to the collection one
more vector xx11 from M yields an affinely dependent collection of vectors;

(ii.3) Every vector x from M admits exactly one representation as an affine combination of
vectors xg, ..., T, that is, for every x there exists exactly one collection of coefficients Ag, ..., Ak
(called the affine coordinates of x in the affine basis xq,...,xx) such that Zf:o Ai = 1 and
r = Z?:O )\ZCL‘Z

(ii.4) The vectors 1 — xq, ..., Tx — xo form a linear basis in the linear subspace L to which
M is parallel.

(iii) One has M = Aff(X) for certain X iff M admits an affine basis comprised of vectors from
X.

(iv) Let A be an n x n nonsingular matriz. Vectors Axg + b, ..., Az, + b form an affine basis of
the image AM +b={y=Ax+b:x € M} of M under the affine mapping x — Az + b iff the
vectors xg, ..., Lm form an affine basis in M.

The dimension, restricted onto affine subspaces, satisfies basic relations as follows (cf. (2.1.3))):

(@) 0<dim M <n

(b) M; C My = dim M; < dim Mpy, the inequality being strict unless
My = My

(¢) if MinN M, # @, then
dim (Ml + MQ) + dim (M1 N MQ) = dim M; + dim M>

(d) dim (AM +b) < dim M, with equality in the case when A is square
and nonsingular,

(e) dim (M; x ... x My) =% dim (M),

(2.1.5)

where M, My, My, M; are affine subspaces. Pay attention to the premise M; N My # () in (C)E|
As about the dimension of arbitrary (nonempty) subsets X C R", seemingly the only “uni-
versal” facts here are as follows (check them!):

(a) 0#X CcR"=dim X €{0,1,...,n},

) P£XCYCR"=dim X <dimY (2.1.6)

"When M; N Mz = (), the conclusion in (c¢) does not make sense, since the dimension of an empty set is
undefined. There are good reasons for it; indeed, when trying to assign an empty set the dimension, we would
like to maintain its basic properties, e.g., to ensure the validity of (¢) when M; N Mz = @, and this clearly is
impossible: take two ¢-dimensional distinct from each other affine subspaces parallel to the same proper linear
subspace L of R": My = L+a, Ms = L+0b, b ¢ My;. Then My N Mz = @, dim M; = dim M2 = dim L,
dim (M1 + M2) = dim ([a + b] + L) = dim L. We see that in order to meet the conclusion in (c), we should have
dim (@) +dim L = 2dim L, i.e., dim () should be dim L. But the latter quantity depends on what is L, and thus
there is no meaningful way to assign () a dimension.
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Examples: e There exists exactly one affine subspace in R" of the maximal possible dimension
n — this is the entire R™. Affine bases in R"™ are of the form a,a + f1,...,a + f,, where a € R"
and fi, ..., f are linearly independent.

e Unless n = 0, there exist many affine subspaces of the minimal possible dimension 0; these are
singletons M = {a}, a € R". An affine basis in a singleton {a} is comprised of the only vector,
namely, a.

e Two types of affine subspaces have special names — lines and hyperplanes.

— A line ¢ C R" is the affine span of two distinct points a,b: £ = {z = (1 — N)a + Ab, X €
R} ={x =a+ A(b—a),\ € R}. The parallel linear subspace is one-dimensional and is linearly
spanned by b — a (same as by the difference of any other pair of two distinct points from the
line). Affine bases of ¢ are exactly pairs of distinct points from .

— A hyperplane IT C R" is an affine subspace of dimension n — 1, or, equivalently (why?), the
solution set of a single nontrivial (not all coefficients at the variables are zeros) linear equation

atz =b.

2.1.2.4 “Inner” and “outer” description of an affine subspace

We have seen that an affine subspace M can be represented (usually, in many ways) as the
affine span of a finite collection of vectors xg, ..., r, that is, represented as the set of all affine
combinations of vectors xg, ..., zx. This is an “inner” representation of an affine set M, and the
minimal k£ in such a representation is dim M.

An outer representation of an affine subspace M is its representation as the solution set of
a solvable system of linear equations:

M = {z: Ax = b}. (2.1.7)

As we have already seen, such a representation always is possible, and the (transposes of) rows
of A in such a representation always linearly span the orthogonal complement L1 of the linear
subspace L to which M is parallel. The minimal number of equations in a representation
of M is dim L+ =n —dim L = n — dim M.

2.1.3 Convexity

Linear and affine subspaces of R™ we have studied so far are polyhedral sets, so that the family
of polyhedral sets in R is wider than the family of affine subspaces (which in turn is wider that
the family of linear subspaces). The family of convex sets in R" is, in turn, wider than the family
of polyhedral sets, and convexity is, perhaps, the most important property of a polyhedral set.
In this section we intend to investigate convexity in more details, the rationale being twofold.
First, simple facts we are about to establish play important role in understanding the geometry
of polyhedral sets. Second, while polyhedral sets form only a tiny part of the family of convex
sets, this “tiny part” is representable: a significant part of the results on polyhedral sets can be
extended, sometimes with small modifications, on convex sets. In the sequel, we shall indicate
(without proofs) most important of these extensions, thus putting our results on polyhedral sets
in a proper perspective.

We have already defined the notion of a convex set and a convex function, and have claimed
that all polyhedral sets are convex, leaving the verification of this claim to the reader (see p.
. For reader’s convenience, we start with reiterating the definitions and proving the above
claim.
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Definition 2.1.3 (i) Let X be a subset of R". We say that X is convez, if along with every
pair x,y of its points, X contains the segment linking these points:

V(z,y e X, A €[0,1]): (1 =Nz + Iy € X.
(ii) Let f: R™ — R U {oo} be a function. f is called convez if its epigraph — the set
Epi(f) = {[z;7] e R" xR : 7 = f(x)}
— is convex, or, equivalently (check equivalence!), for all x,y € R™ and all X € [0, 1] it holds

FA=Nz+xy) <@ =Nf)+ A fly) [

Examples. The most important for our purposes example of a convex set is a polyhedral one:

Proposition 2.1.5 [Convexity of a polyhedral set] Let X = {x : Ax < b} be a polyhedral set in
R". Then X is convex.

Proof. Indeed, let z,y € X and A € [0,1]. Then Az < b, whence, A(1 — X\)z = (1 — ) Az <
(1 = A)b due to A < 1, and Ay < b, whence A(Ay) < Ab due to A > 0. Summing up the
vector inequalities A(1 — N)x < (1 — A\)b and A\y < Ab, we get A[(1 — M)z + \y] < b. Thus,
(1 =Xz + Ay € X, and this is so whenever z,y € X and A € [0, 1], meaning that X is convex.
O

Corollary 2.1.1 A polyhedrally representable function (see section [1.3.2)) is convez.

Indeed, the epigraph of a polyhedrally representable function, by definition of polyhedral rep-
resentability and by Theorem [1.3.1] is a polyhedral set. O

Recall that both Proposition and Corollary were announced already in Lecture
Of course, there exist non-polyhedral convex sets, e.g., the Euclidean ball {z : ||z|3 < 1},
same as there exist convex functions which are not polyhedrally representable, e.g., the Euclidean

norm f(x) = [lzl2. ]

2.1.3.1 Calculus of convex sets and functions

There are several important convexity-preserving operations with convex sets and convex func-
tions, quite similar to the calculus of polyhedral representability and, as far as sets are concerned,
to the calculus of linear/affine subspaces.

2To interpret the value of the right hand side when f(z), or f(y), or both is/are +oco, see the conventions on
the arithmetics of the extended real axis on p.

30f course, both the convexity of Euclidean ball in R™ and the fact that this set is non-polyhedral unless n = 1,
need to be proved. We, however, can ignore this task — in our course, we are interested in what is polyhedral,
and not in what is not polyhedral.
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Calculus of convex sets. The basic calculus rules are as follows (check their validity!):

1.

Taking intersection: if X1, Xo are convex sets in R™, so is their intersection X1 N X5. In

fact, the intersection ()| X, of a whatever family {X,}aeca of convex sets in R™ is a
acA
convex set.

Note: the union of two convex sets most often than not is non-convex.

. Taking arithmetic sum: if X, Xy are convex sets R", so is the set X1+ Xo = {z = 21+ 2 :

xr1 € Xl,xg € XQ}.

Taking affine image: if X is a convex set in R™, A is an m X n matrix, and b € R™, then
the set AX +b:={Az+b: 2z € X} C R™ - the image of X under the affine mapping
x— Az +b:R" - R™ —is a convex set in R™.

Taking inverse affine image: if X is a convex set in R", A is an n X k matrix, and b € R",
then the set {y € R* : Ay +b € X} - the inverse image of X under the affine mapping
y+— Ay +b:RF - R™ —is a convex set in RF.

Taking direct product: if the sets X; C R", 1 < i < k, are convex, so is their direct
product X7 x ... x Xj, C RM 1%,

Calculus of convex functions. The basic rules (check their validity!) are:

1.

Taking linear combinations with positive coefficients: if functions f; : R — R U {+o0}
are convex and \; > 0, 1 <4 <k, then the function f(z) = Zle Aifi(z) is convex.

Direct summation: if functions f; : R™ — R U {+o0}, 1 <i < k, are convex, so is their

direct sum
k

f(lzts .. 2k) = Zfz(:vl) (R 5 R U {400}

=1

Taking supremum: the supremum f(z) = sup fo(z) of a whatever (nonempty) family
acA
{fa}aeca of convex functions is convex.

. Affine substitution of argument: if a function f(z) : R™ — R U {400} is convex and

x=Ay+b:R™ — R" is an affine mapping, then the function g(y) = f(Ay +b) : R™ —
R U {+0o0} is convex.

Theorem on superposition: Let fi(z) : R™ — R U {400} be convex functions, and let
F(y) : R™ — R U {+o0} be a convex function which is nondecreasing w.r.t. every one of
the variables y1, ..., ym. Then the superposition

_ | F(fi(@), ., fm(®)), fi(z) <+o0,1<i<m
9(x) = +00 otherwise
of F and fy, ..., f, Is convex.

Note that if some of f;, say, fi, ..., fx, are affine, then the superposition theorem remains
valid when we require the monotonicity of I’ w.r.t. the variables yi+1, ..., ym only.
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2.1.3.2 Convex combinations and convex hull, dimension

A linear subspace is a nonempty set closed w.r.t. taking linear combinations of its elements; an
affine subspace is a nonempty set closed with respect to taking affine combinations of its elements.
Convex sets in R"” admit a similar characterization: these are subsets of R™ (not necessarily
nonempty) closed w.r.t. taking convex combinations of its elements, where a convex combination
of vectors x1, ..., 2 is defined as their linear combination with nonnegative coefficients summing
up to one:

k k
Z)\ixi is a convex combination of z; < \; > 0,1 <i <k, and Z A= 1.
i=1 i=1

Note that convexity of X, by definition, means closedness of X with respect to taking 2-term
convex combinations of its elements. It is an easy exercise to check (do it!) that the following
two statements hold true:

Proposition 2.1.6 A set X C R"™ is convex iff this set is closed w.r.t. taking all convex
combinations of its elements.

Corollary 2.1.2 [Jensen’s inequality] If f : R" — RU{o0} is a convex function, then the value
of f at a convex combination of points is < the corresponding convex combination of the values
of f at the points: whenever x1,...,xrp € R™ and A\; >0, 1 < ¢ <k, are such that Zle A =1,
one has

k
f(z i) < Z Nif ().

Jensen’s inequality is one of the most useful tools in Mathematics![Y]

Given a set X C R", we can form a set comprised of all (finite) convex combinations of
vectors form X; this set is called the convex hull of X (notation: Conv(X)). Since a convex
combination of convex combinations of certain vectors is again a convex combination of these
vectors (why?), Conv(X) is a convex set; invoking Proposition this is the smallest, w.r.t.
inclusion, convex set containing X:

X CY,Y is convex = X C Conv(X) CY.

2.1.3.3 Relative interior

We have already assigned every nonempty subset X of R™ with dimension, defined as affine
dimension of Aff(X), or, equivalently, as linear dimension of the linear subspace parallel to
Aff(X); in particular, all nonempty convex sets in R"™ are assigned with their dimensions, which
are integers from the range 0,1,...,n. Now, a set X of a large dimension can be very “tiny”;
e.g., taking the union of n + 1 points affinely spanning R", we get a finite set X of dimension
n; clearly, in this case the dimension does not say much about how “massive” is our set (and
in fact has nothing in common with topological properties of the set). The situation changes

1A reader could ask how such an easy to prove fact as Jensen’s inequality could be that important. Well, it is
indeed easy to apply this tool; a nontrivial part of the job, if any, is to prove that the function the inequality is
applied to is convex.
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dramatically when the set X is convex; here the dimension, as defined above, quantifies properly
the “massiveness” of the set, due to the following result which we shall use on different occasions
in the sequel:

Theorem 2.1.3 Let X be a nonempty convex set in R™. Then X has a nonempty interior in
its affine span: there exists * € X and r > 0 such that

ye Aff(X),[ly—z||2<r=yeX.

In particular, if X is full-dimensional (i.e., dim X = n, or, which is the same, Aff(X) =R"),
then X contains a Fuclidean ball of positive radius.

Proof. Let M = Aff(X). When k := dim M = 0, we have X = M = {a}, and we can take T = a
and, say, r = 1. Now let £ > 0. By Theorem m(iii), we can find a collection xg, x1, ..., xx of
points from X which is an affine basis of M, meaning, by item (ii) of the same Theorem, that
every vector from M can be represented, in a unique way, as an affine combination of vectors
xg, ..., L. In other words, the system of linear equations in variables Ay, ..., Ag:

Zlio )\11:1 = T
= 2.1.8
Zf:o Ao =1 ( )

has a solution if and only if x € M, and this solution is unique. Now, Linear Algebra says
that in such a situation the solution A\ = A(x) is a continuous function of x € M. Setting
T = k%rl Zf:o x;, the solution is A(z) = [1/(k + 1);...1/(k + 1)], that is, it is strictly positive;
by continuity, there is a neighborhood of positive radius r of Z in M where the solution is
nonnegative:

x € M, |lx—Z|2 <7 = Ax) >0.

Looking at our system, we see that all vectors x € M for which it has a nonnegative solution are
convex combinations of zg, ..., z; and thus belong to X (since X is convex and zg, ...,z € X).
Thus, X indeed contains a neighborhood of Z in M.

For those who do not remember why “Linear Algebra says...”, here is the reminder. System
is solvable for € M # 0 and the solution is unique, meaning that the matrix A = [[zo;1], ..., [zx; 1]
of the system has rank k + 1, and thus we can extract from A k + 1 rows which form a nonsingular
(k+1) x (k+ 1) submatrix A. In other words, the solution, when it exists, is A~'P(x), where P(z) is
the part of the right hand side vector [z;1] in . Thus, the solution A(z) is merely an affine function
of x € M, and thus is continuous in x € M. O

Relative interior. Let X C R™ be nonempty. A point z € X is called relative interior point
of X, if all close enough to = points from the affine span of X belong to X, that is, if

Ir>0: (2 € Aff(X) & [l2’ —zfs <7r) =2’ € X.

The set of all relative interior points of X is called the relative interior (notation: rint X) of X.
Theorem underlies the following useful statement:

Proposition 2.1.7 Let X C R" be a nonempty convex set. Then the relative interior rint X of
X is nonempty, convex, and whenever x € rint X, y € X and X € [0,1), we have z+ Ay — ) €
rint X.
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Proof. Let X be convex and nonempty. Nonemptiness of rint X is given by Theorem
Next, let L be the linear space parallel to Aff(X). If x,y € rint X, then for some r > 0 and
all h € L with ||h]|2 < 7 we have 2 +h € X, y + h € X, whence for X € [0,1] and h as above
it holds [(1 — XNz + Ayl +h = (1 — N[z + h]+ Ay + h] € X (X is convex!), implying that
(1=X)x+ Ay € rint X. Thus, rint X is convex. Finally, when z € rint X, so that for some r > 0
and all h € L with ||kl < ritholdsz+h € X, and y € X, for A € [0,1) and h as above we have
[(1=Nz+Ay]+(1=XN)h=(1=N)[z+h]+ )y € X, that is, [(1=N)z+Ay]+h' € X forallh' € L
such that [|A/||2 < (1 = A)r. Since ' = (1 = X\)r > 0, we conclude that (1 — X)z + Ay € rint X. O

2.1.3.4 “Inner” and “outer” representations of convex sets

An “inner” representation of a convex set X is its representation as a convex hull: to get X,
you should choose appropriately a set ¥ € R” (e.g., Y = X) and augment it by all convex
combinations of elements of Y. While you indeed can get in this fashion a whatever convex set
in R™, this result is incomparably less useful than its linear/affine subspace counterparts known
to us: in the latter case, the set of “generators” Y could be chosen to be finite and even not
too large (at most n elements in the case of a linear subspace and at most n + 1 element in the
case of an affine subspace in R™). In the convex case, a finite set of “generators” not always is
enough.

“Good” — closed — convex sets in R™ admit also “outer” description, specifically, a closed
convex set in R™ always is a solution set of a system a;fpac < b;, t = 1,2,... of countably many
nonstrict linear inequalities. Here again, the result is instructive, but incomparably less useful
than its linear /affine subspace counterparts, since our abilities to handle infinite (even countable)
systems of linear inequalities are severely restricted.

2.1.4 Cones

Cones: definition. An important for us particular type of convex sets is formed by cones.
By definition, a cone is a nonempty convex set X comprised of rays emanating from the origin,
that is, such that tv € X whenever x € X and t > 0. An immediate observation (check it!) is
that X is a cone if and only if X is nonempty and is closed w.r.t. taking conic combinations
(linear combinations with nonnegative coefficients) of its elements.

Examples. Important for us will be polyhedral cones which, by definition, are the solution
sets of finite systems of homogeneous linear inequalities:

X is a polyhedral cone < 34 : X = {z € R" : Az < 0}.

In particular, the nonnegative orthant R} = {x € R" : x > 0} is a polyhedral cone.

Calculus of cones in its most important (and most elementary) part is as follows (check the
validity of the claims!):

1. Taking intersection: if Xy, X5 are cones in R", so is their intersection X7 N Xs. In fact,

the intersection [ X, of a whatever family {X,}oca of cones in R™ is a cone;
acA
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2. Taking arithmetic sum: if X1, Xy are cones in R", so is the set X; + Xo = {z =21 + 22 :
Tl € X1,$2 € XQ};

3. Taking linear image: if X is a cone in R™ and A is an m X n matrix, then the set AX :=
{Az : x € X} C R™ — the image of X under the linear mapping xz — Az : R — R™ —is
a cone in R™;

4. Taking inverse linear image: if X is a cone in R™ and A is an n x k matrix, then the set
{y € R¥: Ay € X} - the inverse image of X under the linear mapping y — Ay : R¥ — R"
— is a cone in RF;

5. Taking direct products: if X; C R™ are cones, 1 < 7 < k, so is the direct product
X1 X o X Xj, C R

6. Passing to the dual cone: if X is a cone in R", so is its dual cone defined as

X*:{yEanyT:UZOV:L‘EX}.

Conic hulls. Similarly to what we observed above, given a nonempty set X C R" and taking
all conic combinations of vectors from X, we get a cone (called the conic hull of X, notation:
Cone (X)). By definition (and in full accordance with the standard convention that an empty
sum of vectors from R™ has value, namely, the origin), the conic hull of an empty set in R" is
the trivial cone {0}. Note that a conic hull of X C R™ is the smallest, w.r.t. inclusion, among
the cones containing X. For example, the nonnegative orthant R is the conic hull of the set
comprised of all n basic orths in R".

2.2 Preparing tools

In this section, we develop technical tools to be used later.

2.2.1 Caratheodory Theorem

We start with the following statement, highly important by its own right:

Theorem 2.2.1 [Caratheodory Theorem| Let x, x1, ...,z be vectors from R™. If x is a convex
combination of vectors x1, ..., Tk, then x is a convex combination of at most n+1 properly chosen
vectors from the collection x1, ..., .

Moreover, if the dimension of the set X = {x1,...,xx} ism, then n+1 in the above conclusion
can be replaced with m + 1.

Proof. Let us look at all possible representations x = Zle Aix; of x as a convex combination
of vectors x1,...,z. We are given that the corresponding family is nonempty; then it definitely
contains a minimal in the number of actual terms (i.e., those with \; # 0) representation. All
we should prove is that the number of actual terms in this minimal representation is < n + 1.
We can assume w.l.o.g. that the minimal representation in question is z = »_7 | \jz;; from
minimality, of course, \; > 0, 1 < i < s. Assume, on the contrary to what should be proved,
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that s > n+ 1, and let us lead this assumption to a contradiction. Indeed, when s > n + 1, the
homogeneous system of linear equations

>oi 1%z = 0 [n scalar equations]
>, 6; = 01 scalar equation]

in s > n + 1 variables ¢ has more variables than equations and thus has a nontrivial (with not
all entries equal to zero) solution §. Observe that we have

S S
S itt]zi=2,) M) =1 (1
—- i=1

Ai(t)
for all ¢ > 0. Now, since >, 5 = 0 and not all §; are zeros, among the reals §; there are
strictly negative, meaning that for large enough values of ¢, not all of the coefficients \;(t) are
nonnegative. At the same time, when ¢t = 0, these coefficients are positive. It follows that there
exists the largest ¢ = ¢ > 0 such that all \;(¢) are still positive; and since for a larger value of
t not all \;(t) are positive, the nonnegative reals X\;(t), i = 1, ..., s, include one or more zeros
When t = ¢, (!) says that x is a convex combination of z1, ..., zs, the coefficients being \;(t); but
some of these coefficients are zeros, thus, we managed to represent x as a convex combination
of less than s of the vectors 1, ..., xx, which contradicts the origin of s. We have arrived at the
required contradiction.

The second part of the statement is in fact nothing but the first part in a slight disguise.
Indeed, let M = a + L be the affine span of x1, ..., zg; then clearly x € M. Shifting all vectors
Z1, ..., Tk, ¢ by —a (which affects neither the premise, nor the conclusion of the statement we want
to prove), we can assume that the affine span of x1, ...,z is the linear subspace L of dimension
m = dim {x1, ...,z } to which M is parallel. Note that € L along with z1, ..., x, and we lose
nothing when thinking about all vectors x, z1, ...,z as of vectors in R™ (since as far as linear
operations are concerned — and these are the only operations underlying our assumptions and
targets) L is nothing but R™. Invoking the already proved part of the statement, we arrive at
its remaining partﬁ O

Remark 2.2.1 Note that the result stated in Caratheodory Theorem is sharp: without addi-
tional assumptions on x1, ..., , you cannot replace n+ 1 and m + 1 with smaller numbers. E.g.,
given m < n, consider collection of m + 1 vectors in R as follows: zg =0, x1 = e1,...,Tm = €,
where ey, ..., e, are the basic orths (see p. . These vectors clearly are affinely independent
(why?), so that dim {xg,z1, ..., x;,} = m, and the vector x = #H[xo + ... + z;»] — which is a
convex combination of x, ..., x,, — admits exactly one representation as an affine (and thus —
as a convex) combination of xq, ..., 2, (Theorem . Thus, in any representation of = as
a convex combination of zg,x1, ..., T,, all these m + 1 vectors should be present with positive

coefficients.

Illustration. Let us look at the following story:

°In fact we could, of course, skip this explanation and point out f explicitly: £ = min [—\;/].
1:0,<0
SWe believe the concluding reasoning should be carried out exactly once; in the sequel in similar situations we
will just write “We can assume w.l.o.g. that the affine span of x1, ...,z is the entire R"™.”
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In the nature, there are 26 “pure” types of tea, denoted A, B,..., Z; all other types
are mixtures of these “pure” types. What they sell in the market, are certain blends
of tea, not the pure types; there are totally 111 blends which are sold.

John prefers a specific blend of tea which is not sold in the market; from long
experience, he found that in order to get the blend he prefers, he can buy 93 of the
111 market blends and mix them in certain proportion.

An OR student (known to be good in this subject) pointed out that in fact John could
produce his favorite blend of tea by appropriate mixing of just 27 of the properly
selected market blends. Another OR student pointed out that only 26 of market
blends are enough, and the third student said that 24 also is enough. John did not
believe in neither of these recommendations, since no one of the students asked him
what his favorite blend is. Is John right?

The answer is that the first two students definitely are right, while the third can be wrong. In-
deed, we can identify a unit (in weight) amount of a blend of tea with n = 26-dimensional vector
x = [xa;2B;...;Tz], where entries in x are the weights of the corresponding pure components
of the blend; the resulting vector is nonnegative, and the sum of its entries equals to 1 (which
is the total weight of our unit of blend). With this identification, let & be the blend preferred
by John, and let z',...,z" be the marketed blends (N = 111). What we know is that John
can get a unit amount of his favorite blend by buying marking blends in certain amounts \;,
i =1,..., N, and putting them together, that is, we know that

N
=) N (%)
=1

Of course, \; are nonnegative due to their origin; comparing “weights” (sums of entries) of the
right- and the left hand side in the vector equality (x), we see that ) . \; = 1. Thus, the story
tells us that the 26-dimensional vector Z is a convex combination of N vectors z',...,z"V. By
the first part of the Caratheodory Theorem, x can be represented as a convex combination of
2641 = 27 properly chosen vectors ¢, which justifies the conclusion of the first student. Noting
that in fact x',...,2"V,Z belong to the hyperplane {z : x4 + 2p + ... + zz = 1} in R? we
conclude that the dimension of {x!,..., 2™V} is at most the dimension of this hyperplane, which
is m = 25. Thus, the second part of Caratheodory Theorem says that just m + 1 = 26 properly
chosen market blends will do, so that the second student is right as well. As about the third
student, whether he is right or not, it depends on what are the vectors z,z!,....,z". E.g., it
may happen than z = z' and John merely missed this fact — then the third student is right.
On the other hand, it may happen that z', ...,z are just the 26 “pure” teas (basic orths),
some of them repeated (who told us that the same blend cannot be sold under several different
names?). If every basic orth is present in the collection x', ..., 2" and the favorite blend of John
is £ = [1/26;...;1/26], it indeed can be obtained as mixture of market blends, but such a mixture
should contain at least 26 of these blends. Note that the third student would definitely be right
if the dimension of {z,...,2V} were < 24 (why?).

2.2.1.1 Caratheodory Theorem in conic form and Shapley-Folkman Theorem

Caratheodory Theorem speaks about representation of a vector as convex combination — linear
combination with nonnegative coefficients summing up to 1 — of another vectors. When passing
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from convex combinations to conic ones — linear combinations with nonnegative coefficients —
Theorem can be improved:

Theorem 2.2.2 [Caratheodory Theorem in conic form| Let x,x1, ...,z be vectors from R™. If
x s a conic combination (linear combination with nonnegative coefficients) of vectors x, ..., T,
then x is a conic combination of at most n properly chosen vectors from the collection x1, ..., Tj.

Proof is given by straightforward simplification of the proof of the plain Caratheodory Theorem
and is left to the reader.

Caratheodory Theorem in conic form admits nice and useful consequence — Shapley-Folkman
Theorem as follows:

Theorem 2.2.3 [Shapley-Folkman Theorem| Let V; be nonempty sets in R with conver hulls
Vi=Conv(V;), i =1,...k, and let x € R™ belong to the arithmetic sum of V;:

r=x1+..+xp, v, €V, i<k (2.2.1)
Then there exists representation

T=y1+..+ys v €Vii<k
in which at least k — d of vectors y; belong to V.

Proof. Given representation (2.2.1]) and applying Caratheodory Theorem, we can find vectors

Ti; € Vi,j=1,...,d+1, such that z; = Zj /\ija:ij with Xz‘j > 0 such that Zj Xij =1,i=1,..,k.

Consider the system of linear equations

Dij ATy = T (a)
>N =1 (bs) (S)
i=1,..k

in variables A;j, ¢ <k, 7 < d+1, and let A;; € R** be the vector of coefficients at Aij in this
system, and b be its right hand side, so that the system reads Zi,j AijAi; = b. The collection
{X\ij,i < k,j < d+ 1} is a nonnegative solution to this system, implying that b is a conic
combination of A;;’s. Applying Caratheodory Theorem in conic form, we conclude that there
exists nonnegative solution {\;;} to system (S) in which at most d + k entries are positive, and
the remaining are zeros. Now let n; be the number of nonzeros among \;;, j = 1,...,d + 1, and
m be the number of i’s for which n; > 1. Note that equations (b;) say that n; > 1 for every i,
so that the total number n of nonzeros among the collection {\;;,i < k,j < d+ 1} is at least
k + m. On the other hand, this number is at most d + k, implying that m < d. At the same
time, \;; solve (5), that is,

k
T = Zz)\iszj-

i=1 j
(S
=y
By (5) and due to A\;; > 0 we have y; € V; for every i and clearly y; € V; whenever n; = 1 (since
for such an i exactly one of A;;’s, 1 < j < d+ 1, is nonzero and therefore is equal to 1 by (b;),

and z;; € V; for all j). Thus, in the resulting representation of  as sum of vectors y; € V; at
least kK —m > k — d vectors in fact belong to the corresponding V;’s. |
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Figure 2.2: Black dots: the finite set V = Vi + Vo + V3, where V;, i = 1,2, 3, are the vertices of
concentric perfect m-side polygons with ratio of linear sizes 4 : 2 : 1. Bold broken line: boundary
of the perfect m-side polygon Conv(V;) 4+ Conv(V3) + Conv(V3). Left: m = 16; right: m = 32.
Think where the white inner “cogwheels“ come from and what, approximately, are the ratios of
their diameters to the diameters of the respective V'’s.

Qualitatively speaking, Shapley-Folkman theorem states that arithmetic summation of sets
possesses certain convexification properties. For example, when V; ¢ R are of Euclidean
diameters (i.e., maximal pairwise | - ||o-distances) p;, p1 > p2 > ... > pi, Shapley-Folkman
Theorem says that the set V = Vi + ... + Vi is “p? := p1 + ... + pg - dense” in the convex set
V =Vi+...4+ V}, meaning that V C V and every point of V is at the || - ||o-distance < p? from
some point of V. Since the linear sizes of V can be of order of p* = p; + ... + py, in the case of
p* > p? (which happens, e.g., when p; are of the same order of magnitude and k/d > 1), the
convex set V is a reasonably good outer approximation of (by itself, perhaps, highly nonconvex)
set V, see figure For instructive application of Shapley-Folkman Theorem, see Illustration

in Section 2.4.4.3

Remark 2.2.2 Results presented so far in this section were formulated as descriptive state-
ments — as existence theorems If something exists (e.g. representation of x € R™ as convex
combination of k vectors x;), then something else exists (e.g., representation of x as convex
combination of at most n + 1 vectors properly selected among z;’s). In fact, taken along with
their proofs, these results become operational — they provide us with simple algorithms allow-
ing to convert efficiently the above “something one” into “something else.” For example, the
proof of Caratheodory Theorem describes a simple Linear Algebra construction which allows
to extract from representation of a given vector x as a convex combination of vectors from a
given collection C of cardinality £ > n + 1 similar representation of x via sub-collection of C
with cardinality < k. Iterating this construction, we can efficiently find representation of x as a
convex combination of at most n+ 1 members of the initial collection. The situations with conic
form of Caratheodory Theorem and with Shapley-Folkman Theorem are completely similar.

2.2.2 Radon Theorem

Theorem 2.2.4 [Radon Theorem| Let z1, ...,z be a collection of k > n + 1 vectors from R™.
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Then one can split the index set I = {1,...,k} into two nonempty and non-overlapping subsets
Iy and I such that the convex hulls of the sets {x;:1 € I} and {x; : i € I} intersect.

Proof follows the same idea as for Caratheodory Theorem. Specifically, consider the homoge-
neous system of linear equations in variables 4y, ..., dg:

Z?Zl diz; = 0 [n scalar equations]
Z?Zl 0; = 01 scalar equation]

Since k > n+ 2, the number of equations in this system is less than the number of variables; and
since the system is homogeneous, it therefore has a nontrivial solution 6. Now let I; = {i : §; > 0}
and Io = {i : 6; < 0}. The sets I; and I clearly form a partition of I, and both of them are
nonempty; indeed, since ), 5; = 0 and not all §; are zeros, there definitely are strictly positive
and strictly negative among §;.

Now let us set S =3, I 5;. The equations from our system read

Zz‘eh @ml
i€l 6Z =

= $’L
S = Zielg[_éi]
Setting \; = 0;/S, i € I, u; = —6;/S, i € I, we get \; > 0, u; > 0, and the above reads

Zieh iy = Zielz Hi
Dien Ni=1=2 i, ta

meaning that Conv{z; :i € I;} N Conv{x; : i € I} # 0. O

2.2.3 Helly Theorem

Theorem 2.2.5 [Helly Theorem] Let Ay, ..., Ax be nonempty convez sets in R™.

(i) If every n+ 1 of the sets A; have a point in common, then all N sets A; have a point in
common.

(ii) If the dimension of A1 U ...U Ay is m and every m + 1 of the sets A; have a point in
common, then all N sets A; have a point in common.

Proof. By exactly the same reasons as in the proof of Caratheodory Theorem, (ii) is a straight-
forward consequence of (i) (replace the “universe” R"™ with Aff{(JA4;}), so that all we need is

7
to prove (i). This will be done by induction in the number N of the sets. There is nothing to
prove when N < n + 1; thus, all we need is to verify that the statement is true for a family of
N > n+ 1 convex sets A;, given that the statement is true for every family of < N convex sets
(this is our inductive hypothesis). This is easy: given N nonempty convex sets A; such that
every n + 1 of them have a point in common, let us form the N sets

Bi=AnNAsN..NANy,Bo=A1NAsN..NAN,... BN =A1NAN..NAN_

That is, B; is the intersection of N — 1 sets Ay, ..., Ai—1, Aj+1, ..., Any. By inductive hypothesis,
these sets are nonempty (and are convex along with Ay, ..., Ax). Let us choose in the (nonempty!)
set B; a point z;, ¢ = 1,..., N, thus ending up with a collection x1,...,xnx of N > n 4+ 1 points
from R™. Applying Radon Theorem, we can split this collection into two parts with intersecting
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convex hulls; to save notation — and of course w.l.o.g. — we can assume that this partition is
L ={1,...m}, Iy ={m+1,..., N}, so that

3b € Conv{zi,...,zm} N Conv{Tmt1, ..., TN}

We claim that b € A; for all ¢, so that the intersection of all A; is nonempty; this would complete
the inductive step and thus the proof of Helly Theorem. To justify our claim, note that when
i < m, the point x; belongs to B; and thus to every one of the sets A, 1, ..., Ay (by construction
of B;). Thus, every one of the points x, ..., x,,, belongs to every set A; with i > m; but then the
latter set, being convex, contains b € Conv{xy, ..., x;, }. The bottom line is that b € A; whenever
i > m. By “symmetric” reasoning, b € A; whenever ¢ < m. Indeed, whenever j > m, the point
xj belongs to B; and thus to every one of the sets Ay, ..., A, (by construction of Bj). Thus,
every one of the points x,,+1, ..., zx belongs to every set A; with ¢ < m; being convex, the latter
set contains also the point b € Conv{zy,+1,...,zn }, as claimed. O

Remark 2.2.3 Note that the Helly Theorem is “as sharp as it could be:” we can easily point out
n+1 nonempty convex sets Ay, ..., A,41 in R"™ such that every n of them have a point in common,
while the intersection of all n+ 1 sets is empty. An example is given by A; = {x € R" : z; < 0},
i=1,.,n Ay ={z e R": >, 2; > 1}

INustration 1: Let S be a set comprised of 1,000,000 distinct points on the axis and f(s) be
a real-valued function on this set. Assume that for every 7-point subset S’ of S there exists an
algebraic polynomial p(s) of degree < 5 such that |p(s) — f(s)| < 0.01 whenever s € S’. We now
want to find a spline of degree < 5 (a piecewise polynomial function on the axis with pieces —
algebraic polynomials of degree < 5) which approximates f at every point of S within accuracy
0.01. How many pieces should we take?

The answer is: just one. Indeed, we can identify a polynomial p(s) = p1 + p1s + ... + pss®
of degree < 5 with its vector of coefficients [po;...;ps] € RS. For a fixed s € S, the set of
(vectors of coefficients) of polynomials which approximate f(s) within accuracy 0.01 is Ps =
{lpo; ;5] : |£(8) —po — p15 — ... — p5s°| < 0.01}; we see that the set is polyhedral and thus is
convex. What is given to us is that every 7 sets from the 1,000,000-set family {Ps : s € S} have
a point in common. By Helly Theorem, all 1,000,000 sets have a point p, in common, and the
corresponding polynomial of degree < 5 approximates f at every point from S within accuracy
0.01.

Illustration 2: The daily functioning of a plant is described by the system of linear constraints

(a) Az < feRY
(b)) Bx > de R O]
(c) Cx < ceRXN0

Here
e z is the decision vector — production plan for the day;

e f is nonnegative vector of resources (money, manpower, electric power, etc.) available for
the day;
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e d is the vector of daily demands on different kinds on plant’s production.

The plant works as follows. In the evening of day ¢ — 1, the manager should order the resources
f for the next day; when doing so, he does not know exactly what will be the vector of demands
for the next day, but has a collection D = {d', ..., d}:%90:0901 of 1,000,000 demand scenarios and
knows that the actual demand of day ¢ will be a point from this set. The goal of the manager is
to order the resources f in the evening of day ¢t — 1 in such a way that when in the next morning
the actual vector of demands of day ¢ will become known, it will be possible to find a production
plan = which satisfies the constraints (!).

Finally, the manager knows that every scenario demand d° € D can be “served,” in the
aforementioned sense, by properly chosen vector f* = [fi;...; fi;] > 0 of resources at the cost
Z}il c; fJZ not exceeding $1 (c¢; > 0 are given prices of the resources). How much money should
a smart manager spend on the next-day resources in order to guarantee that the tomorrow
demand will be satisfied?

The answer is: $ 11 is enough. Indeed, let F; be the set of all resource vectors f > 0
which allow to satisfy demand d° € D. This set is convex (check it!), and we know that
it contains a vector f’ which costs at most $ 1. Now let A; be the set of all nonnegative
resource vectors f which cost at most $ 11 and allow to satisfy the demand d’. This set
also is convex (as the intersection of the convex set F; and the polyhedral - and thus convex
—set {f : f > 0,cl'f < 11}). We claim that every 11 of the convex sets A; C R!Y have
a point in common. Indeed, given these 11 sets A;,,...A;,,, consider the vector of resources
f=f" 4.+ fi11. Since f% allows to satisfy the demand d» and f > f%, f allows to satisfy
the same demand as well (look at (!)); since every f costs at most $1, f costs at most $
11. Thus, f > 0 allows to satisfy demand d* and costs at most $ 11 and this belongs to A,
1 < p < 11. By Helly Theorem, all A; have a point in common, let it be denoted f.. By its
origin, this is a nonnegative vector with cost < 11, and since it belongs to every A;, it allows to
satisfy every demand d' € D.

2.2.4 Homogeneous Farkas Lemma

Our next statement is the key which will unlock basically all the locks to be opened in the sequel.
Consider the situation as follows: we are given a finite system of homogeneous linear in-
equalities

alr>0,i=1,...m (2.2.2)
in variables x € R", along with another homogeneous linear inequality
ales >0 (2.2.3)

which we will call the target one. The question we are interested is: when is a conse-
quence of the system , meaning that whenever x satisfies the system, it satisfies the target
inequality as well?

There is a trivial sufficient condition for the target inequality to be a consequence of the
system, specifically, the representability of the target inequality as a weighted sum, with non-
negative coefficients, of the inequalities form the system. Specifically, we have the following
observation:

Observation 2.2.1 If a is a conic combination of ay, ..., am:

3)\2' Z 0:a= Z )\iai, (2.2.4)
=1
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then the target inequality (2.2.3)) is a consequence of the system (2.2.2)).

Indeed, let A\; be as in (2.2.4), and let & be a solution of (2.2.2). Multiplying the inequali-
ties a%px > 0 by the nonnegative weights )\; and summing up, we get o’z = D> Nag|Te =

S hialz > 0. O

The Homogeneous Farkas Lemma is an incomparably deeper result with states that the above
trivial sufficient condition is in fact necessary for the target inequality to be a consequence of
the system.

Theorem 2.2.6 [Homogeneous Farkas Lemmal] The target inequality (2.2.3]) is a consequence
of the system (2.2.2) iff a is a conic combination of ay, ..., am.

Equivalent, and sometimes more instructive, form of this statement reads:

It is easy to certify both that a is a conic combination of a1, ..., a,,, and that a is not
a conic combination of ay, ..., Gpy:

— to certify the first fact, it suffices to point out nonnegative \; such that a =
Do Aiai;

— to certify the second fact, it suffices to point out x such that aZTx >0,t=1,....m,
and a’z < 0.

a is a conic combination of a1, ..., a,, iff the certificate of the first kind exists, and a
is not a conic combination of a1, ..., a., iff the certificate of the second kind exists.

Proof of HFL. We have already seen that if a is a conic combination of ai, ..., a,,, then the
target inequality is a consequence of the system. All we need is to prove the inverse statement:

(#) if the target inequality is a consequence of the system, then a is a conic combi-
nation of aq, ..., am,.

Intelligent proof of (#). Observe that the set X = {x =", \ja; : A > 0} is polyhedrally
representable: X = {x : 3IX : 2 = >, Mja;, A > 0} and as such is polyhedral (Fourier-Motzkin
elimination, Theorem [1.3.1)):

X={zeR":dlx>6,0=1,.. L} (%)

for some dy, dp; observe that §; < 0 due to the evident inclusion 0 € X. Now let the target
inequality a”x > 0 be a consequence of the system aiTx > 0,1 <4< m, and let us lead to
contradiction the assumption that a is not a conic combination of a;, or, which is the same,
the assumption that a ¢ X. Assuming a ¢ X and looking at (x), there exists ¢, such that
dg;a < dy,, and thus dZa < 0 due to 9y, <0. On the other hand, we have Aa; € X for all A >0
and all 4, meaning that )\dz a; > 0+ for all A > 0 and all 4, whence dz a; > 0 for all ¢ (look what
happens when A — +00). Thus, & := dy, satisfies the system a;fpx >0, 1 <7 < m, and violates
the target inequality a2 > 0, which under the premise of (#) is impossible; we have arrived at
a desired contradiction. O
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*Alternative proof of (#) based on Helly Theorem. There is nothing to prove when
a = 0, since then a indeed is a conic combination of a1, ..., a;,. Thus, from now on we assume that
a # 0 and that is a consequence of ; our goal is to derive from these assumptions
that a is a conic combination of a1, ..., a,.

19 Let us set A; = {x € R" : a;frx > 0, a’z = —1}. Note that every A4; is a polyhedral
set and as such is convex (perhaps, empty) and that the intersection of all m sets Ay,..., 4,
definitely is empty (indeed, a vector x from this intersection, if exists, solves the system and
does not solve the target inequality, which is impossible). Let us extract from the family of
sets Ay, ..., Ay, with empty intersection a minimal, w.r.t. inclusion, subfamily with the same
property. W.l.o.g. we can assume that this subfamily is A1, ..., Ax. Thus, & > 1, the intersection
of Ay, ..., Ay is empty, and either £ = 1 (meaning that A; is empty), or the intersection of every
k — 1 sets from Ay, ..., A is nonempty.

20 We claim that a € L := Lin{aq,...,a;}. Indeed, otherwise a has a nonzero projection
h onto L+, so that hTa; = 0, i = 1,...,k, and hTa = hTh > 0. Setting z = —ﬁh, we get

aiTx =0,1<i<k, and a”x = —1; thus, h belongs to Aj,..., A, and these sets have a point in
common, which in fact is not the case.

3%, We claim — and this is the central component of the proof — that ai,...,a; are linearly
independent, or, which is the same, that dim L = k. Since L is linearly spanned by aq,...,ax,
the only alternative to dim L = k is dim L < k; we assume that the latter is the case, and let
us lead this assumption to a contradiction. Observe, first, that & > 1, since otherwise L = {0}
due to dim L < k, implying that a = 0 (we already know that a € L), which is not the case.
Further, consider the hyperplane Il = {z € L : ales = —1} in L. Since 0 # a € L, I indeed
is a hyperplane, and thus dim II = dim L — 1 < k — 1. Now, the orthogonal projections B; of
the sets 4; = {z : al v > 0,a’z = —1} onto L, 1 < i < k, clearly belong to IT and to A; (since
when projecting orthogonally x € A; onto L the inner products with ¢ and a; remain intact
duetoa € L, a; € L). B, i =1,..,k > 1, are convex subsets of II, and the intersection of
every k — 1 > 0 of the sets B; is nonempty (indeed, it contains the projection onto L of every
point from the intersection of the corresponding A;, and this intersection is nonempty). Since
dim IT + 1 < k, we conclude that the intersection of every dim II + 1 of the sets By, ..., By is
nonempty, whence the intersection of all k of the sets By, ..., By is nonempty (Helly Theorem).
Recalling that B; C A;, we conclude that the intersection of Ay, ..., A is nonempty, which is a
desired contradiction (recall how k and Ay, ..., Ay were chosen).

4%, Now it is easy to complete the proof. By 2°, a € L = Lin{ay,...,a;}, that is, a =
Zle Aia; with certain \;; we are about to prove that all A; here are nonnegative, which will
bring us to our goal — to prove that a is a conic combination of aq, ..., a,,. In order to verify that
Ai > 0,1 < i <k, assume, on the contrary, that not all )\; are nonnegative, say, that A\; < 0.
Since aq, ..., aj are linearly independent by 3°, by Linear Algebra there exists a vector Z € R”
such that a7z = 1/|\1|, a2 = 0,...,al 2 = 0. We have Tz =Y Nalz = \1/|\1] = —1, while,

1

by construction, a;fpff >0,7=1,...,k. Weseethat z € A1N...N A, which is impossible, since the
right hand side intersection is empty. Thus, assuming that not all of Ay, ..., A are nonnegative,
we arrive at a contradiction. O

Instructive application. The HFL is the key instrument in our further developments. As for
now, here is one of fundamental results readily given by HFL (in fact, this result is an equivalent
reformulation of HFL):
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Theorem 2.2.7 Let K = {x € R" : Az <0} be a polyhedral cone, and K* be its dual cone:
K*={yecR":ylz>0Vz € K}.
Then K* is the conic hull of the (transposes of the) rows of —A:
K*={y=ATx: 1 <0} (2.2.5)
In particular, K is the cone dual to K*:
K={zecR": 21y >0Vy c K*}.

Proof. Let the rows of A be af,...;al . By definition, vectors a € K* are vectors which
have nonnegative inner products with all vectors from K, that is, with all vectors which have
nonnegative inner products with the vectors —as, ..., —a,,. Equivalently: a € K* is and only if
the linear inequality a”x > 0 is a consequence of the system of linear inequalities —aiTx > 0,
i = 1,...,m. By HFL, this is the case if and only if a is a conic combination of —ayq, ..., —ay,

and we arrive at (2.2.5). To get the “in particular” part of the statement, note that in view of

(2.2.5) we have

(K*) = {z:2TATA>0VA <0} = {z: A\T[Az] > 0VA < 0}
= {z:Az <0} =K,
—~—
()

where (x) is given by the following evident observation: a vector has nonnegative inner products
with all vectors which are < 0 if and only if this vector itself is < 0. O

Note that the relation (K*)* = K is in fact true for all closed cones, not necessarily polyhedral
ones; this is a far-reaching extension of the rule (L*+)+ = L for linear subspaces L (note that a
linear subspace is a very special case of a cone, and the cone dual to a linear subspace L is L+

(why?)).

2.3 Faces, vertices, recessive directions, extreme rays

In this section, we prepare tools which will allow us to prove Theorem on the Structure of a
Polyhedral Set announced at the beginning of this lecture . We focus on a polyhedral set

T
@

X={zeR": Az <b} ,A=| -+ | e R"™". (2.3.1)
T
am

Unless otherwise is explicitly stated, we assume in the sequel that X is nonempty, denote by M
the affine span of X:

M = Af(X),

and denote by Z the set of indices of the constraints: Z = {1,2,...,m}.
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2.3.1 Faces

A face of the nonempty polyhedral set X given by , by definition, is a nonempty subset
of X comprised of all points where the inequalities a] x < b; with indices from certain subset I
of T are satisfied as equalities (“are active” in the optimization slang). Thus, a face of X is a
nonempty subset of X which can be represented as

T .
B e rz=b,iel
XI—{:U. aiTbe”eI}, (2.3.2)

where [ is a subset of the set Z = {1,...,m} of indices of the linear inequalities defining X, and
T is the complement of I in Z. Note that by ,
e a face X1 of a nonempty polyhedral set is itself a nonempty polyhedral set, and
e the intersection of two faces Xy, Xy, of X is the set Xr,ur1,, and thus is a face of X,
provided that it is nonempty.
Besides this, we have the following:
e A face of a face X1 of a polyhedral set X can be represented as a face of X itself.
Indeed, X can be represented as the polyhedral set

a?$§bi,iel
Xr={zeR": —alz<-b,icl
aiTa:Sbi,iGI

By definition, a face of the latter polyhedral set is obtained from the above description by
replacing some of the inequalities with their equality versions in such a way that the resulting
system of inequalities and equalities is feasible. When turning one of the inequalities CLZT:L‘ < by,
i €1, or —aZTaci < —b;, i« € I, into an equality, we do not change X;, so that we lose nothing
by assuming that the inequalities we are turning into equalities to get a face of X; are from the
group aiTx < b;, i € I; in the latter case, the result is as if we were replacing with equalities
some of the inequalities defining X, so that the result, being nonempty, indeed is a face of X.

Warning: For the time being, our definition of a face of a polyhedral set is not geometric: a
face is defined in terms of a particular description of X by a system of linear inequalities rather
than in terms of X itself. This is where “can be represented as a face” instead of “is a face” in
the latter statement comes from. In the mean time we shall see that faces can be defined solely

in terms of X.
Example. Consider the standard simplex

Ap={zecR":2;>0,1<i<n,y xz; <1}
in the format of (2.3.1): m =n+1,a; = —e;, (2.3.3)
bi =0 for ¢ = 1, ey U, Qg1 = [1; vees 1],bn+1 =1

In this case, every subset I of Z = {1,...,n + 1}, except for Z itself, defines a face of
Ap; such a face is comprised of all points from A,, which have prescribed coordinates
equal to zero (indices of these coordinates form the intersection of I with {1,...,n}),
and perhaps the unit sum of entries (the latter is the case when n+ 1 € I).

According to our definition, the entire X is a face of itself (this face corresponds to I = 0).
All faces which are distinct from X (and thus form proper — distinct from the entire X and
from () — subsets of X) are called proper. E.g., all faces of the standard simplex A, (n > 0)
corresponding to proper (I # (), I # T) subset I of Z are proper.
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Proposition 2.3.1 Let X be a nonempty polyhedral set given by (2.3.1). Then every proper
face X1 of X has dimension strictly less than the one of X.

Proof. Let X} be a proper face of X; then definitely I # (). Let us look at the linear equations
alr = b;, i € I. If every one of these equations is satisfied by all points from M = Aff(X),
then it is satisfied everywhere on X, whence, comparing and , X7 = X, which
is impossible, since X7 is a proper face of X. Thus, there exists ¢ = 7, such that the linear
equation ag;x = b;,, which is satisfied everywhere on X7, is violated somewhere on M. Setting
Mt ={xe M: aZx = b;, }, we get a nonempty set (it contains X; which is nonempty) and
as such is an affine subspace (since it is a nonempty intersection of two affine subspaces M and
{z:alz =b;}). Since M* C M by construction and M+ # M, we have dim M+ < dim M
(see @ b)). It remains to note that X; C M due to X; C X C M and a x = b;, for all

x € X1, whence dim X; < dim MT < dim M. |

2.3.2 Vertices, a.k.a. extreme points
2.3.2.1 Definition and characterization

The definition of a vertex is as follows:

Definition 2.3.1 A vertex (another name — an extreme point) of a nonempty polyhedral set X
given by (2.3.1)) is a point v € R™ such that the singleton {v} is a face of X.

This definition refers to the particular representation of the set X (since for the time being, the
notion of a face of X is defined in terms of the representation of X rather than in terms
of X itself). It is easy, however, to express the notion of a vertex in terms of X. The next
proposition presents both algebraic and geometric characterizations of vertices.

Proposition 2.3.2 Let X C R" be a nonempty polyhedral set given by .

(i) [algebraic characterization of vertices| A singleton {v} is a face of X if and only if v
satisfies all inequalities aiTx < b; defining X and among those inequalities which are active (i.e.,
satisfied as equalities) at v there are n with linearly independent a;.

(ii) [geometric characterization of vertices] A point v is a vertex of X iff v € X and from
v+ h € X it follows that h = 0 (geometrically: v belongs to X and is not the midpoint of a
nontrivial — not reducing to a point — segment belonging to X ).

Proof. (i): Let v be a vertex of X. By definition, this means that for a properly chosen I C Z,
v is the unique solution of the system of equality and inequality constraints in variables z:

alx=b;,iel, a?xgbi,ief (%)

(2
W.l.o.g. we may assume that all inequalities aZT;U < b;, i € I, are satisfied at v strictly (indeed,
otherwise we could move all indices i € I with a;frv = b; into I; this transformation of the
partition Z = I U T keeps v a solution of the transformed system () and can only decrease the
number of solutions to the system; thus, v is the unique solution to the transformed system).
Given that all the inequality constraints in (x) are satisfied at v strictly, all we should verify
is that among the vectors a;, i € I, there are n linearly independent. Assuming that it is not
the case, there exists a nonzero vector h which is orthogonal to all vectors a;, i € I. Setting
vy = v + th, observe that for all small enough in modulus values of ¢ v; solves (x). Indeed,
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the constraints in () are satisfied when t = 0, whence the equality constraints a] v; = b;,
i € I, are satisfied for all ¢ due to aiTh = 0, ¢ € I. The inequality constraints a?vt < b,
i € I, are satisfied strictly when t = 0, and therefore every one of them remains valid in an
appropriate neighborhood of ¢t = 0; since the number of constraints is finite, there exists a single
neighborhood which “serves” in this sense all the constraints with i € I. The bottom line is
that indeed v; solves (x) for all ¢’s close enough to 0; since h # 0, we see that the solution to (x)
is not unique, this arriving at the desired contradiction.

We have proved that if v is a vertex of X, then the characterization from (i) holds true.
To prove the inverse, assume that v € X and that among the inequalities aiTa: < b; active at
v there are n with linearly independent a;. Denoting by I the set of indices of the active at v
inequalities, we have v € X and therefore X; is nonempty and thus is a face of X. It remains
to note that v is the only point in X7, since every point x in this set must satisfy the system of
equations

a;fpw =b;,1 €1,

and the matrix of this system with n variables is of rank n, so that its solution (which does
exists — the system is solved by v!) is unique. (i) is proved.

(ii): Proof of (ii) more or less repeats the above reasoning. In one direction: let v be a vertex
of X. By (i), among the inequalities a;fpv < b;, © € Z, n inequalities with linearly independent
a;’s are equalities, let their indices form a set I. If now A is such that v £ h € X, then one
has al[v & h] < b;, i € I, which combines with a] v = b;, i € I, to imply that alh = 0 for all
i € I. Since among the vectors a;, i € I, there are n linearly independent (and thus spanning
the entire R™), the only vector h orthogonal to all a;, i € I, is h = 0. Thus, if v is a vertex, then
v € X and v+ h € X implies that h = 0. To prove the inverse, let v € X be such that v+ h € X
implies that h = 0, and let us prove that v is a vertex. Indeed, let I be the set of indices of all
inequalities a,sz < b; which are active at v. Assuming that there are no n linearly independent
among the vectors a;, ¢ € I, we can find a nonzero f which is orthogonal to all a;, i € I, so
that all points v; = v + tf satisfy the inequalities aiTvt < b;, i € I. And since the inequalities
alx < b;, i & I, are satisfied at v strictly (due to how we defined I), the points v;, same as in
the proof of (i), satisfy these inequalities for all ¢ small enough in absolute value. The bottom
line is that under our assumption that the set of a;’s with ¢ € I does not contain n linearly
independent vectors, there exists small positive ¢ and nonzero vector f such that v +¢f satisfies
all inequalities in and thus belongs to X; thus, with h = tf # 0 we have v + h € X,
which is impossible. We conclude that among a;’s with ¢ € I there are n linearly independent;
invoking (i), v is a vertex. O

Quiz. What are the vertices of the polyhedral set shown on figure a)?
Answer: the vertices of the triangle shown on figure b); the triangle itself is the convex hull
of these vertices.

Corollary 2.3.1 The set of extreme points of a nonempty polyhedral set is finite.

Indeed, by Proposition [2.3.2] an extreme point should solve a subsystem of the m x n system
of linear equations Ax = b comprised of n linearly independent equations; the solution to such
a subsystem is unique, and the number of subsystems is finite. O
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Task 2.2 Prove the following claim:

Let v be a vertex of a polyhedral set X, and v = Zle Aix; be a representation of v as
a convex combination of points x; € X where all the coefficients are strictly positive.
Then z; = v for alli. As a corollary, whenever Conv(Y) C X and v € Conv(Y), we
have v € Y.

Task 2.3 Prove that whenever X1 C Xy are polyhedral sets, every extreme point of Xa which
belongs to X1 is an extreme point of Xi.

We add to the above results the following simple and important
Proposition 2.3.3 A vertex of a face of a nonempty polyhedral set X is a vertex of X itself.

Proof. We have seen that a face of a face X of a polyhedral set X can be represented as a face
of X itself. It follows that a vertex of a face X; of X (which, by definition, is a singleton face
of X1) can be represented as a singleton face of X and thus is a vertex of X. O

Discussion. The crucial role played by vertices of polyhedral sets stems from the facts (which
we shall prove in the mean time) that

A. Every bounded nonempty polyhedral set X is the convex full of the (finite, by Corollary
2.3.1)) set of its extreme points; moreover, whenever X is represented as X = Conv(Y), Y
contains the set of extreme points of X.

We shall see also that extreme points form a basic “building block” in the description of an
arbitrary nonempty polyhedral set not containing lines, not necessarily a bounded one.

Note that the notion of an extreme point can be extended to the case of convex sets: an
extreme point of a convex set () is a point v of ) which cannot be represented as a midpoint
of a nontrivial segment belonging to @: v € Q and v = h € @ implies that h = 0. The
“convex analogy” of A is the (finite-dimensional version of the) Krein-Milman Theorem: Every
nonempty, bounded and closed convex set ) in R" is the convex hull of the set of its extreme
points (which now can be infinite); moreover, whenever Q = Conv(Y'), Y contains all extreme
points of Q.

B. If the feasible set of a solvable LO program (which always is a polyhedral set) does not
contain lines, than among the optimal solutions there are those which are vertices of the feasible
set;

C. Vertices of polyhedral set, their algebraic characterization as given by Proposition
and Corollary [2.3.]] are instrumental for simplex-type algorithms of LO.

From the outlined (and many other similar) facts it should be clear that understanding the
structure of extreme points of a polyhedral set contributes a lot to understanding of this set and
to our abilities to work with it. As an instructive exercise, let us describe the extreme points of
two important families of polyhedral sets.

2.3.2.2 Example: Extreme points of the intersection of | - ||«- and || - ||; balls

Consider the polyhedral set

X:{xeR”:—1<xi<1,1<i<n,Z]:r,-\<k}, (2.3.4)

()
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where k is a nonnegative integer < n.

Note: is not a representation of X by a finite set of linear inequalities, since the
inequality >, |z;| < k is not linear. To get a polyhedral description of X, we should replace
this nonlinear inequality with the system of 2" linear inequalities ), ;2; < k corresponding to
all collections of £1 coeflicients ¢;. We, however, have seen that a vertex of a polyhedral set
is a geometric notion — a notion which can be expressed solely in terms of the set X, without
referring to its polyhedral description.

Note also that geometrically, X is the intersection of the unit box By (1) = {x € R": —1 <
x; < 1Vi} and the ¢1-ball of radius k Bi(k) = {x € R" : > " | |z < k}.

We claim that the extreme points of X are nothing but the vectors from R"™ with exactly k
nonzero coordinates, equal each either to 1, or to —1. Indeed,

(a) let v be a vector of the outlined type, and let us prove that it is an extreme point of X.
By Proposition M(u) we should prove that if h is such that v +h € X, then h = 0. Indeed,
let v+ h € X and let I be the set of indices of the k nonzero coordinates of v. When i € I, then
either v; = 1 — and then v+ h € X implies that 1 > v; £ h; = 1+ h;, that is, h; =0, or v; = —1,
and then v £ h € X implies that —1 < v; = h; = —1 + h;, and we again arrive at h; = 0. With
this in mind, v + h € X implies that k + >,/ [hi| = >;c; [vil + 320 [hi| < k, whence h; =0
when i ¢ I, meaning that h = 0, as required.

(b) let v be an extreme point of X, and let us prove that v has exactly k nonzero coordinates,
equal to 1. Indeed, let J be the set of indices ¢ for which v; is neither 1, nor —1. Observe that
J cannot have less than n — k indices, since otherwise v has > k coordinates of magnitude 1 and
thus does not belong to X (due to the constraint ), |z;| < k participating in the definition of
X). When J contains exactly n—k indices, the same constraint says that v; = 0 when i € J, and
then v has exactly k nonzero entries, equal to £1, which is what we claimed. It remains to verify
that J cannot contain more than n — k indices. Assuming that this is the case: CardJ > n —k,
note that then v has at least one entry which is neither —1, nor 1 (since n — k > 0); w.l.o.g. we
can assume that this entry is v1. Since v € X, this entry should belong to (—1,1). Now, it may
happen that ), [v;| < k. In this case the vectors [v1 —0;va; ...; v,] and [v1 +0;ve; ...; v, | With small
enough positive d belong to X, and thus v is the midpoint of a nontrivial segment belonging to
X, which is impossible. Thus, ), |v;] = k. Since the number of entries of magnitude 1 in v is
¢ =n—Card(J) <k, we have >, ; [vi| =k =3, vl = k— € > 1, and since |v;| <1 fori € I,
the relation ) .. ;|v;] > 1 implies that at least two of the entries v;, i € J, are nonzero (and
are of magnitude < 1, as all entries v; of v with indices from J). W.l.o.g. we can assume that
the two entries in question are vy and vo: vy # 0, vy # 0, |v1] < 1, |ve| < 1. Then the vectors
[v1 —sign(vy)0; vy + sign(va)d; vs; ...; vy ] and [v1 + sign(vy)d; va — sign(ve)d; vs; ...; vy,] for all small
positive § belong to X, and v again is a midpoint of a nontrivial segment belonging to X, which
is impossible. O

Particular cases. When k = n, X is nothing but the unit box {z e R": -1 <x; <1,1 <i <
n}, and the above result reads: the vertices of the unit box are exactly the £1 vectors. Similar
statement for an arbitrary box {z € R" : p; < x; < ¢;Vi < n} which is nonempty (p < q) reads:
the vertices of the box are all vectors v with “extreme” coordinates (i.e., v; = p; or v; = ¢; for
every i) (check it!)

When k£ = 1, X becomes the unit ¢;-ball {x € R" : }, |z;| < 1}, and our result reads: the
vertices of the unit ¢1-ball in R™ are exactly the 2n vectors +e;, i = 1,...,n (as always e; are
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the basic orths).

Modifications. Slightly modifying the above reasoning, one arrives at the useful facts stated
in the following

Task 2.4 Verify that whenever k is an integer such that 1 < k < n, then

(i) The extreme points of the polyhedral set {x € R": 0 < x; <1,1 <i<n,)y .x; <k} are
exactly the Boolean vectors (i.e., vectors with coordinates 0 and 1) with at most k coordinates
equal to 1;

(ii) The extreme points of the polyhedral set {x e R" : 0 <x; < 1,1 <i<mn,y , x; =k} are
exactly the Boolean vectors (i.e., vectors with coordinates 0 and 1) with exactly k coordinates
equal to 1.

Note that the second set is a face of the first one.

2.3.2.3 Example: Extreme points of the set of double stochastic matrices

An n x n matrix is called double stochastic, if its has nonnegative entries which sum up to 1 in
every row and every column. The set of these matrices is

II, = {z = [z;] e R”"" = R™ . xi; > 0V, 7, inj =1, szj =1,Vi,j}h
i J

we see that this is a polyhedral set in R" = R™<" given by n? inequality constraints and 2n
equality constraints. In fact, we can reduce the number of equality constraints by 1 by dropping
one of them, say, >, x;1 = 1; indeed, if the sum of z;; in every row is 1, then the total sum of
entries is n; and if, in addition, the column sums in all columns except for the first one are equal
to 1, then the sum of entries in the first column automatically equals to n — (n — 1) = 1.

The following fact has an extremely wide variety of applications:

Theorem 2.3.1 [Birkhoff] The extreme points of the set of double stochastic n x n matrices are
exactly the n X n permutation matrices (exactly one nonzero entry, equal to 1, in every row and
every column,).

Proof. The fact that permutation matrices are extreme points of the set II,, of double stochastic
matrices is easy: by the above result, these matrices are extreme points of the box {[z;;] € R™*™ :
0 < x;; < 1Vi,j} which contains II,,, and it remains to use the statement of Task

To prove that every vertex v of I, is a permutation matrix, let us use induction in n. The
base n = 1 is evident: II; is a singleton {1}, and clearly 1 is the only extreme point of this set (see
geometric characterization of extreme points, Proposition (ii)), and this indeed is an 1 x 1
permutation matrix. Inductive step n —1 = n is as follows. Let v be an extreme point of I,,; as
it was already explained, we can think that the latter set is given by n? inequalities z;j > 0 and
2n — 1 linear equality constraints. Since IIs “lives” in R"Q, algebraic characterization of vertices
(Proposition M(l)) says that n? linearly independent constraints from the description of II,,
should become active at v. 2n — 1 linear equality constraints participating in the description
of II,, contribute 2n — 1 linearly independent active constraints, and the remaining n? — 2n + 1
active at v constraints should come from the n? constraints z;j > 0. In other words, at least
n? —2n+1 = (n—1)? entries in v are zeros. It follows that there is a column in v with at most
one nonzero entry, since otherwise the number of zero entries in every column were < n — 2,
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and the total number of zero entries would be n(n — 2) < (n — 1)%. Now let j; be the index of
the column where v has at most one nonzero entry. Since the corresponding column sum is 1,
this “at most one nonzero entry” means “exactly one nonzero entry, equal to 1.” Since the row
sums in v are equal to 1 and the entries are nonnegative, this nonzero entry, equal to 1, is the
only nonzero entry in its row, let this row be ;. Eliminating from the double stochastic n x n
matrix v the column j; and the row i1, we get a (n — 1) X (n — 1) matrix ¥ which clearly is
double stochastic; since v is a vertex in II,,, it is completely straightforward to verify (do it!)
that v is a vertex in II,,_;. By the inductive hypothesis, ¥ is an (n — 1) x (n — 1) permutation
matrix; recalling the relation between v and v, v is a permutation matrix itself. o

2.3.3 Recessive directions
2.3.3.1 Definition and characterization

Definition 2.3.2 Let X be a nonempty polyhedral set. A wvector e € R™ is called a recessive
direction of X, if there exists T € X such that the entire ray {Z + te : t > 0} emanating from
T and directed by e belongs to X. The set of all recessive directions of X is called the recessive
cone of X, denoted ReC(X)E

Note that this definition is geometric: it does not refer to a representation of X in the form of
(12.3.1]).

Examples: e e =0 is a recessive direction of every nonempty polyhedral set.
e Recessive directions of an affine subspace M are exactly the vectors from the parallel linear
subspace.

Algebraic characterization of recessive directions. Given a polyhedral description ([2.3.1))
of a nonempty polyhedral set X, it is easy to characterize its recessive directions:

Proposition 2.3.4 [algebraic characterization of recessive directions| Let X be a nonempty
polyhedral set given by X = {x : Az < b}, see (2.3.1). Then

(i) The recessive directions of X are exactly the vectors from the polyhedral cone
Rec(X) := {e: Ae < 0}. (2.3.5)

(ii) One has X = X + Rec(X), that is, whenever v € X and e € Rec(X), the ray {x + te :
t > 0} is contained in X. |§|

Proof. If e is a recessive direction, then there exists # € X such that a! z+tale = al [T+te] < b;
for all ¢ > 0 and all ¢ € Z, which clearly implies that a;ffe < 0 for all 4, that is, Ae < 0. Vice
versa, if e is such that Ae < 0, then for every x € X and every ¢ > 0 we have A(zx + te) =
Az + tAe < Az < b, that is, the ray {x + te: t > 0} belongs to X. O

"We shall see in a while that the terminology is consistent — the set of all recessive directions of a polyhedral
set X indeed is a cone.

8Note the difference between the information provided in (ii) and the definition of a recessive direction e: by
the latter, e is a recessive direction if some ray directed by e belongs to X; (ii) says that whenever e possesses
this property, every ray directed by e and emanating from a point of X is contained in X.
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Remark: The definition of an recessive direction can be straightforwardly extended from poly-
hedral to convex sets. The “convex analogy” of Proposition states that the set of recessive
directions of a nonempty closed convex set () is a closed cone, and a ray, starting at a point of
Q@ and directed by a recessive direction, belongs to Q.

Quiz. What is the recessive cone of the polyhedral set X shown on figure a)? What is the
recessive cone of the triangle shown on figure 2.1b)?

Answer: the recessive cone of X is the angle between the two rays shown on figure c). The
recessive cone of the triangle is trivial — it is the origin.

2.3.3.2 Recessive subspace and decomposition

Recall that a line £ in R" is an affine subspace of R of dimension 1; this is exactly the same as
to say that £ = {x + te : t € R} with some x and a nonzero vector e. It is easy to understand
when a polyhedral set X contains lines and what are these lines:

Proposition 2.3.5 Let X be a nonempty polyhedral set given by X = {x : Ax < b}, see .
Then X contains a set of the form {x +te : t € R} if and only if x € X and Ae = 0. In
particular,

e X contains a line, directed by vector e # 0, iff e belongs to the kernel Ker A := {e : Ae = 0}
of A, and in this case every line directed by e and passing through a point of X belongs to X.
e X contains lines iff Ker A # {0}, or, equivalently, iff Rec(X) N [-Rec(X)] # {0}.

Proof. The set {z+te : t € R} belongs to X iff both the rays {x+te: ¢ > 0} and {x—te : t > 0}
emanating from z and directed by e and —e belong to X; by Proposition [2.3.4] this is the case
iff z € X and both e and —e belong to Rec(X), that is, Ae < 0 and —Ae < 0, or, which is the
same, Ae = 0. O

In many aspects, polyhedral sets containing lines are less suited for analysis than those not
containing lines. E.g., a polyhedral set containing lines definitely does not have extreme points
(why?), while, as we shall see in a while, a polyhedral set not containing lines does have extreme
points. Fortunately, it is easy to “get rid” of the lines.

Proposition 2.3.6 [Decomposition] A nonempty polyhedral set X = {x : Ax < b}, see (2.3.1)),
can be represented as the arithmetic sum of a linear subspace L = Ker A and a nonempty
polyhedral set X which does not contain lines:

X = X +Ker A. (2.3.6)
One can take as X the intersection X N L+,

Proof. Let us set X = XNLT; we claim that this is a nonempty polyhedral set satisfying .
Indeed, X is nonempty by assumption; with x € X and every e € Ker A, the vector  — e belongs
to X (Proposition. Specifying e as the orthogonal projection of z onto L (so that x—e is the
orthogonal projection Z of 2 onto L), we conclude that this projection belongs to X, and thus X
is nonempty and, moreover, is such that z = Z+e € X +Ker A, whence X +Ker A D X. Since X
is nonempty, it is a polyhedral set; indeed, to get a polyhedral description of X, one should add
to the inequalities Az < b specifying X a system of homogeneous linear inequalities specifying
Lt say, the system a .z =0, 1 < i < dim Ker A, where vectors a,,.;, 1 < i < dim Ker A4,

m+1

span the linear subspace Ker A. By construction, X is a part of X, whence X + Ker A C X by
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Proposition We have already seen that X + Ker A D X as well, whence X + Ker 4 = X.
Finally, X does not contain lines, since the direction e of a line in X, by Proposition should
be a nonzero vector satisfying the equations aiTe =0,7€Z, and a%ﬂ»e =0, 1<i<dim Ker A4;
the first group of these equations says that e € Ker A, and the second — that e € (Ker A)*,
meaning that e € Ker AN (Ker A)* = {0}, which is impossible. O

Proposition [2.3.6] is the first step towards our goal — describing the structure of a polyhedral
set; it says that investigating this structure can be reduced to the case when the set does not
contain lines. Before passing to the remaining steps, we need one more element of “equipment”
— the notions of a base and extreme ray of a polyhedral cone.

2.3.4 Bases and extreme rays of a polyhedral cone

Consider a polyhedral cone
bT
R={zeR":Bx<0} B=|--- | e R"™, (2.3.7)
bi
Pointed cones. Cone (2.3.7) is called pointed if and only if it does not contain lines; invoking
Proposition this is the case if and only if Ker B = {0}, or, which is the same, there is no
nonzero vector e such that Be < 0 and B[—¢| < 0. Geometrically, the latter means that the

only vector e such that e € K and —e € K is the zero vector. E.g., the nonnegative orthant
R" :={z € R":2 >0} = {x: [-I]z < 0} is pointed.

Base of a cone. Assume that the cone K given by is nontrivial — does not reduce to
the singleton {0}.

Consider a hyperplane II in R™ which does not pass through the origin. W.l.o.g. we can
represent such a hyperplane by linear equation with unit right hand side:

M={zecR": fTa=1} [f#0) (2.3.8)
It may happen that this hyperplane intersects all nontrivial rays comprising K, that is,
reK,x#0=3ds>0:sx 1l

This is exactly the same as to say that f has positive inner products with all nonzero vectors
from K (why?). When f possesses this property, the polyhedral set Y = K NIl = {z : Bz <
0, fx = 1} is nonempty and “remembers” K:

K={z=ty:t>0,ycY}

In this situation, we shall call Y a base of K; thus, a base of K = {z : Bx < 0} is a nonempty

set of the form
Y ={z:Bx<0,flz=1}

where f has positive inner products with all nonzero vectors from K. For example, the bases
of nonnegative orthant are “produced” by strictly positive vectors f, and only by those vectors
(why?)
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Now, not every polyhedral cone admits a base; say, the trivial cone {0} does not admit it.
Another “bad” in this respect cone is a cone which is not pointed. Indeed, if K is not pointed,
then, as we have already seen, there is a nonzero e such that both e and —e belong to K;
but then there cannot exist a vector f forming positive inner products with all nonzero vectors
from K. A useful (and even crucial, as we shall see in the sequel) fact is that the outlined two
obstacles — triviality and non-pointedness — are the only obstacles to existing a base:

Proposition 2.3.7 Let a polyhedral cone K = {x : Bz < 0} in R"™ be nontrivial (K # {0})
and pointed. Then there exists f € R™ such that fTx > 0 for all x € K\{0}, that is, K admits
a base.

Proof. Let K* = {y € R" : yT2 > 0Vx € K} be the cone dual to K. We claim that K*
has a nonempty interior: there exists a vector f such that an Fuclidean ball of certain positive
radius r, centered at f, is contained in K*. Note that this claim implies the result we seek to
prove: indeed, if f is as above and x € K\{0}, then (f — h)T2 > 0 whenever ||h||2 < 7, whence
ffz> sup hTx>0.
hi||h|l2<r

It remains to support our claim. Assume, on the contrary to what should be proved, that
the interior of K* is empty. Since K* is a convex set, we conclude that Aff(K™*) is less than
the entire R™ (Theorem [2.1.3). Since 0 € K*, Aff(K*) > 0 and thus L = Aff(K*) is a linear
subspace in R"™ of the dimension < n. Thus, there exists e # 0 such that e € L+, whence
e’y =0 for all y € K*. But then both e and —e belong to (K*)*, and the latter cone is nothing
but K (Theorem . Thus, K is not pointed, which is the desired contradiction. O

The importance of the notion of a base of a cone K is that on one hand, it “remembers”
K and thus bears full information on the cone, and on the other hand it is in certain respects
simpler than K and thus is easier to investigate. E.g., we shall see in the mean time that a
base of a cone is a bounded nonempty polyhedral set, and those sets admit simple description
— they are convex hulls of the (nonempty and finite) sets of their vertices. For the time being,
we shall prove a simpler statement:

Proposition 2.3.8 The recessive cone of a base Y of a polyhedral cone K is trivial: Rec(Y) =
{0}.

Proof. Let Y = {z: Bx <0, fT2 = 1} be a base of a polyhedral cone K = {z : Bx < 0}, so
that K # {0} and f has positive inner products with all nonzero vectors from K. By Proposition
Rec(Y) = {e: BTe =0, fTe = 0}; assuming that the latter set contains a nonzero vector
e, we see that e is a nonzero vector from K, and this vector has zero inner product with f, which
is impossible. O

Remark: the notion of a base makes sense, and the results stated in Propositions and
hold true for arbitrary closed cones, not only polyhedral ones.

Extreme rays of a polyhedral cone. Extreme rays of polyhedral cones are “cone analogies”
of extreme points of polyhedral sets.

Definition 2.3.3 Let K be a cone. A ray in K is the set of all vectors {tz : t > 0}, where
x € K; x is called a generator, or direction, of the ray. A ray is called nontrivial, if it contains
nonzero vectors.



92 LECTURE 2. POLYHEDRAL SETS AND THEIR GEOMETRY

From the definition it follows that generators of a nontrivial R are all nonzero points on this
ray, so that all generators of a nontrivial ray R are positive multiples of each other.

Definition 2.3.4 [extreme ray| An extreme ray of a cone K is a nontrivial ray R = {tz : t > 0}
in K with the following property: whenever a generator x of the ray is represented as x = u+ v
with u,v € K, both vectors u and v belong to R.

Task 2.5 Let K be a pointed cone and v1,...v; be points of K. Prove that

1) Ifvi+...+v, =0, thenvy = ... = v =0

2) If vi + ... + v, = e is a generator of an extreme ray of K, then v;, 1 < i < k, are
nonnegative multiples of e.

Note that the notion of extreme ray is geometric — it does not refer to a particular description of
the cone in question. Note also that if the property characteristic for a generator of an extreme
ray holds true for one of generators of a given nontrivial ray, it automatically holds true for all
other generators of the ray.

Example: A ray in the nonnegative orthant R’} is the set comprised of all nonnegative multiples
of a nonnegative vector. Nontrivial rays are comprised of all nonnegative multiples of nonzero
nonnegative vectors. E.g., the set {¢[1;1;0] : t > 0} is a nontrivial ray in R?® (draw it!). On a
closest inspection, the extreme rays of Rl are the nonnegative parts of the n coordinate axes,
that is, the rays generated by basic orths ey, ..., e,. To see that, say, the ray Ry = {te; : t > 0} is
extreme, we should take a whatever generator of the ray, e.g., e1, and check that when e; = u+wv
with nonnegative vectors u, v, then both u and v are nonnegative multiples of e, which is evident
(since from u; + v; = (e1); and u;,v; > 0 it follows that u; = v; = 0 when i = 2,...,n). To see
that the nonnegative parts of the coordinate axes are the only extreme rays of R’ , assume that
x is a generator of an extreme ray R. Then x is a nonzero nonnegative vector. If x has at least
two positive entries, say, 1 > 0 and z3 > 0, then we can set x = [1;0....; 0] + [0; x2; x3; ...; Tp),
thus getting a decomposition of z into the sum of two nonnegative vectors which clearly are
not nonnegative multiples of x. Thus, x has exactly one positive entry, and thus is a positive
multiple of certain basic orth, meaning that R is the nonnegative part of the corresponding
coordinate axis.

The role of extreme rays in the geometry of polyhedral cones is similar to the role of vertices
in the geometry of polyhedral sets. E.g., we have already mentioned the fact we intend to
prove in the sequel: a nonempty and bounded polyhedral set is the convex hull of the (finite)
set of its vertices. The “cone analogy” of this statement reads: A pointed and nontrivial
(K # {0}) polyhedral cone K possesses extreme rays, their number is finite, and K is the
conic hull of the (generators of the) extreme rays. Here we present an important result on
algebraic characterization of extreme rays and their relation to extreme points.

Proposition 2.3.9 Let K C R" be a pointed nontrivial (K # {0}) polyhedral cone given by
(2.3.7). Then

(ii) A nonzero vector e € K generates an extreme ray of K if and only if among the inequal-
ities bZTx <0,i=1,....k, defining K there are at least n — 1 linearly independent inequalities
which are active (i.e., are equalities) at e.

(ii) Let Y = {x : Bz <0, fTx = 1} be a base of K (note that K admits a base by Proposition
so that every nontrivial ray in K intersects Y. A nontrivial ray R in K is extreme if and
only if its intersection with Y is an extreme point of Y .

(ii) is illustrated by figure
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\

o

Figure 2.3: Polyhedral cone, its base (pentagon ABCDFE) and extreme rays of the cone

Proof. (i): Let e generate a nontrivial ray R in K, and let I be the set of indices of vectors b;
which are orthogonal to e. We should prove that R is extreme iff among the vectors b;, ¢ € I,
there are n — 1 linearly independent.

In one direction: assume that the set {b; : i € I'} contains n — 1 linearly independent vectors,
say, b1, ...,b,—1, and let us prove that R is an extreme ray. Indeed, let e = u + v with u,v € K;
we should prove that then u,v € R. Since e = u+wv, we have b} (u+v) =ble=0,1<i<n-—1,
on one hand, and bZTu <0, bZTv < 0 due to u,v € K. We conclude that biTu = bz-Tv = 0,
1 <¢ < n-—1,so that every one of the vectors u, v, e is a solution to the system of homogeneous
linear equations

b?a:zO,lSiSn—l

in variables x. Since b1, ..., b,_1 are linearly independent, the solution set L of this system is a
one-dimensional linear subspace, and since e is a nonzero vector from this linear subspace, all
other vectors from L are multiples of e. In particular, u = Ae and v = pe with some real A, u.
Now recall that K is pointed and u,v,e € K, meaning that A > 0, u > 0 (e.g., assuming A\ < 0,
we get 0 # u € K and —u = |\|e € K, which is impossible). Thus, u and v are nonnegative
multiples of e and thus belong to R, as claimed.

In the other direction: assume that R is an extreme ray, and let us prove that the set
{b; : i € I} contains n — 1 linearly independent vectors. Assume that the latter is not the
case. Then the dimension of the linear span of the set is < n — 2, meaning that the dimension
of the orthogonal complement to this linear span is > 2. Thus, the linear space of all vectors
orthogonal to all b;, ¢ € I, is of dimension > 2. Therefore this space (which contains e due to the
origin of I) contains also a vector h which is not proportional to e. Now note that b} (e +th) = 0
for all i € I and bl (e +th) < 0 when i € I and ¢ is small enough in absolute value (since for i in
question, bl'e < 0). It follows that there exists a small positive ¢ such that b7 (e £th) < 0 for all
i =1,...,k, meaning that the vectors u = 3[e + th] and v = 3[e — th] belong to K. We clearly
have u + v = e; since R is an extreme ray, both u and v should be nonnegative multiples of e,
which, due to t > 0, would imply that A is proportional to e, which is not the case. We have
arrived at a desired contradiction. (i) is proved.

(ii): Let R = {te : t > 0} be a nontrivial ray in K; then e is a nonzero vector from K, and
from the definition of a base it follows that the ray R intersects Y at certain nonzero point ep,
which also is a generator of R. We should prove that R is an extreme ray iff eg is an extreme
point of Y.
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In one direction: Let R be an extreme ray. Let us lead to contradiction the assumption that
er is not an extreme point of Y. Indeed, under this assumption there exists a nonzero vector h
such that both eg + h and eg — h belong to Y and thus belong to K. Setting u = %[eR + hl,
v = %[eR — h], we get u,v € K (K is a cone!) and u+ v = eg. Since R is an extreme ray, it
follows that u and v are proportional to er, whence also h is proportional to er. The latter is
impossible: since er and eg + h belong to Y, we have fTer =1 = fT(eg + h), whence fTh = 0;
since h is nonzero and is proportional to e, we conclude that fTer = 0, while in fact ffer =1
due to eg € Y. We have arrived at a desired contradiction.

In the other direction: Let ep be an extreme point of Y, and let us prove that then R is
an extreme ray of K. Indeed, let eg = u 4+ v with u,v € K. We should prove that in this case
both v and u belong to R. Assume that this is not the case, say, u does not belong to R. Then
u # 0, and thus u € —R (since K is pointed and u € K). Thus, u is not a real multiple of eg,
which combines with e = u 4+ v to imply that v also is not a real multiple of er. In particular,
both v and v are nonzero, and since u,v € K, we have u = AMu € Y and v = pv € Y for
properly chosen A, > 0. From equations fTeg = fTu = fTv =1 (given by eg,%,7 € Y) and
ffer = fTu+ fTv (due to eg = u+w) it follows that AfTu =1, ufTv =1and flu+ ffv =1,
whence %4—% = 1. Since X\ and p are positive, we conclude that e = u+v = %TH— iﬁ is a convex
combination of the vectors @, v from Y, the coefficients in the combination being positive. Since
er is an extreme point of Y, we should have eg = © = v (according to the statement in Task
, whence v and v are proportional to e, which is not the case. We have arrived at a desired
contradiction. O

Corollary 2.3.2 Let K be a nontrivial (K # {0}) and pointed polyhedral cone. Then the
number of extreme rays in K is finite.

Proof. Indeed, by Proposition K admits a base Y'; by Proposition (ii), the number
of extreme rays in K is equal to the number of vertices in Y, and the latter number, by Corollary

[2.37] is finite. O

In fact, in the context of Corollary [2.3:2] the assumptions that K is nontrivial and pointed
are redundant, by a very simple reason: neither trivial, nor non-pointed cones have extreme
rays. Indeed, the trivial cone cannot have extreme rays since the latter, by definition, are
nontrivial. The fact that a non-pointed cone K has no extreme rays can be verified as follows.
Let R = {te:t > 0} be a nontrivial ray in K, and let f be a nonzero vector such that +f € K.
If f is not proportional to e, then the vectors u = e + f and v = e — f belong to K due to
+f € K and e € K, and do not belong to R (since they are not proportional to e). If f is
proportional to e, say, f = Te, then 7 # 0 (since f # 0). Setting u = %[e + %f], v = %[e — %f],
we, as above, get u,v € K and u 4+ v = e; at the same time, v = %[e — %T@] = —%e, that is,
v ¢ R. In both cases, the ray R is not extreme.

The next proposition establishes a property of extreme rays similar to the one of extreme

points (cf. Proposition [2.3.3)):

Proposition 2.3.10 Let K be a polyhedral cone given by (2.3.7), and let K = {x : Bx <
0, bZ-Ta: =0,i € I} be a face of K, which clearly is a polyhedral cone along with K. Every extreme
ray of Ky is an extreme ray of K.

Proof is left to the reader.
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2.4 Structure of polyhedral sets

Now we are well-prepared to attack directly our goal — to prove the Theorem on Structure of
Polyhedral Sets stated in the preface to this lecture .

2.4.1 First step

We start with the following fundamental statement:

Theorem 2.4.1 Let X be a nonempty polyhedral set, given by which does not contain
lines. Then

(i) The set Ext(X) of extreme points of X is nonempty and finite, and X is the arithmetic
sum of the convex hull of this set and the recessive cone of X:

X = Conv(Ext(X)) + Rec(X). (2.4.1)

(ii) If the recessive cone of X is nontrivial (Rec(X) # {0} ), then this cone possesses extreme
rays, the number of these rays is finite, and the cone is the conic hull of its extreme rays: if
Rj ={tej :t >0}, 1 < j < J, are the extreme rays of Rec(X), then

J
Rec(X) = Cone{ey,...,es} :=={z = Zujej tpy > 0Vj} (2.4.2)
j=1

(iii) As a straightforward corollary of (i) and (ii), we get that

1 J
X = {x = Z)\ZUZ + Z,ujej T > O,Z)\Z =1, 1 > O} (243)
i1 =1 i

Proof. (i): The proof is by induction in the dimension k of X (that is, the affine dimension
of M = Aff(X), or, which is the same, linear dimension of the linear space L to which M is
parallel).

Base k = 0 is trivial, since in this case X is a singleton: X = {v}, and we clearly have
Ext{X} = {v}, Rec(X) = {0}, so that Ext{X} indeed is nonempty and finite, and
indeed holds true.

Inductive step k = k + 1. Assume that (i) holds true for all nonempty polyhedral sets, not
containing lines, of dimension < k, and let X be a nonempty polyhedral set, not containing
lines, of dimension k + 1. Let us prove that (i) holds true for X.

The linear subspace L parallel to Aff(X) is of dimension k£ + 1 > 1 and thus contains a
nonzero vector e. Since X does not contain lines, its recessive cone is pointed (Proposition
; thus, either e, or —e is not a recessive direction of X. Swapping, if necessary, e and —e,
we can assume w.l.o.g. that e & Rec(X).

Now two options are possible:

A: —e is a recessive direction of X;

B: —e is not a recessive direction of X.

Let Z € X. In order to prove that Ext(X) # () and that Z € Conv(Ext(X)) + Rec(X), we
act as follows:

In the case of A, consider the ray R = {x; = T +te : t > 0}. Since e is not a recessive
direction, this ray is not contained in X, meaning that some of inequalities aiTa: <Vb;,1 €L, are
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not satisfied somewhere on R. Now let us move along the ray R, starting at Z. At the beginning,
we are at 7, i.e., are in X; eventually we shall leave X, meaning that there is ¢ > 0 such that “at
time ¢ the point z; is about to leave X”, meaning that ¢ is the largest t > 0 such that x; € X
for 0 <t < t. It is clear that x; belongs to a proper face of X.

Here is “algebraic translation” of the above reasoning (which by itself appeals to
geometric intuition). Since g = = € X, all the inequalities aiTxt < b;, 1 € L, are
satisfied at ¢t = 0, and since aiTxt is an affine function of ¢, an inequality CLZTJ:‘t < b;
which is violated at some ¢ > 0 (and we know that such an inequality exists) is
such that the affine function of ¢ alz; = al'z + tale is increasing with ¢, that is,
aiTe > (0. The bottom line is that there exists ¢ such that a;fpe > 0, so that the set

I ={i:ale > 0} is nonempty. Let us set

— (%)

and let i, € I be the value of i corresponding to the above minimum. Taking into
account that aZTE < b; for all 7 and that aiTa:t < b; for all t > 0 whenever i ¢ I (why?),
we conclude that £ > 0 and that a] x7 < b; for all i, and on the top of it, a;f'; xr=b;,.
Now consider the set X = Xy = {z: az{x = bi,azTac < b; Vi # i.}. This set is
nonempty (it contains z7) and thus is a face of X. This face is proper, since otherwise
ag;x would be equal to b;, on the entire X, meaning that X is contained in the affine
subspace N = {z : al # = b;}. But then Aff(X) C N, meaning that a x = b; for
all x € M = Aff(X); since e belongs to the parallel to M linear subspace, the latter
implies that aze = 0, while by construction ag:e > 0. Thus, z7 belongs to a proper
face X of X, as claimed.

Now, by Proposition the dimension of X is < dim X, that is, it is at most k. Besides this,
X is a nonempty polyhedral set, and this set does not contain lines (since X is a part of X, and
X does not contain lines). Applying inductive hypothesis, we conclude that Ext(X) is a finite
nonempty set such that zz € Conv(Ext(X)) + r with r € Rec(X). Now, by Proposition m

Ext(X) C Ext(X), and by the definition of a recessive direction, r, being recessive direction of
a part of X, is a recessive direction of X. We have arrived at the following conclusion:

(1) Ext(X) is nonempty (and is finite by Corollary|2.3.1|) and x7 € Conv(Ext(X))+r
for some r € Rec(X).

Note that our reasoning did not use yet the assumption that we are in the case A, that is, that
—e is a recessive direction of X; all we use till now is that e € L is not a recessive direction of

X.
Now recall that we are in the case of A, so that —e is a recessive direction of X, whence

T = x; — te € Conv{Ext(X)} + 7', = r + t(—e).

Since r and —e are recessive directions of X and Rec(X) is a cone, we have 7’ € Rec(X) and
thus Z € Conv(Ext(X)) + Rec(X).

In the case of B, the intermediate conclusion (!) still holds true — as we have mentioned,
its validity stems from the fact that e € L is not a recessive direction of X. But now similar
conclusion can be extracted from considering the ray R_ = {Z + t[—e] : ¢ > 0}, which, by the
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exactly the same reasoning as above, “hits” certain proper face of X. Thus, now, in addition to
(1), there exists ¢ > 0 such that 7; = Z — te satisfies

7y € Conv(Ext(X)) + Rec(X),

or, equivalently, there exist nonnegative weights XU, v € Ext(X), summing up to 1, and a vector
7 € Rec(X) such that

Moreover, by (!) there exist nonnegative weights \,, v € Ext(X), summing up to 1, and a vector
7 € Rec(X) such that

with properly chosen p € [0, 1], so that

=Y [wh+ (1= )Xo+ [+ (1 - p)7].
—_—

veExt(X) ERec(X)

€Conv(Ext(X))

The bottom line is that in both cases A, B Ext(X) is finite and nonempty and X C
Conv(Ext(X))+Rec(X). The inverse inclusion is trivial: the polyhedral set X is convex and con-
tains Ext(X), and therefore contains Conv(Ext(X)), and X +Rec(X) = X by Proposition[2.3.4]
whence Conv(Ext(X))+Rec(X) C X. Thus, we have proved that X = Conv(Ext(X))+Rec(X)
and that Ext(X) is nonempty and finite. Inductive step, and thus, the verification of Theorem
2.4.1{(i), are complete.

(ii): Assume that Rec(X) = {z : Az < 0} is a nontrivial cone. Since X does not contain
lines, Rec(X) is also pointed (Proposition [2.3.5)). Invoking Propositions Rec(X) admits
a base Y, which clearly is a nonempty polyhedral set. By Proposition the recessive cone
of Y is trivial, whence, in particular, ¥ does not contain lines. Applying (I) to Y, we conclude
that Ext(Y’) is nonempty and finite, and ¥ = Conv(Ext(Y)) + Rec(Y) = Conv(Ext(Y)) +
{0} = Conv(Ext(Y)). Further, by Proposition [2.3.9](ii), the extreme points v1,...,v, of Y are
generators of extreme rays of Rec(X), and every extreme ray of Rec(X) is generated by one of
these extreme points; thus, Rec(X) has extreme rays, and their number is finite. It remains to
prove that Rec(X) is the conic hull of the set of generators of its extreme rays. The validity
of this statement clearly is independent of how we choose the generators; choosing them as
1, ..., Up, We arrive at the necessity to prove that Rec(X) = Cone ({v1,...,vp}), that is, that
every = € Rec(X) can be represented as a linear combination, with nonnegative coefficients, of
V1, ...,Up. There is nothing to prove when x = 0; if x # 0, then, by the construction of a base,
x = AZ with A > 0 and Z € Y. As we have already seen, ¥ = Conv({v,...,v,}), meaning that
Z is a convex combination of v1, ..., vp; but then x = AZ is a linear combination of vy, ..., v, with
nonnegative coefficients (recall that A > 0), as claimed. (ii) is proved.

(iii) is readily given by (i) and (ii). O
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Remark: For an arbitrary nonempty closed convex X, the following analogy of Theorem [2.4.7]
holds true: if X does not contain lines, then the set of extreme points of X is nonempty (but
not necessary finite), and X is the arithmetic sum of Conv(Ext(X)) and the recessive cone of
X.

2.4.1.1 Immediate corollaries

Theorem readily implies a lot of important information on polyhedral sets.

Corollary 2.4.1 The set Ext(X) of vertices of a bounded nonempty polyhedral set X is
nonempty and finite, and X = Conv(Ext(X)).

Indeed, the recessive cone of a bounded nonempty polyhedral set clearly is trivial and, in par-
ticular, the set does not contain lines. It remains to apply Theorem mm O

Corollary 2.4.2 A pointed nontrivial polyhedral cone K = {x : Bx < 0} has extreme rays,
their number is finite, and the cone is the conic hull of (generators of) the extreme rays.

Indeed, for a cone K we clearly have K = Rec(K); when K is pointed, K is a nonempty
polyhedral set not containing lines. It remains to apply Theorem (ii), with K in the role
of X. O

Corollary 2.4.3 FEvery nonempty polyhedral set X C R"™ admits a description as follows: it
is possible to point out a finite and nonempty set V = {v1,...,vr} C R™ and a finite (possibly,
empty) set R = {r1,...,r;} C R™ in such a way that

X = Conv(V)+ Cone(R) ={z =" v+ ijl pjrj

244

For every representation of X of this type, it holds

Rec(X) = Cone (R) := {Z piry s g > 0} (2.4.5)

In connection with possible emptiness of R, recall that according to our convention “a sum of
vectors with empty set of terms equals to 0,” Cone {0} = {0} is the trivial cone, so that (2.4.4)
makes sense when R = 0 and reads in this case as X = Conv (V).

Proof. By Proposition a nonempty polyhedral set X can be represented as the sum of a
nonempty polyhedral set X not containing lines an a linear subspace L. We can find a finite set
fi, ..., fp which linearly spans L, so that L = Cone ({g1, ..., 92p}), where g1, ..., g, are the same

as fi,..., fp, and gp+1, ..., g2p are the same as —f1,..., — f,. By Theorem (iii), we can find a
nonempty finite set V and a finite set M such that X = Conv(V) 4+ Cone (M), so that

X = X+ L=[Conv(V)+ Cone (M)] + Cone ({g1, ..., g2p})
= Conv(V) + [Cone (M) + Cone ({g1, ..., g2p})]
= Conv(V) + Cone (M U{g1, ..., g2p})
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It remains to prove that in every representation
X = Conv(V) + Cone (R) (%)

with finite nonempty V = {vy,...,vr} and finite R = {ry,...,7s}, it holds Cone (R) = Rec(X).
The inclusion Cone (R) C Rec(X) is evident (since every r; clearly is a recessive direction of
X). To prove the inverse inclusion, assume that it does not take place, that is, that there exists
r € Rec(X)\Cone (R), and let us lead this assumption to a contradiction. Since r is not a conic
combination of ry,...,7y, the HFL says that there exists f such that fTrj > 0 for all j and
fTr < 0. The first of these two facts implies that the linear form f7z of = is below bounded on
X; indeed, by (x), every point z € X is of the form ) . \jv; + Zj w;7; with nonnegative A;, u;
such that >, \; = 1, whence

T T T : T : T
f = E Noff v+ E i1 P> E by f = ] —0oQ.
x i v : M] 7’J i [In[ln Ug] méln Vo > o0

N——
>0

The second fact implies that same form f7z is not below bounded on X. Indeed, since r €
Rec(X), taking € X, the ray R = {Z +tr : t > 0} is contained in X, and since f7r < 0, f'x
is not bounded below on R and thus on X. We got a desired contradiction. O

Corollary 2.4.4 A nonempty polyhedral set X possesses extreme point iff X does not contain
lines. In addition, the set of extreme points of X is finite.

Indeed, if X does not contain lines, X has extreme points and their number is finite by Theorem
Now assume that X contains lines, and let e # 0 be a direction of such a line, then for
every x € X the vectors x £ e belong to X (Proposition note that both e and —e are
recessive directions of X) and thus x is not an extreme point of X. Thus, Ext(X) = 0. O

Remark: The first claim in Corollary is valid for every nonempty closed convex set.

Corollary 2.4.5 Let X be a nonempty polyhedral set. Then X is bounded iff the recessive cone
of X is trivial: Rec(X) = {0}, and in this case X is the convex hull of a nonempty finite set
(e.g., the set Ext(X)).

Indeed, if Rec(X) # {0}, then X contains a ray {Z + te : ¢ > 0} with e # 0; this ray, and
therefore X is an unbounded set. Vice versa, if Rec(X) = {0}, then X clearly does not contain
lines, and by Theorem [2.4.1](i) X = Conv(Ext(X)) and Ext(X) is finite and thus is bounded;
the convex hull of a bounded set clearly is bounded as well, so that Rec(X) = {0} implies that
X is bounded. a

Remark: The statement in Corollary is valid for every nonempty closed convex set.

Corollary 2.4.6 A nonempty polyhedral set is bounded iff it can be represented as the convex
full of a finite nonempty set {vq,...,vp}. When this is the case, every vertex of X is among the
pPOINts v, ..., Up.
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Indeed, if X is bounded, then Ext(X) is nonempty, finite and X = Conv(Ext(X)) by Corollary
Vice versa, if a nonempty polyhedral set X is represented as Conv(V), V = {vy,...,un},
then V' is nonempty, and X is bounded (since the convex hull of a bounded set clearly is bounded
(why?)). Finally, if X = Conv({v1,...,vn}) and v is a vertex of X, then v € {v1,...,un} by the
result stated in Task 2.2 O

The next immediate corollary of Theorem [2.4.1]is the first major fact of the LO theory:

Corollary 2.4.7 Consider a LO program max {cTaf: Az < b}, and let the feasible set X = {z :

Az < b} of the problem be nonempty. Then

(i) The program is bounded from above iff ¢ has nonpositive inner products with all recessive
directions of X (or, which is the same, —e belongs to the cone dual to the recessive cone Rec(X) =
{z : Az <0} of X). Whenever this is the case, the program is solvable (i.e., admits an optimal
solution,).

(ii) If X does not contain lines (or, which is the same due to the nonemptiness of X, if
Ker A = {0}, see Proposition and the program is bounded from above, then among its
optimal solutions there are extreme points of X.

Indeed, if ¢ has a positive inner product with some r € Rec(X), then, taking z € X and
observing that the ray R = {Z+tr : t > 0} is contained in X and that ¢’ x is not bounded above
on R (why?), the objective is not bounded above on the feasible set. Now let ¢ have nonpositive
inner products with all vectors from Rec(X); let us prove that the problem is solvable. Indeed,
by Corollary there is a representation

X = Conv({v1, ...,vr}) + Cone (R) (%)

with certain nonempty V = {vy,...,vr} and finite R = {ry,...,r;}. Then, of course, v; € X and
rj € Rec(X) for all 7, 5. Since every z € X can be represented as

m:Z)\ivi—i—Zujrj [/\iZO,ujZO,Zi/\iZH
i J
we have
e = 3. Nclv + Z,uchrj <Y il <30 Nifmax(eT vy, .., eTog]]
J
—_———
<0
= max[c vy, ..., Ty

We see that the objective is bounded above everywhere on X by the maximum of its values
at the points vy, ...,vr. It follows that the best (with the largest value of the objective) of the
(belonging to X!) points vy, ..., vr is an optimal solution to the program. (i) is proved. To prove
(ii), it remains to note that when X does not contain lines, one can take, as the above V, the
set of extreme points of X. O

Remark: The fact that a feasible and bounded LO program admits an optimal solution, stated
in Corollary (i), is already known to us; we obtained it (via a quite different tool, the
Fourier-Motzkin elimination scheme) already in Lecture
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2.4.1.2 Minimality of the representation stated in Theorem [2.4.1

Corollary states that every nonempty polyhedral set X can be represented in the form of
(12.4.4])):
X = Conv(V) + Cone (R)

with certain nonempty finite VV and finite, possibly, empty, set R. When X does not contain
lines, Theorem [2.4.1] states that in such a representation, one can take as V the set of extreme
points of X, and as R — the set of generators of the extreme rays of Rec(X). There are, of
course, other options: we can add to the just defined V any extra point of X, and add to R any
vector from Rec(X). It turns out, however, that the representation stated by Theorem is
the only “minimal” one:

Proposition 2.4.1 Let X be a nonempty polyhedral set not containing lines, let V, = Ext(X) =
{v1,...,vp}, and let Ry = {r1,...,rq} be the set of generators of the extreme rays of Rec(X). Then
for every representation

X = Conv(V) + Cone (R), (%)

where YV = {u1,...,up} is a nonempty finite set, and R = {e1,...,eQ} is a finite set, the following
18 true:

(i) every point v; € Vi of X is one of the points uy,...,up, and

(ii) Cone (R) = Rec(X), and every vector r; € Ry is positive multiple of one of the vectors
el,....,eq (that is, every extreme ray of Rec(X), if any exists, is among the rays generated by

€1y ey eQ).
Proof. (i): let v be a vertex of X, and let us prove that v € V. Indeed, by (*) we have

P Q
v=) Nuit Y pje [N = 0,05 20,570 = 1]
i=1 j=1
N’

We clearly have u; € X and e; € Rec(X) for all 4, j, whence v € X and e € Rec(X). We claim
that e = 0; indeed, otherwise we would havev—e=uw € X, and v+e € X duetox € X and e €
Rec(X). Thus, v £e € X and e # 0, which is impossible for the extreme point v (see geometric
characterization of extreme points, Proposition 2.3.2). Thus, v € Conv({u1,...,up}) C X,
whence v, being a vertex of X, is one of the points u1,...,up by the result stated in Task
(i) is proved.

(ii): The fact that Cone (R) = Rec(X) was established in Corollary It follows that
if e is a generator of an extreme ray R in Rec(X), then e = % Aje; with some A; > 0. Since

j=1

ej € Rec(X), applying the result stated in Task 2), those of the vectors \je; which are
nonzero (and there are such vectors, since y Ajej = e # 0) are positive multiples of e. Thus,

R admits a generator which is one of the vectors eq, ..., eq. O

Note that the “minimality” result stated by Proposition heavily exploits the fact that
X does not contain lines. While a nonempty polyhedral set containing lines still is the sum of the
convex hull of a nonempty finite set ¥V and the conic hull of a finite set R, there definitely exist
pairs V, R and V', R' which “produce” the same set X and at the same time, say, V'NV = ) (and
even Conv(V) N Conv(V') = (). What is uniquely defined by a whatever nonempty polyhedral
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set X, is the conic hull of R: this is nothing but the recessive cone of X. To arrive at this
conclusion, you should repeat word by word the reasoning which we used to demonstrate that
Conv(R) = Rec(X) when proving Proposition [2.4.1] (ii).

2.4.2 Second step

We have proved that every nonempty polyhedral set X, along with its “outer” description
X = {z : Az < b}, admits a simple “inner” representation: it is generated by two properly
chosen finite sets V (this set is nonempty) and R (this set can be empty) according to (2.4.4)).
What is missing yet, is the inverse statement — that every set representable in the just outlined
form is polyhedral. Or local goal is to establish this missing element, thus ending up with a
nice outer (solution set of a solvable system of linear inequalities) and inner (given by (2.4.4))
representation of nonempty polyhedral sets. Here is this missing element.

Theorem 2.4.2 Let V = {vy,...,vr} be a finite nonempty subset of R"™, and R = {ry,...,rs} be
a finite subset of R™, and let
X = Conv(V) + Cone (R). (2.4.6)

Then X is a nonempty polyhedral set.

Proof. We are about to present two alternative proofs: one immediate, and another one more
involving and more instructive.

Immediate proof: X clearly is nonempty and polyhedrally representable (as the image of a
clearly polyhedral set {[A\;u] € Rf x R : A > 0,Y, \; = 1,2 > 0} under the linear mapping
[Asp] = 325 Aivi+ 32 pyrj). By Fourier-Motzkin elimination (Theorem|1.3.1)), X is a polyhedral
set. O

Alternative proof: The fact that X is nonempty is evident: V C X. We can assume w.l.o.g.
that 0 € X. Indeed, shifting all vectors from V by —v;, we shift by the same vector the set X
given by , thus ensuring that the shifted X contains the origin. At the same time, a shift
of a set clearly is polyhedral iff the set is so.

Now, the polar Polar (Y') of a set Y C R™ which contains the origin is, by definition, the set
of all vectors f € R™ such that fTy <1forallycV.

For example (check what follows!),

e The polar of {0} is R", and the polar of R™ is {0}
e The polar of a linear subspace L is its orthogonal complement L+

e The polar of a cone is minus its dual cone.

The polar clearly is nonempty — it contains the origin.

Our plan of attack is as follows:
A. Assuming that the set X given by contains the origin, we shall prove that its polar
X* = Polar (X) is a nonempty polyhedral set. As such, it admits representation of the form

similar to (2.4.6):
X* = Conv(V*) + Cone (R") ("
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(V* is finite and nonempty, and R* is finite).
B. X* clearly contains the origin and by A is admits a representation (!), whence, by the same
A, the set (X™)* is polyhedral. On the other hand, we shall prove that (X*)* = X, thus arriving
at the desired conclusion that X is polyhedral.

Let us execute our plan.
A is immediate. Observe that f satisfies ffx <1 for all z € X iff fTrj <0 for all j < J and
fTv; <1foralli<I.

Indeed, if fTr; > 0 for some j, then fT[v; + tr;] — 400 as t — oo, and since
vy +trj € X for every t > 0 due to (x), f & X*; and of course f & X* when fTv; > 1
for some i, since all v; € X. Thus, if f € X*, then fTrj < 0 for all j and fTwv; <1
for all ¢. Vice versa, assume that fTrj < 0 and fTvZ' < 1 for all ; then fo <1 for
all z € X by exactly the same argument as used in the proof of item (i) in Corollary

247

Now, the above observation proves that X™ is the solution set of the system {T’]T [<0,1<5<
J, v;-f f <1,1<i<1I} of linear inequalities in variables f, and since the system is solvable (e.g.,
0 is its feasible solution), X* is a nonempty polyhedral set, as stated in A.

B: all we need is to prove that the set X given by is the polar of its polar: X = (X™*)*.
By definition of the polar, every set is part of the polar of its polar, so that X C (X*)*. To
prove equality, let us prove that (X*)* C X. To this end we need the following fact:

Lemma 2.4.1 Let X be given by (2.4.6) and y € R™ be such that y ¢ X. Then there exists
f€R" and e > 0 such that

ffy> ffe+evee X.

Lemma = the required conclusion: Taking Lemma for granted, assume, on the contrary
to what we want to prove, that there exists z € (X*)*\ X, and let us lead thus assumption to a
contradiction. Indeed, applying Lemma to a vector & € (X*)*\ X, we conclude that there exists
f such that f7Z > fTo 4+ € Vx € X. Since 0 € X, it follows that 0 < SUpP,e x ffe < fTz —e.
Since € > 0, multiplying f by an appropriate positive real we can ensure that 0 < sup,cyx ffa <
1 < fTZ, meaning that f € X* and ' f > 1; the latter is the desired contradiction, since
z € (X*)* and thus we should have z7g < 1 for all g € X*, in particular, for g = f.

Proof of Lemma. Consider vectors

v =l 1,1 <i < T of =301, 1 <5 < J,y = [y;1]

in R""!. We claim that y* is not a conic combination of v;", 1 <4 < I+ J.

Indeed, assuming that
I+J
y© =Y Aw, with A\, >0,
=1

and looking at the last coordinates of all vectors involved, we get 1 = ZiI:1 Ai; looking
at the first n — 1 coordinates, we conclude that y = Zi[:l Aevg + ijl A1+5Ajrj. The
bottom line is that y is a convex combination of vy, ...,v; plus a conic combination

of r1,...,ry, that is, y € X by ([2.4.6]), which is not the case.
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Now, since yT is not a conic combination of vf, ...,v;q_ 7> the HFL says to us that there exists
fT=1f;a] such that fTy+a = [fT]Ty" =:e> 0, while [fT]Tv] <0,1<¢<TI+J. In other
words, fTv; < —a and fTrj <0 for all 4, j. Now, if x € X, then by (2.4.6) we have

v=D Nivit ) T
i J
for certain A; > 0 summing up to 1 and p; > 0. It follows that

=" NfToi+ > wifTr <3 Ml-a] + Y 0= —a.
i J i g

The bottom line is that fTa < —a everywhere on X, while fTy = —a + € with € > 0, that is,
ffz 4+ e < fTy for all x € X, as claimed in Lemma. O

Note that in the case of a polyhedral set X = {z : Az < b} the result stated by Lemma[2.4.1]is
evident: if y € X, then there exists a row a;fp of A such that aiTy > b;, while aZ-Tx < b; everywhere
on X. In contrast to this, Lemma is a by far non-evident and powerful statement (which,
on a closest inspection, inherited its power from the HFL) — it provides us with a separation-type
result at time when we do not know whether the set X in question is or is not polyhedral.

2.4.2.1 Separation Theorem for convex sets

The new for us “driving force” in the previous proof — Lemma [2.4.1] — admits a far-reaching
extension onto general convex sets, which is the “in particular” part in Theorem [2.4.3| we are
about to present. We start with the following

Definition 2.4.1 Let X,Y be two nonempty sets in R™. We say that a linear function e’z

separates these sets, if the function is non-constant on X UY and everywhere on X is > than
every everywhere on'Y , that is, el xz > el'y whenever t € X andy € Y.

Equivalent definition of separation is (check equivalency!):

e separates X and Y iff

inf ef'z > supe’y & sup e’z > inf el'y. (2.4.7)
zeX yzY zeX yey

Recall that the relative interior rint X of a nonempty set X C R™ is comprised of relative
interior points of the set — points x € X such that the intersection of the ball of some positive
radius r centered at x with the affine span of X is contained in X:

Ir>0:yec Aff(X),[|ly—zla <r=yecX.

Proposition [2.1.7] states that relative interior of a nonempty convex set is convex, nonempty, and
is dense in X, meaning that every point x € X is the limit of an appropriately chosen sequence
of points from rint X.

The Separation Theorem for Convex Sets, which is an extremely powerful (if not the most
powerful) tool of Convex Analysis, reads:



2.4. STRUCTURE OF POLYHEDRAL SETS 105

Theorem 2.4.3 Let X,Y be nonempty conver sets in R"™. These sets can be separated iff their
relative interiors do not intersect.

In particular, if Y is a nonempty closed convex set in R™ and x € R" does not belong to X,
then there exists a linear form which strictly separates x and Y :

ez > supely.
yey

Proof. While we usually do not prove “convex extensions” of our polyhedral results, we cannot
skip the proof of the Separation Theorem, since we will use this result when speaking about
Conic Duality. The proof is easy — the major part of the task “sits” already in Lemma [2.4.1

19. Separating a point and a convex set not containing this point. Let us prove that if
X = {z} is a singleton and Y is a nonempty convex set which does not contain x, then X and
Y can be separated. By shifting x and Y by the same vector, which of course does not affect
neither the premise (x ¢ Y'), nor the conclusion (“z and Y can be separated”) of the statement
we are proving, we can assume w.l.o.g. that 0 € Y. The claim is easy to verify when = ¢ Aff(Y").
Indeed, since 0 € Y, Aff(Y) is a linear subspace; when = ¢ Y, taking, as e, the orthogonal
projection of  onto the orthogonal complement to this linear space, we get ez = ele > 0
and e’y = 0 for all y € Aff(Y) DY, as required in (2.4.7). Now let 2 € Aff(Y). Replacing, if
necessary, R" with Lin(Y) = Aff(Y'), we can assume w.l.o.g. that Aff(Y) = Lin(Y) = R". Now
let y1, 42, ... be a sequence of vectors from Y which is dense in Y, meaning that every point in Y
is the limit of certain converging subsequence of {y; }?°,; the existence of such a dense sequence
{yi € Y} for a nonempty set ¥ € R" is the standard and simple fact of Real Analysis (it is
called separability of R™). Now, let Y, = Conv{yi,....,yx}, k = 1,2,.... Since Y is convex and
x €Y, x &Y}, whence, by Lemma [2.4.1] for every k there exists a linear form ej, which strictly
separates x and Yj:

efx > supely. O]
yey

we clearly have ej # 0, and since (!) remains intact when ey is multiplied by a positive real, we
can assume w.l.o.g. that |eg|]]2 = 1. Now, a sequence of unit vectors in R"™ always contains a
converging subsequence, and the limit of this subsequence is a unit vector; thus, we can extract
from {ex} a subsequence {eki};‘il converging to certain unit vector e. For every i, the vector y;
belongs to all but finitely many sets Yj, whence the inequality

e{jm > e;‘gj Yi
holds true for all but finitely many values of j. Passing to limit as j — oo, we get
elx > eTyZ-

for all 4, and since {y;}:°; is dense in Y, we conclude that elx > ely for ally € Y. All what
remains to check in order to conclude that the linear form given by e separates {z} and Y, is
that e’z is not constant on {z} UY’, which is immediate: e by construction is a unit vector, and
Y is full-dimensional, so that e’z is non-constant already on Y.

20, Separating two non-intersecting nonempty convex sets. Let now X and Y be nonempty
non-intersecting convex sets. In order to separate them, we note that the set Y — X = {y — z:
y € Y,x € X} is nonempty and convex and does not contain the origin (the latter — since X and
Y do not intersect). By the previous item, we can separate 0 and Y — X, that is, there exists e
such that

0=cl0>el(y—2)V(zeX,yeY)&0>inf{el(y—2z):yecV,ze X}
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which is nothing but (2.4.7)).

30, Separating two nonempty convex sets with non-intersecting relative interiors. Let X and
Y be nonempty convex sets with non-intersecting relative interiors. As it was mentioned, rint X
and rint Y are convex nonempty sets, so that they can be separated by previous item: there
exists e such that

inf efz> sup ely& sup elxz> inf ely
z€int X y€int Y z€int X y€int Y
Since the relative interior of a convex set is dense in this set, the sup and inf in the above relation
remain intact when the relative interiors of X and Y are replaced with X, Y themselves, so that
separating the relative interiors of X, Y, we automatically separate X and Y.

4% We have proved that if the relative interiors of nonempty convex sets do not intersect,
then the sets can be separated. The inverse statement is nearly evident. Indeed, assume that
rint X NrintY # (), and let us lead to a contradiction the assumption that X and Y can be
separated. Let e separate X and Y, and let a € rint X Nrint Y. By the first inequality in ,
the linear function e’z everywhere on X should be > e’ (since a € Y), and since a € X, a
should be a minimizer of e’z on X. But a linear function f7w can attain its minimum on a set
Z at a point z of the relative interior of this set only when the function is constant on the set.

Indeed, by definition of a relative interior point, Z contains the intersection D of
Aff(Z) with a ball of positive radius, so that restricted on D, the linear function in
question should attain its minimum on D at the center z of D. The latter is possible
only when the function is constant on D, since D is symmetric w.r.t. z. When fTw
is constant on D, then fTh is constant on D — z, and the latter set is a centered at
the origin ball of positive radius in the linear space L to which Aff(Z) is parallel.
Thus, f should be orthogonal to all small enough vectors from L, and thus should
be orthogonal to the entire L, whence f7w is constant on Aff(2).

We see that the function e’y is constant, and equal to e’'a, on the entire Aff(X) and thus on
the entire X. By “symmetric” reasoning, e’y attains its maximum on Y at the point a € rint Y,
whence e’y is identically equal to e’'a on Y. We see that e’w is constant on X UY, which
contradicts the origin of e. Thus, the convex sets with intersecting relative interiors cannot be
separated.

5%, It remains to prove the “in particular” part of the Separation Theorem. When = ¢ Y
and Y is nonempty, closed and convex, then there exists » > 0 such that the ball B of radius
r centered at x does not intersect Y (why?). Applying the already proved part of Separation
Theorem to X = B and Y, we get a nonzero (why?) vector e such that

inf eT'2’ > maxely.

z’eB yey
Taking into account that the left hand side inf is e’z — r|le||2 (why?), we see that e strongly
separates {x} and Y. O

Remark: A mathematically oriented reader could notice that when proving Separation Theo-
rem for Convex Sets, we entered a completely new world. Indeed, aside of this proof and the
last section in lecture [1] all our constructions were purely rationally algebraic — we never used
square roots, exponents, convergence, facts like “every bounded sequence of reals/vectors admits
extracting a subsequence which has a limit,” etc. More specifically, all our constructions, proofs
and results would remain intact if we were
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e replacing our “universes” R and R’ with the field of rational numbers Q and the vector
space Q™ of n-dimensional vectors with rational coordinates, the linear operations being
vector addition and multiplication of vectors by rational scalars,

e replacing polyhedral sets in R™ — sets of real vectors solving finite systems of nonstrict lin-
ear inequalities with real coefficients — with their “rational” counterparts — sets of rational
vectors solving finite systems of linear inequalities with rational coefficients;

e allowing for rational rather than real scalars when speaking about linear/convex/conic
combinations and in all other places where we use operations involving scalars.

In fact, aside of the last section in lecture|l|and the story about Separation Theorem for Convex
Sets, we could use in the role of our basic field of scalars R not only the field of rational numbers
Q, but every sub-field of R — a nonempty subset of R which does not reduce to {0} and is closed
w.r.t. the four arithmetic operations. Different from Q and R examples of sub-fields are, say,
real numbers which can be represented as p 4+ /2 with rational p,q, or algebraic numbers —
reals which are roots of algebraic polynomials with rational coefficients.

Note that we will follow the “fully rationally algebraic” approach till the concluding lectures
on Ellipsoid Method (Lecture @ and Conic Programming/Interior Point algorithms (Lecture
7)), where working with reals becomes a must. In particular, till then we will not use neither
Theorem [2.4.3] nor the approximation results from section [1.4

2.4.3 Immediate corollaries

Theorem [2.4.2] allows us to “complete” some of the results we already know. For example,

1. Corollary 2:40] tells us that a nonempty bounded polyhedral set X is the convex hull of
a nonempty finite set (e.g., the set Ext(X)). Theorem adds to this that the inverse
also is true: the convex hull of a finite nonempty set is a nonempty (and clearly bounded)
polyhedral set.

2. Corollary tells us that every pointed and nontrivial polyhedral cone is the conic hull
of a nonempty finite set. Clearly, the trivial cone also is the conic hull of a nonempty finite
set (specifically, the singleton {0}), same as it is the conic hull of the empty set. Taking
into account that every polyhedral cone is the sum of a linear subspace and a pointed
polyhedral cone (this is an immediate corollary of Proposition , we conclude that
every polyhedral cone is the conic hull of a finite, perhaps empty, set. Theorem [2.4.2] adds
to this that the inverse also is true: The conic hull of a finite set {r1, ...,7;} is a polyhedral

cone (look what is given by (12.4.6)) when V = {0}).

3. Corollary says that every nonempty polyhedral set admits representation ([2.4.6]).
Theorem [2.4.2| says that the inverse also is true.

In addition, Theorems [2.4.1] and [2.4.2] allow us to make the following important conclusion

(which we will enrich in section |3.3.4]):

If X is a polyhedral set containing the origin, so is its polar {y : y'z < 1Vz € X},
and X is the polar of its polar.
We have proved this statement when proving Theorem (check it!)
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It is very instructive to look how the inner and the outer representations of a polyhedral
set, or, if you prefer, Theorems and complement each other when justifying different
facts about polyhedral sets. E.g., using inner representations of the operand(s), it is immediate
to justify the claims that the arithmetic sum of polyhedral sets or an affine image of such a set
are polyhedral; this task looks completely intractable when using the outer descriptions of the
operands (recall that when carrying out the latter task in section we “used a cannon” —
the Fourier-Motzkin elimination scheme). Similarly, with the outer descriptions, it is absolutely
clear that the intersection of two polyhedral sets, or the inverse affine image of such a set,
are polyhedral, while inner descriptions give absolutely no hint why these operations preserve
polyhedrality.

2.4.4 * Extending calculus of polyhedral representability

With our current knowledge, we can add to Calculus of polyhedral representability from Section two
useful rules.

2.4.4.1 * Polyhedral representation of recessive cone

Proposition states that when X = {z : Az < b} is a nonempty polyhedral set, then the recessive cone
of X is Rec(X) = {h: Ah <0} and is therefore a polyhedral set. A natural question is: assume that X # ()
is given by polyhedral representation:

X={z:3w:Pr+Quw<r}.

Is there an easy way to convert this representation to p.r. of Rec(X) ?
A natural guess is that
S.6.
0#X ={r:3w: Pr+Quw<r}=Rec(X)={h:3u: Ph+ Qu <0} (2.4.8)

This guess is correct, although this is not so evident. What is evident is that the concluding set in is
contained in Rec(X). Indeed, if € X, so that Px + Qw < r for some w, and h is such that Ph 4+ Qu < 0,
then

Plz + th] + Qw + tu] < r Vt >0,

that is, 4+ th € X for all ¢ > 0 and therefore h € Rec(X). The opposite direction is more involved. Thus,
assume that h € Rec(X), and let us prove that Ph + Qu < 0 for some u. W.l.o.g. we can assume that @
is nontrivial (otherwise the required result is given by Proposition and has trivial kernel (otherwise we
can restrict (Q onto the orthogonal complement to this kernel without affecting what we are given and what
we want to prove). Consider the set

W(z) ={u:Qu<r— Px}

Since Ker Q = {0}, this polyhedral set does not contain lines, and x € X if and only if W(z) is nonempty.
Whenever this is the case, W (x) has an extreme point w(x), and this point, by algebraic characterization of
extreme points, is such that Qrw(z) = [r — Pz|;, where I is set of indexes of cardinality dim u such that
the submatrix Q; comprised of rows of @) with indexes from I is nonsingular, and [r — Pz]; is the subvector
of r — Pz comprised by entries with indexes from I. Now, z; := x4+ jh € X, j = 1,2,..., implying that
w; = w(zx;) are well defined. Let us look at the corresponding index sets I;. These are m-element subsets of
(dim r)-element set, and therefore some of these sets are met in the sequence I, Io, ... infinitely many times,
that is, for properly selected j; < jo < ... we have I;, =1, s = 1,2,.... Consequently,

w(z;,) = Q' — Pxj )i = Q7' [r — Palr — js Q7 '[Phlr .
———

~u
We have Px; + Qw;, <, so that

Pz + QQ7'[r — Pa; + js[Ph+ Qu) <7, s = 1,2, ..
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implying that Ph 4+ Qu < 0, as required. O

2.4.4.2 * Polyhedral representation of perspective transform

Let X C R™ be a nonempty convex set. The (closed) perspective transform of X is the set
X =cl[z;t] e R"™ 1t >0,t7'w e X}

Geometrically: To get X, we
— add to R™ t-axis and lift X C R™ by 1 along this axis, thus getting the set X = {[z;1] : z € X };
— take the union of rays in R"*! emanating from the origin and crossing X, and pass from this set to its
closure.
It is easily seen that X is a closed convex cone. For example,
— when p € {1,2,00} and X = {z : ||z[|, < 1}, we have X = {[z;t] : ||z||, < t};
— when X = R", we have X = {[z,] : t > 0};
— when X = R, we have X = R:L_H.
The question we want to address is: given a polyhedral representation

X={z:3w:Pr+Quw<r}

of a nonempty polyhedral set X, what is polyhedral representation of X ? The answer is immediate:
S.7.

D+ X ={2:Fw:Pr+Quw<r}=X={[z;t]: Jw: Pr —tr + Quw < 0&t > 0} (2.4.9)

Justification is as follows: what we should prove is that [z; ] can be represented as lim;_,[x;; ;] with t; > 0
and t;lxj € X if and only if [z;t] belongs to the right hand side set in . In other words, we should
prove that

(a) if t; > 0, tj_lij + Quw; —r < 0 for some w; and [z;;t;] — [x;t], j — oo, then t > 0 and
Pz + Quw — tr <0 for some w, and

(b) vice versa, if t > 0 and Pz + Qw — tr < 0, then there exist t; > 0, x; and w; such that t;lij +
Quw; —r <0 and [z;;t;] = [x;t] as j — oo.
(b) is evident. Indeed, under the premise of (b)
— in the case of ¢ > 0 we can take t; = ¢, x; =t~ ', w; =t w;
— in the case of t = 0, since X # (), there exist Z and @ such that PT + Qw — r < 0, so that P[Az +
z] + QAw + w] —r < 0 for all A > 0; selecting somehow t; — +0, j — oo, and setting z; = z + t,Z,
wj =t;'w+w, we get t; >0, t;' Prj+ Qu; —r <0 and [z;;t;] — [2;0] as j — oo, as required.

To prove (a), note that this claim is trivially true when @@ = 0. Assuming @ nonzero, the same argument
as in previous Section shows that we lose nothing by assuming that the kernel of @ is trivial, and that
w; = Qj_jl [r — tj_lij]lj (for notation, see previous Section). In this case the premise of (a) states that

tj_lpxj + Qw; —r <0, whence
Px; + QQI_]1 [tjr — Px;]r, —tjr < 0. (%)

Same as when justifying S.6, the sets I; for properly selected j; < j» < ... coincide with some set I, so
that passing in (x) to limit, as s — oo, along j = j,, we get Pz + QQl_l[tr — Pz]; — tr <0, justifying the
conclusion in (a). O

Example: perspective transform of a proper p.r.f. Let f(z) : R® - R U {+oc0} be a
polyhedrally representable proper function:

Epi{f}:={[z;7]): 7> f(z)} = {[z;7] : Jw: Px + 7p+ Qw < r}. (2.4.10)
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The perspective transform of Epi{f} by definition is the set
X =cl[[z;t]; 7] it > 0,677 > f(t o)}
—_——
ST>tf(x/t)

and by S.7 we have

>
[

c[[z;t];7] :t > 0,7 7 > tf(t )}
er>tf(z/t) (2.4.11)
= {[z;t];7]: 3w : Pr+71p+ Quw —tr <0,¢t > 0}.
We claim that X is the epigraph of some polyhedrally representable proper function of [x;], called perspective
transform f(x,t) of f, and built as follows:
o for [z;t] with t > 0, f(z,t) = tf(z/t);
o fort <0, f(z,t) = +o0;
e at a point [z;0] the function is iminfy - (o4 20 ' f (2 /1),
Examples:
o f(z)=aTz+b, Epi{f} = {[z;7] : 7 > aTz + b},
X = {[x;t];7] :aTz +tb— 7 <0} = Epi{f(x,t)},

az+bt ,t>0
+oo ,t <0

f($7t) =

o f(z)=|z[:R" =R, Epi{f} ={[z;7] : Jw: —w; <z; Sw;, i <n, 7> >, wi},

X =A{[[z;t],7]: Fw: —w; <a; <w;, i <nyT >0 wi,t >0} = Epi{f(z,t)},

- _Jlzllh ,t>0
f(m’t)_{Jroo <0

o f(z)=|z)loc —1:R" = R, Epi{f} ={[z;7] : Fw: —w < a; <w, i <n,7>w-—1},
X ={[[z;t],7] : Fw: —w < z; <w, i <n,7>w—t,t >0} = Epi{f(z,t)},
{leloo—t >0

F@0 =1 foe <0

The claim above has two components:

A. The set X in (2.4.11) is indeed the epigraph of a proper function of [x;t] taking values in R U {+oc}
(since this set is nonempty and given by polyhedral representation, this function automatically is proper p.r.f.);
B. The function in A is exactly the perspective transform of f as defined above.

Justification of A is given by the following useful by its own right
Proposition 2.4.2 A system of linear inequalities
Pz+m+Quw<T (2.4.12)
in variables z € RN, 7 ¢ R, w e RF _represents a proper polyhedrally representable function f (2), that
is, Epi{f} = {[z;7] : Jw : Px + 70 + Qw < T} if and only if the system is solvable, all solutions to the

homogeneous system of linear inequalities 7p + Qw < 0 in variables T,w have T > 0, and there is a solution
to the latter system with T > Q.
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With Proposition (to be proved at the end of this Section) at our disposal, A becomes evident: by (2.4.11))
we have _ _ _
- X = {[[=; t]; 7] :Hw:P[:{:;t]tTﬁ—i—QwS?}, (a)
Plz;t] = [Pz — tr; —t], p = [p; 0], Q = [@;0,...,0], 7= 0. ()

Applying the “only if” part of Proposition to (that is, setting z =2z and P =P, p=p, Q = Q,
7 = 1), we conclude that on the set {[T;w] : 70 + Qw < 0} = {[1;w] : 7p + Qw < 0} we have 7 > 0,
and that this set contains a point with 7 > 0. Besides this, the set is nonempty, since every pair
[z;7] € Epi{f} generates a triple [[z;1];7] € X and Epi{f} is nonempty. We conclude that the data in
.b satisfy the premise of the “if" part of Proposition applying Proposition to these data, we
arrive at A.

B. By A, X is the epigraph of certain p.r.f., and by , on the intersection of the domain of this
p.rf. with half-space t > 0 (this intersection is nonempty!) the function is ¢f(z/t). Invoking Proposition
we conclude that the p.r.f. in question is indeed the function f as defined above. O

(2.4.13)

Note that the perspective transform (same as its convexity-preserving property) extends from polyhedrally
representable functions to convex ones.

Proof of Proposition In one direction: Assume that represents a proper function f.
Then, of course, is feasible. Next, if 2 € Dom f, the set T(z) := {7 : 3w : 7p+ Qw < r — Pz} is the
ray {7 > f(z)} C R, and the recessive cone of this set is the nonnegative ray; on the other hand, by S.6 this
recessive cone is the set R := {7 € R: Jw : 7p + Quw < 0}, that is, the cone K := {[,w] : 70+ Qu < 0} is
contained in the half-space {7 > 0} and contains a point with positive T-component, as claimed.

Now assume that the set & = {[z;7] : 3w : Pz + 7p + Qw < r} is nonempty, and that the cone K
belongs to the half-space 7 > 0 and contains a point with positive 7-component, and let us prove that £ is
the epigraph of a function, specifically, the function f with the domain which is the projection E of £ onto
the z-plane, and the value at a point = from this domain equal to min,c7(.) 7. All we need to verify is that
when z € F, the set T(z) is a ray of the form {7 : 7 > a} with a real a. Indeed, when z € E, T(z) is
nonempty and is a polyhedral set on the real axis; by S.6, the recessive cone of this set is the projection of
KC onto the T-axis, and we are in the situation when this projection is R. Thus, the recessive cone of the
polyhedral subset 7(z) of R is Ry, so that 7 (z) indeed is a ray. a

2.4.4.3 * When the convex hull of finite union of polyhedral sets is polyhedral?

Let Xq,...,.Xx be nonempty polyhedral sets in R™. As is immediately seen, their union X = UleXk

not necessarily is convex and thus not necessarily is polyhedral. What is convex, is the convex hull X =

Conv(UkK:1 X},) of the union. Is it polyhedral? Let us look at two examples where K =2, n = 2:

— X5 ={[z1;22]) : 0 <y < 1,29 =0}, Xy ={[0;1]}. Here X = {[z1;22] : > 0,21 + 22 < 1} is a nice

polyhedral set;

—Xl = {[.231'1‘2] 0 < Tr1,To2 = 0} XQ = {[01]} Here Y = {[1‘1'1‘2] x>0 $2{ S 1 ' 21 =0 } is
e T =T ’ T e T = <1l ,21>0

not polyhedral, but the closure of X is.

The following result explains what is going on here:

Proposition 2.4.3 Let X, k < K, be nonempty polyhedral sets in R™ given by polyhedral representations
X = {(ﬂ : Eiuk : Pox + Qkuk < Tk}.
Consider the set X given by polyhedral representation

N Pk.'L‘k + Qk k_ e <0,k < K (a)
X={o: " N,k <K:{ N >0,3, =1 (b) }.
kak:m (c)
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The polyhedral set X is the closure of the convex hull X of the union of X1,...,X k. If the latter sets are
bounded, then X is X itself, so that in the case of bounded sets X, the convex hull of their union is polyhedral.

Proof. Observe, first, that the convex hull X of the union X = |J Xj is exactly the set of vectors
k<K

representable as z = Y, A\ga® with 2% € X, A, >0, and >, A\, = 1.

Indeed, all we need to verify is that if z = Zle wsy® with ug > 0, y* € X, s < S, and
Yootts =1, thenz =3, \rz® with properly selected A\, > 0, z* € X, k < K, and YA =1
To see that it indeed is the case, note that we clearly can split the index set {1,2,...,.5} into K
non-overlapping subsets Sk, k < K (some of these subsets can be empty) in such a way that
s € S implies that us > 0 and yS € Xj. For k with nonempty Sk, let us set \;, = Zsesk s
and 2F = ZsGSk Sey® so that ¥ € X}, due to the convexity of the latter set. For k with empty
Sy, let us set A, = 0 and select somehow ¥ in the (nonempty!) set X;. As a result, we get
= sy’ =, Apz® with 2% € Xi, A, > 0, and > Ak = 1; verification is complete. Note
that so far we did not use polyhedrality of X}'s, just nonemptiness and convexity of these sets.

Let X be the set of all vectors representable as convex combinations, with positive coefficients, of vectors
from X1, ..., Xg; note that X C X.
Observe that

_ Pkack + Qkuk e <0,kE< K (a’)
X={v: 3 N, k<K:{ X>0,3, M =1 V) } Q)
T=73 ak (<)

Indeed, when z belongs to the right hand side set in (1), we have y* := A\, 'z* € X}, due to Py +Qx [\, 'u*] <

ri, and & = 37, Axy¥. Vice versa, when z € X, we have z = 3", Axy* with positive A, summing up to 1 and
k€ X},. The latter means that there exist v* such that P,y* 4+ Qov* < ry. Setting 2F = \py¥, uF = A\po¥,
we ensure validity of (a’) — (¢/), so that x belongs to the right hand side set in (!).

Observe that X is dense in X, meaning that every point 2 € X is the limit of a sequence of points

from X. Indeed, when z = ok Arx® with nonnegative A\, summing up to 1 and z* € X, we have

r=lmje0 ) ) Allle//Z k and the points in the right hand side sequence belong to X. Finally, observe that

X is closed (it is polyhedrally representable and thus polyhedral) and X is dense in X. Indeed, by (!) we have
X C X. On the other hand, let us fix somehow Z* € X} and Ar > 0 such that kak =1, and let ©* be
such that P,7% 4+ Q" < 7. Given z € X, there exist 2, u* and \; satisfying (a) — (c). Setting

ah = (1= 1/i)a% + (1/)MT¥], ub = (1= 1/i)u® + (1/i)[wa),
i = (1= 1/i)Ap + (1)) Ag, i =1,2,...

and taking into account that

Pkl’k + Qkuk < ATk, Pk[/\kx ] + Qk[/\kuu } MeTr kb < K

we ensure that Pz + Qpu < )\;ﬂrk, Aki >0, >, )\;ﬂ =1, implying that z(®) : => 28 e X. Asi — oo,
we clearly have z® - g, , so that X indeed is dense in X. The latter combines with closedness of X to imply
that X is the /c\losure of X, and the latter set, due to the fact that X is dense in X, is the same as the closure
of X. Thus, X =cl X.
It remains to prove that when X are bounded, then X is closed. This is immediate: assuming that
o = lim;e0 Y, Ak with nonnegative A\g;, >, Ari = 1, and 2¥% € X, boundedness of Xi, k < K, allows
to find a subsequence i1 < i3 < ... of indexes such that for some A\ and =¥, k < K, |t holds Ax;, — Ax and
xFis — zF for every k as s — oco. Since X, are polyhedral and thus closed, we have ¥ € X}, and of course
Ak >0, Y Ak =1, thatis, = limg o0 D) Aps, 2™ =D, Apzh e X. O
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Illustration. Consider the situation as follows. We are given n nonempty and bounded polyhedral sets
X; CR", j =1,...,n; think about them as about “resource sets” of production units: entries in z € X; are
amounts of various resources, and X; - the set of vectors of resources available, in principle, for j-th unit. The
vector of products of j-th unit depends on the vector z; of resources consumed by the unit and production
plan utilized in the unit; there exists K; < oo of these plans, and the vector of products y; € R? stemming
from resources x; under k-th plan can be picked by us, at our will, from the set

Yile;) = {y; € R” : 2 = [uj; —y;] € V'),

where V]k k < Kj, are given to us bounded polyhedral “technological sets” of the units with projections onto
the z;-plane equal to X, so that for every £ < K it holds

z; € X; © 3y, [xj;—y4] € ij (2.4.14)

We assume that all the sets ij are given by polyhedral representations, and set

vi= U v
k<K;

Given total vector R € R" of resources available to all n units and the \éector P € RP of total demands
on the products, for j < n we want to select z; € X, k; < K, and y; € Y; 7[z;] in such a way that

Yu;<R&E Yy > P
J J

or, which is the same, to select z; = [z;;v;] € V}, j < n, in such a way that Zj zj < [R; —P]. The presence of
“combinatorial part” in our decision — selection of production plans in finite sets — makes the problem difficult
(NP-hard, see Lecture @ Let us try to apply Shapley-Folkman Theorem to overcome, to some extent, this
difficulty. Observe that our problem reads

Find zj € Vj such that ) 7_, z; < s:= [R; —P]. (P)

Note that given polyhedral representations of V*, we, in view of Proposition can build efficiently explicit
polyhedral representations of the convex hulls

V; = Conv(V;)
of the sets V;. Let us relax the problem of interest (P) to the problem
Find z; € Vj such that 3 7_, z; < s := [R; =P]. (P)

By calculus of polyhedral representations, (P) is problem of the form

Given polyhedral representation of nonempty polyhedral set Z C R"™P and vector s € R" TP,
find z € Z such that z < s.

that is an explicit LO feasibility problem. Thus, we can apply LO to check whether (P) is solvable, and if it
is the case — find a solution {z;,7 < n} to (P). Applying Shapley-Folkman Theorem, we can convert, in a
computationally efficient fashion, this solution into another feasible solution, {[z;;v;],7 < n}, for which for
all but at most

d := min[r + p,n]

components [z;;v;] belong to Vj, that is, “are implementable” — for the corresponding j, z; € X, and
yj = —vj € ijj [z;] with properly selected k; < K. For “bad” indexes j — those for which [z;;v,] € V;\V},
let the set of these indexes j be denoted by J — we still have z; € X;. We can correct the corresponding



114 LECTURE 2. POLYHEDRAL SETS AND THEIR GEOMETRY

Yo passing from [x;;v;] to [x;;7;] with T; € —Y'[x;], or, better, T; defined as the optimal solution to the
“best” — with the smallest optimal value — of the convex optimization problem

min{ o — welly s (255 ue] € VI, b < K

As a result, we get “fully implementable” solution {[z;;7,],7 < n}, where 5; = v, for j & J, to problem (P).
This solution, in general, is infeasible. However, selecting ¢ € [1, o], setting
max v—2'|l,, D=max; D,
= ey || llq i Dj
and taking into account that Card(J) < d = min[r + p,n], we have > [x;;7;] < s+, [|0]ly < dD, and
>_;2j < R. Inthe case of “mass production”, when || P|[4 is large, the violation of the constraint 3, v; < —P

as quantified by ||0]|4 is small fraction of the magnitude of P, and our implementable solution has chances to
be a good, from “practical perspective,” surrogate of a feasible solution to (P).

*Refinement by randomization. The above corrections v; + T;, j € J were aimed at getting
implementable solution to (P) which satisfies the resource constraint Zj x; < R, albeit perhaps violates the
production constraint Zj v; < —P. If we are ready to violate both of the constraints, we can use alternative

correction possessing certain theoretical advantages. Specifically, let us set ¢ = 2 [ﬂ, redefine D; and D as

D; = max Hz—z”g, D = max D,
zz’E J

and relax the assumption (2.4.14]) to
VJ <n:k SK]'JUJ';’UJ'} c V}k = Uuj € Xj.

For j € J, the vectors z; = [z;;v;] we have built when solving (P) are convex combinations of certain vectors
k ] c Vk

Zj_[J’J

55 v] ZAJ ; [N >0, ZKJ /\i =1]

Treating A/ as probability distribution on the finite set {1,...,K;}, let us generate random collections of
vectors [£;;n;], j € J, by generating at random, independently of each other, indexes k;, j € J, with k;
drawn from the distribution A’ on {1,..., K;}. Observe that all realizations [{;,7;] belong to V; and thus are
implementable by j-th production unit. Besides this,

E{[&;m5]} = 2 = [w5; 0]
(E stands for expectation) and
E{|ll&:n;] - 23} < D2,
implying, in view of mutual independence of [£;;7;] over j and since the random vectors [£;;7;] — z; are zero

mean, that
E{1> (&im] —z) 15} =D B{ll[&m5] — 213} < dD>.

JjeJ jeJ

0

It follows that the typical || - ||o-norm of the random vector § is of order of Dv/d. At the same time, random
solution ¢ to (P) for which blocks ¢; with j & J are [zj;v;], and blocks (; with j € J are [¢;;n;] is
implementable — (; € Vj for all j — and satisfies >, (; < [R;—P] + 4. Thus, the typical || - [|2-norm of
violation of the target constraint }_, z; < [R; —P] by our implementable random solution is of order of DVd
— much better that for our original deterministic corrections, where the bound on violation of the constraint
was proportional to d. To get a reasonable implementable solution to (P), we can generate at random, say,
100 realizations of ¢ and select the one with the smallest || - ||2-norm of constraint violation.

9With some minor modifications, we could allow for ¢ to lie in [2, 0]
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2.5 Exercises

Exercise 2.1 In the below list, mark the sets which are linear subspaces and point out their
dimensions.

1. R"

2. {0}
3. 0

4. {z eR": Y iz; =0}
i=1

5. {z e R": Y ix? =0}

6. {zx e R": > ix; =1}
i=1

7. {x eR": Y iz =1}

Exercise 2.2 Point out a linear and an affine bases in the linear subspace
n
{:BGR”:Z:@:O}
i=1

and the orthogonal complement to this subspace.

Exercise 2.3 In the below list, mark sets which are affine subspaces and point out their affine
dimensions.

1. R"

2. {a}
3.0

4. {xeR“:iixi:O}
5. {mER":iix?zO}
6. {xeR“:iixizl}
7. {xeR“:Zn:ia??:I}

Exercise 2.4 Point out the linear subspace parallel to the affine subspace

M:{xER":inzl}CR”,
i=1

and an affine basis in M.
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Exercise 2.5 In the below list, point out the dimensions of the sets and mark those sets which
are convex.

1. R"

2. {0}

3. {zeR": Y
4. {z e R": > " | iz; <0}
5. {fz e R": >
6. {r e R": Y " ix? =1}

7. {zeR": >N ia? <1}
8. {xeR": Y1 iz >1}

9. {x € R%: |oq| + |z2| < 1}
10. {x € R?: |2q| — |z2| < 1}
11. {z € R?*: —|z1| — |xa| < 1}

Exercise 2.6 For the sets to follow, point out their linear and affine spans and their convex
hulls:

Lo X ={[0;1], [1; 1], [2; 1]}
2. X ={[0;0]; [1;0}; [1;1]; [0; 1]}
3. X={zecR?:20=0,|m| <1}
4. X ={x € R?: 29 =1,|z| < 1}
5. X ={z € R? : |11| — |22] = 1}
Exercise 2.7 Mark by T those of the following claims which always are true:
1. The linear image Y = {y = Az : z € X} of a linear subspace X is a linear subspace
2. The linear image Y = {y = Az : x € X} of an affine subspace X is an affine subspace
3. The linear image Y = {y = Az : x € X} of a convex set X is convex
4. The affine image Y = {y = Az +b: 2 € X} of a linear subspace X is a linear subspace
5. The affine image Y = {y = Az + b : z € X} of an affine subspace X is an affine subspace
6. The affine image Y = {y = Az +b: 2 € X} of a convex set X is convex
7. The intersection of two linear subspaces in R is a linear subspace

8. The intersection of two affine subspaces in R" is an affine subspace
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9. The intersection of two affine subspaces in R™, when nonempty, is an affine subspace
10. The intersection of two convex sets in R™ is a convex set

11. The intersection of two convex sets in R, when nonempty, is a convex set
Exercise 2.8 Given are n distinct from each other sets
EiCEy,C..CE,
in R'°. How large can be n, if
1. every one of Fj; is a linear subspace

2. every one of Fj; is an affine subspace

3. every one of E; is a convex set

Exercise 2.9 Let X be a nonempty convex set in R"™ and x € X. Prove that x is an extreme
point of X

1. if and only if the set X\{z} is convex

2. if and only if for every representation z = Zle Aix; of & as a convex combination of points
from X with positive coeflicients A; it holds =; =z, 1 =1,..., k

Exercise 2.10 Let X = {z € R": aZTac < b;, 1 <i<m} be a polyhedral set. Prove that
1. If X’ is a face of X, then there exists a linear function e’z such that

X' = Argmaxelz = {reX: el'z = sup eTa:'}.
zeX r’'eX

2. If v is a vertex of X, then there exists a linear function e’

maximizer of this function on X.

x such that v is the unique

Exercise 2.11 Describe all extreme points of the following convex sets:
1. X = Conv{l,2,3,4,5}
2. X = Conv{]0;0], [1;1],[1;0], [0.5;0.5] }
3. X={zeR":0<z;<1,1<i<n,y " o <3/2}
4. X ={z e R": |z]2 <1}

5. X={xeR":2>0,> "z =1>" ax; =1}, where a; < az < ... < ap.

Exercise 2.12 By Birkhoff Theorem, the extreme points of the polytope II,, = {[z;;] € R™™" :
zij > 0,3 @i = 1Vj, > xij = 1Vi} are ezactly the Boolean (with entries 0 and 1) matrices
from this set. Prove that the same holds true for the “polytope of sub-double-stochastic” matrices
Hm,n = {[.%'Z]] e Rm*n . Tij > O,Zixij <1Vy, ijij < IVi}.
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Exercise 2.13 [follow-up to Exercise [2.12] Let z be an n x n entrywise nonnegative matriz with
all row and all column sums < 1. Is it true that for some double-stochastic matrix T, the matrix
T — x is entrywise nonnegative?

Exercise 2.14 Point out the recessive cones and the extreme points of the polyhedral sets
. X={zcR3: 21 >0,29 > 0,23 >0}
2. X ={z€R?:21>0,29 > 0,71 + 12 <2}

3. X={rxeR?: 21 >0,20 > 0,21 +22 <2}
Think what is the general form of the result on Ext(X) you got.

4. X ={z €R®:21 > 0,29 > 0,21 + 20 < 2,23 > 0}
Exercise 2.15 Prove that if a nonempty polyhedral set X is represented as
X = Conv({v1, ...,un}) + Cone ({r1, ..., rar}),

then Rec(X) = Cone ({r1,...,7am}).

Hint: Assuming that a recessive direction e of X does not belong to Cone ({ry,...,7ar}), use the
Homogeneous Farkas Lemma to verify that there exists d such that d’e < 0 and dTrj > 0 for
all j, and think of whether the linear function d”z of z is bounded below on X.

Exercise 2.16 Prove that if K is a polyhedral cone, then the dual cone K, is so, and (K,). = K.

Exercise 2.17 Prove that if K = {z € R" : alz > 0,i = 1,..,m}, then K, =
Cone ({a1,...,am}).

Exercise 2.18 Prove that if K is a polyhedral cone and d is a generator of an extreme ray of
K, then in every representation

d=dy+..+dy, d; € KYi
d; are nonnegative multiples of d.

Exercise 2.19 Let
K = Cone ({71, ..., 7 })-

Prove that if R is an extreme ray of K, then one of r; can be chosen as a generator of k. What
is the “extreme point” analogy of this statement?

Exercise 2.20 Let K1, ..., K, My,..., M,, be polyhedral cones in R™. Prove that

1. My + ...+ M, is a polyhedral cone in R".

2. (Kl NKoN...N Km)* = (Kl)* + ...+ (Km)*

Exercise 2.21 For the polyhedral cones to follow, point out a base (if it exists), extreme rays
(if they exist) and a polyhedral representation of the dual cone (you may skip the derivations
and present the results only).
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1. K={0} CR

2. K=R

3. K={r cR?:21>0,29 > 0,21 <22}

4. K={x € R®: 21 + 22 > 0,29 + 23 > 0,21 + 23 > 0}

5. K={z €R>:z1 + 12 > x3,22 + 23 > 1,21 + 3 > X2}
Exercise 2.22 For the polyhedral sets X to follow, find their representations in the form of

X = Conv({vy,...,vn}) + Cone ({ri,...,mar})

(you may skip the derivation and present the results only)

. X={zeR":2>0,>,x; <1}

2. X={zeR":2>0,) 2, >1}

3. X={zeR":2>0,1<> 2, <2}

4. X ={z € R®: 2> 0,21 + 29 — 23 > 0}.

5. X={zecR3:2>0,21 +x9 — 23 >1}.

Exercise 2.23 [computational study] Implement in software the approaches presented in Illus-
tration from Section and run simulations. Recommended setup (for notation, see Section

2159):
e n=20,p=r=10
° X]:{$€Rp0§$z§171§p}7]:17an

o Vilz;] = {y € R?: 0 < y < P¥z;, where P, 1< i <p, 1<j<n, are generated at
random permutation matrices

e R, P: generated at random with entries P;, R; uniformly distributed on [0,n]

Quantify the inaccuracy of implementable solution {[x;;y;],7 < n} to (P) by the quantity

D2z — R+ + [R— > y5]+
b+ R 7

where [z]+ is the sum, over i, of positive parts max[z;, 0] of entries z; in vector z.

Apply both deterministic and randomized techniques for building implementable solutions to
problem (P) described in Illustration, select the result with smaller inaccuracy and register the
resulting inaccuracies in a series of simulations.

Exercise 2.24 [semi-computational study| Let n and m be positive integers with n > 2. Let
us call an (m,n)-bundle a collection € of m (n — 1)-dimensional linear subspaces Ej, ..., By,
i R™. Such a collection can be represented by m nonzero vectors e; € R™, © < n, according
to B; = {vr € R" : efx = 0}. Let us call an (m,n)-bundle & = {E;,i < m} regular, if for
every k < min[m,n|, the intersection of every k of the linear subspaces from the collection & is
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of dimension n — k. Equivalently: (m,n)-bundle & = {E; = {x € R" : elx = 0},i < m} is
regular if and only if for every k < min[m,n|, every k among the vectors e, ..., en, are linearly
independent.

Given (m,n)-bundle, we can partition R™ as follows: at every point x outside of Uj<m E; the
m reals eipx, egx, <yl x are nonzero; let us call the sequence of their signs the signature of x.
The set of points x & Uij<m s with a given signature clearly is convexr and open whenever it is
nonempty, and these sets do not overlap; let us call a nonempty set of this type the cell of the
partition given by £ with signature in question. Thus, given £, we can partition E, into the
union of hyperplanes E; and a finite number of cells — nonempty open convez sets; their closures
are cones bonded by hyperplanes E;.

As a simple example: let 1 < m < n withn > 1 and E;, 1 < i < m, are coordinate
hyperplanes: E; = {x € R™ : x; = 0}. The cells of the partition associated with the just
described regular (m,n)-bundle are the 2™ sets {x € R" : ¢;x; > 0,9 < m} associates with 2™
sequences € = (€1, ..., €m) with ¢, = £1.

The goal of Exercise is to understand how many cells are there in a partition associated with
(m,n)-bundle and extract some consequences.

1) Prove the following fact:

(!) The number of cells in the partition associated with regular (m,n)-bundle,
m > 1, n > 2, depends solely on m,n, but not on the specific (m,n)-bundle in
question. This number, let it be denoted N(m,n), satisfies the relation

n>2m=1= N(m,n) =2,

n>2,m>2= N(m,n)=N(m—1,n)+N(m-1n-1), (25.1)

where by definition N(u,1) =2 when p > 1.

2) Given (m,n)-bundle with n > 2, we can subject the vectors ey, ..., e, to whatever small
perturbations to make the perturbed bundle reqular; on the other hand, small enough pertur-
bations of the data of an (m,n)-bundle cannot reduce the number of cells in the associated
partition. Derive from these observations that

Specifying the function N(m,n) of m > 1,n > 2 by the recurrence
Nm+1,n+1)=N(m,n+1)+ N(m,n), m>1,n>2

and “initial conditions” N(m,1) =2, m > 1 and N(1,n) =2, n > 1, we get
an upper bound on the number of cells in a partition associated with (m,n)-
bundle; this bound coincides with the actual number of cells whenever the bundle
s reqular.

Use the recurrence to compute N(5,10) and N(10,20).

3) Imagine you draw at random, in a symmetric with respect to orthogonal rotations fashion,
11-dimensional linear subspace of R*? E What are the chances to get a linear subspace

1075 get a random k-dimensional subspace F in R™ in a fashion invariant w.r.t. rotations of the space, it suffices
to generate an (n — k) X n Gaussian matrix G — random matrix with entries drawn at random, independently
of each other, from the standard Gaussian distribution, and to take E = Ker G. Indeed, when U is an n X n
orthogonal matrix, GU has exactly the same distribution as G, so that with our construction the distribution of
U™'E is the same as the distribution of E. Alternatively, you can generate n x k Gaussian matrix A and take its
image space as F.
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4)

5)

6)
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containing strictly positive vector? Answer the same question when you draw your 11-
dimensional subspace at random from R?!.

Consider m hyperplanes F; = {x € R™ : a;fpx = b}, a; # 0, b; # 0; let us call such a
collection an inhomogeneous (m, n)-bundle. For a point x € R™\(U;F}), the reals al'z —b;,
1 =1,...,m, are nonzero; let us call the sequence of their signs the signature of x. Same as
in the case when the hyperplanes pass through the origin, the entire R™ is partitioned into
the union of U; F; and a number of cells - convex sets with nonempty interior comprised of
points with common signature. Prove that with N(m,n) given by (!), the function

1
5N(m+1,n+1)

is a tight upper bound on the number of cells in the partition of R™ associated with an
inhomogeneous (m,n)-bundle.

Given positive integers m,n, consider random polyhedral set
P={zeR": Az > b}

with m X n matriz A and entries in A, b drawn, independently of each other, from the
standard Gaussian distribution. What is the probability p(m,n) for this set to have a
nonempty interior? Fill the following table:

p(10,10) [ p(20,10) | p(30, 10) | p(40, 10) | p(30, 10) | p(60, 10) | p(70, 10)

Consider Standard form LO program with n variables and m < n equality constraints:

n n
max{z Cjx; Z Ajjr; =bi,i <m, x> 0.}
j=1 j=1

Assuming A;; and b; drawn at random, independently of each other, from the standard
Gaussian distribution, what is the probability q(m,n) for the problem to have strictly pos-
itive feasible solution? Fill the following table:

q(10,10) | ¢(10,20) | q(10,30) | q(10,40) | q(10,50)

(100, 100) | (100, 150) | q(100,200) | ¢(100,250) | ¢(100,300)

Exercise 2.25 [computational study] Find the number of extreme points in the polyhedral set

5
Q={recR’: Zcos(z’-j)xj <10,i=1,...,10}.
j=1

and compare it with the upper bound (150) = 252 given by Algebraic characterization of extreme
points.
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Exercise 2.26 [computational study] Generate 1000 polyhedral sets

5
{z € R°: Z@ijxj < b;, 1 <10}
j=1

with the data entries drawn at random, independently of each other, from the uniform distribution
on {—1,0,1}, and find percentage of instances which are

— empty

— contain lines

— bounded

— unbounded

— nonempty and bounded



Lecture 3

Theory of Systems of Linear
Inequalities and Duality

With all due respect to the results on polyhedral sets we became acquainted with, there still are
pretty simple questions about these sets (or, which is basically the same, about finite systems
of linear inequalities) which we do not know how to answer. Examples of these questions are:
e How to recognize whether or not a polyhedral set X = {x : Ax < b} is empty?

e How to recognize that a polyhedral set is bounded /unbounded?

e How to recognize whether or not two polyhedral sets X = {x : Ax < b} and X' = {z : A'z <V}
coincide with each other? More generally, With X, X' as above, how to recognize that X C X'?
e How to recognize whether or not a given LO program is feasible/bounded/solvable?

This list can be easily extended...

Now, there are two ways to pose and to answer questions like those above:

A. [Descriptive approach] One way is to ask what are “easy to certify” necessary and sufficient
conditions for a candidate answer to be valid. E.g., it is easy to certify that the solution set
X ={x € R": Az < b} of a system of linear inequalities Az < b is nonempty — a certificate
is given by any feasible solution to the system. Given a candidate certificate of this type — a
vector x € R™ — it is easy to check whether it is a valid certificate (plug x into the system and
look whether it becomes satisfied); if it is so, the system definitely is solvable. And of course
vice versa — if the system is solvable, this property can be certified by a just outlined certificate.
In contrast to this, it is unclear how to certify that the solution set of a system Ax < b is empty,
which makes the question “whether X = {x : Az < b} is or is not empty” difficult.

B. [Operational approach] After we know what are “simple” certificates for candidate answers
to the question under consideration, it is natural to ask how to generate appropriate certificates.
For example, we know what is a simple certificate for nonemptiness of the solution set of a
system Az < b — this is (any) feasible solution to this system. This being said, it is unclear
how to build such a certificate given the system, even when it is known in advance that such a
certificate exists.

In this lecture we focus on A; specifically, we will find out what are simple certificates for
various properties of polyhedral sets. The questions of how to build the certificates (which,
essentially, is an algorithmic question) will be answered in the part of the course devoted to LO
algorithms.

123
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3.1 General Theorem on Alternative

3.1.1 GTA: Formulation, proof, different versions

Consider a general finite system of m linear inequalities, strict and non-strict, in variables
x € R™. Such a system always can be written down in the form

T <b, 1€l
aix{gbi, i€l ()

where a; € R™, b; € R, 1 <i < m, I is certain subset of Z := {1,...,m}, and I is the complement
of I in 7.

The fact that (S) is a “universal” form of a finite system of strict and nonstrict
linear inequalities and linear equations is evident: a linear inequality a’« = b can
be equivalently represented by the system of two opposite inequalities a”2 < b and
a’xz > b, thus we can think that our system is comprised of inequalities only; every
one of these inequalities can be written in the form a”xQb, where € is a relation
from the list <, <, >,>. Finally, we can make the signs 2 of all inequalities either
<, or <, by replacing an inequality of the form a2 > b (a’x > b) by its equivalent
[—a]"z < [-b] ([-a]"@ < [-b)).

In what follows we assume that the system is nonempty, otherwise all kinds of questions about
the system become trivial: an empty system of equations is solvable, and its solution set is the
entire R"™.

The most basic descriptive question about (S) is whether or not the system is solvable. It
is easy to certify that (S) is solvable: as we have already explained, any feasible solution is a
certificate. For example, to certify solvability of the system

—4u —9v 45w > 1.9
—2u  +6v > =2
Tu —bw > 1
it suffices to point out a solution, e.g., u = 1/7,v = —2/7,w = 0; every one who know arithmetics

can plug this solution into the system and see that the solution is feasible, thus certifying that
the system is solvable.

A much more difficult question is how to certify that the system is unsolvableﬂ In Mathe-
matics, the typical way to prove impossibility of something is to assume that this something does
take place and then to lead this assumption to a contradiction. It turns out that finite systems of
linear inequalities are simple enough to allow for unified — and extremely simple — scheme for
leading the assumption of solvability of the system in question to a contradiction. Specifically,
assume that (S) has a solution Z, and let us try to lead this assumption to a contradiction by
“linear aggregation of the inequalities of the system.”

n real life, it was realized long ago that certifying a negative statement is, in general, impossible. Say, a
French-speaking man can easily certify his knowledge of language: he can start speaking French, thus proving his
knowledge to everybody who speaks French. But how could a man certify that he does not know French? The
consequences of understanding that it is difficult or impossible to certify negative statements are reflected in rules
like “a person is not guilty until proved otherwise,” and this is why in the court of law the accused is not required
to certify the negative statement “I did not commit this crime;” somebody else is required to prove the positive
statement “the accused did commit the crime.”
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Let us start with example: To certify that the system

—4u —-9v +dbw > 2
—2u  +6v > =2
Tu —bw > 1

has no solutions, it suffices to point out that aggregating the inequalities of the
system with weights 2, 3, 2, we get a contradictory inequality:

2% | —4u —9v +5w > 2

+
3x | —2u +6v > =2

+
2X Tu —dw > 1
O-vu +40-v +0-w > 0

By how we aggregate, every solution to the system must solve the aggregated in-
equality. The latter clearly has no solutions, implying that so is the system.

This example suggests the way to certify insolvability of (S) as follows. Let A;, 1 < i < m, be
nonnegative “aggregation weights.” Let us multiply the inequalities of system (S) by scalars \;
and sum up the results. We shall arrive at the “aggregated inequality”

[Z Xiai] 'z Q Z)\ibia (3.1.1)

where the sign € of the inequality is either < (this is the case when at least one strict inequality
in (S) gets a positive weight, i.e., A; > 0 for some i € I), or < (this is the case when \; = 0 for
all i € I). Due to its origin and due to the elementary properties of the relations ” <” and ” <”
between reals, the aggregated inequality is a consequence of the system — it is satisfied at
every solution to the system. It follows that if the aggregated inequality has no solutions at all,
then so is the system (S). Thus, every collection A of aggregation weights \; > 0 which results
in unsolvable aggregated inequality , can be considered as a certificate of insolvability of
(S).

Now, it is easy to say when the aggregated inequality has no solutions at all. First,
the vector of coeflicients ), A\ja; of the variables should be zero, since otherwise the left hand
side with properly chosen = can be made as negative as you want, meaning that the inequality
is solvable. Now, whether the inequality 07 2Qa is or is not solvable, it depends on what is €
and what is a. When =7 < 7, this inequality is unsolvable iff ¢ < 0, and when Q =" <7 it
is unsolvable iff a < 0. We have arrived at the following simple

Proposition 3.1.1 Assume that one of the systems of linear inequalities

do o2 0iel N > 0i€eT
: 2ierhi > 0 : Yerdi = 0
) Yierhia; = 0 , (I Sierhiai = 0 (3.1.2)
DiezAibi <0 g Aibi < 0

in variables A1, ..., \p, s solvable. Then system (S) is insolvable.
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Indeed, if A solves (I), then, aggregating the inequalities in (S) with the weights A;, one gets a
contradictory inequality of the form 07z < ”something nonpositive”. When X solves (II), the
same aggregation results in a contradictory inequality of the form 072 < ”somehting negative”.
In both cases, (S) admits a consequence which is a contradictory inequality (i.e., inequality with
no solutions), whence (S) itself has no solutions. O

Remark 3.1.1 Both systems in (3.1.2) are homogeneous, and therefore their solvability/insol-
vability is equivalent to solvability/insolvability of their “normalized” versions

/ Zz’e] Aio >0 1 N . Zie[ N = 0
i Aibi <0 Sy Aib < -1

which contain only equalities and nonstrict inequalities. Thus, Proposition says that if
either (I'), or (Il') is solvable, then (S) is unsolvable.

One of the major results of the LO theory is that the simple sufficient condition for insolv-
ability of (S) stated by Proposition is in fact necessary and sufficient:

Theorem 3.1.1 [General Theorem on Alternative] A finite system (S) of linear inequalities
is insolvable if and only if it can be led to a contradiction by admissible (A > 0) aggregation.
In other words, system (S) of linear inequalities in variables x has no solutions iff one of the
systems (1), (IT) of linear inequalities in variables A has a solution. o

Postponing the proof of GTA, we see that both solvability and insolvability of (S) admit simple
certificates: to certificate solvability, it suffices to point out a feasible solution x to the system;
to certify insolvability, it suffices to point out a feasible solution A to either (I) or (II). In both
cases, (S) possesses the certified property iff an indicated certificate exists, and in both cases it
is easy to check whether a candidate certificate is indeed a certificate.

Proof of GTA. Proposition justifies the GTA in one direction — it states that if either (I),
or (II), or both the systems, are solvable, then (S) is insolvable. It remains to verify that the
inverse also is true. Thus, assume that (S) has no solutions, and let us prove that then at least
one of the systems (I), (II) has a solution. Observe that we already know that this result takes
place in the special case when all inequalities of the system are homogeneous (i.e., b = 0) and
the system contains exactly one strict inequality, let it be the first one. Indeed, if the system of
the form

ple<0,ptz<0,..,plz <0 (S)
with k£ > 1 inequalities has no solutions, then the homogeneous linear inequality plTa: >0isa
consequence of the system of homogeneous linear inequalities —pd x > 0, —pgTaz > 0,...,—p;€x > 0.

By HFL, in this case there exist nonnegative \o, ..., A such that p; = Zf:g Ai[—pi], or, setting
A =1,

k
Ai>0,1<i<k Y Nipi=0.
i=1

We see that A solves system (I) associated with (.5).
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Now let us derive GTA from the above particular case of it. To this end, given system (S),
consider the following system of homogeneous linear inequalities in variables x,y,z (y, z are
scalar variables):

(a) -z < 0

() afz—by+z < 0,iel

(c) alr—by < 0,iel (3.1.3)
(d) z—y < 0

We claim that this system is insolvable. Indeed, assuming that this system has a solution [z; y; 2],
we have z > 0 by (a), whence y > 0 by (d). Setting ' = y~'z and dividing (b) and (c) by y, we
get
ale' —b; < —(2/y) <0,i€l, ala’ —b;<0,icl,

that is, 2’ solves (S), which is impossible, since we are under the assumption that (S) is insolv-
able.

Now, system is in the form of (.S), whence, as we have seen, it follows that there exist
nonnegative Ag, ..., A1 with Ag = 1 such the combination of the right hand sides in

with coefficients Ag, ..., Amp+1 is identically zero. This amounts to

(a) Yoo ia;g = 0 [look at the coefficients at x]
(b) Yoy Aibi = —Apmq1 [look at the coefficients at y] (3.1.4)
() Dierdi+tAmpr = 1 [look at the coefficients at z]

Recalling that A, ..., \;,+1 are nonnegative, we see that

— in the case of \j,+1 > 0, (3.1.4la,b) say that Aq,..., Ay, solve (II);

— in the case of \j,+1 =0, (3.1.4la,b,c) say that A, ..., A, solve (I).

Thus, in all cases either (I), or (II) is solvable. O

Several remarks are in order.
A. There is no necessity to memorize the specific forms of systems (I), (II); what you should
memorize, is the principle underlying GTA, and this principle is pretty simple:

A finite system of linear equations and (strict and nonstrict) inequalities has no
solutions if and only if one can lead it to contradiction by admissible aggregation of
the inequalities of the system that is, by assigning the inequalities weights making
it legitimate to take the weighted sum of the inequalities and making this weighted
sum a contradictory inequality.

In this form, this principle is applicable to every system, not necessary to one in the standard

form (S). What does it actually mean that the aggregated inequality is contradictory, it depends

on the structure of the original system, but in all cases it is straightforward to understand what

“contradictory” means and thus it is straightforward to understand how to certify insolvability.
For example, the recipe to realize that the system

r1+x9 > 0
r1 — T2 3
21’1 2

IA I

is insolvable is as follows: let us multiply the first inequality by a nonnegative weight A;, the
second equality — by a whatever weight A2, and the third inequality - by a nonpositive weight
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A3; then it is legitimate to sum the resulting relations up, arriving at
/\1[331 + xg] + /\Q[xl — CEQ] + /\3[21’1] QA -04+X-3+A3-2 (*)

where Q is 7 > 7 when Ay > 0 and € is 7 > ” when A\ = 0. Now let us impose on \’s
the requirement that the left hand side in the aggregated inequality as a function z1, o is
identically zero. Adding to this the above restrictions on the signs of \;’s, we arrive at the
system of restrictions on A, specifically,

M+ A+2X3=0
AM— A =0 (')
)\1207)\3§0

which expresses equivalently the fact that the aggregation is “legitimate” and results in identi-
cally zero left hand side in the aggregated inequality (x). The next step is to consider separately
the cases where Q2 =7 > 7" and 2 =7 > 7. The first case takes place when A\; > 0, and here,
under assumption (1), () reads 0 > 3\y + 2A3; thus, here the fact that the aggregated inequality
is contradictory boils down to

A1 > 0,3 +2A3 > 0. (CL)

we get a system of constraints on A such that its feasibility implies insolvability of the original
system in z-variables. The second case to be considered is that € =” > 7, which corresponds
to A1 = 0; here the aggregated inequality, under assumption (!), reads 0 > 33X + 23, thus, in
the case in question the fact that the aggregated inequality is contradictory boils down to

AL =0,3) 423 >0 (b)

Now, GTA says the original system in x-variables is insolvable iff augmenting (!) by either
(a), or (b), we get a solvable system of constraints on \. Since the system (!) implies that

A1 = A9 = — A3, and thus 3A2 + 2A3 = — )3, these augmentations are equivalent to
A3 <0
and
A3 =0, —=A3 > 0.

The first system clearly is solvable, meaning that the original system in variables x is insolvable;
as an insolvability certificate, one can use A3 = —1,A1 = Ao = —A3 = 1.

B. It would be easier to use the GTA if we knew in advance that one of the systems (I), (II),
e.g., (II), is insolvable, thus implying that (S) is insolvable iff (I) is solvable. Generic cases of
this type are as follows:

o. There are no strict inequalities in (S). In this case (I) definitely is insolvable (since the strict
inequality in (I) clearly is impossible), and thus (S) is insolvable iff (II) is solvable;

e The subsystem of S comprised of all nonstrict inequalities in (S) is solvable. In this case, (II)
definitely is insolvableEI; thus, (S) is insolvable iff (I) is solvable.

%look at (IT): this system in fact is not affected by the presence of strict inequalities in (S) and would remain
intact if we were dropping from (S) all strict inequalities. Thus, if (II) were solvable, already the subsystem of
nonstrict inequalities from (S) would be insolvable, which is not the case.
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The reasoning in the footnote can be extended as follow: if we know in advance
that certain subsystem (S) of (S) is solvable, we can be sure that the admissible ag-
gregation weights \; which lead (S) to a contradiction definitely associates positive
weights with some of the inequalities outside of (S). Indeed, otherwise the contradic-
tory aggregation, given by A, of the inequalities from (S) would be a contradictory
aggregation of the inequalities from (S), which is impossible, since (S) is solvable.

3.1.1.1 Corollaries of GTA

Specifying somehow the structure of (S) and applying GTA, we get instructive “special cases”
of GTA. Here are several most renown special cases (on a closest inspection, every one of them
is equivalent to GTA)

Homogeneous Farkas Lemma is obtained from GTA when restricting (S) to be a system
of homogeneous inequalities (b; = 0 for all i) and allowing for exactly one strict inequality in
the system (check it!). Of course, with our way to derive GTA, this observation adds nothing
to our body of knowledge — we used HFL to obtain GTA.

Inhomogeneous Farkas Lemma. The next statement does add much to our body of knowl-
edge:

Theorem 3.1.2 [Inhomogeneous Farkas Lemma] A nonstrict linear inequality
alz < by (3.1.5)
18 a consequence of a solvable system of nonstrict inequalities
alz <b,1<i<m (3.1.6)

iff the target inequality (3.1.5)) is a weighted sum, with nonnegative coefficients, of the inequalities
from the system and the identically true inequality 0T < 1, that is, iff there exist nonnegative
coefficients A1, ..., Ay, Such that

iAiai = ap, i)\lbl S bQ. (317)
=1 =1

To see the role of the identically true inequality, note that to say that there exist monnegative
ALy ooy A satisfying (3.1.7) is exactly the same as to say that there exist nonnegative Ay, ..., Am+1
such that

m

[CLQ; bo} = Z )\i[ai; bz] + )\m+1[0; .5 05 1].
i=1

Proof. The fact that the existence of A\; > 0 satisfying (3.1.7]) implies that the target inequality
3.1.5|) is a consequence of the system (3.1.6)) is evident — look at the weighted sum ) )\ia;fpm <
i

; Aib; of the inequalities of the system and compare it with the target inequality; note that here

the solvability of the system is irrelevant. To prove the inverse, assume that the target inequality
is a consequence of the system and the system is solvable, and let us prove the existence of A; > 0
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satisfying (3.1.7). Indeed, since the target inequality is a consequence of the system ([3.1.6)), the
system of linear inequalities

—a'z < —b, otz <by,...,alx < by, ()

is insolvable. The GTA says that then an appropriate weighted sum, with nonnegative weights
140, --+5 i, Of the inequalities from the latter system is a contradictory inequality. It follows that
o is nonzero (since otherwise the weights p1, ..., iy, were certifying that the system is
insolvable, which is not the case). When pg > 0, the fact that the weighted sum

m T m
[MO[GO] +> mai] x < pol—bo] + ) _ pib;

i=1 i=1

of the inequalities from (%) is contradictory reads
m m
poao =Y pias, pobo = Y pibi,
i=1 i=1
meaning that \; = p;/uo are nonnegative and satisfy (3.1.7)). O

For two other renown equivalent reformulations of the GTA, see Exercise

Discussion. It is time now to explain why GTA is indeed a deep fact. Consider the following
solvable system of linear inequalities:

—-1<u<l, -1<v<1. O

From this system it clearly follows that u? < 1, v? < 1, whence u? + v? < 2. Applying the
Cauchy inequality, we have

uptug =1-u+1-v< V12 + 12y + 02 = V2y/u2 + 02

which combines with the already proved u?+v? < 2 to imply that u+v < v/2v/2 = 2. Thus, the
linear inequality u+wv < 2 is a consequence of the solvable system of linear inequalities (!). GTA
says that we could get the same target inequality by a very simple process, free of taking squares
and Cauchy inequality — merely by taking an admissible weighted sum of the inequalities from
the original system. In our toy example, this is evident: we should just sum up the inequalities
u <1 and v <1 from the system. However, a derivation of the outlined type could take 1,000
highly nontrivial (and “highly nonlinear”) steps; a statement, like GTA, capable to predict in
advance that a chain, whatever sophisticated, of derivations of this type which starts with a
solvable system of linear inequalities and ends with a linear inequality, can be replaced with just
taking weighted sum, with nonnegative coefficients, of the inequalities from the original system,
should indeed be deep...

It should be added that in both Homogeneous and Inhomogeneous Farkas Lemma, it is
crucial that we speak about linear inequalities. Consider, for example, a target homogeneous
quadratic inequality

2T Apz < 0 (*)



3.1. GENERAL THEOREM ON ALTERNATIVE 131

along with a system
2T Az < 0,1<i<m, O

of similar inequalities, and let us ask ourselves when the target inequality is a consequence of the
system. A straightforward attempt to extend HFL to quadratic case would imply the conjecture
“(x) is a consequence of (!) if and only if the symmetric matrix Ag is a conic combination of the
matrices A;, 1 = 1,...,m.” On a closest inspection, we realize that to expect the validity of this
conjecture would be too much, since there exist nontrivial (i.e., with nonzero symmetric matrix
Ap) identically true homogeneous quadratic inequalities #7 Agz < 0, e.g., —2T2 < 0; these are
inequalities produced by the so called negative semidefinite symmetric matrices. Clearly, such
an inequality is a consequence of an empty system (!) (or a system where all the matrices
A, ..., Aj are zero), while the matrix Ap in question definitely is not a conic combination of
an empty collection of matrices, or a collection comprised of zero matrices. Well, if there exist
identically true homogeneous quadratic inequalities, why not to think about them as about
additional inequalities participating in (!)? Such a viewpoint leads us to an improved conjecture
“a homogeneous quadratic inequality (k) is a consequence of a finite system (!) of similar
inequalities if and only if Ay can be represented as a conic combination of Ay, ..., A,, plus a
negative semidefinite matrix?” (Note that in the case of homogeneous linear inequalities similar
correction of HFL “is empty”, since the only homogeneous identically true linear inequality is
trivial — all the coefficients are zero). Unfortunately, the corrected conjecture fails to be true
in general; its “if” part “if Ag is a conic combination of matrices Ai, ..., A, plus a negative
semidefinite matrix” is trivially true, but the “only if” part fails to be true. Were it not so,
there would be no difficult optimization problems at all (e.g., P would be equal to NP), but we
are not that lucky... This being said, it should be noted that

e already the trivially true “if” part of the (improved) conjecture is extremely useful — it
underlies what is called semidefinite relaxations of difficult combinatorial problems;

e there is a special case when the improved conjecture indeed is true — this is the case when
m = 1 and the “system” (in fact, just a single inequality) (!) is strictly feasible — there exists &
such that z7A1Z < 0. The fact that in the special case in question the improved conjecture is
true is called S-Lemma which reads

Let A, B be symmetric matrices of the same size. A homogeneous quadratic inequal-
ity 2T Bx < 0 is a consequence of strictly feasible homogeneous quadratic inequality
2T Az < 0 iff there exists A > 0 such that the matrix B — \A is negative semidefinite.

Whatever poor looks this fact as compared to its “linear analogy” HFL, S-lemma is one of the
most useful facts of Optimization.

3.1.2 Answering questions

Now we are in a good position to answer question we posed in the preface of the lecture . All
these questions were on how to certify such and such property; to save words when presenting
answers, let us start with setting up some terminology. Imagine that we are interested in certain
property of an object and know how to certify this property, that is, we have at our disposal a
family of candidate certificates and an easy-to-verify condition C on a pair (“object,” “candidate
certificate”) such that whenever a candidate certificate and the object under consideration fit
the condition C, the object does possess the property of interest. In this situation we shall say
that we have in our disposal a certification scheme for the property.
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E.g., let the objects to be considered be polyhedral sets in R", given by their de-
scriptions of the form {Az < b}, the property of interest be the nonemptiness of a
set, candidate certificates be vectors from R", and the condition C be “a candidate
certificate T satisfies the system of constrains Az < b specifying the object under
consideration.” What we have described clearly is a certification scheme.

By definition of a certification scheme, whenever it allows to certify that a given object X
possesses the property of interest (that is, whenever there exists a candidate certificate S which
makes C(X,S) valid), X indeed possesses the property. We say that a certification scheme is
complete, if the inverse also is true: whenever an object possesses the property of interest, this
fact can be certified by the certification scheme. For example, the outlined certification scheme
for nonemptiness of a polyhedral set clearly is complete. When strengthening the condition
C underlying this scheme to “a candidate certificate T has zero first coordinate and satisfies
the system of constrains Az < b specifying the object under consideration,” we still have a
certification scheme, but this scheme clearly is incomplete.

Finally, we note that certifying the presence of a property and certifying the absence of this
property are, in general, two completely different tasks, this is why in the sequel we should (and
will) consider both how to certify a property and how to certify its absenceﬁ

When a polyhedral set is empty/nonempty? Here are the answers:

Corollary 3.1.1 A polyhedral set X = {x € R" : Ax < b} is nonempty iff there exists x such
that Ax < b. The set is empty iff there exists A > 0 such that ATX =0 and b"\ < 0.

Indeed, the first part is a plain tautology. The second part is verified as follows: by GTA, X
is empty iff there exists a weighted sum AT Az < ATb of the inequalities, the weights being
nonnegative, which is a contradictory inequality; the latter clearly is the case iff ATA = 0 and
bI'A < 0. O

When a polyhedral set contains another polyhedral set? The answer is given by

Corollary 3.1.2 A polyhedral setY = {x : p;fpx < gi,1 <i <k} contains a nonempty polyhedral
set X = {x: ATz < b} iff for every i <k there exist X' > 0 such that p; = ATA\" and ¢; > b7\,

Indeed, Y contains X iff every inequality p;fpsc < q; defining Y is satisfied everywhere on X, that
is, this inequality is a consequence of the system of inequalities Az < b; it remains to use the
Inhomogeneous Farkas Lemma. O

Now, Y = {z : plz < ¢;,1 < i < k} contains X = {z : Az < b} iff either X = (), or
X # 0 and X C Y. It follows that in order to certify the inclusion X C Y, it suffices to
point out either a vector A satisfying A > 0, ATA = 0,b7\ < 0, thus certifying that X = ()
(Corollary , or to certify that X # () and point out a collection of vectors \’, satisfying
X>0,p; = ATN ¢ > TN, 1 < i <k, thus certifying that every one of the inequalities defining
Y is valid everywhere on X. In fact, in the second case one should not bother to certify that

30f course, if certain property admits a complete certification scheme S, the absence of this property in an
object X is fully characterized by saying that X does not admit a certificate required by S; this, however, is a
negative statement, and not a certification scheme!
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X # (), since the existence of A\ as in Corollary is sufficient for the validity of the inclusion
X C Y independently of whether X is or is not empty (why?). It should be added that

e the outlined certification scheme for the inclusion X C Y is complete;

e it is trivial to certify that X is not contained in Y’; to this end it suffices to point out an
x € X which violates one or more of the linear inequalities defining Y'; this certification scheme
also is complete.

As a direct consequence of our results, we get a complete certification scheme for checking
whether two polyhedral sets X = {z € R": Ax < b} and Y = {z € R" : Cx < d} are/are not
identical. Indeed, X = Y iff either both sets are empty, or both are nonempty and both the
inclusions X C Y and Y C X hold true, and we already know how to certify the presence/absence
of all properties we have just mentionedﬁ

When a polyhedral set is bounded /unbounded? Certifying boundedness. A polyhedral
set X = {x € R" : Az < b} is bounded iff there exists R such that X is contained in the box
Br={zr e R": eiTac <R, —e;fpx < R, 1 < i < n}, where ey, ..., e, are the standard basic orths.
Thus, certificate of boundedness is given by a real R augmented by a certificate that X C Bp.
Invoking the previous item, we arrive at the following “branching” scheme: we either certify
that X is empty, a certificate being a vector X satisfying A > 0, ATA = 0,67\ < 0, or point
out a collection (R, \', ', ..., A", u") satisfying X\ > 0, ATXN = ¢;,bT Nt < R, p* > 0, ATyt =
—e;, bt < R, 1 < i < m, thus certifying that X C Bgr. The resulting certification scheme is
complete (why?).

Note that when certifying boundedness of nonempty set, one should not bother about
selecting R; whenever for every i there exist A > 0, u* > 0 such that AT\ = ¢,
ATy = —e;, X is bounded, since augmenting {\’, '} by large enough R ensures
that b7\ < R, bT,ui <R.

Certifying unboundedness. An unbounded set clearly should be nonempty. By Corollary
a polyhedral set is unbounded iff its recessive cone is nontrivial. Applying Proposition we
conclude that in order to certify unboundedness of a polyhedral set X = {z € R" : Az < b}, it
suffices to point out a vector Z such that AZ < b and a nonzero vector y such that Ay < 0, and
this certification scheme is complete.

A useful corollary of the results in this item is that the properties of a nonempty polyhedral
set X = {z : Az < b} to be bounded/unbounded are independent of a particular value of b,
provided that with this value of b, the set X is nonempty.

How to certify that the dimension of a polyhedral set X = {z € R" : Az < b} is
> / < a given d? First of all, only nonempty sets possess well defined dimension, so that the
“zero step” is to certify that the set in question is nonempty. We know how to certify both this

1At first glance, the very question to which we have answered seems to be fully scholastic; in comparison,
even the question “how many angels can sit at the tip of a needle” discussed intensively by the Medieval scholars
seems to be practical. In fact the question is very deep, and the possibility to answer it affirmatively (that is, by
indicating a complete certification scheme where the validity of candidate certificates can be efficiently verified) is
“an extremely rare commodity.” Indeed, recall that we wand to certify that two sets are/are not identical looking
at the descriptions of these sets, and not at these sets as abstract mathematical beasts in the spirit of Plato.
To illustrate the point, the Fermat Theorem just asks whether the set of positive integer quadruples z,y, z,p
satisfying 2 + y? — 22 = 0 and p > 3 is or is not equal to the set of positive integer quadruples (z,y, z,p)
satisfying = 0; this form of the theorem does not make it neither a trivial, nor a scholastic statement.
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property and its absence; thus, we can work under the assumption that the nonemptiness of X
is already certified.

Let us start with certifying the fact that dim X > d, where d is a given integer. By Theorem
2.1.2](iii) and Lemma dim X = dim Aff(X) > d iff one can point out d + 1 vectors
xg, ..., g € X such that the d vectors x1 — xg, z2 — x9, ..., 4 — To are linearly independent. Both
the inclusions z; € X, ¢ = 0,1, ...,d, and the linear independence of x1 — g, ..., g — ¢ is easy
to verify (how?), so that we can think of a collection xy, ..., z4 with the outlined properties as a
certificate for the relation dim X > d. The resulting certification scheme clearly is complete.

Now let us think how to certify the relation dim X < d, d being a given integer. There
is nothing to certify if d > n, so that we can assume that d < n. For a nonempty X C R",
the relation dim X < d holds iff there exists an affine subspace M in R™ such that X ¢ M
and dim M < d; the latter means exactly that there exists a system of n — d linear equations
aiTx = b; with linearly independent a1, ..., a,_4 such that X is contained in the solution set of
the system (see section . The intermediate summary is that dim X < d iff there exist n —d
pairs (a;, b;) with linearly independent ay, ..., a,,—q such that for every i aZTx = b; on X, or, which
is the same, both a;fpx < b; and —a?m < —b; everywhere on X. Recalling how to certify that a
linear inequality a2 < B is a consequence of the solvable system Az < b of linear inequalities
defining X, we arrive at the following conclusion: In order to certify that dim X < d, where
X ={x € R": ATz < b}, A being an m x n matrix, and X being nonempty, it suffices to point
out n — d vectors a; € R™, n — d reals b; and 2(n — d) vectors A\, u* € R™ such that

® ai,..., a0, g are linearly independent,
e for every i < n — d, one has \* >0, AT)\; = a; and b7\ < b;,
e for every i <n —d, one has p* >0, ATp' = —a;, bTpt < —b;.

Every one of the above conditions is easy to verify, so that we have defined a certification scheme
for the relation dim X < d, and this scheme clearly is complete.

3.1.3 Certificates in Linear Optimization

Consider an LO program in the form

Pr < p ()
Opt=max< clz:{ Qz > ¢ (9 (3.1.8)
! Rz = r (e

(7€ from "less or equal”, ”¢” from ”greater or equal”, "e” from ”equal”).

Of course, we could stick to a “uniform” format where all the constraints are, say, the 7 <”-
inequalities; we prefer, however, to work with a more flexible format, reflecting how the LO’s
look “in reality.” Our goal is to show how to certify the basic properties of an LO program.

3.1.3.1 Certifying feasibility /infeasibility

Certificate for feasibility of is, of course, a feasible solution to the problem. Certificate
for infeasibility is, according to our theory, a collection of aggregation weights A = [Az; Ag; A¢]
associated with the constraints of the program (so that dim Ay = dim p, dim A\, = dim g,
dim A, = dim r such that first, it is legitimate to take the weighted sum of the constraints, and,
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second, the result of aggregation is a contradictory inequality. The restriction to be legitimate
amounts to

Ao > 0,Ag <0, no restrictions on Ag;

when aggregation weights A satisfy these restrictions, the weighted by A sum of the constraints
is the inequality
[PTA + QTN + RTN) T < p" o+ ¢" Xy + 1T ),

and this inequality is contradictory if and only if the vector of coefficients of x in the left hand
side vanishes, and the right hand side is negative. Thus, A certifies infeasibility iff

A > 0,0 <0, PN+ QTN+ RN = 0,p" N+ ¢" N, + 77N <0 (3.1.9)

According to our theory, the outlined certification schemes for feasibility and for infeasibility are
complete.

3.1.3.2 Certifying boundedness/unboundness

Certifying boundedness of . An LO program is bounded iff it is either in-
feasible, or it is feasible and the objective is bounded above on the feasible set, that is, there
exists a real p such that the inequality ¢’z < u is a consequence of the constraints. We al-
ready know how to certify infeasibility; to certify boundedness for a feasible problem, we should
certify feasibility (which we again know how to do) and to certify that the inequality ¢’z < u
is a consequence of a feasible system of constraints, which, by the principle expressed by the
Inhomogeneous Farkas Lemma, amounts to pointing out a collection of weights A = [Ag; Ag; Ae]
which makes it legitimate to take the weighted sum of the constraints and is such that this
weighted sum is of the form ¢!z < constant. Thus, A in question should satisfy

A >0, <0, PPN+ Q" N\, + RT N =c. (3.1.10)

The resulting certification scheme for boundedness — “either certify infeasibility according to
, or point out a certificate for feasibility and a A satisfying ” — is complete. On a
closest inspection, there is no need to bother about certifying feasibility in the second “branch”
of the scheme, since pointing out a \ satisfying certifies boundedness of the program
independently of whether the program is or is not feasible (why?)

As an important consequence, we get the following

Corollary 3.1.3 For an LO program max{c'z : PTx < p,QT2z > q,RTz = r} the property to
X

be or not to be bounded is independent of the value of the right hand side vector b = [p;q;r],
provided than with this b the problem is feasible.

Indeed, by completeness of our certification scheme for boundedness, a feasible LO program is
bounded if and only if there exists A satisfying (3.1.10)), and the latter fact is or is not valid
independently of what is the value of b. o

Note that Corollary “mirrors” the evident fact that the property of an LO program to
be or not to be feasible is independent of what is the objective.
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Certifying unboundedness of . Program is unbounded iff it is feasible and
the objective is not bounded above on the feasible set. By Corollary the objective of a
feasible LO is unbounded from above on the feasible set iff this set has a recessive direction y
along which the objective grows: ¢’y > 0. It follows that a certificate for unboundedness can
be specified as a pair x,y such that

(a) Px<p,Qx>qRr=r
(b) Py<0,Qy>0,Ry=0 (3.1.11)
() cTy>0

Here (a) certifies the fact that the program is feasible, and (b) expresses equivalently the fact that
y is a recessive direction of the feasible set (cf. Proposition [2.3.4). The resulting certification
scheme is complete (why?).

3.1.3.3 Certifying solvability /insolvability

An LO program (3.1.8)) is solvable iff it is feasible and above bounded (Corollary , and we
already have in our disposal complete certification schemes for both these properties.
Similarly, (3.1.8) is insolvable iff it is either infeasible, or is feasible and is (above) unbounded,

and we already have in our disposal complete certification schemes for both these properties.

3.1.3.4 Certifying optimality /nonoptimality

A candidate solution Z to is optimal if and only if it is feasible and the linear inequality
c'z < 'z is a consequence of the (feasible!) system of constraints in . Invoking Inho-
mogeneous Farkas Lemma, we conclude that a certificate for optimality of  can be obtained by
augmenting T by a A = [Ag; Ag; A¢] satisfying the relations

((1) )‘Z > 07 )\g < 0,

b) PN +QTN\, +RT)\.=c 3.1.12
(0) g

() pIAe+q" Ay +rTA < Tz

and that the resulting certification scheme for optimality of T is complete provided that T is
feasible.
Observe that for whatever \ satisfying (3.1.12la) we have

A PT < p' A, AL QT < q"Ag, XL Rz =T\, (%)

and the first two inequalities can be equalities iff the entries in Ay and A, corresponding to the
nonactive at T inequality constraints — those which are satisfied at Z as strict inequalities — are
zeros. Summing up the inequalities in (x), we end up with

A P2+ AQE+ MRz < p" M+ ¢ A+ 1T e (!

On the other hand, if A satisfies (3.1.12/¢), then the inequality opposite to (!) takes place,
which is possible iff the inequalities in (%) are equalities, which, as we have seen, is equivalent
to the fact that the entries in A associated with nonactive at T inequality constraints are zero.
Vice versa, when the entries in A satisfying the nonactive at T inequality constraints are zero,
then c) is satisfied as an equality as well. The bottom line is that \ satisfies iff
\ satisfies the first two relations in and, in addition, the entries in \ associated with
non-active at & inequality constraints of are zeros. We have arrived at the following
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Proposition 3.1.2 [Karush-Kuhn-Tucker Optimality Conditions in LO] A feasible solution T to
an LO program (3.1.8) is optimal for the program iff T can be augmented by Lagrange multipliers
X = [Ai; Agi Ae] in such a way that the following two facts take place:

o multipliers corresponding to the ” < ”-inequality constraints €) are monnegative,
multipliers corresponding to the ” > 7 -inequality constraints g) are nonpositive, and, in
addition, multipliers corresponding to the nonactive at T inequality constraints are zero (all this
is called “complementary slackness”);

e one has

c=PIN\ +Q")\;+ R" ).

We have seen how to certify that a feasible candidate solution to is optimal for the
program. As about certifying nonoptimality, this is immediate: Z is not optimal iff it either
is not feasible for the program, or there exists a feasible solution y with ¢’y > ¢’'z, and such
an y certifies the nonoptimality of . The resulting “two-branch” certification scheme clearly is
complete.

3.1.3.5 A corollary: faces of a polyhedral set revisited

Recall that a face of a polyhedral set X = {z € R" : a;fpx < b1 < i < m} is a nonempty
subset of X which is cut off X by converting some of the inequalities a,sz < b; into equalities
al'x = b;. Thus, every face of X is of the form X; = {z: al x < b;,i € I,al'xz = b;,i € I}, where
I is certain subset of the index set {1,...,m} (which should be such that X; # 0)). As we have
already mentioned, a shortcoming of this definition is that it is not geometric — it is expressed
in terms of a particular representation of X rather than in terms of X as a set. Now we are in
a position to eliminate this drawback.

Proposition 3.1.3 Let X = {r € R": alz < b;,1 <i < m}, be a nonempty polyhedral set.
(i) If ¢z is a linear form which is bounded from above on X (and thus attains its mazimum
on X ), then the set Argmaxclz of maximizers of the form is a face of X.
X

(ii) Vice versa, every face X1 of X can be represented in the form X; = Argmaxclz for
X

appropriately chosen linear form ¢’ x.

In particular, every vertex of X is the unique maximizer, taken over x € X, of an appropri-
ately chosen linear form.

Since the sets of the form Argmax,.y ¢l x are defined in terms of X as a set, with no reference
to a particular representation of X, Proposition indeed provides us with a purely geometric
characterization of the faces.

Proof of Proposition is easy. To verify (i), let Z be a maximizer of ¢’z over X, and
let .J be the set of indices of all constraints al z < b; which are active at z: J = {i : al 7 = b;}.
Invoking the “only if” part of Proposition and noting that we are in the situation of
PT = [ay;...;a,,] with Q and R being empty, we conclude that there exist nonnegative \;, i € J,
such that ¢ = Y. ; Aja;. Let us set I = {i € J: \; > 0}, so that in fact ¢ = ), ; Aia;, and let

us verify that Argmaxc’'z = X (so that Argmax ¢’z is a face in X, as claimed). If I is empty,
X X
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then ¢ = ). ; Aia; = 0, so that Argmax 'z = Xy = X7, as required. Now let I # (). We have
X
Ve e X :cla = hai]lTe =3 Nfalz] < Yo \ibi
= ~

maxclz =c’'z =Y [Nal 7] = Y icr Nibi.

zeX iel
(we have taken into account that A\; > 0). From these relations it is clear that =z € X is a
maximizer of the linear form given by c iff the inequality (x) is an equality; the latter, for z € X,
takes place iff aZTx = b; for all i € I (since for such an x, a;fpx < b; and \; are strictly positive,
i € I), that is, iff x € X7, as required. (i) is proved.

To prove (ii), consider a face X7, and let us prove that it is nothing but Argmaxy ¢’z for a
properly chosen c. There is nothing to prove when I = (), so that X; = X; in this case we can
take ¢ = 0. Now let I be nonempty, let us choose whatever strictly positive A;, ¢ € I, and set
c = ;cr Nia;. By the “if” part of Proposition every point of the (nonempty!) face X; of
X is a maximizer of ¢’z over € X, and since all \;,i € I, are strictly positive, the reasoning
used to prove (i) shows that vice versa, every maximizer of ¢’z over X belongs to X;. Thus,

X1 = Argmax ¢’z for the ¢ we have built. O
X

3.2 LO Duality

We are about to develop the crucial concept of the dual to an LO program. The related
constructions and results mostly are already known to us, so that this section is a kind of
“intermediate summary.”

3.2.1 The dual of an LO program

Consider an LO program in the form of (3.1.8) (we reproduce the formulation for reader’s
convenience):

Pz < p (0
Opt(P) = max Az Qe > ¢ ((g; : (P)
Rx = r (e

From now on we refer to this problem as the primal one. The origin of the problem dual to
(P) stems from the desire to find a systematic way to bound from above the optimal value of
(P). The approach we intend to use is already well known to us — this is aggregation of the
constraints. Specifically, let us associate with the constraints of (P) the vector of dual variables
(called also Lagrange multipliers) A = [Ag; Ag; Ae] restricted to satisfy sign constraints

Ao > 0; ) <0. (3.2.1)

Using such a \ as the vector of aggregation weights for the constraints of (P), we get the scalar
inequality
PN+ QTN+ RIN) T < p" Ao+ T Ay + 7T (%)

which, by its origin, is a consequence of the system of constraints of (P). Now, if we are lucky
to get in the left hand side our objective, that is, if

PN+ QTN+ RT\. =,
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then (x) says to us that p? Ay + ¢T Ay + rT ). is an upper bound on Opt(P). The dual problem
asks us to build the best possible — the smallest — bound of this type. Thus, the dual problem
reads

_ : Ty .— T T Ty .
Opt(D)_A[inﬁlA%;Ae]{ AN =p N+ g Ag 1 Ae
N > 0 (D)
N < 0 }
PTX + QTN+ RN, = ¢

This is again an LO program.

3.2.2 Linear Programming Duality Theorem

The most important relations between the primal and the dual LO problems are presented in
the following

Theorem 3.2.1 [Linear Programming Duality Theorem| Consider primal LO program (P)
along with its dual (D). Then

(i) [Symmetry] Duality is symmetric: (D) is an LO program, and its dual is (equivalent to)
(P).

(ii) [Weak duality] Opt(D) > Opt(P), or, equivalently, for every pair (x,\) of feasible
solutions to (P) and (D) one has

DualityGap(z, \) := d" X\ — Tz = [p" Ao+ ¢ Ay + 77 2] — Tz > 0.

(iii) [Strong duality] The following properties are equivalent to each other:
(iii.1) (P) is feasible and bounded from above
(iii.2) (P) is solvable
(iii.3) (D) is feasible and bounded from below
(iii.4) (D) is solvable
(iii.5) Both (P) and (D) are feasible
and whenever one of these equivalent to each other properties takes place, we have Opt(P) =
Opt(D).
In addition, whenever one of the problems is feasible, the optimal values of (P) and (D) are
equal to each other.

Remark 3.2.1 LP Duality Theorem states that the duality is symmetric, and that “solvabil-
ity status” of feasible problem from a primal-dual pair fully specifies this status for the other
problem from the pair: if the feasible problem is bounded (or, which is the same for a feasible
LO, is solvable), the other problem from the pair is solvable, and if the feasible problem is
unbounded, the other problem of the pair is infeasible; in both these cases, the optimal values
in the problems are the same. In contrast, an infeasible component of a primal-dual pair
does not know what is the exact solvability status of the other problem of the pair: the latter
can be

(a) unbounded, as is the case for the pair

IF&X ]{xl x1 — 2 <0} (P)
s L2 )\ :1
m/\ln{O./\./\ZO,{_A :0} (D)

((D) is infeasible, (P) is feasible and unbounded, Opt(P) = Opt(D) = +00), and
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(b) infeasible, as is the case for the pair

T —x2 < 0
max zy: r3 <1 (P)
z=[z1;72;33] —xr3 <=2
)\1 =1
min A2 —2X3: A >0, —A =0 (D)
A=[A1;A2;A3] Ae—A3 =0

(both (P) and (D) are infeasible, Opt(P) = —oo, Opt(D) = +0c0).

Proof of LP Duality Theorem. (i): In order to apply the recipe for building the dual to
(D), we should first write it down as a maximization problem in the format of (P), that is, as

—Opt(D) = T 4+ qTA, TN
pt(D) A:[ﬁrﬁf;Ae]{ (" Ao +q" Ay + 711 A]

Ay < 0 ()
A = 0 (9) }
PTXxi+ QTN+ RTA. = ¢ (e)

This is the problem in the form of (P), with the matrices [0,1,0], [1,0,0], [PT,QT, RT] in the
role of P, QQ, R, respectively; here I and 0 stand for the unit and the zero matrices of appropriate
sizes (not necessary the same in different places). Applying to the latter problem the recipe for
building the dual, we arrive at the LO program

min {OTyg + OTyg + Ty,

Y=[Ye;yg;yr]
y > 0
yg < 0 }
lyg + Pyr;ye + Qyr; Ryy] = [—pi—q;—7]

We can immediately eliminate the variables y, and y,. Indeed, y, does not affect the objective,
and what the constraints want of y, is yo > 0, y¢ + Qy = —q, which amounts to —Qy, > q.
The situation with y, is similar. Eliminating y, and y,, we arrive at the following equivalent
reformulation of the problem dual to (D):

Py, > —p
min} c’y, :{ Qyr < —q o,
o Ry, = -—r

which is nothing but (P) (set © = —y,). (i) is proved.

(ii): Weak duality is readily given by the construction of (D).

(iii): Let us first verify that all five properties (iii.1) — (iii.5) are equivalent to each other.

(iii.1)«(iii.2): a solvable LO program clearly is feasible and bounded, the inverse is true due
to Corollary [2.4.7}(i).

(iii.3) < (iii.4): follows from the already proved equivalence (iii.1)<>(iii.2) due to the fact that
the duality is symmetric.

(iii.2)=-(iii.5): If (P) is solvable, (P) is feasible. In order to verify that (D) is feasible as
well, note that the inequality ¢’z < Opt(P) is a consequence of the system of the constraints
in (P), and this system is feasible; applying the Inhomogeneous Farkas Lemma, the inequality
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cT'z < Opt(P) can be obtained by taking admissible weighted sum of the constraints of (P) and
the identically true inequality 072 < 1, that is, there exists Ao > 0 and A = [Ar; Ag; Ae] satisfying
the sign constraints (3.2.1)) such that the aggregated inequality

Mo[072] + AT Pz + AL Qu+ M Re < Ao - 1+ A\ p+ A g+ Alr
is exactly the inequality ¢’z < Opt(P), meaning that
PN+ ¢" g+ RN =c

and
AP+ Aba+ N =0pt(P) — Ao (%)

Since A satisfies the sign constraints from (D), we conclude that A is feasible for (D), so that (D)
is feasible, as claimed. As a byproduct, we see from (x) that the dual objective at A is < Opt(P)
(since Ao > 0), so that Opt(D) < Opt(P). The strict inequality is impossible by Weak duality,
and thus Opt(P) = Opt(D).

(iii.4)=-(iii.5): this is the same as the previous implication due to the fact that the duality
is symmetric.

(iii.5)=-(iii.1): in the case of (iii.5), (P) is feasible; since (D) is feasible as well, (P) is bounded
by Weak duality, and thus (iii.1) takes place.

(iii.5)=-(iii.3): this is the same as the previous implication due to the fact that the duality
is symmetric.

We have proved that

(iii. 1)< (iii.2) = (iii.5)=> (iii. 1),
and that (iii.3)<(iii.4)=-(iii.5)=-(iii.3). Thus, all 5 properties are equivalent to each other. We
have also seen that (iii.2) implies that Opt(P) = Opt(D).

The “in addition” conclusion is immediate: by primal-dual symmetry we can assume that
the feasible problem is (P). If this problem is also bounded, both (P) and (D) are solvable with
equal optimal values by Strong Duality. and if (P) is unbounded, we have Opt(P) = +o0o, and
the dial problem is infeasible by Weak duality, that is, Opt(D) = 400 as well. O

3.3 Immediate applications of duality

In this section, we outline several important applications of the LO Duality Theorem.

3.3.1 Optimality conditions in LO

The following statement (which is just a reformulation of Proposition [3.1.2)) is the standard
formulation of optimality conditions in LO:

Proposition 3.3.1 [Optimality conditions in LO] Consider the primal-dual pair of problems

Px p ()
Opt(P) = mgx{cTac:{ Qx qg (9) }; (P)

Rz r (e)
0

Opt(D) = min dTX = pT x4+ qTxg + 7T : 0 (D)
(&

A=[AgiAgiAe]

IV IA

Ae

ATV

)‘9
PTXi4+ QT Ay + RT A,
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and assume that both of them are feasible. A pair (x,\) of feasible solutions to (P) and to (D)
is comprised of optimal solutions to the respective problems
— [Zero Duality Gap] iff the duality gap, as evaluated at this pair, is 0:

DualityGap(z, \) := [p? Ae + ¢ Ay + 77 A] — Tz =0

as well as

— [Complementary Slackness| iff all the products of Lagrange multipliers \; associated with
the inequality constraints of (P) and the residuals in these constraints, as evaluated at x, are
Zeros:

[)\(]Z[PZL‘ — p]i = OVi, [)\g]j[Ql‘ — q]j =0 V]

Proof. (i): Under the premise of Proposition we have Opt(P) = Opt(D) € R by the LP Duality
Theorem, meaning that

DualityGap(z, A) = [[p" A\ + ¢" Ay + 77 A] — Opt(D)] + [Opt(P) — c’'z] .

Since x, A are feasible for the respective problems, the quantities in brackets are nonnegative,
so that the duality gap can be zero iff both these quantities are zeros; the latter is the same as
to say that x is primal-, and A is dual optimal.

(ii): This is the same as (i) due to the following useful observation:

Whenever x is primal-, and X\ is dual feasible, we have
DualityGap(z, \) = A (p — Px) + )\g(q — Q). (3.3.1)
Indeed,

DualityGap(z, ) = Ml 'p + )\gq + AT — T

=AI'p+ )\gq + AL — [PTA 4+ QT Ay + RT A )T [since A is dual feasible]
=\ (p— Pz)+ AL (¢ — Qu) + AL[r — Ra]

=A'(p—Pz)+ A?(q — Q) [since z is primal feasible]

It remains to note that the right hand side in (3.3.1]) is

S IALP = Pali+ ) g — Qalj, )

? J

and all terms in these two sums are nonnegative due to sign restrictions on A coming from (D)
and the fact that z is primal feasible. Thus, DualityGap(x, A) is zero iff all terms in (!) are
zeros, as claimed. O

3.3.2 Geometry of a primal-dual pair of LO programs

Consider an LO program

Opt(P) = max {ch : Px <p,Rx = 7“} (P)
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along with its dual program

Opt(D) = . I&in/\ ] {p" Ao+ 1T X : A > 0,PTN + RTA. = ¢} (D)
=[AesAe

Note that to save notation (and of course w.l.o.g.) we have assumed that all the inequalities in
the primal problem are ” < 7.

Our goal here is to rewrite both the problems in a “purely geometric” form, which, as we
shall see, reveals a beautiful, simple and instructive geometry of the pair.

First, assume that the systems of linear equations participating in (P) and in (D) are solvable,
and let Z, —\ = —[\s; A¢] be solutions to the respective systems:

(a) Rz =r;

(b) PTh +RTA = —c. (3.3.2)

Note that the assumption of solvability we have made is much weaker then feasibility of (P) and
(D), since at this point we do not bother about inequality constraints.
Observe that for every x such that Rx = r we have

Tz = —[PTX+ RTA)Tx = —X\I'[Pxz] — \[[Ra]
= Mlp— Pa]+ [-Ap— AI'r]
D —
constp

so that (P) is nothing but the problem
Opt(P) = max {S\ZT[p — Pz] + constp : p— Pz > 0,Rx =71} .
Let us pass in this problem from the variable x to the variable
§=p— Pz

(“primal slack” — vector of residuals in the primal inequality constraints). Observe that the
dimension m of this vector, same as the dimension of )y, is equal to the number of inequality
constraints in (P). We have already expressed the primal objective in terms of this new variable,
and it remains to understand what are the restrictions on this vector imposed by the constraints
of (P). The inequality constraints in (P) want of £ to be nonnegative; the equality constraints
along with the definition of £ read equivalently that £ should belong to the image Mp of the
affine subspace Mp = {z : Rz = r} € RY™? under the affine mapping = + p — Px. Let
us compute Mp. The linear subspace Lp to which Mp is parallel is the image of the linear
subspace L = {x : Rz = 0} (this is the subspace Mp is parallel to) under the linear mapping
x — —Pux, or, which is the same, under the mapping = — Px. As a shift vector for Mp, we
can take the image p — PZ of the vector £ € Mp under the affine mapping which maps Mp onto
Mp. We have arrived at the following intermediate result:

(1) Problem (P) can be reduced to the problem
Opt(P) = max {MNee>0, ceLp+E}
Lp={Py:Ry=0},{=p— Pz
The optimal values of (P) and (P) are linked by the relation

Opt(P) = Opt(P) + constp = Opt(P) — X 'p — AL
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Now let us look at the dual problem (D), and, similarly to what we did with (P), let us represent
it solely in terms of the “dual slack” A\;. To this end, observe that if A\ = [A\s; \¢] satisfies the
equality constraints in (D), then

pI A4+ 7T e = pT A + [RZ]T Ao = pT A + ZT[RT\]
=p "N+ 7 [c— PTA] =[p— Pz|" N+ Z'c

constp
=&\ + constp;

we managed to express the dual objective on the dual feasible set solely in terms of Ay. Now,
the restrictions imposed by the constraints of (D) on A, are the nonnegativity: Ay > 0 and the
possibility to be extended, by properly chosen A., to a solution to the system of linear equations
PTX;+ R\, = c. Geometrically, the latter restriction says that \; should belong to the affine
subspace Mp which is the image of the affine subspace Mp = {[As; Ae] : PTAp + RTAe = ¢}
under the projection [Ag; Ac] — As. Let us compute Mp. The linear subspace £p to which Mp
is parallel clearly is given as

Lp={\:3\: P"N+ RN\ =0};

as a shift vector for Mp, we can take an arbitrary point in this affine space, e.g., the point —\,.
We have arrived at the following result:

() Problem (D) can be reduced to the problem
Opt(D) = /\mgl {ETAZ A >0,0 € Lp — 5\4}
cER™
Lp={N:Ie: PTA+ Q") =0}
The optimal values of (D) and (D) are linked by the relation

Opt(D) = Opt(D) + constp = Opt(D) + ' c.

Now note that the linear subspaces Lp = {Py: Ry =0} and Lp = {A\;: I\ : PTA+RT ). =0}
of R” are closely related — they are orthogonal complements of each other. Indeed,

(Lp)t ={\: A Py=0Vy: Ry=0},

that is, Ay € £1J5 if and only if the homogeneous linear equation (P?)\,)”y in variable y is a
consequence of the system of homogeneous linear equations Ry = 0; by Linear Algebra, this is
the case iff PT)\; = RT i for certain p, or, setting A\, = —pu, iff PTX\y + RT )\, = 0 for properly
chosen A.; but the latter is nothing but the description of Lp.

We arrive at a wonderful geometric picture:

Problems (P) and (D) are reducible, respectively, to
Opt(P) = max {N€:€ 20,6 € Mp = Lp +} (P)

and

Opt(D) = )\?elil{lm {ET)\Z N >0, 0 € Mp = ﬁ# — S\g}
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Both (P) and (D) are the problems of optimizing a linear objective over the inter-
section of an affine subspace (called primal, resp., dual feasible plane) in R™ and
the nonnegative orthant R'", and the “geometric data” (the objective and the affine
subspace) of the problems are closely related to each other: they are given by a pair
of vectors &, \¢ in R™ and a pair of linear subspaces Lp, Lp which are orthogonal
complements to each other. Specifically,

e the feasible planes of (P) and (D) are shifts of the linear subspaces Lp = L3 and
Lp= EJIs, respectively;

e the objective (to be maximized) in (P) is A} £, and minus the vector A is also a shift
vector for the dual feasible plane Mp. Similarly, the objective (to be minimized) in
(D) is €¥' )y, and the vector € is also a shift vector for the primal feasible plane M p

The picture is quite symmetric: geometrically, the dual problem is of the same structure as the
primal one, and we see that the problem dual to dual is the primal. Slight asymmetry (the
vector Ay responsible for the primal objective is minus the shift vector for the dual problem,
while the vector & responsible for the dual objective is the shift for the primal) matches the fact
that the primal problem is a maximization, and the dual problem is a minimization one; if we
were writing the primal and the dual problem both as maximization or both as minimization
programs, the symmetry would be “ideal.”

Now let us look what are, geometrically, the optimal solutions we are looking for. To this
end, let us express the duality gap via our slack variables & and \;. Given feasible for (P) and
(D) values of £ and Ay, we can associate with them x and A according to

E=p— Pz, R =r, PT)\g—l—RT)\e:c;

clearly,  will be a feasible solution to (P), and A = [Ag; Ae] will be a feasible solution to (D).
Let us compute the corresponding duality gap:

DualityGap(z,\) = [pTAe+ 77X —clz=p" Ao+ 1T A — [PTAr + RT A ]z
= (p—Px)T')\+[r— Ra]T ),
— T,

Thus, the duality gap is just the inner product of the primal and the dual slacks. Optimality
conditions say that feasible solutions to (P) and (D) are optimal for the respective problems iff
the duality gap, as evaluated at these solutions, is zero; in terms of (P) and (Q), this means that
a pair of feasible solutions to (P) and (D) is comprised of optimal solutions to the respective
problems iff these solutions are orthogonal to each other. Thus,

To solve (P) and (D) means to find a pair of orthogonal to each other and nonnegative
vectors with the first member of the pair belonging to the affine subspace M p, and
the second member belonging to the affine subspace M p. Here Mp and Mp are
given affine subspaces in R™ parallel to the linear subspaces Lp, Lp which are
orthogonal complements of each other.

Duality Theorem says that this task is feasible iff both Mp and Mp do contain

nonnegative vectors.

It is a kind of miracle that the purely geometric problem at which we have arrived, with for-
mulation free of any numbers, problem which, modulo its multi-dimensional nature, looks as an
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ordinary exercise from a high-school textbook on Geometry, is in the focus of research of at least
three generations of first-rate scholars, is the subject of dedicated university courses worldwide
and, last but not least, possesses huge spectrum of applications ranging from poultry production
to signal processing.

A careful reader at this point should rise the alarm: We indeed have shown that a
primal-dual pair of LO programs with m inequality constraints in the primal problem
and feasible systems of equality constraints can be reduced to the above geometric
problem; but how do we now that every instance of the latter problem can indeed be
obtained from a primal-dual pair of LO’s of the outlined type? This is a legitimate
question, and it is easy to answer it affirmatively. Indeed, assume we are given
two affine subspaces Mp and Mp in R" such that the linear subspaces, Lp and
Lp, to which Mp and Mp are parallel, are orthogonal complements of each other:
Lp= £JI5. Then

Mp=Lp+E&& Mp=Lp— N (%)

for properly chosen & and ;. We can represent £p as the kernel of an appropriately
chosen matrix R. Consider the LO in the standard form:

mgax{jngﬁ : —£ <0,RE = RE},

and let us take it as our primal problem (P). The dual problem (D) then will be

min {[RET A : Ao > 0, =X+ RTA = Ao}
A=[AgsAe]

Clearly, the systems of linear equality constraints in these problems are solvable, one
of solutions to the system of linear constraints in (P) being & (which allows to take
T = £), and one of the solutions to the system of linear constraints in (D) being
[~ A¢;0;...;0]. It allows to apply to (P) and (D) our machinery to reduce them to
problems (P), (D), respectively. From observations on what can be chosen as feasible
solutions to the systems of equality constraints in (P) and in (D) it is immediate to
derive (do it!) that the problem (P) associated with (P) is nothing but (P) itself,
so that the its primal feasible affine plane is {¢ : R¢ = R}, which is nothing but
Lp+ &= Mp. Thus, (P) = (P) is nothing but the problem

m?x{X{fg:gzo,geMpzﬁeré}.

According to the links between (P) and (D) we have established, (D) is nothing but
the problem

min{fT)\g:)\gEO, )\ZGEIJS—S\Z}.
Ae

The affine feasible plane in (D) is therefore Mp (see (x)), and our previous analysis
shows that the geometric problem associated with (P), (D) is exactly the problem
“pick in the nonnegative parts of M p and M p vectors which are orthogonal to each
other.”

The last question to be addressed is: the pair of problems (P), (D) is specified by a pair
Mp, Mp of affine subspaces in R™ (this pair cannot be arbitrary: the parallel to Mp, Mp
linear subspaces should be orthogonal complements to each other) and a pair of vectors £ € Mp
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and Ay € [-Mp]. What happens when we shift these vectors along the corresponding affine
subspaces? The answer is: essentially, nothing happens. When ), is shifted along —M p, that
is, is replaced with A;+ A with A € Lp, the dual problem (D) remains intact, and the objective
of the primal problem (P) restricted on the feasible plane M p of this problem is shifted by a
constant depending on A (check both these claims!); this affects the optimal value of (P), but
does not affect the optimal set of (P). Similarly, when shifting £ along M p, the primal problem
(P) remains intact, and the objective of the dual problem (D) on the feasible plane of this
problem is shifted by a constant depending on the shift in £. We could predict this “irrelevance
of particular choices of £ € Mp and A\, € —Mp” in advance, since the geometric form of the
primal-dual pair (P), D) of problems: ”find a pair of orthogonal to each other nonnegative
vectors, one from Mp and one from Mp” is posed solely in terms of Mp and Mp.
Our geometric findings are illustrated on figure (3.1

z

Figure 3.1: Geometry of primal-dual pair of LO programs.

e OXYZ: nonnegative orthant Ri’;

e ABCD: (visible part of the) feasible set of (P) — intersection of the 2D primal feasible plane
Mp with the nonnegative orthant Rij_

e EF: feasible set of (D) — intersection of the 1D dual feasible plane M p with the nonnegative
orthant Ri. Pay attention to orthogonality of the plane ABCD and the line E'F.

e B: optimal solution to (P), E: optimal solution to (D). Pay attention to orthogonality of B
(which lays on the X-axis) and E which belongs to the Y'Z coordinate plane.

3.3.3 Antagonistic bilinear games
3.3.3.1 (Games: preliminaries

Consider antagonistic game as follows: we are given two nonempty sets X C R™, Y C R" and
a (bounded, for the sake of simplicity) cost function F(x,y) : X x Y — R. These data give rise
to the game of two players, you and me. You select a point y € Y, I select a point z € X; as a
result, I pay to you the sum F(z,y). I am interested to minimize my loss F'(x,y), and you - to
maximize your gain F(x,y). How should we make our choices x, y? Consider two situations:

e [ make my choice z € X first, and it becomes known to you when you make your choice
yevy.

In this case, I should be ready to pay for a choice # € X the sum as large as F(z) :=
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sup F(z,y): selecting z, I never will pay more than F(x), and my loss can be exactly
yey

this quantity (when sup F(z,y) is achieved), or arbitrary close to it smaller quantity. As
yey

a result, if I am risk-averse, my selection should minimize my worst-case loss F(z) over
x € X, that is, I should solve the optimization problem

Opt(P) = mingex |F(z) = sup F(z,y)

yey

(P)

Opt(P) = inf sup F(z,
pi(P) = inf sup F( y>]

(P) is called the primal optimization problem associated with the game in question.

e You make your choice y € Y first, and it becomes known to me when I make my choice
reX.

In this case, you should be ready to get for a choice y € Y the sum as small as F(y) :=
in}f( F(x,y): selecting y, you never will get less than F(z), and your gain can be exactly
BAS

this quantity (when in)f( F(x,y) is achieved), or arbitrary close to it larger quantity. As
S

a result, if you are risk-averse, your selection should maximize your worst-case gain F(y)
over y € Y, that is, you should solve the optimization problem

Ont(D) = max|FG) = inf Flap)| (D)

Opt(D) = sup inf F(z,y)
yEY zeX

(D) is called the dual optimization problem associated with the game.

Common sense says that the second case is better for me than the first one, so that Opt(D)
should be < Opt(P). This indeed is the case:

Proposition 3.3.2 [Weak Duality in antagonistic games| In the situation in question, the pri-
mal objective F(x) is everywhere on X greater than or equal to the dual objective F(y) everywhere
onY:

Vize X,y€Y): F(x) > F(y),

implying that

inf sup F(z,y) = Opt(P) > Opt(D) := sup inf F(z,y).
TE€X yecy yey T€X

Indeed, let Z € X and 4 € Y. Then F(Z) = sup F(Z,y) > F(Z,y) and F(y) = in;f( F(z,y) <
yey faS
F(z,79), whence F(y) < F(z). O
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Saddle points. The challenging question is, of course, what should you and me do when
making our choices simultaneously, so that neither you, nor I know the choice of the adversary
when making our own choices. While this question has no meaningful answer in general, there
is a case when it admits a good answer — this is the case when our game has an equilibrium,
that is, there exists a saddle point of F' on X xY —a pair (z.,y.) € X xY such that F(z,y.) as
a function of z admits its minimum over = € X at x = x,, and F(z.,y) as a function of y € Y’
admits its maximum at y,:

T € X &y €Y & F(x,ys) > F(xs,yx) > F(zs,y) V(z € X,y €Y). (3.3.3)

A point (x4, y«) with the just indicated property indeed is an equilibrium: if you stick to your
choice y,, I have no incentive to deviate from my choice x, — such a deviation can only increase
my loss. Similarly, if I stick to my choice x, you have no incentive to deviate from your choice
ys - such a deviation can only decrease your gain. Note also that were I informed in advance
that your choice is y., x, still would be one of my optimal choices, and similarly for you.

Saddle points not necessarily exist; the next proposition provides necessary and sufficient
conditions for their existence and fully specifies their structure.

Proposition 3.3.3 [Existence and structure of saddle points| The antagonistic game in ques-
tion has saddle point if and only if both the primal problem (P) and the dual problem (D) are
solvable with equal optimal values. Whenever this is the case, saddle points are exactly the
primal-dual optimal pairs (z.,ys«), that is, pairs with x. being an optimal solution to (P), and
Y« being an optimal solution to (D), and for every saddle point (z4,ys) one has

inf sup F(z,y) = Opt(P) = F(x«, y«) = Opt(D) = sup inf F(z,y). (3.3.4)
reX yey yey rzeX

Proof. In one direction: Let (P) and (D) be solvable with equal optimal values, and let x, be
an optimal solution to (P), and y. be an optimal solution to (D). Then

Opt(D) = F(y.) = inf F(z,y.) < F(2.,y.) < sup F(z.,y) = F(z.) = Opt(P)
reX yey

and since Opt(P) = Opt(D), we conclude that Opt(P) = Opt(D) = F(xx, y«), that is,

Opt(P) = F(z.) = F(xx,y:) = F(y«) = Opt(D).
Consequently,
F(z,y.) > F(ys) = F(24,y:) V2 € X & F(w,,y) < F(1,) = F(24,9.) Yy €Y,
that is, (x4, y«) is a saddle point of F on X x Y.
In the opposite direction: Let F'(z.,y«) be a saddle point of F' on X x Y, so that

hods true. This relation says, in particular, that

F(ys) = F(zy,y.) = F(24), (3.3.5)
which combines with Weak Duality (Proposition [3.3.2)) to imply that
Opt(P) = F($*) = F(y«) = Opt(D), (3.3.6)

that is, (P) and (D) are solvable with equal optimal values, x, and y. being optimal solutions
to the respective problems.

(3-3.4) is an immediate conclusion of (3.3.5)), (3.3.6). O
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3.3.3.2 Saddle points in bilinear polyhedral games

As we have already mentioned, not every game has a saddle point. The standard sufficient
condition for existence of such a point is as follows:

Theorem 3.3.1 [Sion-Kakutani] Let X C R™ and Y C R"™ be nonempty closed and bounded
convex sets, and F(z,y) : X XY — R be a continuous function convex in x € X for everyy € Y
and concave iny €Y for every x € X. Then F has a saddle point on X x Y.

The Sion-Kakutani Theorem goes beyond our LO-oriented course. We are about to prove the
polyhedral version of this theorem — the one where X, Y are polyhedral sets, and F' is bi-affine:

X={zeR™:Pzx<p},Y={yecR":Qy<gq}, Flz,y) =a’z+ 0Ty + 27 Cy. (3.3.7)
Assume, similar to the above, that X and Y are nonempty and bounded. For the antagonistic
game in question we have

F(zr) = max {aT:c + 0Ty + 270y : Qy < q}
y
= a"z + min, {qu QTz=b+CTg, 2> O}
[LO duality as applied to LO with bounded nonempty feasible set]

= Opt(P) = mingex F(x)
= ming,{a"z+¢72: Q72— CTax =b,Pr <p,2>0} (a)
F(y) = min, {CLTI + by +27Cy: Pz < p}

= by —|—max{—pTw :PTw+Cy=—a,w> 0}
w

[LO duality as applied to LO with bounded nonempty feasible set]

= Opt(D) = maxF(y)
yey

= max{bTy —plw: PTw+Cy=—a,Qy < q,w > O} (b)

y,w

By their origin, the LO programs in (a) and (b) are solvable. Let us build the LO program dual
to (a). Denoting by y € R", —w < 0, and 6 > 0 the Lagrange multipliers for the constraints
in (a), the dual to (a) problem has the same optimal value as the (solvable!) problem (a) and
reads
[Opt(P) =]Opt = max {bTy —plw:a=-Cy—Plw,q=Qy+0,w>0,0> 0} ,
y’w’

which is equivalent to (b). Thus, we are in the situation when (P) and (D) are solvable with
equal optimal values. Applying Proposition we arrive at the following result:

Proposition 3.3.4 Let X = {z € R" : Px < p} and Y = {y € R" : Qy < q} be nonempty
and bounded polyhedral sets, and F(z,y) = a’x + by +27Cy : X x Y — R be a bi-affine
function. Then the antagonistic game given by X, Y, F has saddle points. The x-components
of the saddle points are the x-components of optimal solutions to the solvable LO problem

min {aT:L' +¢72: QT2 —CTe =b,Pr<p,z> 0}, (a)
T,z

and the y-components of these saddle points are the y-components of optimal solutions to the
solvable LO problem
max {bTy —ptw: PTw+Cy=—a,Qy < qw> O} (b)

y’w
which is the LO dual of (a). The value of the game — the common value of the associated with
the game primal and dual optimization problems — is equal to the common optimal value of the
LO programs (a), (b).



3.3. IMMEDIATE APPLICATIONS OF DUALITY 151

Example: matrix game in mixed strategies. Consider the game where my choices, called
my pure strategies, are selected in m-element set X = {1,2,...,m}, and your choices — your pure
strategies — are selected in n-element set Y = {1,2,...,n}. In this case a cost function can be
identified with m x n matrix F' = [Fj;]; I select a row 4 in this matrix, you select a column j
in it, and my resulting loss, a.k.a. your gain, is Fj;; this is called matrix game. In this game,
saddle points, if any, are pairs of indices of entries which simultaneously are among the smallest
in their columns and among the largest in their rows; existence of entries of this type is a rare
commodity. When saddle points do not exist, it is unclear what is a meaningful solution to the
game. Of course, we could use as our choices the solutions to (P) and (D), thus optimizing
our worst-case outcomes, but this approach does not make much sense. For example, when
F = [ ? é g ], the only optimal solution to (P) is i, = 1, with Opt(P) = 4, and the only
optimal solution to (D) is j, = 1 with Opt(D) = 1. This being said, my choice ¢ = 1 and your
choice j = 1 result in loss/gain 2 which is strictly in-between Opt(D) and Opt(P); were you
told in advance that my choice will be ¢ = 1, you would choose j = 2 and gain 4 rather than
2, and were I told in advance that your choice is 7 = 1, I would choose ¢ = 2 and lose 1 rather
than 2.

To arrive at a meaningful notion of a solution to a matrix game, Jh. von Neumann and
O. Morgenstern in 1940’s proposed to pass from solving matrix game in deterministic pure
strategies to solving it in randomized solutions, when I draw ¢ € X at random from probability
distribution = on X (so that x € A,, := {x € R : >, x; = 0} and you draw j at random,
independently of me, from probability distribution y € A,,. As a result, my loss and your gain
become random with expected value Z” Fijry; = 2T Fy, and we arrive at solving matrix
game in mixed strategies; our choices in this new game are our mixed strategies x € A,, and
y € A,, and my loss (a.k.a. your gain) stemming from choices z,y is 27 F'y. The resulting
game, by Proposition has a saddle point (z.,ys), which can be interpreted as follows:
imagine that we are playing matrix game not just once, but round by round, drawing our
choices in subsequent rounds, independently of each other and across the rounds, from respective
probability distributions x € A,, and y € A,,. By the Law of Large Numbers, our average, over
expanding time horizon, per-round loss/gain would approach 2T Fy, so that a saddle point in
mixed strategies corresponds to a meaningful in the long run behaviour in the repeated game.

In the above 2 x 3 matrix game, the value in mixed strategies is 2%, and the saddle point

mixed strategies are z, = [3; 3] and y. = [0; 3; 5.

3.3.4 * Extending calculus of polyhedral representability
3.3.4.1 * Polyhedral representability of Legendre transform
Let f be a proper polyhedrally representable function on R™:
O£ {los7] 7 > f(2)} = {[37): 3w Po+ rp+ Qu < 1}, (3.3.8)
The Legendre (a.k.a. Fenchel) transform of f is the function

felms) = Hesrw;g)nf {z"z. — f(z)} € RU{+o0}. (3.3.9)

Proposition 3.3.5 The Legendre transform of a proper p.r.f. is a proper p.r. function with polyhedral
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representation readily given by the one of f:

{[re; el s 1 > ful@a)} = {[a; 7] Swi s Pz + Tups + Quws < i},
Po=1[;;=Tnilns 55 Lpa =11 555555 ] (3.3.10)
Q= [rTspts —pTs PT —PT QT Qs — 1], re = [ =1515 5 5 5 5 ]
(blanks, as always stand for zero blocks, n = dim x, and m = dim r). Besides this, Legendre transform is
involution: (f.). = f.

Proof. We have

{[ze; 7] s 7 2 filmi)}
= {[z.; 7]t sup, a7, — f(z)] < 7}
{[x*; To| 1 SUD, 7 4 [xT:c* —7:Pr+1mp+Quw< r] < 7-*}
= {[z.; 7] t ming, >0 [rTw. : PTw, = 2, —pTw. = 1,QTw, = 0] < 7.}
LO Duality; note that LO program sup [xTx* —T7:Px+1p+ Quw < r} is feasible]

T, T, W

{[Jc*;T*} cFw, >0: PTw, — 2, =0,14+pTw. =0,QTw, =0,7Tw, < ’7'*} M

={lzwsn]:Fwa [ 5 5 —Tnidns 5 5 Joe+ 7 [=15 555555 ]
P, Px
+ [t =t P P QT QT L] wa <[5 -1315 55 5 ],
N—_— —————
Q.

We see that p, < 0 and that holds true. Next, f is proper; selecting € Dom f, the LO program
min, ., {7 : Px +7p + Qw < r} is solvable, and therefore the dual problem is solvable as well, implying that
there exists w, > 0 such that Q7w, = 0 and p” w, + 1 = 0. Setting 7, = PTw,, 7, = r’ w,, we conclude
from (1) that z. = T, Tu = T, Wi = Wy Satisfy PuZy+TuDs + Qs < 14, whence [Z; T.| belongs to the right
hand side set in ([3:3.10)), so that f.(Z.) < oo by (3.3.10). On the other hand, since f is proper, f.(z.) > —oo
for every x,. Thus, f.(Z.) is finite. As a result, (3.3.10) says that the (a) relation 7.p. + Q.w. < 0 implies
that 7, > (ﬂ on the top of it, (b) the relation 7.p. + Q.w. < 0 is satisfied when 7., = 1 and w, = 0
(since p. < 0). Besides this, we have already verified that (c) the right hand side set i is nonempty.
Taken together, (a), (b), (c) by Proposition imply that the right hand side of ([3.3.10)) is a polyhedral
representation of a proper p.r.f. That is, f. is a proper p.r.f. with polyhedral representation (3.3.10)), as
claimed.
Now let us compute Fenchel transform of the proper p.r.f. function f, . We have

{lzs7]: 7 = (fo)«(2)}
={[z;7] :sup,, ;. . [#T @ — Tt Pari + Tups + Quwy <1, <7}
={[z;7]:32>0: P2 =2,pl2=-1,QT2=0,rT2 <7}
[LO Duality; note that LO program
sup  [2T@s — 7w : Padu + Tups + Quws < 1] is feasible]

T, T Wik

_ . . — . et .. + _
—{[m,r].Eiz—[z,«,zp*,zp,zp,zp,zQ,zQ,zj]20.zp—zp—a:, zp =1,

zy — 2 ST,ZTT+[Z;—Zp_]p—i-P[Z;—Z;]—I—Q[Z&S—Zé]—zlZO,

T ——
=T -
Zpi 2072§ > 0,25 > O,Z] > O}
={[z;7] : Jw,7: Pe+Tp+ Quw <r, 7 <7}

={[z;7] : Jw,7: P+ 1p+ Quw < r}

where the concluding equality is due to the fact that {7 : 3w : 7p+Qw < 0} = {7 > 0} by Proposition
Invoking ({3.3.8)), we conclude that

{lzsr]im = (f)(2)} = {[z;7]: 7 = f(2)},

Pindeed, assuming that Tup. + Q.@Wx < 0 for some W, and 7. < 0, we would get PuZx + [T + 7] ps + Q[0 +
sWy] < 7y for all s > 0, implying by (!) and (3.3.10) that f.(Z+) < 7« + s7x for all s > 0, which is impossible,
since W« < 0 and f.(Z«) € R.
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thatis (fu)« = f. |

We remark that Legendre transform is naturally extended, the involutivity property being preserved, from
proper p.r.f.'s to proper convex functions with closed epigraphs.

3.3.4.2 * Support functions of polyhedral sets

Let X C R™ be a nonempty polyhedral set. The characteristic function x x(z) of X is, by definition, the
function which is equal to 0 on X and to +oo outside of X; needless to say, that this is a proper p.r.f., see
Proposition [1.3.1] The Legendre transform of this function — the function

Supp x (z«) = sup [J:*Tx —xx(x)] = sup zfz : R" = RU {400}
T reX

— is called the support function of X. For example,

e the characteristic function of the entire space is identically zero, and the support function is zero at the
origin and +o0 outside of the origin

e the characteristic function of the singleton {0} is zero at the origin and 400 outside the origin, and the
support function is identically zero.

e the support function of the unit box {z € R" : ||z]loc < 1} is the ¢1-norm || - ||1, and the support
function of the unit || - ||1-ball {z : ||z||; < 1} is the £ norm || - || o-

Here is the “executive summary” on support functions.

Observation 3.3.1 (i) A function ¢ is the support function of a nonempty polyhedral set in R™ if and only
if ¢ is proper p.r.f. which is positively homogeneous of homogeneity degree 1:

(x € Dom¢,t > 0) =tz € Dom ¢ & ¢(tx) = tP(x)

(ii) If X, Y are nonempty polyhedral sets in R", then X CY iff Suppx(-) < Suppy (+). In particular, the
support function Suppy of X “remembers X" — support functions of two nonempty polyhedral sets coincide
with each other if and only if the sets are the same.

Proof. (i): In one direction: the fact that the support function of a nonempty polyhedral set is a proper
p.r.f. is readily given by Proposition and positive homogeneity, of degree 1, of the support function is
evident. In the opposite direction: let ¢ be a proper p.r. positively homogeneous of degree 1 function. Taking
into account Proposition [3.3.5] all we need in order to prove that ¢ is the support function of a nonempty
polyhedral set is to verify that the Legendre transform ¢, of ¢ is the characteristic function of a nonempty
polyhedral set. By Proposition ¢+ is a proper p.r.f., so that all we need to verify is that the only real
value taken by ¢, is zero. Indeed, assuming that x € Dom ¢., we have

@) = [T e = swp [T o(e)]
= s [T - 60p] 22 sw [T - 0] = 26.(2),

(a) (b)

where (a) and (b) are due to positive homogeneity of ¢ (which, in particular, says that when y, runs through
the entire Dom ¢, 2y, runs through the entire Dom ¢ as well). The resulting relation ¢(z.) = 2¢(x.) implies
that ¢(z.) = 0. a

(ii): If f, g are proper p.r.f.'s on R™ and f(-) > g(-), then, by definition of the Legendre transform, we
have f, < g.. Taking into account that the transform is involution, we conclude that proper p.r.f.'s f, g are
linked by the relation f > g if and only if f. and g, are linked by f, < g.. In particular, for support functions
Suppy, Suppy of nonempty polyhedral sets X, Y one has Suppy < Suppy if and only if xx > xy, and the
latter relation clearly is the same as X C Y. O



154 LECTURE 3. THEORY OF SYSTEMS OF LINEAR INEQUALITIES AND DUALITY

We conclude this section with “streamlined” polyhedral representation of the support function of a p.r.

set; this should be considered as a new rule in the calculus of polyhedral sets and polyhedrally representable
functions which we started in section [1.3.3 The numeration of calculus rules below continues the one in
section [[.3.3

F.6. Taking the support function of a polyhedrally representable set: a polyhedral representation

X={zeR":Jw: Pr+ Quw<r}
of a nonempty polyhedral set can be easily converted to a polyhedral representation of its support
function:

{[c; 7] : 7> Suppy(c) := sup ¢’z
rzeX
={[g7]: IN: A= 0, PTA=¢,QTA=0,r"A< 7},
To prove the latter relation, note that from the definition of Suppy (c) and from the polyhedral repre-
sentation of X in question it follows immediately that Suppy (c) is the optimal value in the (feasible,
since X is nonempty) LO program
max {cTa: P+ Quw < r} ,
i)
and it remains to apply Linear Programming Duality Theorem.

The following two calculus rules are immediate corollaries of F.6:
S.6. A polyhedral representation

X={zeR":Jw: Pr+ Quw<r}
of a polyhedral set containing the origin can be straightforwardly converted into a p.r. of its polar
Polar (X) := {¢: (T2 < 1Vx € X}

={£:Suppx(§) <1} = {§ ANA>0,PTA=6,QTA=0,rTA < 1}.
S.7. Let X be a polyhedral cone given by a p.r.

X={z:3w: Pr+Qu<r}
Then the cone X, dual to X admits the p.r.

X ={¢: ¢z > 0Vz € X} = {£: Supp(—¢) < 0}

={e:N:A>0,PTA+E=0,Q"A=0,7TA<0}.

3.3.5 Polyhedral representability of the cost function of an LO program, a.k.a.
Sensitivity Analysis

Consider a LO program in the form

Opt(c,b) = max{cT:n t Az <b} [A:mxn]

(3.3.11)
which we will denote also as (P[c,b]). There are situations when either b, or ¢, instead of being

fixed components of the data, are themselves decision variables in certain “master program”

which involves, as a “variable,” the optimal value Opt(c, b) of (3.3.11]) as well.
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To give an example, let be a production planning problem, where b is the
vector of available resources, x is a production plan, and Opt(c,b) is the maximum,
given the resources, volume of sales. Now imagine that we can buy the resources at
certain prices, perhaps under additional restrictions on what can and what cannot
be bought (like upper bound on the total cost of ordering the resources, lower and
upper bounds on the amounts of every one of resources we can buy, etc.). In this
situation the master problem might be to maximize our net profit (volume of sales
minus the cost of resources) by choosing both the resources to be used (b) and how
to produce (x).

A highly instructive example of a situation where ¢ is varying will be given later
("Robust Optimization”).

In such a situation, in order to handle the master program, we need a polyhedral representation
of Opt(c,b) as a function of the “varying parameter” (b or ¢) in question.

3.3.5.1 Opt(c,b) as a function of b

Let us fix ¢ and write (P.[b]) instead of (P][c,b]) and Opt.(b) instead of Opt(c,b) to stress the
fact that c is fixed and we treat the optimal value of (3.3.11)) as a function of the right hand side
vector b. Let us make the following assumption:

(") For some value b of b, program (P.[b]) is feasible and bounded.
Then the problem dual to (P[b]), that is,

min (XA >0,AT)N =¢} (D.[b])

is feasible when b = b. But the feasible set of the latter problem does not depend on b, so that,
by Weak Duality, (P.[b]) is bounded for all b, and thus Opt,(b) is a function taking real values
and, perhaps, the value —oo (the latter happens at those b for which (P,[b]) is infeasible). Taking
into account that a feasible and bounded LO program is solvable, we have the equivalence

Opt, (b)) >t Iz: Az <b& clz>t (3.3.12)

which is a polyhedral representation of the hypograph {[b;t] : t < Opt.(b)} of Opt.(-). As a
byproduct, we see that Opt,(+) is a concave function.

Now, the domain D of Opt.(-) — the set of values of b where Opt,(b) is a real — clearly is the
set of those b’s for which (P.[b]) is feasible (again: under our assumption that program (FP,.[b])
is feasible and bounded for some b = b, it follows that the program is solvable whenever it is
feasible). Let b € D, and let A be the optimal solution to the program (D.[b]). Then X is dual
feasible for every program (FP.[b]), whence by Weak duality

Opt.(b) < XTb = ATh + XT'(b—b) = Opt,(b) + AT (b —b).
The resulting inequality
Vb : Opt,(b) < ®5(b) := Opt,(b) + AT (b —b) (3.3.13)

resembles the Gradient inequality f(y) < f(z) + (y — 2)T Vf(x) for smooth concave functions
f; geometrically, it says that the graph of Opt.(b) never goes above the graph of the affine
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function ®;(b) and touches the latter graph at the point [b; Opt,(b)]. Now recall that Opt,(b) is
polyhedrally representable concave function and thus is the restriction on D of the minimum of
finitely many affine functions of b:
b€ D = Opt.(b) = min ¢;(z), ¢i(z) = b+ S
1<i<I

Assuming w.l.o.g. that all these functions are distinct from each other and taking into account
that D clearly is full-dimensional (since whenever b’ > b € D, we have V/ € D as well), we
see that Opt,.(b) is differentiable almost everywhere on D (specifically, everywhere in int D,
except for the union of finitely many hyperplanes given by the solvable equations of the form
¢i(z) = ¢;(z) with i # j). At every point b € int D where Opt,(b) is differentiable, is
possible only when A = VOpt,(b), and we arrive at the following conclusion:

Let (P¢[b]) be feasible and bounded for some b. Then the set D = Dom Opt,(-) is
a polyhedral cone with a nonempty interior, and at every point b € int D where
the function Opt,(-) is differentiable (and this is so everywhere on int D except for

the union of finitely many hyperplanes), the problem (D.[b]) has a unique optimal
solution which is the gradient of Opt,(-) at b.

Of course, we can immediately recognize where the domain D of Opt,(-) and the “pieces” ¢;(-)
come from. By Linear Programming Duality Theorem, we have

Opt,(b) = min {"X:A>0,ATA=c}.

We are in the situation where the feasible domain A of the latter problem is nonempty; besides
this, it clearly does not contain lines. By Theorem this feasible domain is

Conv{Ay,...,As} + Cone{p1, ..., pr},

where \; are the vertices of A, and p; are the (directions of the) extreme rays of Rec(A). We
clearly have
D={b:pjb>0,1<j<T}be D= Opt,(b) = 19135Afb,

so that D is exactly the cone dual to Rec(A), and we can take I = S and ¢;(b) = A\I'b, 1 <i < S.
Here again we see how powerful are polyhedral representations of functions as compared to their
straightforward representations as maxima of affine pieces: the number S of pieces in Opt,(+)
and the number of linear inequalities specifying the domain of this function can be — and
typically are — astronomical, while the polyhedral representation of the function is
fully tractable.

3.3.5.2 Law of diminishing marginal returns

The concavity of Opt,(b) as a function of b, whatever simple this fact be, has important “real
life” consequences. Assume, as in the motivating example above, that b is the vector of resources
available for a production process, and we should buy these resources at a market at certain
prices p; forming price vector p. Interpreting the objective in as our income (the total
dollar value of our sales), and denoting by M our investments in the resources, the problem of
optimizing the income becomes the LO program

Opt(M) :m%x{cT:c c Az < b,ngq,prSM},
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where Qb < ¢ are “side constraints” on b (like nonnegativity, upper bounds on the maximal
available amounts of various recourses, etc.) In this problem, the right hand side vector is
[q; M]; we fix once for ever ¢ and treat M as a varying parameter, as expressed by the notation
Opt(M). Note that the feasible set of the problem extends with M; thus, assuming that the
problem is feasible and bounded for certain M = Mj, it remains feasible and bounded for
M > Mjy. We conclude that Opt(M) is a finite, nondecreasing and, as we have shown, concave
function of M > My. Concavity implies that Opt(M + §) — Opt(M), where 6 > 0 is fixed,
decreases (perhaps, nonstrictly) as M grows. In other words, the reward for an extra $1 in the
investment can only decrease as the investment grows. In Economics, this is called the law of
diminishing marginal returns.

3.3.5.3 Opt(c,b) as a function of ¢

Now let us treat b as once for ever fixed, and ¢ — as a varying parameter in ((3.3.11)), and write
(P?[c]) instead of (3.3.11)) and Opt®(c) instead of Opt(c,b). Assume from now on that (P’[c]) is
feasible (this fact is independent of a particular value of ¢). Then the relation

Optl(c) < 7 (%)

is equivalent to the fact that the problem (D,[b]) is solvable with optimal value < 7. Applying
the Linear Programming Duality Theorem, we arrive at the equivalence

Opt’(c) < T IN: ATA=c, A >0,bT N> 7; (3.3.14)

this equivalence is a polyhedral representation of Optb(c) as a convex function. As a byproduct,
we see that Opt®(c) is convex. The latter could be easily seen from the very beginning: Opt®(c)
is the supremum of the family ¢’z of linear (and thus convex) functions of ¢ over the set
{z : Ax < b} of values of the “parameter” x and thus is convex (see calculus of convex functions).

In the above construction it was assumed that is feasible. When it is not the
case, the situation is trivial: Optb(c) is —oo identically, and we do not treat such a
function as convex (convex function must take finite values and the value +o0 only).
Thus, when is infeasible, we cannot say that Optb(c) is a “polyhedrally
representable convex function,”, in spite of the fact that the set of all pairs (¢, 7)
satisfying (%) — the entire (¢, 7)-space! — clearly is polyhedral.

Now let & € Dom Opt®(-). Then the problem (P?[d]) is feasible and bounded, and thus is solvable.
Denoting by Z an optimal solution to (P?[¢]) and observing that Z is feasible for every program
(P®[c]), we have

Opt’(c) > 'z ="'z + (c — )Tz = Opt? (&) + 27 (c — ),

that is,
Ve : Opt®(c) > Optb () + 27 (¢ — @), (3.3.15)

which looks as the Gradient inequality for a smooth convex function. To simplify our analysis,
note that if A has a nontrivial kernel, then Opt®(c) clearly is 400 when c¢ is not orthogonal to
Ker A; if ¢ is orthogonal to Ker A, then Optb(c) remains intact when we augment the constraints
of (P%[c]) with the linear equality constraints + € L = (Ker A)*. Replacing, if necessary, R"
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with L, let us assume that Ker A = 0, so that the feasible set II of (P’[]) does not contain lines.
Since it is nonempty, we have

IT = Conv{zxy,...,zs} + Cone{ry,...,r7},

where z; are the vertices of II, and r; are the (directions of the) extreme rays of Rec(II). We
now clearly have

Dom Opt®(-) = —(Rec(II))*, ¢ € Dom Opt®(-) = Opt’(c) = maxz!c.

Since the cone Rec(II) is pointed due to Ker A = {0}, the domain of Opt’(-) possesses a nonempty
interior (see the proof of Proposition , and Optb(c) is differentiable everywhere in this
interior except for the union of finitely many hyperplanes. This combines with to imply
the following result, completely symmetric to the one we got for Opt,(+):

Let Ker A = {0} and (P"[]) be feasible. Then P = Dom Opt®(-) is a polyhedral cone
with a nonempty interior, and at every point ¢ € int P where the function Opt®(-)
is differentiable (and this is so everywhere on int P except for the union of finitely
many hyperplanes), the problem (P?[¢]) has a unique optimal solution which is the
gradient of Opt?(-) at .

3.3.6 Applications in Robust LO

Polyhedral representability of Optb(c) plays crucial role in Robust Linear Optimization — a
(reasonably novel) methodology for handling LO problems with uncertain data. Here is the
story.

3.3.6.1 Data uncertainty in LO: sources

Typically, the data of real world LOs
max {c’'z: Az <b} [A= [a;]:m xn] (LO)

is not known exactly when the problem is being solved. The most common reasons for data
uncertainty are as follows:

e Some of data entries (future demands, returns, etc.) do not exist when the problem is
solved and hence are replaced with their forecasts. These data entries are thus subject to
prediction errors;

e Some of the data (parameters of technological devices/processes, contents associated with
raw materials, etc.) cannot be measured exactly, and their true values drift around the
measured “nominal” values; these data are subject to measurement errors;

e Some of the decision variables (intensities with which we intend to use various technological
processes, parameters of physical devices we are designing, etc.) cannot be implemented
exactly as computed. The resulting implementation errors are equivalent to appropriate
artificial data uncertainties.
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Indeed, the contribution of a particular decision variable z; to the left hand side of constraint 4
is the product a;;z;. A typical implementation error can be modeled as z; — (1 + &;)z; + n;,
where §; is the multiplicative, and 7; is the additive component of the error. The effect of this
error is as if there were no implementation error at all, but the coefficient a;; got the multiplicative
perturbation: a;; — a;;(1 + &;), and the right hand side b; of the constraint got the additive
perturbation b; — b; — n;a;.

3.3.6.2 Data uncertainty: dangers

In the traditional LO methodology, a small data uncertainty (say, 0.1% or less) is just ignored;
the problem is solved as if the given (“nominal”) data were exact, and the resulting nominal
optimal solution is what is recommended for use, in hope that small data uncertainties will
not affect significantly the feasibility and optimality properties of this solution, or that small
adjustments of the nominal solution will be sufficient to make it feasible. In fact these hopes
are not necessarily justified, and sometimes even small data uncertainty deserves significant
attention. We are about to present two instructive examples of this type.

Motivating example I: Synthesis of Antenna Arrays. Consider a monochromatic trans-
mitting antenna placed at the origin. Physics says that

1. The directional distribution of energy sent by the antenna can be described in terms of
antenna’s diagram which is a complex-valued function D(d) of a 3D direction . The
directional distribution of energy sent by the antenna is proportional to |D(4)?.

2. When the antenna is comprised of several antenna elements with diagrams D1 (9),..., Dy (0),
the diagram of the antenna is just the sum of the diagrams of the elements.

In a typical Antenna Design problem, we are given several antenna elements with diagrams
D1(6),...,Dn(9) and are allowed to multiply these diagrams by complex weights x; (which in
reality corresponds to modifying the output powers and shifting the phases of the elements). As
a result, we can obtain, as a diagram of the array, any function of the form

D(6) = x;D4(0),
j=1

and our goal is to find the weights x; which result in a diagram as close as possible, in a
prescribed sense, to a given “target diagram” D,(9).

Example: Antenna Design. Consider a planar antenna comprised of a central circle and 9
concentric rings of the same area as the circle (figure|3.2la) in the X'Y-plane (“Earth’s surface”).
Let the wavelength be A = 50 c¢m, and the outer radius of the outer ring be 1 m (twice the
wavelength).

One can easily see that the diagram of a ring {a < r < b} in the plane XY (r is the distance
from a point to the origin) as a function of a 3-dimensional direction ¢ depends on the altitude
(the angle € between the direction and the plane) only. The resulting function of § turns out to
be real-valued, and its analytic expression is

b 2
1

Dayp(8) = 2/ /rcos (27 A~ cos(6) cos(¢)) d | dr.

a 0
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Figure 3.2: Synthesis of antennae array.

(a): 10 array elements of equal areas in the XY -plane; the outer radius of the largest ring is
1m, the wavelength is 50cm.

(b): “building blocks” — the diagrams of the rings as functions of the altitude angle 6.

(c): the target diagram (monotone) and the synthesized diagram (oscillating).

Fig. [3.2]b represents the diagrams of our 10 rings for A\ = 50cm.

Assume that our goal is to design an array with a real-valued diagram which should be axial
symmetric with respect to the Z-axis and should be “concentrated” in the cone 7/2 > 6 >
m/2 — w/12. In other words, our target diagram is a real-valued function D, () of the altitude
0 with D.(0) =0 for 0 < 6 < /2 — /12 and D,(#) somehow approaching 1 as 6 approaches
/2. The target diagram D, () used in this example is given in figure |3.2lc (bold curve).

Let us measure the discrepancy between a synthesized diagram and the target one by the
Tschebyshev distance, taken along the equidistant 240-point grid of altitudes, i.e., by the quan-
tity

X
0], 0=

10
r= max |D.(6:)—> ;D _, = 180°
j=1
J

i=1,....240 /
D;(0;)

Our design problem is simplified considerably by the fact that the diagrams of our “building
blocks” and the target diagram are real-valued; thus, we need no complex numbers, and the
problem we should finally solve is

10
TeRn?zing 71 —7 < D,(6;) — ;ijj(ei) <7 i=1,..,240 3 . (3.3.16)
This is a simple LP program; its optimal solution x* results in the diagram depicted at figure
[3-2lc (thin curve). The uniform distance between the actual and the target diagrams is ~ 0.0726
(recall that the target diagram varies from 0 to 1).

Now recall that our design variables are characteristics of certain physical devices. In reality,

of course, we cannot tune the devices to have precisely the optimal characteristics x;; the best

we may hope for is that the actual characteristics mg"t will coincide with the desired values x}"
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Figure 3.3: “Dream and reality,” nominal optimal design: samples of 100 actual diagrams for
different uncertainty levels. White line: the target diagram

within a small margin p, say, p = 0.1% (this is a fairly high accuracy for a physical device):

It is natural to assume that the actuation errors {; are random with the mean value equal to 0;
it is perhaps not a great sin to assume that these errors are independent of each other. Note
that as it was already explained, the consequences of our actuation errors are as if there were
no actuation errors at all, but the coefficients D;(f;) of variables ; in were subject to
perturbations D;(6;) — (1 +&;)D;(6;).

Since the actual weights differ from their desired values z7, the actual (random) diagram
of our array of antennae will differ from the “nominal” one we see on figure [3.2lc. How large
could be the difference? Looking at figure [3.3] we see that the difference can be dramatic. The
diagrams corresponding to p > 0 are not even the worst case: given p, we just have taken as
{&; ]1-21 100 samples of 10 independent numbers distributed uniformly in [—p, p] and have plotted
the diagrams corresponding to z; = (1 + fj)x}'f. Pay attention not only to the shape, but also
to the scale (table : the target diagram varies from 0 to 1, and the nominal diagram (the
one corresponding to the exact optimal x;) differs from the target by no more than by 0.0726
(this is the optimal value in the “nominal” problem ([3.3.16)). The data in table show that
when p = 0.001, the typical || - || distance between the actual diagram and the target one is
by 3 (!) orders of magnitude larger. Another meaningful way, also presented in table to
understand what is the quality of our design is via energy concentration — the fraction of the total
emitted energy which “goes up,” that is, is emitted along the spatial angle of directions forming
angle at most m/12 with the Z-axis. For the nominal design, the dream (i.e., with no actuation
errors) energy concentration is as high as 81% — quite respectable, given that the spatial angle
in question forms just 3.41% of the entire hemisphere. This high concentration, however, exists
only in our imagination, since actuation errors of magnitude p as low as 0.01% reduce the average
energy concentration (which, same as the diagram itself, now becomes random) to just 16%; the
lower 10% quantile of this random quantity is as small as 2.2% — 1.5 times less than the fraction
(3.4%) which the “going up” directions form among all directions. The bottom line is that “in
reality” our nominal optimal design is completely meaningless.

Motivating example II: NETLIB Case Study. NETLIB includes about 100 not very large

LOs, mostly of real-world origin, used as the standard benchmark for LO solvers. In the study
to be described, we used this collection in order to understand how “stable” are the feasibility
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Dream Reality

5 =0 5 = 0.0001 »=10.01
value min mean min min mean max
Il l[oo-distance 0.0726 0.512 5.696 14.987 76.9 635.0 1748

to target
energy
concentration

81.42% 1.15% 16.37% 47.28% 0.54% 14.97% 39.34%

Table 3.1: Quality of nominal antenna design: dream and reality. Data over 100 samples of
actuation errors per each uncertainty level p.

properties of the standard — “nominal” — optimal solutions with respect to small uncertainty in
the data. To motivate the methodology of this “case study”, here is the constraint # 372 of the
problem PILOT4 from NETLIB:

Tz = —15.79081xg26 — 8.598819x827 — 1.88789xg08 — 1.362417x829 — 1.526049x830
—0.031883x849 — 28.725555x850 — 10.792065x851 — 0.19004x850 — 2.7571762x853
—12.290832x854 + 717.562256x855 — 0.057865x856 — 3.785417x857 — 78.30661x858
—122.163055x859 — 6.46609x860 — 0.48371xgs1 — 0.615264x862 — 1.353783 863 (©)
—84.644257$864 — 122.459045x865 — 43.155931‘366 — 1.7125921‘370 — 0.40159722371
+x880 — 0.946049x898 — 0.946049x916
> b= 23.387405

The related nonzero coordinates in the optimal solution x* of the problem, as reported by CPLEX
(one of the best commercial LP solvers), are as follows:

Tgog = 255.6112787181108 x5y, = 6240.488912232100 x5, = 3624.613324098961
Tgog = 18.20205065283259 x5, = 174397.0389573037 x%,, = 14250.00176680900
2§71 = 25910.00731692178 2§, = 104958.3199274139

The indicated optimal solution makes (C) an equality within machine precision.

Observe that most of the coefficients in (C) are “ugly reals” like -15.79081 or -84.644257.
We have all reasons to believe that coefficients of this type characterize certain technological
devices/processes, and as such they could hardly be known to high accuracy. It is quite natural
to assume that the “ugly coefficients” are in fact uncertain — they coincide with the “true” values
of the corresponding data within accuracy of 3-4 digits, not more. The only exception is the
coefficient 1 of xggp — it perhaps reflects the structure of the underlying model and is therefore
exact — “certain”.

Assuming that the uncertain entries of a are, say, 0.1%-accurate approximations of unknown
entries of the “true” vector of coefficients a, we looked what would be the effect of this uncertainty
on the validity of the “true” constraint a’« > b at «*. Here is what we have found:

e The minimum (over all vectors of coefficients @ compatible with our “0.1%-uncertainty
hypothesis”) value of a’z* — b, is < —104.9; in other words, the violation of the constraint can
be as large as 450% of the right hand side!

e Treating the above worst-case violation as “too pessimistic” (why should the true values of
all uncertain coefficients differ from the values indicated in (C) in the “most dangerous” way?),
consider a more realistic measure of violation. Specifically, assume that the true values of the
uncertain coefficients in (C) are obtained from the “nominal values” (those shown in (C)) by
random perturbations a; — a; = (1 + §;)a; with independent and, say, uniformly distributed
on [—0.001, 0.001] “relative perturbations” ¢;. What will be a “typical” relative violation

max[b — a’ z*, 0]

b

V= x 100%

of the “true” (now random) constraint @’z > b at x*? The answer is nearly as bad as for the
worst scenario:
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Prob{V > 0} | Prob{V > 150%} | Mean(V)
0.50 0.18 125%

Relative violation of constraint # 372 in PILOT4
(1,000-element sample of 0.1% perturbations of the uncertain data)

We see that quite small (just 0.1%) perturbations of “clearly uncertain” data coefficients can
make the “nominal” optimal solution x* heavily infeasible and thus — practically meaningless.
A “case study” reported in [2] shows that the phenomenon we have just described is not an
exception — in 13 of 90 NETLIB Linear Programming problems considered in this study, already
0.01%-perturbations of “ugly” coefficients result in violations of some constraints as evaluated
at the nominal optimal solutions by more than 50%. In 6 of these 13 problems the magnitude
of constraint violations was over 100%, and in PILOT4 — “the champion” — it was as large as
210,000%, that is, 7 orders of magnitude larger than the relative perturbations in the data.
The conclusion is as follows:

In applications of LO, there exists a real need of a technique capable of detecting
cases when data uncertainty can heavily affect the quality of the nominal solution,
and in these cases to generate a ‘“reliable” solution, one that is immunized against
uncertainty.

3.3.6.3 Uncertain Linear Problems and their Robust Counterparts

We are about to introduce the Robust Counterpart approach to uncertain LLO problems aimed
at coping with data uncertainty.

Uncertain LO problem. We start with

Definition 3.3.1 An uncertain Linear Optimization problem is a collection

{max{ch—l—d Az < b}} (LOy)
T (e,d,Ab)eU
of LO problems (instances) min{cT:c +d: Az < b} of common structure (i.e., with common

numbers m of constraints and n of variables) with the data varying in a given uncertainty set

Uc R(m+1)x(n+1)

We always assume that the uncertainty set is parameterized, in an affine fashion, by perturbation
vector ( varying in a given perturbation set Z:

' |d cho] L |:CT de:|
U= = |2 + £ : eZcRL}. 3.3.17
{[Ab} [Aobo Zglg A (b | ¢ ( )
| — S —
nominal basic
data Dy shifts D,

For example, when speaking about PILOT4, we, for the sake of simplicity, tacitly
assumed uncertainty only in the constraint matrix, specifically, as follows: every

coefficient a;; is allowed to vary, independently of all other coefficients, in the interval
[a; — pizlai;], aiy+ pijlai;|], where aj; is the nominal value of the coefficient — the one
in the data file of the problem as presented in NETLIB, and p;; is the perturbation
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level, which in our experiment was set to 0.001 for all “ugly” coefficients a;; and
was set to 0 for “nice” coefficients, like the coefficient 1 at xggy. Geometrically, the
corresponding perturbation set is just a box

¢ €Z={C={Gj € [=LU}ija is ugly}>
and the parameterization of the a;j-data by the perturbation vector is

e — aj;(1+Gj), aj; is ugly
*J az;, otherwise
3.3.6.4 Robust Counterpart of uncertain LO

Note that a family of optimization problems like (LOy), in contrast to a single optimization
problem, is not associated by itself with the concepts of feasible/optimal solution and optimal
value. How to define these concepts depends on the underlying “decision environment.” Here
we focus on an environment with the following characteristics:

A.1. All decision variables in (LOy) represent “here and now” decisions; they should
be assigned specific numerical values as a result of solving the problem before
the actual data “reveals itself.”

A.2. The decision maker is fully responsible for consequences of the decisions to be
made when, and only when, the actual data is within the prespecified uncer-

tainty set U given by (3.3.17]).

A.3. The constraints in (LOy) are “hard” — we cannot tolerate violations of con-
straints, even small ones, when the data is in U.

Note that A.1 — A.3 are assumptions on our decision environment (in fact, the strongest ones
within the methodology we are presenting); while being meaningful, these assumptions in no
sense are automatically Validlﬂ.

Assumptions A.1 — A.3 determine, essentially in a unique fashion, what are the meaningful,
“immunized against uncertainty,” feasible solutions to the uncertain problem (LOy). By A.1,
these should be fixed vectors; by A.2 and A.3, they should be robust feasible, that is, they
should satisfy all the constraints, whatever the realization of the data from the uncertainty set.
We have arrived at the following definition.

Definition 3.3.2 A wvector x € R"™ is a robust feasible solution to (LOy), if it satisfies all
realizations of the constraints from the uncertainty set, that is,

Az <b V(c,d,Ab) €U. (3.3.18)

As for the objective value to be associated with a robust feasible) solution, assumptions A.1 —
A.3 do not prescribe it in a unique fashion. However, “the spirit” of these worst-case-oriented
assumptions leads naturally to the following definition:

5By these reasons, Robust Optimization addresses, along with these assumptions, their relaxed versions. What
are these relaxations and what is their “computational price” — these issues go far beyond the scope of this course;
interested reader is addressed to [I}, [5] and references therein.
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Definition 3.3.3 Given a candidate solution x, the robust value ¢(x) of the objective in (LOy)
at x is the smallest value of the “true” objective ¢’ x + d over all realizations of the data from
the uncertainty set:
Sz)= inf [Tz+d]. 3.3.19
() (C’d’A’b)GU[ ] ( )
After we agree what are meaningful candidate solutions to the uncertain problem (LOy) and
how to quantify their quality, we can seek for the best robust value of the objective among
all robust feasible solutions to the problem. This brings us to the central concept of the RO
methodology, Robust Counterpart of an uncertain optimization problem, which is defined as
follows:

Definition 3.3.4 The Robust Counterpart of the uncertain LO problem (LOy) is the optimiza-
tion problem
max {E(:/v) = inf [fz+4d:Az<bV(c,d, Ab) € U} (3.3.20)
z (C,d,A,b)eZ/{

of mazximizing the robust value of the objective over all robust feasible solutions to the uncertain
problem.

An optimal solution to the Robust Counterpart is called a robust optimal solution to (LOy),
and the optimal value of the Robust Counterpart is called the robust optimal value of (LOy).

In a nutshell, the robust optimal solution is simply “the best uncertainty-immunized” solution
we can associate with our uncertain problem.

3.3.6.5 Tractability of the RC

In order for the outlined methodology to be a practical tool rather than a wishful thinking, the
RO of an uncertain LO problem should be efficiently solvable. We believe (and this belief will
be justified in the “algorithmic” part of our course) that LO programs are efficiently solvable;
but the RO of uncertain LO problem, as it appears in , is not an LO program — when
the uncertainty set U is infinite (which typically is the case), (3.3.20) is an optimization program
with infinitely many linear inequality constraints, parameterized by the uncertain data! And
programs of this type (the so called semi-infinite LO’s — not necessarily are tractable...

The situation, however, is not that bad. We are about to demonstrate — and this is where
the equivalence (3.3.14)) is instrumental — that the Robust Counterpart of an uncertain LO
problem with a nonempty polyhedral uncertainty set U (given by its polyhedral representation)
is equivalent to an explicit LO program (and thus is computationally tractable).

The reasoning goes as follows. Introducing slack variable ¢, we can rewrite (3.3.20]) as the
problem with “certain” linear objective and semi-infinite constraints:

t—clx—d<0
. — |
ym[egi]{t. Zjaijxj—bjﬁo,lﬁjﬁm }V(c,d,A,b)EU}. ("

To save notation, let n stand for the data (c,d, A,b) which we can treat as a vector of certain
dimension N (in this vector, the first n entries are those of ¢, the next entry is d, the next mn
entries are the coefficients of the constraint matrix, written, say, column by column, and the
last m entries are those of b). Note that (!) is of the generic form

max {hTy : ¥ € U p [yln < auly], 1 < €< L} ()
Yy
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where L = m+ 1, and py[y], qey] are known affine vector- and real-valued functions of y. All we
need in order to convert (!!) into an ordinary LO, is to represent every one of the semi-infinite
constraints

pilyln < aelyl ¥ €U (*e)

by a finite system of linear inequalities on y and on appropriate slack variables. Now, for every
¢ and y fixed, (%¢) says that

sup p; [yl < qely; (%)
neu

Recalling that U is polyhedral and we are given a polyhedral representation of this set, let it be
U={n:Fu:Pn+Qu<r},

the supremum in 7 in the left hand side of (x*) can be represented as the optimal value in an
LO program in variables 7, u, specifically, the program

Opt(y) = max {p [yl : P+ Qu <r}.

This program is feasible (since U is nonempty), and we can invoke the equivalence (3.3.14]) to
conclude that

Opt(y) < q(y) & Jw:w > 0,[P; Q1w = [pe[y]; 0; ...; 0], 77w < goly]-

dim u

The bottom line is that y satisfies (x,) if and only if it can be extended, by a properly chosen
w = w', to a feasible solution to the system of linear inequalities

w® >0, PTw = ply], QTw’ =0, rTw’ < qly] (Se)

in variables y,w’ (to see that the inequalities indeed are linear, note that p,[y] and g[y] are
affine in y).

We are done: replacing every one of the L semi-infinite constraints in (!!) with the corre-
sponding systems (S¢), £ =1, ..., L, we end up with an equivalent reformulation of (!!) as an LO
program, let it be called (L), in variables y, w!, ..., w”, equivalence meaning that y is feasible for
(1) if and only if y can be augmented by properly chosen w', ..., w” to yield a feasible solution to
(L), while the objective in (L) is the same as in ((!). Note that given a polyhedral representation
of U, building the resulting LO is a purely algorithmic and efficient process, and that the sizes
of this LO are polynomial in the sizes of the instances of the original uncertain LO problem and
the sizes of the polyhedral description of the uncertainty set.

How it works: Robust Antenna Design. In the situation of the Antenna Design problem
, the “physical” uncertainty comes from the actuation errors z; — (1 + &;j)x;; as we
have already explained, these errors can be modeled equivalently by the perturbations D;(6;) —
D;j = (1 +&;)D;(6;) in the coefficients of xj. Assuming that the errors ¢; are bounded by a
given uncertainty level p, and that this is the only a priori information on the actuation errors,
we end up with the uncertain LO problem

{min {7‘ T < Zj::fODijxj —D,(0) <71, 1<i<I= 240} :

T, T

Dy — D;(0))] < p|Dj<9@->|}-
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The Robust Counterpart of the problem is the semi-infinite LO program

min{ 7:—7 <Y Dijz; <7,1<i < 1VD;; € [Gy, Gyl (3.3.21)

27
x,T J

J

with G;; = G;(6;) — pG;(05)], Gij = G;(6:) + p|G(6;)
LO is

. The generic form of this semi-infinite
min {c’y : Ay < bY[A,b] : [A,b] < [A,b] < [4,0]} (3.3.22)
Yy

where < for matrices is understood entrywise and [4,b] < [A,b] are two given matrices. This
is a very special case of a polyhedral uncertainty set, so that our theory says that the RC is
equivalent to an explicit LO program. In fact we can point out (one of) LO reformulation of the
Robust Counterpart without reference to any theory: it is easy to see (check it!) that
is equivalent to the LO program

I;lizn{cTy: ;[A—}—A]y—i—;[A—A]ng,—zgygz}. (3.3.23)
Solving for the uncertainty level p = 0.01, we end up with the robust optimal value
0.0910, which, while being by 15% worse than the nominal optimal value 0.0726 (the latter, as
we have seen, exists only in our imagination and says nothing about the actual performance of
the nominal optimal design), still is reasonably small. Note that the robust optimal value, in
sharp contrast with the nominally optimal one, does say something meaningful about the actual
performance of the underlying robust design. In our experiments, we have tested the robust
optimal design associated with the uncertainty level p = 0.01 versus actuation errors of this
and larger magnitudes. The results are presented on figure and in table Comparing
these figure and table with their “nominal design” counterparts, we see that the robust design
is incomparably better than the nominal one.

To conclude the antenna story, it makes sense to explain why the nominal design is that
unstable with respect to small implementation errors. The target diagram D,, same as the
diagrams D; of rings, are functions with values of order of one; as a matter of fact, D;’s are
nearly linearly dependent, so that the problem of best uniform approximation of D, by linear
combination of D;’s is ill-posed, which, as we see from table [3.2] makes some of the entries in
the nominal optimal solution as large as 10* — 10°. Combination of functions of magnitude of
order of one with that large coefficients may happen to be of order of one only when combining
D; with the coefficients in question results in significant cancellations. However, implementation
errors of small relative magnitude, even as small as 0.01%, result in perturbations of magnitude
1 — 10 in some of the coefficients. These perturbations have, of course, no reason to cancel each
other and well may result in perturbations of magnitude 1 — 10 in the resulting diagram; this is
exactly what we observe on figure In contrast to nominal design, the robust one accounts
for implementation errors in advance and is therefore enforced to take care of magnitudes of
the entries in the robust solution. As we see from table [3.2] these latter entries are of order of
one; as a result, small in relative scale implementation errors yield small perturbations in the
coefficients and, consequently, small perturbations in the synthesized diagram.

How it works: NETLIB Case Study. The corresponding uncertainty model (“ugly coef-
ficients a;; in the constraint matrix independently of each other run through the segments
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x1 2 3 T4 5 6 z7 g z9 z10
[ nominal -2.8e2 0.00 1.6e4 -9.5e4 2.7eb5 -4.6e5 4.9e5 -3.2eb 1.2e5 -2.0e4
[ robust 0.67 1.11 0.00 0.00 2.00 0.60 0.00 -1.91 0.00 4.37

Table 3.2: Nominal and robust designs

p=0.01 p=0.05 p=0.1

Figure 3.4: “Dream and reality,” robust optimal design: samples of 100 actual diagrams for
different uncertainty levels. Dotted line: the target diagram.

p=0.01 p=0.1
min mean max min mean max
Il lloo-distance 0.0879 | 0.0892 | 0.0904 | 0.0892 | 0.1147 | 0.1796
to target
energy 72.15% | 72.70% | 73.21% || 66.58% | 72.74% | 78.38%
concentration

Table 3.3: Quality of robust antenna design. Data over 100 samples of actuation errors per
each uncertainty level p. For comparison: for nominal design, with the uncertainty level as small
as p = 0.001, the average || - ||o-distance of the actual diagram to target is as large as 61.3, and
the expected energy concentration is as low as 16.4%.
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lai; — plai;|, ai; + plaiy]], p > 0 being the uncertainty level) clearly yields the RCs of the generic
form . As explained above, these RCs can be straightforwardly converted to explicit LO
programs which are of nearly the same sizes and sparsity as the instances of the uncertain LOs in
question. It turns out that at the uncertainty level 0.1% (p = 0.001), all these RCs are feasible,
that is, we can immunize the solutions against this uncertainty. Surprisingly, this immunization
is “nearly costless” — the robust optimal values of all 90 NETLIB LOs considered in [2] remain
within 1% margin of the nominal optimal values. For further details, including what happens
at larger uncertainty levels, see [2].

3.3.7 * Application: Synthesis of linear controllers

3.3.7.1 * Discrete time linear dynamical systems

The most basic and well studied entity in control is a linear dynamical system (LDS). In the
sequel, we focus on discrete time LDS modeled as

xg = 2 [initial condition]
xpp1 = Awxy + Byug + Rydy, [state equations) (3.3.24)
y = Cyry+ Dydy [outputs]

In this description,
e t=0,1,2,... are time instants,
e 1; € R" is state of the system at instant ¢,
o u; € R™ is control generated by system’s controller at instant ¢,
e d; € R™ is external disturbance coming from system’s environment at instant ¢,
e y; € R™ is observed output at instant ¢,

e Ay, By, ..., Dy are (perhaps depending on t) matrices of appropriate sizes specifying system’s
dynamics and relations between states, controls, external disturbances and outputs.

What we have described so far is called an open loop system (or open loop plant). This plant
should be augmented by a controller which generates subsequent controls. The standard as-
sumption is that the control w; is generated in a deterministic fashion and depends on the
outputs yo,yi, ..., y+ observed prior to instant ¢ and at this very instant (non-anticipative, or
causal control):

ug = Up(Yo, -, Yt); (3.3.25)

here U; are arbitrary everywhere defined functions of their arguments taking values in R™.
Plant augmented by controller is called a closed loop system; its behavior clearly depends on
the initial state and external disturbances only.

3.3.7.2 * Affine control

The simplest (and extremely widely used) form of control law is affine control, where u; are affine functions
of the outputs:
uy = &+ Zoyo + Ey1 + - + Efue, (3.3.26)

where &; are vectors, and EtT 0 < 7 <'t, are matrices of appropriate sizes.
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Augmenting linear open loop system with affine controller ([3.3.26]), we get a well defined closed
loop system in which states, controls and outputs are affine functions of the initial state and external distur-
bances; moreover, z; depends solely on the initial state z and the collection d'~* = [dy; ...; d;_1] of disturbances
prior to instant ¢, while u; and y; may depend on z and the collection d* = [dp; ...; d;] of disturbances including
the one at instant ¢.

3.3.7.3 * Design specifications and the Analysis problem

The entities of primary interest in control are states and controls; we can arrange states and controls into a
long vector — the state-control trajectory

wh = [T1; T2} . TN U UL, oo UN—1];

here N is the time horizon on which we are interested in system’s behavior. With affine control law ([3.3.26]),
this trajectory is an affine function of z and d¥~1:

wlV = wN(z,del) =wpy + QN[z;del}

with vector wy and matrix {2 readily given by the matrices Ay, ..., Dy, 0 < ¢ < N, from the description of
the open loop system and by the collection £V = {£,Z : 0 < 7 <t < N} of the parameters of the affine

control law ([3.3.26)).

Imagine that the “desired behaviour” of the closed loop system on the time horizon in question is given
by a system of linear inequalities

Bw™ <b(¢)  [b(C): affinein ¢ := [z;dV 1] (3.3.27)

which should be satisfied by the state-control trajectory provided that the initial state z and the disturbances
dN~1! vary in their “normal ranges” Z and DN ~!, respectively; this is a pretty general form of design specifi-
cations. The fact that w!¥ depends affinely on ¢ := [2;d™ ~1] makes it easy to solve the Analysis problem: to
check wether a given control law ensures the validity of design specifications (3.3.27)). Indeed, to this
end we should check whether the functions [Bw™ — b(¢)];, 1 <1 < I (I is the number of linear inequalities
in ([3.3.27)) remain nonpositive whenever

C:=[zd¥ ezt =z x DNV L,

For a given control law, the functions in question are explicitly given affine function ¢;(¢) of ¢, so that what
we need to verify is that
mgx{d)i(o :¢ezpV M <0i=1,..,1

Whenever DV ~! and Z are explicitly given convex sets, the latter problems are convex and thus easy to solve.
Moreover, if ZDV ™1 is given by polyhedral representation:

ZDNT = {¢:w: PC+Qu<r) (3.3.28)

(this is a pretty flexible and enough general way to describe typical ranges of disturbances and initial states),
the analysis problem reduces to a bunch of explicit LPs

max{¢;(¢) : PO+ Qu<r}, 1<i< T,
,U
the answer in the analysis problem is positive if and only if the optimal values in all these LPs are nonpositive.

3.3.7.4 * Synthesis problem

As we have seen, with affine control and affine design specifications, it is easy to check whether a given control
law meets the specifications. The basic problem in linear control is, however, somehow different: usually we
need to build an affine control which meets the design specifications (or to detect that no such control exists).
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And here we run into difficult problem: while state-control trajectory for a given affine control is an easy-to-
describe affine function of [z;d™ 1], its dependence on the collection &V of the parameters of the control
law is highly nonlinear, even for a time-invariant system (the matrices Ay, ..., D; are independent of ¢) and a
control law as simple as time-invariant linear feedback: u; = Ky;. Indeed, due to the dynamic nature of the
system, in the expressions for states and controls powers of the matrix K will be present. Highly nonlinear
dependence of states and controls on EN makes it impossible to optimize efficiently w.r.t. the parameters of
the control law and thus makes the synthesis problem extremely difficult.

The situation, however, is far from being hopeless. We are about to demonstrate that one can re-
parameterize affine control law in such a way that with the new parameterization both Analysis and
Synthesis problems become tractable.

Illustration. As a simple illustration, consider the situation as follows:

Water supply in a village comes from tank of capacity V' which is filled by pumps taking water
from a source of unlimited capacity. Denoting by x; the amount of water (“level”) in the tank
at the beginning of hour ¢, 0 <t < N = 24, the dynamics of this level is given by

T =x +ug—dy, t=0,1,...,23

where £g = z is the level of tank at midnight, u;, 0 < ¢t < 23, is the amount of water pumped
into the tank during hour ¢, and d; is the demand — the amount of water consumed during the
same hour by the villagers. Pumping a unit of water into the tank during hour t costs ¢; > 0 []
We assume that x; is observed at the beginning of hour ¢, when the decision on u; should be
made, while d; is not known at this time instant.

Given the range Z = [0,%] of the initial level of water and upper and lower bounds d; > d; > 0
on the demand d;, 0 < t < 23, we want to design, in a non-anticipative fashion, nonnegative
controls ug, 0 <t < 23, in such a way that the levels x; remain nonnegative and not exceeding
tank’s capacity V whenever the initial state z and the demand trajectory d?* = [dy; ...; da3] stay
in their normal range:

(= [zdo;dy; .. dos] € 2D i= {[z;do; ..idos] : 0 < 2 < Z,d, < dy < dy}

The dynamical system modeling the above story is

o = Z
Tigp1 = T+ up— dy ,0<t< N=24 (3329)
Yo = Tt

and the design specifications are given by the system of linear inequalities
0<z, <V, 1<t<N=24&0<u,0<t<N-1=23 (3.3.30)
The total price of a given control policy on our 24-hour time horizon depends on the actual realization of (.

In our illustration, we are interested to minimize the maximum, over { € ZD??, total price of pumping by
seeking affine controller satisfying the design specifications (3.3.30)) for all realizations of ¢ € ZD?3.

"The dependence of pumping price on time is natural; say, the price of electricity at night is smaller than
during the day hours. Note that typical per-hour demand for water exhibits similar behaviour: during the day
hours, it is essentially higher than at night. These dependencies make utilizing tank more attractive than pumping
water to customers directly from the source: we can use low cost night pumping to fill the tank and spend this
water at the largest extent possible during the day hours.
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3.3.7.5 * Purified outputs and purified-output-based control laws

Imagine that we “close” the open loop system with a whatever (affine or non-affine) control law ([3.3.25)) and
in parallel with running the closed loop system run its model:

System:
o = Z
Tpp1 = Awwi + Byuy + Rydy,
yr = Cixy+ Didy
Model:
Fo = 0 (3.3.31)
Ty = A+ Biug,
= Ciy
Controller:
Uy = Ut(yoa "'7yt) (')

Assuming that we know the matrices Ay, ..., Dy, we can run the model in an on-line fashion, so that at instant
t, when the control u; should be specified, we have at our disposal both the actual outputs yq, ..., y; and the
model outputs 7o, ..., ¥, and thus have at our disposal the purified outputs

vT:yT_@\Tvongt'

Now let us ask ourselves what will happen if we, instead of building the controls u; on the basis of actual
outputs y-, 0 < 7 < t, pass to controls u; built on the basis of purified outputs v, 0 < 7 < t, i.e., replace
the control law (!) with control law of the form

uy = Vi(vo, -.ey 0t) (M
It easily seen that nothing will happen:

Proposition 3.3.6 For every control law {U(yo,...,yt)} 2, of the form (!) there exists a control law
{Vi(vg, ..., v¢) }22, of the form (1) (and vice versa, for every control law of the form (!!) there exists a control
law of the form (1)) such that the dependencies of actual states, outputs and controls on the disturbances and
the initial state for both control laws in question are exactly the same.

Moreover, the above “equivalence claim” remains valid when we restrict controls (1), () to be affine in
their arguments.

Proof of Proposition is postponed till the end of this section.

The bottom line is that every behavior of the close loop system which can be obtained with affine non-
anticipative control based on actual outputs, can be also obtained with affine non-anticipative
control law

ug = ng + H(t)vo + Hivy + ... + Hlvy, (3.3.32)

based on purified outputs (and vice versa).

We have said that as far as achievable behaviors of the closed loop system are concerned, we loose (and
gain) nothing when passing from affine output-based control laws to affine purified output-based
control laws (3.3.32). At the same time, when passing to purified outputs, we get a huge bonus:

(#) With control , the trajectory w!¥ of the closed loop system turns out to be
bi-affine: it is affine in ( = [z;d¥ "], the parameters 7 = {n;, H.,0 < 7 <t < N} of
the control law being fixed, and is affine in the parameters of the control law i~ , [z;dN 1]
being fixed, and this bi-affinity, as we shall see in a while, is the key to efficient solvability of the
synthesis problem.

The reason for bi-affinity is as follows (after this reason is explained, verification of bi-affinity itself becomes
immediate): purified output v; is completely independent on the controls and is a known in advance affine
function of d*, z. Indeed, from ([3.3.31)) it follows that

Ve = Ct(xt - Et) + Dtdt
——

Ot
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and that the evolution of ¢; is given by
0o = 2, Ot41 = Aoy + Rydy

and thus is completely independent of the controls, meaning that §; and v; indeed are known in advance
(provided the matrices Ay, ..., Dy are known in advance) affine functions of d?, z.

Note that in contrast to the just outlined “control-independent” nature of purified outputs, the actual
outputs are heavily control-dependent (indeed, u; is affected by y:; y: is affected by z;, and this state, in turn,
is affected by past controls ug, ..., us—1). This is why with the usual output-based affine control, the states
and the controls are highly nonlinear in the parameters of the control law — to build u;, we multiply matrices
Z! (which are parameters of the control law) by outputs ., which by themselves already depend on the “past”
parameters of the control law.

3.3.7.6 * Tractability of the Synthesis problem

Assume that the normal range ZDV ™! of ¢ = [2;dV~1] is a nonempty and bounded set given by polyhedral
representation ([3.3.28]), and let us prove that in this case the design specifications reduce to a system
of explicit linear inequalities in variables 77V — the parameters of the purified-output-based affine control law
used to close the open-loop system — and appropriate slack variables. Thus, (parameters of) purified-output-
based affine control laws meeting the design specifications form a polyhedrally representable, and thus
easy to work with, set.

The reasoning goes as follows. As stated by (#), the state-control trajectory w’ associated with affine
purified-output-based control with parameters 7V is bi-affine in ¢ = [z;d¥~!] and in 77V, so that it can be
represented in the form

w = wlii] + WNC,

where the vector-valued and the matrix-valued functions w[:], W] are affine and are readily given by the
matrices Ay, ..., Dy, 0 <t < N — 1. Plugging the representation of w” into the design specifications ((3.3.27)),
we get a system of scalar constraints of the form

af (TN)¢ < Biif™), 1 < i <1, (&)

where the vector-valued functions «;(-) and the scalar functions §;(-) are affine and readily given by the
description of the open-loop system and by the data B, b in the design specifications. What we want from
iV is to ensure the validity of every one of the constraints (&) for all ¢ from ZDN =1, or, which is the same
in view of , we want the optimal values in the LPs

max {af (7")¢ : PC+Qu < 1}

to be < 3;(7V) for 1 < i < I. Now, the LPs in question are feasible; passing to their duals, what we want
become exactly the relations

min {rTsi . PTg, = ai(ﬁN), QTs;=0,s; > 0} < ﬁi(ﬁN), 1<i<I.

Sq
The bottom line is that

A purified-output-based control law meets the design specifications if and only if the
corresponding collection 7N of parameters can be augmented by properly chosen slack vector
variables s; to give a solution to the system of linear inequalities in variables si, ...,sr, 7",
specifically, the system

Pls; = a;(ifY), QTs; =0, rTs; < Bi(iN), s, >0, 1 <i < I. (3.3.33)
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Remark 3.3.1 We can say that when passing from an affine output-based control laws to affine purified
output based ones we are all the time dealing with the same entities (affine non-anticipative control laws),
but switch from one parameterization of these laws (the one by fN -parameters) to another parameteri-
zation (the one by 77N-parameters). This re-parameterization is nonlinear, so that in principle there is no
surprise that what is difficult in one of them (the Synthesis problem) is easy in another one. This being
said, note that with our re-parameterization we neither lose nor gain only as far as the entire family of
linear controllers is concerned. Specific sub-families of controllers can be “simply-looking” in one of the
parameterizations and be extremely difficult to describe in the other one. For example, time-invariant
linear feedback u; = Ky; looks pretty simple (just a linear subspace) in the EN -parameterization and
form a highly nonlinear manifold in the 77¥-one. Similarly, the purified output-based control u; = Kuv;
looks simple in the 7V-parameterization and is difficult to describe in the 5 N_one. We can say that there
is no such thing as “the best” parameterization of affine control laws — everything depends on what
are our goals. For example, the 7V parameterization is well suited for synthesis of general-type affine
controllers and becomes nearly useless when a linear feedback is sought.

Illustration [continued]. We are about to demonstrate how the outlined methodology works in our
toy “water supply” illustration. In our experiment, we used tank capacity V = 50; the pumping costs ¢; and
the upper bounds on hourly demands d; are shown on the left plots of figure the lower bounds on hourly
demands were set to 0. The upper bound Z on the tank’s level at the beginning of hour 0 was set to 10.
The performance of the purified output-based controller for yielded by minimizing the worst-case
total pumping cost over affine purified output-based controllers satisfying the design specifications
for all ¢ € ZD* is illustrated by the right part of figure where we plot 100 state and control trajectories
corresponding to 100 initial tank levels z and demand trajectories selected at random from the “uncertainty
set” ZD? = {[z;dp;...;das] 1 0 < 2 < 7,0 < d; <d;,0<t<23}. The pumping costs in these simulations
were as follows:

min | mean | median | max
50.00 | 472.13 | 473.31 | 905.00
Total pumping costs in 100 simulations

The worst-case, w.r.t. ¢ € ZD* pumping cost for our controller is 915.00. To put this result into proper
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Figure 3.5: Left, top: hourly pumping cost. Left, bottom: upper bounds d; on hourly demands
(o) and sample demand trajectory (+). Right: 100 sample level (top) and control (bottom)
trajectories. Pay attention to how close to the tank’s capacity are tank levels in the first five
(1 <t <5) “cheap pumping — low demand” hours and to how intensive is the pumping in the

beginning (¢ = 0).

perspective, note that with ( corresponding to the zero initial tank level and the largest possible hourly
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demands d; = d;, 0 < t < 23, the minimal possible pumping cost is 885.00 — just by 3.3% less that the
cost guaranteed in the worst case by our controller. Thus, in our example passing from non-anticipative affine
controllers to “utopian” control policies utilizing a priori knowledge of ¢ cannot reduce the worst-case, over
¢ € ZD*, pumping cost by more than 3.3%. In fact the situation is even better: applying to our simple
model Dynamic Programming, one can minimize the worst-case cost of pumping w.r.t. all non-anticipative
output-based control laws, linear and nonlinear alike, and this minimum happens to be 915.0 — exactly what
is yielded by our optimal purified output-based controller, cf. [6].

3.3.7.7 * Clearing debts: justification of Proposition [3.3.6

In one direction: Assume that the controller is given by u; = U:(yo,...,y:), t = 0,1,..., and let us prove
that the same system’s behaviour can be obtained by purified output-based controller u; = ﬁt(vo,vl, ey Ut),
t = 0,1,.... To this end it suffices to prove by induction in ¢ that with the output-based control, the
outputs y; are deterministic functions of stemming from our control purified outputs: y; = Yi(vo,v1, ..., v¢),
t =0,1,.... Base t = 0 is trivial, since by construction yo = vg. Assuming that y, = Y, (vo,...,v;) for

0 <71 <t, we conclude that u, = Tj}(vo, oy ) 1= Uz (Yo(vo), Y1(vo,v1), ..., Yz (vo, ...,v7)). Looking at the
model, we conclude that .1, 0 < 7 < ¢, are deterministic functions of vq, ..., v;: Zr11 = XT+1(UO, ey U )
Consequently, 7311 = Cy1 12441 is a deterministic function of vy, ..., v¢: Y1 = ?tﬂ(Uo, ..., vt), implying that
Yerl = Ypa1 + Vg1 = }AQH(UO, ey V) + Vpy1, that is, ypy1 is deterministic function of v, ..., v¢41. Inductive
step is complete. And since y; = Y;(vo, .., v¢), we conclude that the output-based controls u; = U;(yo, ..., Yt)
can be represented as deterministic functions of the purified outputs: u; = ﬁt(vo, .., 0t), as claimed. It is
immediately seen that with affine in [yo; ...; y¢] functions Ui (o, ..., y+), the above construction results in affine
in [vg; ...; v¢] functions Ut(vo, ey Vg ).

In the opposite direction: Assume that the controller is given by u; = ﬁt(vo, wvt), t=0,1,..., and let us
prove that the same system’s behaviour can be obtained by control policy of the form u; = U;(yo, y1, .-, yt), t =
0,1,.... Tothisend it suffices to prove by induction in ¢ that with the purified-output-based control, the purified
outputs v; are deterministic functions of stemming from our control actual outputs y:: vi = Vi(yo, Y1, s Y1),
t = 0,1,.... Base t = 0 is trivial, since by construction vy = yg. Assuming that v, = ‘//\}(yo,...,yf)
for 0 < 7 < t, we concEJdeAthat for 0<7<t the controls u, are deterministic functions of yg, ..., y,:
ur = Ur(Yo, - yr) := Ur(Vo(yo)s -os Va(Yo, oy yr)), T < t. As a result, from model's dynamics Ty is
a deterministic function of yg, ..., ys: Tir1 = )A(tﬂ(yo,...,yt), whence, again by model dynamics, 711 is a
deterministic function of yg, ..., y¢, so that v;11 = Y11 —Yrr1 is deterministic function of yg, ..., ¥:+1. Induction
is complete. It remains to note that with v; being deterministic functions of y, ..., 4, t = 1,2, ..., the purified-
output-base controls u; = Uy(vy, ..., v;) become deterministic functions of yo, ..., y¢: wy = Us(yo, ..., ¥¢), and
the resulting output-based control yields the same system’s behaviour as the purified-output-based control
we started with. And here again looking at the construction, we immediately conclude that when the initial
purified-output-based controller is affine, so is the resulting output-based controller. O

3.3.8 * Extending calculus of polyhedral representability: Majorization

3.3.8.1 * Preliminaries

We start with introducing two useful functions on R™. Given an integer k, 1 < k <mn, let us set
si(x) = sum of the k largest entries in x

and
lz]|x,1 = sum of the k largest magnitudes of entries in z

(we already met with the latter function, see p. [20]). For example,
so([31:2]) =3+2=5, 52([3,3,1]) =3+ 3 =6, ||[5, ~1, ~T][lon = 7+ 5 = 12.

We intend to demonstrate that these functions are polyhedrally representable, and to build their p.r.’s.
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Function si(-). Let Sj be the set of all Boolean vectors (i.e., those with coordinates 0 and 1) in R™
which have exactly k coordinates equal to 1. We clearly have

sk() = maxy'a. (*)

Now, by the result stated in Task [2.4] Sy is exactly the set of vertices of the polyhedral set

Y:{yGR":Ogyigl,lgign,Zyi:k‘};

K3

since X is bounded and thus is the convex hull of its vertices, (x) says that si(x) is the support function of
Y:

sk(x)=max{:cTy:0<yi<1,1<i<n72yi=k},
Yy -

K2

so that a polyhedral representation of s(-) is readily given by the results of section [3.3.4.2] Applying (3.3.14))
and denoting A7, AT, i the (vectors of) Lagrange multipliers associated with the constraints y > 0, y <

[1;..;1] and ), y; = k, respectively, we get

{lws7]: 7= sp(a)}
={[z;7] : 3T <0, >0,0) : AT AT+ pfl g1 =2, Y A 4+ ku < T}

which clearly simplifies to

{la; 7] : 7 > sp(x)} (3.3.34)
={lz;7): INprw <N+ p,1<i<n, 7 >3" 0 N+ ku, A > 0Vl e
We have built a p.r. for sg(-) (cf. Lemma [1.2.1]).

Remark: since the functions si(z) are p.r.f., so are the functions s,,_j(x) — >_" | x;, meaning that the
sum s;(x) of k smallest entries of z € R™ is a concave polyhedrally representable function of x (indeed,
sp(®) = >0 @ — sp—k(x)). What is important in these convexity/concavity results, is that we speak about
sums of k largest/smallest entries in x, not about the k-th largest (or k-th smallest) entry in . One can
demonstrate by examples that the k-th largest entry 2% () of a vector z € R™ is neither concave, nor convex
function of , unless k = 1 (z!(x) = s1(x) is convex) or k = n (2" (x) = 5,(x) is concave).

Function ||z||;1. Denoting |z| = [|z1[;...;|2n|], we clearly have ||z|s1 = sk(|z]), which combines with

(13.3.34) to imply that

{lzs 7] o7 = l2lleat = {las 7] - 3

o, < N+, 1 <i<n, 7> Z?:l N+ ks, A > 0Vi). (3.3.35)

which is a p.r. for ||z||5,1. We have built this p.r. in Lemma m

3.3.8.2 * Majorization

Postponing for a moment functions sg(+), let us look at something seemingly completely different — at the
set II,, of double stochastic n x n matrices (see p. . Recall that this is the polyhedral set in the space
R™" = R" of n x n matrices P given by the constraints

I, = {PecR™™: P, > ow,j,Zaj = Wj,ZP,-j =1Vi}.
i J
Birkhoff's Theorem (Theorem [2.3.1)) states that the vertices of II,, are exactly the permutation n x n matrices.

Since IT,, clearly is bounded, it is the convex hull of the set of its vertices, and we arrive at the following useful
result:
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An n x n matrix is double stochastic iff it is a convex combination of n X n permutation
matrices.

We now make the following

Observation 3.3.2 Let f be a convex and symmetric function on R"™, the symmetry meaning that whenever
a’ is obtained from x by permuting the entries, one has f(x') = f(x). Then for every x and every double
stochastic matrix P one has

f(Pz) < f(a). (3.3.36)

Verification is immediate: if P is double stochastic, then P = Y. \;P?, where P’ are permutation matrices
and )\; are nonnegative weights summing up to 1. It follows that

J(Pr) = (3 NiP'a) < 3 Mif(Ple) = 3 hif (@) = f(@),
[ (a) 7 (b) [

where (a) is given by Jensen's inequality and (b) is due to the symmetry of f. a

Observation [3.3.2] is the source of numerous useful inequalities. For starters, here is the derivation of the
famous inequality between the arithmetic and the geometric means:

For nonnegative reals x1, ..., x, it always holds

1+ ... +xT,

- > (I1I2...I")1/n. (%)

Indeed, it is not difficult to prove that the function g(z) = (z;...z,,)*/™ is concave in the nonnegative orthant,

and of course it is symmetric. Given an x > 0, specifying P as the n X n matrix with all entries equal to 1/n
(this clearly is a double stochastic matrix) and applying (3.3.36]) to =, P and the convex symmetric function
f=—g, we get

9(Pz) = g(x);

but g(Pzx) clearly is the arithmetic mean of x1, ..., 2,, and we are done.
We can get in the same fashion the inequality between the arithmetic and the harmonic means:

For positive reals x1, ..., T, it always holds

n 1+ ...+ Ty
< *k
L+L+”_+L_ n ( )

1 x2 [29

Indeed, it is easy to see that the function f(z) = i + ...+ i regarded as a function of a positive vector
z (i.e., extended by the value +00 outside the set of positive vectors), is convex (and of course symmetric).
Given > 0 and using the same P as above, we get from ([3.3.36)) as applied to x, P, f that

n? 1 1
< — 4+ —,

1+ ...+x, X1 T
which is nothing but ().
In fact both inequalities (x), (xx) can be easily obtained directly from the Jensen inequality and do not
need “a cannon” like Birkhoff's Theoren¥| This is not so in our next example:

8Indeed, when proving the arithmetic-geometric means inequality, we lose nothing by assuming that = > 0
and Y, x; = n. Applying Jensen’s inequality to the (clearly convex) function —In(s) on the positive ray, we get
0= —In(&toting < Ll In(zy) — ... —In(zn)] = — In([z1...2¢,]*/™), which is the same as the inequality we need.
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() Let S™ be the space of symmetric n X n matrices; for a matrix X € S”, let A\(X) € R"”
be the vector of eigenvalues \;(X) of X (taken with their multiplicities in the non-ascending
order). For every convex and symmetric function f on R", the function F(X) = f(MX))
on S™ is convex.

To justify this claim it suffices to verify the following, important by its own right, relation:

F(X) = sup f(diag(UXU™)), (M)

where O,, is the set of all orthogonal n X n matrices, and diag(Y’) is the vector comprised
of the diagonal entries of a matrix Y. Indeed, taking (!!) for granted, we observe that
f(diag(UXUT)) is convex along with f (calculus of convex functions, rule on affine substi-
tution of argument). It remains to recall that the supremum of a whatever family of convex
functions is convex as well.

To prove (1), note that by the eigenvalue decomposition, a symmetric matrix X can be
represented as X = VAVT, where V is orthogonal and A is the diagonal matrix with the
eigenvalues of X on the diagonal. Denoting temporary the right hand side in (!!) by G(X),
we clearly have G(X) > F(X) = f(MX)) (take U = VT). To prove the opposite inequality,
note that when U is orthogonal, we have UXUT = U(VAVT)UT = WAWT, where W = UV
is orthogonal along with U, V. It follows that

(UXUT)i = WigAje[ W =Y W2EN(X).
3.t J=1

Since W is orthogonal, the matrix P = [ij]lSiJSn is double stochastic. We see that

the diagonal of UXUT is the product of a double stochastic matrix and the vector of

eigenvalues of X, whence, by , f(diag(UXUT)) < f(MX)) (recall that f is sym-

metric and convex). The latter inequality holds true for every orthogonal U, whence

G(X) = suppco, f(diag(UXUT)) < FA(X)) = F(a). :

The results above imply numerous useful and by far non-evident at first glance facts, like

e The sum of k < n largest eigenvalues of a symmetric n X n matrix X is a convex function of X, and
its value at X is > the sum of the k largest diagonal entries in X (use (!) — (!!) with f = sg).
Similar result holds for the sums of k largest magnitudes of eigenvalues and k largest magnitudes of the
diagonal entries of X

e The functions Det /"(X) and In(Det (X)), regarded as functions of positive semidefinite (all eigen-
values are nonnegative, or, equivalently, 7 X¢ > 0 for all £) symmetric n x n matrix X are con-
cave, and Det (X) is < the product of the diagonal entries of X (use (!) — (!!) with the functions

f(s) = (s1...5,)/™ and f(s) =, Ins;, s > 0);

e The function Det ~'(X), regarded as a function of positive definite (all eigenvalues positive) symmetric
matrix X is convex,

to name just a few.

3.3.8.3 * Majorization Principle
Observation [3.3:2) attracts our attention to the following question:
Given x,y € R"™, when y can be represented as Px with a double stochastic matrix P?

The answer is given by
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Theorem 3.3.2 [Majorization Principle] A vector y € R™ is the image of a vector x € R™ under multipli-
cation by a double stochastic matrix iff

sp(y) < sp(x), 1 <k <n & sp(y) = sn(z). (3.3.37)

Proof. Necessity: let y = Pz for a double stochastic P. Then si(y) < si(z), 1 < k < n, by Observation
3.3.2} since sk (+) is convex (we have seen it) and clearly is symmetric. And of course multiplication by a
double stochastic matrix preserves the sum of entries in a vector:

Z(PIL =[1;.;1) Pz = (PT[1;..;1) T2 = [1;..;1) 2

g

so that s, (Pz) = s,(x).

Sufficiency: Assume that holds true, and let us prove that y = Px for some double stochastic matrix
P. Both the existence of the representation in question and the validity of are preserved when we
permute entries in x and permute, perhaps differently, entries in y. Thus, in addition to , we can
assume w.l.o.g. that

T1 2Ty 2 oo 2 Tp, Y1 2 Y2 2 oo = Yn.

Now suppose that the representation we are looking for does not exist: y ¢ X = {Pxz: P € I1,,}, and let us
lead this assumption to a contradiction. Since II,, is polyhedral, so is X (as the image of IL,, under the linear
mapping P — Pz). Since y ¢ X and X is polyhedral, there exists a nonstrict linear inequality which is valid
on X and is violated at y, or, equivalently, there exists £ € R"™ such that

T T 7 |
&y > maxfal. "

Now, if & < &; for i,j such that ¢ < j, then, permuting i-th and j-th entry in &, the right hand side in (!)
remains intact (since X clearly is closed w.r.t. permutations of entries in a vector), and the left hand side
does not decrease (check it, keeping in mind that ¢; < &; and y; > y; due to ¢ < j). It follows that arranging
the entries in £ in the non-ascending order, we keep intact the right hand side in () and can only increase
the left hand side, that is, (!) remains valid. The bottom line is that we can assume that §; > & > ... > &,.
Now comes the punch line: since y; are in the non-ascending order, we have si(y) = y1 + ... + yx, whence

Y = Sk(y) - Sk*l(y% 2 S k S n,
so that

ty §151(y) + &2(s2(y) — s1(y)] + &ls3(y) — s2(y)] + - + Enlsn(y) — sn-1(y)]

(61— &als1(y) + [2 — &ls2(y) + - + [En1 — Enlsn—1(y) + &nsn(y)

(What we have used is the identity 7 a;b; = S0~ [a; — ai 1] 22:1 bj+ay > j_, bj; this discrete analogy

of integration by parts is called Abel transformation). Similarly, si(x) = 1 + ... + @, whence

Mo =[6 - &ls1(x) + (& — &ls2(x) + oo+ [Gno1 — &nlsn—1(x) + Ensn(2).

Comparing the resulting expressions for €7y and 7'z and taking into account that &, —&j41 > 0, sx(y) < si(x)
and s,,(y) = sn(x), we conclude that Ty < ¢Tz. Since x € X, the latter inequality contradicts (!). We have
arrived at a desired contradiction. |

9to understand the equalities, note that if P is double stochastic, then so is PT, and the product of a double
stochastic matrix by the all-1 vector is this very vector.
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3.4 Exercises

Exercise 3.1 1) Prove Gordan Theorem on Alternative:

A system of strict homogeneous linear inequalities Ax < 0 in variables x has a
solution iff the system AT\ = 0,\ > 0 in variables \ has only trivial solution A = 0.

2) Prove Motzkin Theorem on Alternative:

A system Ax < 0, Bx < 0 of strict and nonstrict homogeneous linear inequalities
has a solution iff the system AT\ + BTy = 0,\ > 0, > 0 in variables A, i has no
solution with A # 0.

Exercise 3.2 [Do we need strict inequalities?] Given system

Axr < p
Br < g (S)

of finitely many strict and nonstrict linear inequalities in variables x € R, build a system of
nonstrict linear inequalities (S") which is solvable if and only if (S) is, with feasible solutions to
(S) easily convertible into feasible solutions to (S'), and vice versa.

Exercise 3.3 For the systems of constraints to follow, write them down equivalently in the
standard form Az < b,Cz < d and point out their solvability status (“solvable — unsolvable”)
along with the corresponding certificates.

1. 2<0 (zeR")

2.2<0& Y2 >0 (xeR")

3. —-1<z;<1,1<i<n,y;,xz>n(zeR")

4. —1<x;<1,1<i<n, >y ,z;>n(reR")

. —1<a; <1,1<i<n 0" iz > " (7 ¢ RY)

6. —1 <z <1,1<i<n, Y0 iz>"" (zcRm)

N

. LUERQ, |$1‘+$2§1,$220,CL‘1+SE2:1
8. v €R? |z1|+ 22 < 1,m0> 0,21 + 22> 1
9. x€R4, x > 0, sum of two largest entries in & does not exceed 2, x1 + z2 + x3 > 3

10. z € R*, 2 > 0, sum of two largest entries in z does not exceed 2, x1 + x2 + x3 > 3
Exercise 3.4 Let (S) be the following system of linear inequalities in variables x € R3:
v < Lo +a<loi+ap+a3<1 (S)

In the following list, point out which inequalities are, and which are not consequences of the
system, and certify your claims as explained in examples in items 1 and 2.

1. 3z1 + 229+ 23 <4
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.31 4 229 + 23 < 2
. 3x1 +222 <3

. 3x1 + 239 <2

31+ 32+ 23 <3

3rx1+3T0+ 23 <2

Make a generalization: prove that a linear inequality pxi + qze + rzs < s is a consequence of
(S)ifand only if s >p > g >r > 0.

Exercise 3.5 Is the inequality x1 + x2 < 1 a consequence of the system x1 < 1,21 > 27 If yes,
can it be obtained by taking a legitimate weighted sum of inequalities from the system and the
identically true inequality 072z < 1, as it is suggested by the Inhomogeneous Farkas Lemma?

Exercise 3.6 Certify the correct statements in the following list:

1.

2.

The polyhedral set X = {x € R3: 2 > [1/3;1/3;1/3], Zg’zl x1 < 1} is nonempty.

The polyhedral set X = {z € R?: 2 > [1/3;1/3;1/3], 3%, 21 < 0.99} is empty.

. The linear inequality x1 + x2 + x3 > 2 is violated somewhere on the polyhedral set X =

{zeR?: 2> [1/3;1/3;1/3],3% & < 1}.

. The linear inequality x1 + x2 + 3 > 2 is violated somewhere on the polyhedral set X =

{zeR®: 2> [1/3;1/3;1/3], 320, 2 < 0.99}.

. The linear inequality z1 +x2 < 3/4 is satisfied everywhere on the polyhedral set X = {z €

R3: 2 > [1/3;1/3;1/3], 320, 2; < 1.05}.

. The polyhedral set Y = {x € R? : 1 > 1/3,19 > 1/3,23 > 1/3} is not contained in the

polyhedral set X = {z €¢ R3: 2 > [1/3;1/3;1/3], Z?Zl x; < 1}

The polyhedral set Y = {z € R? : 2 > [1/3;1/3;1/3],3.7_, x; < 1} is contained in the
polyhedral set X = {x € R3: w1 + 29 < 2/3, 20 + 23 < 2/3, 21 + 23 < 2/3}.

. The polyhedral set X = {z € R?: 2 > [1/3;1/3;1/3],37_, ; < 1} is bounded.

. The polyhedral set X = {z € R?: 21 > 1/3,25 > 1/3,3°_| 2; < 1} is unbounded.

Exercise 3.7 Consider the LO program

Opt = max {x1 : 1 > 0,22 > 0,ax1 + bzry < ¢} (P)
X

where a, b, ¢ are parameters. Answer the following questions and certify your answers:

1.
2.

3.

Let ¢ = 1. Is the problem feasible?
Let a=b=1,c= —1. Is the problem feasible?

Let a=b=1,c= —1. Is the problem bounded?



182 LECTURE 3. THEORY OF SYSTEMS OF LINEAR INEQUALITIES AND DUALITY

4. Let a = b =c=1. Is the problem bounded?
5. Let a=1,b= —1,c = 1. Is the problem bounded?
6. Let a =b=c=1. Is it true that Opt > 0.57
7. Let a=b=1,c= —1. Is it true that Opt <17
8. Let a =b=c=1. Is it true that Opt < 17
9. Let a =b=c=1. Is it true that x, = [1; 1] is an optimal solution of (P)?
10. Let a =b=c = 1. Is it true that =, = [1/2;1/2] is an optimal solution of (P)?

11. Let a =b = c = 1. Is it true that z, = [1;0] is an optimal solution of (P)?

Exercise 3.8 Write down problems dual to the following LO programs:

Ty — 29 +2x3=0
xr1 + x9 — x3 > 100
1. max ¢ x1 +2x0+3x3: x1 <0
z€R3
56220
1‘320

2. max {ch cAr=0b,x > O}
zeR™

3. max {ch:Am:b,ggmgﬂ}
zeR"

4. maX{CTx:Aac—f—Bygb,:cSO,yZ 0}
I?y

Exercise 3.9 Consider a primal-dual pair of LO programs

Px<p
max{ clx: Qx> gq (P)
! Rx=r
Ae >0
min PPN+ Ay +1TAe s Ay <0 (D)
A=[Ag;Ag,Ae] PTAg + QTAg + RT)\E —=c

Assume that both problems are feasible, and that the primal problem does contain inequality
constraints. Prove that the feasible set of at least one of these problems is unbounded.

Exercise 3.10 For positive integers k < n, let sip(z) be the sum of the k largest entries in
a vector x € R", eg., so([1;151]) = 14+ 1 = 2, 59([1;2;3]) = 2+ 3 = 5. Find a polyhedral
representation of sy(x).

Hint: Take into account that the extreme points of the set {x € R" : 0 < z; <1,) . z; = k} are
exactly the 0/1 vectors from this set, and derive from this that

T .
= 0<y <1Vi, Y yi=kp.
sk(z) m;X{yx Sy <1V iy }
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Exercise 3.11 Consider scalar linear constraint
alz <b (1)
with uncertain data a € R™ (b is certain) varying in the set
n
U={a:|a;—af|/6; <11 <i<n, Y |a;—af|/6; < k} (2)
i=1

where o} are given “nominal data,” §; > 0 are given quantities, and £k < n is an integer (in
literature, this is called “budgeted uncertainty”). Rewrite the Robust Counterpart

als <bVacl (RC)

in a tractable LO form (that is, write down an explicit system (S) of linear inequalities in
variables x and additional variables such that z satisfies (RC) if and only if = can be extended
to a feasible solution of (5)).



Part 11

Classical Algorithms of Linear
Optimization:

the Simplex Method



Lecture 4

Simplex Method

In this lecture, we focus on historically the first algorithm for solving LO programs — the famous
Simplex method invented by George Dantzig in late 1940’s. The importance of this invention
can hardly be overestimated: the algorithm turned out to be extremely successful in actual
computations and for over than 4 decades was the working horse of LO. Today we have at our
disposal also other, theoretically more advantageous (as well as better suited for many practical
applications) LO algorithms; nevertheless, the Simplex method still remains indispensable in
numerous applications.

As nearly all computational methods, the Simplex method is not a single well-defined al-

gorithm; it is rather a common name for a family of algorithms of common structure. In our
course, we will focus on the most basic members of this family — the Primal and the Dual
Simplex methods. These methods heavily exploit the specific geometry of LO. The informal
“high level” description of the Simplex method is quite transparent and natural. Assume that
the feasible set of an LO program is nonempty and does not contain lines. From the theory
developed in lecture [2| it then follows that if the program is feasible, its optimal solution, if any,
can be found among the finitely many candidates — the vertices of the feasible set. The Simplex
method moves along the vertices according to the following scheme (see figure [4.1):
e staying at a current vertex v, the method checks whether there is an edge — a one-dimensional
face of the feasible set — which contains v and is an improving one, that is, moving from v along
this edge, the objective improves (increases when speaking of a maximization problem and de-
creases when the problem is a minimization one). There are three possibilities:

e an improving edge does not exist. It can be proved that in this case the vertex is the
optimal solution;

e there exists an improving edge, which, geometrically, is a ray, that is, moving from v along
this edge, we never leave the feasible set. In this case the problem clearly is unbounded;

e there exists an improving edge which is a nontrivial segment and thus has two vertices
which, being vertices of a face of the feasible set, are vertices of this set itself (Proposition
. One of these vertices is v; denoting the other vertex by v+ and taking into account
that the edge is an improving one, the value of the objective at v™ is better than its value
at v. The Simplex method moves from v to v, and proceeds from this point as from v.

Since there are only finitely many vertices and the method before termination strictly improves
the objective and thus cannot visit the same vertex twice, it in finitely many steps either finds

185
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E

Figure 4.1:  Geometry of Simplex Method. The objective to be maximized is the ordinate
(“height”). Left: method starts from vertex A and ascends to vertex C' where an improving ray
CFE is discovered, meaning that the problem is unbounded. Right: method starts from vertex
A and ascends to the optimal vertex K.

an improving ray and terminates with the (correct) claim that the program is unbounded, or
arrives at a vertex which does not admit an improving edge and thus is optimal. The essence of
the matter is in the fact that there are relatively simple, quite transparent and fully algorithmic
algebraic tools which, modulo “degenerate cases” (which need a special treatment and never
occur when the problem is “in general position”), make it easy to implement the above strategy,
that is, to find, given a vertex, an improving edge, or to detect correctly that no one exists.

Note that the outlined “finiteness” of the Simplex method by itself does not promise much
— if finiteness were the only goal, why not to use the Fourier-Motzkin elimination scheme (see
p. [32)? The only upper bound on the number of steps of the Simplex method (i.e., the number
of vertices visited before termination) given by the proof of method’s finiteness is that the total
number of steps is bounded by the total number of vertices, and the latter can be astronomically
large: the polytope as simple as the n-dimensional box has 2" vertices! It is a kind of miracle
that “in reality” the method visits a negligible part of all vertices (empirically speaking, just a
moderate multiple of the number of equality constraints in the standard form of the program)
and is a surprisingly successful algorithm capable to solve routinely in reasonable time “real
world” LO programs with tens and hundreds of thousands of variables and constraints.

4.1 Simplex Method: Preliminaries

Primal and Dual Simplex methods (PSM and DSM for short) are directly applicable to an LO
program in the standard form

Opt(P) = max {Tz:veX={v:Ax=0,2>0}}, A=[a];...;al]; (4.1.1)
zeR"

m

as we remember from lecture [1} every LO program can be straightforwardly converted to this
form.

Assumption. From now on, we make the following
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Assumption: The system of linear constraints Ax = b in (4.1.1)) is feasible, and the
equations in this system are linearly independent, so that the rank of A is equal to
the number m of rows in A.

Note that to check the solvability of a system of linear equations Ax = b is a simple Linear
Algebra task; if the system is not feasible, so is the LO program , and its processing is
therefore complete. If the system Axz = b is solvable, then the solution set remains intact when
we eliminate from the system, one at a time, equations which are linear combinations of the
remaining equations until a system with linearly independent equations is built; this reduction of
redundant linear equations again is a simple Linear Algebra task. We see that our Assumption
(which by default acts everywhere in the sequel) in fact does not restrict generality.

4.2 Geometry of an LO Program in the Standard Form
Our next step is to understand how our results on the geometry of a general type LO program

should be specialized when the program is in the standard form. We start with building up the
problem dual to (4.1.1)).

4.2.1 The Dual of an LO Program in the Standard Form
Written in the form of (3.1.8]), problem reads

— T,. . x
Optmxax{c a;{ A

and its dual as built in Section B.2.1] reads

v
St O
—_~
SRS
~— —
——

A9
Mg + AT,

A

Opt(D) = )\_I[I/l\ir.l)\ | {dTA =07, + b7\ {
“Dgihe

0 } (4.2.1)

C

By eliminating A\, and renaming A. as y, we pass to the equivalent form of the dual problem,
namely,

Opt(D) = min {bTy ce— ATy < 0}. (4.2.2)
y
(1) From now on we call (4.2.2)) the dual of the LO program in the standard form
@E11).
The optimality conditions read (see Proposition 3.3.1)):

Proposition 4.2.1 A feasible solutions x to (4.1.1) is optimal iff there exists vector of Lagrange
multipliers y € R™ such that ¢ — ATy <0 and

zj(c— ATy) ;i =0,1<j<n [complementary slackness]

If y satisfies these requirements w.r.t. some feasible solution x to (4.1.1)), then y is an optimal
solution to the dual problem (4.2.2)).
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Note that when replacing the original objective ¢’z in (4.1.1)) with [c — AT%]Tx, on the feasible
set of the program the objective is changed by a constant (specifically, by —y”'b), and the primal
problem remains intact. In LO terminology, such an equivalent modification ¢ — ¢ — ATy of the
primal objective is called passing to reduced costsE| Proposition says that a primal feasible
solution z is optimal iff there exist reduced costs ¢ — ATy which “make optimality evident” — all
the reduced costs are nonpositive and complementary slackness w.r.t. x takes place, so that the
new objective is nonpositive everywhere on the nonnegative orthant, while being zero at = due
to the complementary slackness; thus, £ maximizes the new objective on the entire nonnegative
orthant, not speaking about maximizing the new (and thus the old) objective on the primal
feasible set.

4.2.2 Basic and Basic Feasible Solutions

Now it is time to investigate the vertices of the primal feasible set X = {z € R" : © > 0: Az = b}
and the dual feasible set Y = {y € R™ : ¢— ATy < 0}. Note that X does not contain lines (as a
part of the nonnegative orthant R’} which does not contain lines), and Y does not contain lines
due to the fact that A is of rank m, that is, AT has trivial kernel.

We call a collection I = {iy, ..., % } of m distinct indices from the index set {1,...,n} a basis
of , if the corresponding columns A;, , ..., A;,, of A are linearly independent (and thus form
a linear basis in the space R™ to which they belong). Since A is of rank m, bases do exist. If I is
a basis, we can partition every vector € R” into its m-dimensional basic part x; comprised of
entries with indices from I and its non-basic part 27 comprised of all remaining entries; we shall
denote this partition as = (x7,27). We can similarly partition the matrix A: A = (Ar, A7),
where Ay is the m x m matrix comprised of the columns of A with indices from IEL and A7 is
comprised of all remaining columns of A. With these partitions, Ay is an m X m nonsingular
matrix, and the system of linear constraints in can be written down as

A].CL'] —{—ATIET =b

4.2.3
< xr+ [A]]ilATl'j = [A[]ilb. ( )

We can now satisfy the primal equality constraints by setting 27 = 0 and 27 = [A;]7'b, thus
arriving at a basic primal solution

o' = (z; = [Af] b, 27 = 0)

associated with basis I; this solution satisfies the primal equality constraints, but not necessarily
is feasible for the primal problem; it is primal feasible iff z; > 0.

Similarly, given a basis I, we can try to find a dual solution y which makes the dual inequality
constraints with indices from I active, that is, is such that

(ATy —¢);=0,i€el.

The matrix of coefficients in this system of m linear equations in m variables y is A}F, so that
the system has a unique solution
' = A e BT = (B7Y)

!This terminology fits a minimization LO in the standard form, where ¢; can be interpreted as costs. In our
maximization setting of the primal problem, the name “reduced profits” would be more to the point, but we
prefer to stick to the standard terminology.

2these indices are somehow assigned serial numbers, so that I = {i1,...,im} and A; = [As,, ..., As,, ], where A;
is i-th column in A.
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y! is called the basic dual solution, and the vector ¢! = ¢ — ATy! — the reduced costs associated

with the basis I. The basic dual solution y! not necessarily is feasible for the dual problem; it
is feasible iff the corresponding vector of reduced costs is nonpositive:

=c—AT[A]Ter <0,

Note that by construction all basic entries — those with indices from I — in this vector are zeros.
The role of bases in our context stems from the following simple

Proposition 4.2.2 (i) Let v be a feasible solution to the primal program . v 1S a vertex
of the primal feasible set X iff v =x! for some basis I.
Equivalently: vertices of X are exactly the feasible primal basic solutions.

(ii) Let y be a feasible solution to the dual program (4.2.2)). y is a vertex of the dual feasible
set Y iff y =y! for some basis I.
Equivalently: vertices of Y are exactly the feasible dual basic solutions.

Proof. (i): In one direction: let v be a vertex of X, and let J = {i : v; > 0}. Assume, first,
that J # () (that is, v # 0), We claim that the columns of A with indexes from J are linearly
independent.

Indeed, assuming the opposite, we could find a vector h € R"™ which is nonzero, has
zero entries with indexes not in J, and satisfies Ah = 0. For small positive ¢, the
vectors v + th and v — th belong to X, which is impossible, since v is a vertex of X
and h # 0.

Since the columns A;, j € J of A are linearly independent and the rank of A is m, we can extend
J to m-element set of indexes which form a basis; clearly, v is the corresponding basic feasible
solution. And if J = (), then v = 0 and b = Av = 0, implying that v = 0 is the basic feasible
solution for whatever basis (and bases do exist!).

In the opposite direction: Let v be a basic feasible solution associated with basis I, and let
us prove that v is a vertex of X, that is, the only h resulting in feasible v & h is h = 0. Indeed,
for such an h the entries with indexes j outside of I should be zero (since z; £ h; = 0 £ h;
should be nonnegative). Next, Ah = A(v+h) — Av =b—b = 0; since h; = 0 for j & I we
get Zje[ hjA; = 0, and since A;, j € I, are linearly independent, we get h; = 0,j € I. Thus,
h =0, as claimed. (i) is proved. O

(ii): Let y be the dual basic feasible solution associated with basis I. This is a feasible
solution to the system of inequalities ATy > ¢ which makes active m = dim y inequalities of the
system, namely, A]Tg = ¢j, j € I, and the vectors of coefficients of these inequalities are linearly
independent, since [ is a basis. By algebraic characterization of extreme points of a polyhedral
set, 7 is a vertex of the dual feasible set. In the opposite direction: if ¢ is an extreme point of
the dual feasible set, then, by the same algebraic characterization of extreme points, among the
inequalities of the system Ay > ¢ which are active at § there should be m = dim y inequalities
with linearly independent vectors of coefficient, that is, there exists a basis I such that A;fg =cj
for j € I; besides this, g is dual feasible. We conclude that 7 is the (unique!) basic dual solution
associated with basis I, and this basic solution is dual feasible. O

Some remarks are in order.
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A. Proposition [£.2.2] suggests the following conceptual scheme for enumerating the vertices
of the feasible set X of the program : we look one by one at all m-element subsets I of the
index set {1,...,n} and skip those which are not bases. When [ is a basis, we find the (unique)
solution to the system Az = b with the zero non-basic part (“primal basic solution” in the LO
terminology), that is, the solution z! = (z; = [A[]71b,z7 = 0). If 27 is nonnegative, we get
a vertex of the primal feasible set (“primal basic feasible solution” in the LO terminology). In
this fashion, we get all the vertices of X, if any. Similar process can be used to enumerate the
vertices of the dual feasible set; now these are exactly the dual basic solutions y! which happen
to be dual feasible.

B. Pay attention to the fact that while every vertex v of X is a primal basic feasible solution,
the corresponding basis not always is uniquely defined by the vertex. This basis definitely is
unique, if the vertex is nondegenerate, that is, possesses exactly m nonzero (and thus positive)
entries. In this case the basis which makes the vertex a primal basic feasible solution is comprised
of indices of the m nonzero entries in the vertex. A degenerate — with less than m positive entries
— vertex v can be defined by many different bases. To give an extreme example, consider the
case of b = 0. In this case, X is a pointed cone and as such has exactly one vertex — the origin;
but when b = 0, the origin is the primal basic feasible solution for every basis of the program,
and there could be astronomically many of them.

Similarly, every vertex of the dual feasible set is a dual basic feasible solution, but a particular
vertex y of Y can be associated with more than one basis. It may happen only when the vertex
y is degenerate, meaning that the number of zero entries in the corresponding vector of reduced
costs ¢ — ATy is > m. If the vertex is nondegenerate — there are exactly m zero entries in the
associated with y vector of reduced costs — there exists exactly one basis I such that y = y/,
namely, the basis comprised of indices of the m zero entries in ¢ — AT'y.

Potential degeneracy (presence of degenerate vertices) of a LO program needs a special (as
we shall see, not too difficult) treatment. Speaking about “general” LO programs of given sizes
m,n, degeneracy (presence of at least one degenerate primal and/or dual basic feasible solution)
is a “rare phenomenon” — the data of degenerate programs form a set of Lebesgue measure zero
in the space R"™ ™™ of data of all programs of these sizes. In “general position,” an LO
program is nondegenerate, and every subset I of the index set {1,...,n} is a basis. Nevertheless,
there are important special classes of LOs where a significant part of the data are “hard zeros”
(coming from problem’s structure), and in these cases degeneracy can be typical.

C. An important point is that given a primal basic feasible solution z, we can try to certify
its optimality by building the dual basic solution y! associated with the same basis. Observing
that by construction z and 3! satisfy the complementary slackness condition le [c— ATyT] ;=0
for all j (indeed, by construction the first factor can be nonzero only for j € I, and the second
—only for j & I), we see that if y! happens to be dual feasible, ! and y' are optimal solutions
to the respective problems. By exactly the same token, given a dual basic feasible solution !,
we can try to certify its dual optimality by building the primal basic solution x!; if it happens
to be primal feasible, ! and y' again are optimal solutions to the respective problems.

From the above discussion it follows that a sufficient condition for a feasible basic primal
solution Z associated with some basis I to be primal optimal is dual feasibility of the dual
basic solution gy associated with basis I. This sufficient condition is also necessary, provided
that Z is nondegenerate; indeed, when Z is primal optimal, these should be a dual feasible
solution ¥ certifying optimality, that is, such that [c — AT9];[z]; = 0 for all j, implying that
[c—ATY]; = 0 for all j with Z; > 0; for a nondegenerate feasible basic solution Z associated with
basis I, this says that 7 is (the unique!) dual feasible basic solution associated with the same
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basis. However, when T is primal optimal degenerate basic solution associated with some basis
I, the basic dual solution associated with I not necessarily is dual feasible, so that the above
sufficient condition for optimality of primal feasible basic solution is, in general, not necessary.
An “extreme example” here is the problem maxg{> ", iz; : © > 0,>, 2; = 0}. In this problem,
x = 0 is the only feasible, and thus, optimal, solution to the primal problem, and it is basic
for every basis, which under the circumstances is every single-element subset of {1,...,n}. The
basic dual solution y associated with basis I = {i} is y = ¢, and this solution is dual feasible
only when ¢ = n. We see that when the basic primal optimal solution is degenerate, and thus is
basic for perhaps more than one basis, not all dual basic solutions associated with these bases
do certify optimality.

D. The strategy implemented in Simplex method follows the recommendations of the previ-
ous item. Specifically,

e the Primal Simplex method generates subsequent primal basic feasible solutions, improv-
ing at every step (strictly, if the current solution is nondegenerate) the primal objective, and
augments this process by building associated dual basic solutions until either unboundedness of
the primal problem is detected, or a feasible dual basic solution is met, thus certifying optimality
of the current primal and dual basic feasible solutions;

e the Dual Simplex method generates subsequent dual basic feasible solutions, improving at
every step (strictly, if the current solution is nondegenerate) the dual objective, and augments
this process by building associated primal basic solutions until either unboundedness of the dual
problem is detected, or a feasible primal basic solution is met, thus certifying optimality of the
current primal and dual basic feasible solutions.

In both cases, the finiteness of the method in the nondegenerate caseﬂ follows from the fact
that the corresponding objective strictly improves from step to step, which makes it impossible
to visit twice the same primal (in the Primal Simplex Method) or dual (in the Dual Simplex
Method) vertex; since the number of vertices is finite, the method must terminate after finitely
many steps.

E. Finally, we make the following observation closely related to detecting unboundedness:

Observation 4.2.1 Let I be a basis.

(i) Assume that 3 ¢ I and w € R"™ is a nonzero vector such that w > 0, w; = 0 when
J € TU{y} and Aw = 0, and that the feasible set X = {x € R" : © > 0, Az = b} of the primal
problem is nonempty. Then w is the direction of an extreme ray of the recessive cone
Rec(X) of X.

(ii) Assume that u € R™ is a nonzero vector such that ATy >0 and (ATM)]- =0 for all but
one indices j € I, and that the feasible set Y = {y : c — ATy < 0} of the dual problem 18
nonempty. Then p is the direction of an extreme ray of the recessive cone Rec(Y') of Y.

Indeed, the recessive cone of X is Rec(X) = {x € R" : © > 0, Az = 0}. w clearly belongs to this
cone and makes equalities n — 1 of the homogeneous constraints defining Rec(X), specifically, m
constraints a;TFQL‘ =0,7=1,...,m and n —m — 1 constraints e;frm =0, j € IU{y}. Since the rows
of Ay are linearly independent, the n — 1 vectors ar, ..., am, {€; }jg 1u{y} are linearly independent
(why?), and (i) follows from Proposition [2.3.9] ().

Similarly, the recessive cone of Y is Rec(Y) = {y € R™ : ATy > 0}; u clearly belongs to
this cone and makes equalities m — 1 among the m homogeneous linear equations A;-Fy > 0,

3When speaking about PSM, the nondegenerate case is defined as the case when all basic feasible primal solu-
tions are nondegenerate; for DSM, nondegeneracy means that all dual feasible basic solutions are nondegenerate.
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J € I, participating in the description of the cone. Since the vectors A;, j € I, are linearly
independent, (ii) follows from Proposition [2.3.9}(i). O

4.3 Simplex Method

4.3.1 Primal Simplex Method

We are ready to present the PSM. In what follows, paragraphs in Italic constitute the description
of the method, while the usual text between these paragraphs contains explanations.

In the description to follow, we assume that the program is feasible and, moreover,
we have at our disposal a starting point which is a basis associated with a primal basic feasible
solution to the program.

At step t, the current basic feasible solution z
basis are updated according to the following rules.

I associated with the current basis I and this

A. We compute the vector ¢! = c— ATy!, y! = [A;]7T¢;, of the reduced costs associated with
the basis I. If ¢! is nonpositive, we terminate with the claim that ! is an optimal solution
to the primal program, and y' is the optimal solution to the dual program, otherwise we
pass to item B.

B. We pick an index j — a pivot — such that the reduced cost c]I- is positive (such an index
does exist, otherwise we were not invoking B; the index does not belong to I, since by
construction the basic reduced costs ¢! (those with i € I) are zeros). We then try to
increase the variable z; (which was zero in the solution x!), allowing for updating the
basic entries x;, i € I, in a feasible solution, and keeping the entries with indices outside
of I U{j} zeros. Specifically, let z(t), t > 0, be given by

0, i g TU{j}
mz(t) = t, 1=7 (4.3.1)
.’EZI — t([A[]_lAj)i, 1el

Comment: the origin of is as follows. z(t) is the feasible solution of the system
Az = b such that z;(t) =t and x;(t) = 0 when ¢ ¢ I U {j}. As is seen from the second
relation in (4.2.3)), the basic entries z;(t), i € I, in z(t) should be exactly as stated in
(4.3.1). Note that while x(t) satisfies the constraints Az = b for all ¢ > 0, the feasibility
of z(t) for the program (which amounts to nonnegativity of all entries in x(¢)) depends on
what happens with the basic entries z;(t). For every i € I, there are just two possibilities:

— (A): the associated quantity ([A7]~'A;); is nonpositive. In this case, the variable
x;(t) is nonnegative for every ¢ > 0.

— (B): the associated quantity ([A;]~'A4;); is positive, in which case z;(t) is nonnegative
iff ¢ < t; = [2]] [([AI]*lAj)i]fl and becomes negative when t > ¢;. Note that t; is
nonnegative since xf is so.

We check whether (A) takes place for all basic indices i (i.e., indices from the current basis
I). If it is the case, we terminate and claim that the program is unbounded. If there
are basic indices for which (B) takes place, we define t, as the minimum, over these basic
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indices, of the corresponding t;’s, and set i, equal to the basic index corresponding to this
minimum:
to = min {t; = [o] [([A] 7450 1 (A7) 1 4): > 0},
Ty ([A[]flAj)i >0& t, = t;.
We specify our new basis as I = [I\{ix}] U{j} (in the LO terminology: the variable z;

enters the basis, the variable z;, leaves it), our new basic feasible solution as x' T = x(ts),
and pass to the next step of the method.

Several justifications and comments are in order.

I. According to the above description, a step of the PSM can lead to three outcomes as
follows:

1. termination with the claim that the current primal basic feasible solution z!

this happens when all the reduced costs ciI are nonpositive.
In this situation, the claim is correct due to the discussion in item C of section see

p. 190

2. termination with the claim that the problem is unbounded; this happens when for all basic
indices, (A) is the case.
In the situation in question, the claim is correct. Indeed, in this situation x(t) is feasible
for the primal program for all ¢ > 0. As we remember, replacing the original objective ¢z
with the objective [¢!]7x reduces to adding a constant to the restriction of the objective
on the primal feasible plane. Since ¢/ =0 for i € I, cjl» > 0 (due to the origin of j) and all

entries in x(¢) with indices not in I U {j} are zeros, we have

is optimal;

(T2 (t) = ZC{%@) + cjl-xj(t) = cjf-xj(t) = cft — 400, t = 00,
el
whence also ¢’'z(t) — 400 as t — oo, thus certifying that the problem is unbounded.
Note that in the case in question the improving direction %x(t) is the direction of an

extreme ray of Rec(X), X = {z: 2 > 0, Az = b} being the feasible domain of (4.1.1)), see
Observation [£.2.7]

3. passing to a new step with the claims that IT is a basis, and () is the corresponding
primal basic feasible solution.
In this situation, the claims also are correct, which can be seen as follows. From the origin
of t. and i, it is clear, first, that x(¢.) satisfies the equality constraints of the problem
and is nonnegative (i.e., is a feasible solution), and, second, that (x(t.)); = 0 when i = i,
and when i ¢ I U {j}, that is, (z(t.)); can be positive only when i € I". Further, I
by construction is an m-element subset of {1,...,n}. Thus, all which remains to verify in
order to support the claims in question is that IT is a basis, that is, that the m columns
Aj, i € I, of A are linearly independent. This is immediate: assuming the opposite
and taking into account that the columns A;, ¢ € I\{i.} of A “inherited” from I are
linearly independent, the only possibility for A;, i € I, to be linearly dependent is that
Aj is a linear combination of these inherited columns, which amounts to the existence of

a representation
n
A= A
i=1
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with p; = 0 whenever i ¢ [ or i = i,. But then the vector
y(t) = al —tu + te;

satisfies exactly the same requirements as the vector x(t): Ay(t) = Az’ = b, all coordinates
in y(t), except for those with indices from I U{j}, are zero, and the j-th coordinate equals
to t. From the explanation where x(¢) comes from it follows that z(¢) = y(¢), which, in
particular, implies that (z(t));, is independent of ¢ (recall that p;, = 0). But the latter is
impossible due to

i, (t) = o] — t([A1) " Ay,

and the fact that ([A7]71A;);. > 0.

The bottom line is that PSM is a well-defined procedure — when running it, at every step we
either terminate with correct claims “the current basic feasible solution is optimal” or “the
problem is unbounded”, or have a possibility to make the next step, since the updated I and
x! are what they should be (a basis and the associated primal basic feasible solution) in order
make the next step well defined.

II. The correctness of PSM is a good news, but by itself this news is not sufficient: we
want to get an optimal solution, and not just “to run.” What is crucial in this respect, is the
following

Observation 4.3.1 The PSM is a monotone process: if ! and 2" are two consecutive PTiI-
mal basic feasible solutions generated by the method, then c¢'xz! < cTa:I+, with the inequality
being strict unless x! = 2", The latter never happens when the basic feasible solution x! is

nondegenerate.

The verification is immediate. In the notation from the description of the PSM and due to the
explanations above, we have ¢Tz!" — ¢Tal = [c*’]T:UI+ — [Tl = cjl-t* > 0, the equality being
possible iff ¢, = 0. The latter can happen only when z! is degenerate, since otherwise .CCZI >0
for all i € I and thus t; > 0 for all i € I for which ¢; are well defined. O

We arrive at the following

Corollary 4.3.1 The Primal Simplex method, initiated at a primal basic feasible solution of
, possesses the following property: if the method terminates at all, the result upon termi-
nation either is a primal basic feasible solution which is an optimal solution to the program, or
is a correct claim that the problem is unbounded. In the first case, the method produces not only
the primal optimal solution, but also the corresponding optimality certificate — an optimal basic
solution to the dual problem. In the second case, the method produces a ray which is contained
in the feasible set of the problem and is a ray along which the objective increases, so that this
ray is a certificate of unboundedness. In fact, this ray is an extreme ray of the recessive cone of
the primal feasible set.

The method definitely terminates in finitely many steps, provided that the program is primal
nondegenerate (i.e., all primal basic feasible solutions are so).

This result is an immediate corollary of our preceding observations. The only claim that indeed
needs a comment is the one of finite termination on a nondegenerate problem. On a closest
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inspection, this property is immediate as well: when the problem is nondegenerate, every step
before termination increases the value of the objective, implying that the method cannot visit
the same vertex more than once. Since the number of vertices is finite, and the method before
termination moves from vertex to vertex, the number of steps before termination is finite as
well. O

4.3.2 Tableau implementation and Example

To illustrate the Primal Simplex Method let us work out an example. In this example, we will use
the so called full tableau form of the algorithm well suited for both thinking about the method
and solving LO programs by hand (while now the latter process takes place in classrooms only,
once upon a time this was how the LO programs, of course, toy ones in our today scale, were
actually solved). The idea is that if I is a basis of the program of interest, then the original
program is equivalent to the program

mgx{[cI]Tx DA A = [AI]_lb} Ll =c— AT[A]) T e (%)

and we can keep the data of this equivalent problem, along with the current basic feasible
solution z!, in a tableau of the form

—cizy | [e

(A7 [ [A7]7TA

I]T

or, in more detailed form,

T .1 I I
—CIQII Cl...Cn

o | (AT A]

11

el | At

im

where I = {i1,...,in,} and [B]® stands for s-th row of a matrix B. It should be stressed that
what we keep in the tableau, are the values of the corresponding expressions, not the expressions
themselves. It is convenient to count the rows and the columns of a tableau starting from 0;
thus, the zeroth row contains the minus value of the objective at the current basic feasible
solution augmented by the reduced costs associated with this basis; rows 1,2,... are labelled
by the current basic variables and contain the entries of the vector [A;]~!b augmented by the
entries of the corresponding rows in [A7]'A. Since (x) is equivalent to the original problem,
we can think about every iteration as about the very first iteration of the method as applied to
(x), and our goal is to update the tableau representing the current equivalent reformulation (x)
of the problem of interest into the tableau representing the next equivalent reformulation of the
problem of interest.
Now let us work out a numerical example (|7, Example 3.5]). The initial program is

max 10x1 + 1229 + 1223
subject to
1 + 2x9 4+ 223 < 20
2c1 + x9 + 2x3 < 20
2r1 4+ 2x9 + r3 < 20

x1,x2,23 >0
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We introduce slack variables to convert the problem to the standard form, thus arriving at the
program

max 10x1 + 1229 + 1223
subject to
T1 + 2x9 4+ 2x3 + x4 = 20
201 + 3 + 23 + x5 = 20
21 4+ 2x9 + x3 + ¢ = 20

L1,y T > 0

which allows us to point out a starting basis I = {4,5,6} and the starting basic feasible solution
2! with nonzero entries z4 = x5 = x5 = 20. The first tableau is

X1 | X2 | X3 | Tq4 | T5 | T

0 10112 (12| 0| 0| O
rz4=20] 1| 2 2] 1| 0] O
rx5=20] 2| 1| 2] 0| 1] O
xeg=20| 2| 2| 1| 0| 0] 1
Note: the top — incomplete — row of the tableau contains

labels of the columns (the seroth column haz no label);
these labels go from tableau to tableau.

The reduced cost of x1 is positive; let this be the variable entering the basis. When trying to
replace x1 = 0 with x1 = ¢t > 0, keeping x2 and