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Preface

& Fact: Many inference procedures in Statistics reduce to optimization
& Example: MLE — Maximum Likelihood Estimation

Problem: Given a parametric family {pg(-) : 0 € ©} of probability densities
onR? and a random observation w drawn from some density py, () from the
family, estimate the parameter 0,.

Maximum Likelihood Estimate: Given w, maximize py(w) over 6 € © and
use the maximizer = 6(w) as an estimate of 6,.

Note: In MLE, optimization is used for number crunching only and has nothing to do
with motivation and performance analysis of MLE.

Fact: Most of traditional applications of Optimization in Statistics are of “number
crunching” nature. While often vitally important, “number crunching” applications are
beyond our scope.



& What is in our scope, are inference routines motivated and justified by Optimiza-
tion Theory — Convex Analysis, Optimality Conditions, Duality...

As a matter of fact, our "working horse” will be Convex Optimization. This choice is
motivated by

e nice geometry of convex sets, functions, and optimization problems

e computational tractability of convex optimization implying computational efficiency
of statistical inferences stemming from Convex Optimization.
Major topics to be covered:
e Sparsity-Oriented Signal Processing
e Hypothesis Testing
e Signal Recovery from Indirect Observations in Linear and Generalized Linear
Models



SFPFARSITY-ORIENTED SIGNAL PROCESSING

e Signal Recovery from Indirect Observations
e Sparse /1 Recovery: Motivation
e \alidating ¢1 Recovery

s-Goodness and Nullspace Property
Quantifying Nullspace Property
Regular and Penalized ¢1 Recoveries
Restricted Isometry Property
Tractability Issues



Sparsity-oriented Signal Processing:
Problem’s Setting

& Basic Signal Processing problem is to recover unknown signal xsx € R™ from its
observation
y = A(z«) + ¢
oz — A(x) : R™ — R™: known “signal-to-observation” transformation
e £: observation noise.
& In many applications, the signal-to-observation transformation is just /inear:
A(x) = Ax for some known m x n matrix A.

& Assume from now on that A(-) is linear
= the recovery problem is just to solve a system of linear equations
Axr = b := Ax,
given m x m matrix A and a noisy observation y of the “true” right hand side b.
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& Problem of interest: fo solve a linear system

Axr = b := Ax,
given m x n matrix A and a noisy observation y of the “true” right hand side b.
& As of now, there are two typical settings of the problem:
e m > n (typically, m > n) — we have (much) more observations than unknowns.
This is the classical case studied in numerical Linear Algebra (where noise is non-
random) and Statistics (where noise is random).
Unless A is “pathological,” the only difficulty here is the presence of noise. The chal-
lenge is to reproduce well the true signal while suppressing as much as possible the
influence of noise.
e m < n (and even m < n) — we have (much) less observations than unknowns.
Till early 2000’s, this case was thought of as completely meaningless. Indeed, as Lin-
ear Algebra says, an under-determined (with more unknowns than equations) system
of linear equations either has no solutions at all, or has infinitely many solutions which
can be arbitrarily far away from each other.
= When m < n, the true signal cannot be recovered from observations even in the
noiseless case!
& Remedy: Add some information on the true signal.
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& Problem of interest: to solve a linear system

Axr = b := Ax,
given m x n matrix A and a noisy observation y of the “true” right hand side b in the
case of m < n
& Sparsity-oriented remedy [a.k.a. Compressed Sensing]: Reduce the problem to
the one where the signal is sparse — has s < n nonzero entries, and utilize sparsity
in your recovery routine.
& Fact: Many real-life signals x when presented by their coefficients in properly

selected basis (“dictionary”) B:
r = Bu
e columns of B: vectors of basis B
e 1. coefficients of = in basis B

become sparse (or nearly so): u has just s < n nonzero entries (or can be well
approximated by vector with s < n nonzero entries).
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lllustration: 25 sec fragment of audio signal “Mail must go through” (dimension
1,058,400) and its Discrete Fourier Transform:

How mail goes through in time domain

How mail goes through in frequency domain

% of leading Fourier coefficients kept | energy
100% 100%

25% 99.8%

15% 99.6%

5% 98.2%

1% 79.0%
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lllustration: The 256 x 256 image

200

can be thought of as 2562 = 65536-dimensional vector (write down the intensities of pixels column
by column). “As is,” this vector is not sparse and cannot be approximated well by highly sparse vectors.
This is what happens when we keep several leading (i.e., largest in magnitude) entries and zero out
all other entries:

1.5

1% of leading entries
kept

10% of leading entries
kept

25% of leading entries
kept

50% of leading entries
kept




However, the image (same as other “non-pathological” images) is nearly sparse
when represented in wavelet basis:

1% 0512 Iegdina wgvelgt
coeff. (99.70% of energy)
kept

5% of leading wavelet
coeff. (99.93% of energy)
kept

10% of leading wavelet
coeff. (99.96% of energy)
kept

25% of leading wavelet
coeff. (99.99% of energy)
kept
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& Similar, albeit less intense, phenomenon takes place when representing typical images in frequency

domain:

1% of leading Fourier 5% of leading Fourier
coeff. (96.41% of energy) coeff. (99.46% of energy)

True image (100% of energy)
kept

kept kept

10% of leading Fourier 15% of leading Fourier 25% of leading Fourier

coeff. (99.76% of energy) coeff. (99.95% of energy) coeff. (99.99% of energy)
kept kept kept
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& When recovering a signal x admitting a sparse (or nearly so) representation Busx
in a known basis B from observations

y = Azx + &,
the situation reduces to the one when the signal to be recovered is just sparse.
Indeed, we can first recover sparse u, from observations

y = Az, + § = [ABJu. + &.

After an estimate u of u. is built, we can estimate z. by Bu.
= In fact, sparse recovery is about how to recover a sparse n-dimensional signal x

from m < n observations
y = Axsx + &.
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(?) How to recover a sparse (or nearly so) n-dimensional signal = from m < n ob-
servations
y= Azxs + &7
& To get an idea, consider the case when x. is exactly sparse — has s < n nonzero
entries — and there is no observation noise:
y = Axy
e If we knew the positions i1, ..., is of the nonzero entries in xs, we could recover x
by solving the system with just s unknowns:
y = Ay, ...,Ais} : [357;1; ...;:L'?;S} (Y
When s < m (which, with s < n, still allows for m < n), we would get over-
determined system of linear equations on the nonzero entries in . Assuming A
“non-pathologic,” so that every s < m columns of A are linearly independent, (!) has
a unique solution which can be easily found.
But: We never know in advance where the nonzeros in x are located!
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(?) How to recover a sparse n-dimensional signal z« from m < n observations
y = Axx ?
& A straightforward way to account for the fact that we never know where the nonze-
ros in xx Sstand, is to look for the sparsest solution to the system y = Ax. This
amounts to solving the optimization problem
mingnnz(x) s.t. y = Ax (H
e Nnz(x): # of nonzero entries in .
e It is easily seen that if x« is s-Sparse and every 2s columns in A are linearly inde-
pendent (which is so when 2s < m, unless A is pathological), then x. is the unique
optimal solution to (!), and thus our procedure recovers x. exactly.
But: nnz(z) is a bad (nonconvex and discontinuous) function, so that (!) is a disas-
trously complicated combinatorial problem. Seemingly, the only “theoretically solid”
way to solve (!) is to use brute force search where we test one by one all collections
of potential locations of nonzero entries in a solution. Brute force is completely unre-
alistic: to recover s-sparse signal, it would require looking through at least

N = (3f1> = G=Din—sF1)!

candidate solutions.
e with s = 17,n = 128, N is as large as 1.49 - 1021
e With s = 49, n = 1024, N is as large as 3.94 - 1084
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(?) How to recover a sparse n-dimensional signal z+ from m < n observations
y = Axx ?
e Solving problem
ming nnz(x) s.t. y = Ax (H
would yield the desired recovery, but (!) is heavily computationally intractable...
& Partial remedy: Replace the difficult to minimize objective nnz(6) with an “easy-
to-minimize” objective, specifically, with ||6]1 = >, |0;|, thus arriving at ¢4 -recovery
T =argming {>; |z;| : Az =y := Axs} (1)
& Observation: (!) is just an LO program!
Indeed,
e the constraints in (!!) are linear equalities.
e |z;| = max|x;, —x;], so that the terms in the objective can be “linearized.”
& The LO reformulation of (!!) is
n:g’izn {Zj zj Lt Ar = y,25 2 15,25 2 —x; V] < n} :
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e In the noiseless case, ¢1 recovery is given by
x=argming {>; |z;| : Ax =y 1= Az}
& When the observation y is noisy:

the constraint Ax = y

y = Azx +§
on a candidate recovery should be relaxed.

e When we know an upper bound 6 on some norm [|£|| of the noise &, a natural
version of /1 recovery is
z € Argming {37 o] : Az —yll <6} ()

Note: When [|¢|| =
program

Ming » s

€]loo 1= max; & (“‘uniform norm”), (%) reduces to the LO
> i 2 —ZjSzjS 2z, l<jsn
Py =6 < [Az]; <y + 0,1 <i<m

e When the noise & is random with zero mean, there are reasons to define ¢ recovery

by Dantzig Selector:

z € Argming {3>2; [zi| 1 |Q(Az — y)[ec < 6}
with M x m contrast matrix () and 6 > O chosen according to noise’s structure and

intensity. This again is

1.12
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Ming - {Zj zj !

e Note: In Dantzig Selector proper, Q = A”.



(?) How to recover a sparse (or nearly so) n-dimensional signal =z« from m < n
observations
y= Axs + &7
() Use £1 minimization
x € Argming {3>2; [x] : ||Az —yl| < 6}

& Compressed Sensing theory shows that under appropriate assumptions on A, in
a meaningful range of sizes m, n and sparsities s, £1-minimization recovers the un-
known signal xx
— exactly, when x4 is s-sparse and there is no observation noise,
— within inaccuracy < C'(A)[én + ds] in the general case

e )n: magnitude of noise

e J5: deviation of x4 from its best s-sparse approximation
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& Bad news: “Appropriate assumptions on A” are difficult to verify

Partial remedy: there are conservative verifiable sufficient conditions for “appropriate
assumptions.”

& Good news: For A drawn at random from natural distributions, “appropriate as-
sumptions” are satisfied with overwhelming probability.

e E.g9., when entries in m x n matrix A are, independently of each other, sampled
from Gaussian distribution, the resulting matrix, with probability approaching 1 as
m,n grow, ensures the validity of ¢ recovery of sparse signals with as many as

s=0(1)

m

In(n/m)
nonzero entries.
& More good news: In many applications (Imaging, Radars, Magnetic Resonance
Tomography,...), signal acquisition via randomly generated matrices A makes perfect
sense and results in significant acceleration of the acquisition process; see
David Donoho, Gauss Prize Lecture “Compressed sensing — from blackboard to bed-
side” (ICM2018), https://www.youtube.com/watch?v=mr-oT5gMboM
In these applications, signals of interest are sparse in properly selected bases
= With accelerated acquisition, no information is lost!
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& Example: Single-Pixel Camera:

Low-cost, fast, sensitive
optical detection

A/D

Image encoded by DMD
and random basis
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Compressed, encoded
image data sent via RF
for reconstruction

DSP
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How it works:
Sparse recovery via Dantzig Selector
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Validity of sparse signal recovery via /; minimization

& Notational convention: From now on, for a vector + € R"

o [, ={j:xj# 0}isthe supportof x.

e for a subset I of the index set {1, ..., n}, = is the vector obtained from = by zeroing
out entries with indexes notin I, and I° is the complement of I:

°={ie{l,..,n}:idI}

e for s < n, x° is the vector obtained from x by zeroing our all but the s largest in
magnitude entries.

x® is the best s-sparse approximation of = in any one of the ¢, norms, 1 < p < oo.

e fors <mandp € [1, ], we set

llls,p = [lz”]Ip-
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Validity of /{ minimization in the noiseless case

& The minimal requirement on sensing matrix A which makes ¢1-minimization valid
is to guarantee the correct recovery of exactly s-sparse signals in the noiseless case,
and we start with investigating this property.

& s-Goodness: Anm X n sensing matrix A is called s-good, if whenever the true
signal x underlying noiseless observations is s-sparse, this signal will be recovered
exactly by ¢£1-minimization.

Equivalently: A is s-good, if

nnz(zx) < s
= x« 1S the unique optimal solution to
Ming{||xz||1 : Ax = Az}

& Necessary and sufficient condition for s-goodness is Nullspace Property:

Forevery O # z € KerA :={z : Az = 0} it holds
Izlls,1 < 3lI2ll1.

e Nullspace Property can be derived from LO Optimality Conditions, same as can be

verified directly.
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e s-goodness = Nullspace Property:

Nullspace Property does not take place

= 30 # z € KerA : ||2°||1 > 32|11

= Az° = A[2% — 2], |I2°]l1 > |12° — 2|1

= s-sparse signal z+« = z° is not the unique optimal solution to ming;{||z||1 : Ax =

Ax+} — contradiction

e Nullspace Property = s-goodness: Let Nullspace Property take place and x« be
s-sparse, and let u be an optimal solution to ming{||z||1 : Ax = Az«}.
Denoting by I the support of z«, for z = u — x« we have z € KerA and

z]=u[—[x*]fzu]—x*&z]ozu[o

<1

A

1 — ||z10

zlls,1 2 llzr

z=20

1.19

1 — ||lurlly & ||zroll1 = [|uroll1
12> ||z«l]1 — |lurlln — [|ugell1

Zxlly = flully = O

120
1 1
1 > 521l + llzrell1] = 5ll2]1



& Questions to be addressed:
& What happens when A is s-good, but ¢ recovery is “imperfect,” e.g.

e x is not exactly s-sparse, and/or

e there is observation noise

& How to verify, given A and s, that A is s-good
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Quantifying Nullspace Property and Imperfect /; Recovery

& /n order to address the above questions, we need to “quantify” Nullspace Property.
& Nullspace Property states that

{ze KerA & ||z||1 = 1} = ||2]|s1 < 1/2},
or, which is the same,

dk < 1/2 1 ||z||s1 < Kl|2]|1 V2 € KerA Q)

& Equivalent form of necessary and sufficient condition (!) for s-goodness of m x n
sensing matrix A reads:

A € R™*™ js s-good if and only if for some constant k < 1/2 and some (and then
any) norm || - || on R™ one has

10 < o0 :lzf[s,1 < Cl|Az|| + sl|z||1 Vo € R" (')

Indeed, (!!) clearly implies (!). Assume (!), and let x be || - ||1-closest to = element of
KerA, so that ||z — z||1 < ¢||Ax|| with c independent of z. We have

|zl[s,1 <l|zfls,1 + [z = Zl1 < sl|Z]1 + [[z — Z[[1
< Kllzlls + 1+ K]z — Z|1< [1 + sle][Az| + &[]
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3C : [[zls,1 < CllAz]| + &[|z]ly vz € R” ()

& It makes sense to rewrite the latter condition in a more flexible form linking
e m X n Sensing matrix A,
e sparsity level s,
e m X N contrast matrix H,
e norm|| - || on RY,
e condition’s parameter q € [1, oo], and
e parameter xk € (0,1/2)
Condition Q(s, k):

1 1
1 14
lells.q = ll2¥llq < 59| HT Az + rst ™ la]|, Vo € R7

& We treat condition Q,(s, ) as a condition on contrast matrix H and norm || - ||.
® Note: A is s-good if and only if the Nullspace Property holds, or, which is the
same, if and only if the condition Q1 (s, k) with some k < 1/2 is satisfiable (e.g.,
with N = n, H = C A! with properly selected C, and || - || = || - ||oo)-
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Condition Q,(s, k):

1 1
1 11
|zlls,q := ll2®llg < st|HT Az|| + ks9™ " ||z||y Vo € R™

& Immediate observations:

e The larger is q, the stronger is Qq(s,r): If H, || - || satisfy Qq(s,x) andp € [1,q],
then H, || - || satisfy Qp(s, k).

Indeed, if H, || - || satisfy Q,(s,x) and 1 < p < g, then

1 1o 14
[zllsp < [lxlls,q5P st||H* Az|| 4+ rse " ||z[[1

1 1
= sr||HT Axl| + kst |21
e Satisfiability of the weakest condition Q1 (s, x) for some k < 1/2 is necessary and
sufficient for s-goodness of A.

_1 1 1
g < spP 4

& Fact: Conditions Qq(s, x) underly instructive bounds on recovery error for imper-
fect £1 recovery.
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Example A: Regular /1-Recovery

& Regular /1 recovery of signal = from observations

y = Az +n
IS given by
Freg(y) € Argmin {|lull1 : | H (Au —y)|| < p}
where H, || - ||, p > O are construction’s parameters.

& Theorem. Let s be a positive integer, q € [1,00] and k € (0,1/2). Assume that
H, || - || satisfy Qq(s, k), and let

=p={n:|H"n| < p}.
Then for all z € R™ andn € =, one has

|Zreg(Ax + 1) — x||p <

1
4(2s)p x — x°
(2s) o | 11
1 -2k 2s
Note: Regular ¢;1 recovery requires a priori information on noise needed to select p
with “meaningful” =, and does not require a priori information on sparsity s.

1.24
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vn € Zp={n: [H nl < p} Va:

-~ 4(2s5)P — S
||xreg(Aa:+n)—a:Hp§%{p+”xQ—x”ﬂ 1<p<gq

S

& Comments:
A. p stems from observation errors:
e 7 = 0 = we can set p = 0O, resulting in zero recovering error for exactly s-sparse signals
e 17 is “uncertain but bounded” : n € U for some known and bounded U/
= we can set p = max,cy || H ul|
en ~ N(0,0°I,) = given tolerance 8 and setting

p=0c+/2In(N/B) max | Col;[H]||2

we get
Prob{n: |[H'nlles <p} >1-7

When || - || = || - ||, this allows to build explicitly “confidence domains” for regular ¢; recovery.
B. Pay attention to the factor s~ at the “near-sparsity” term ||z — x°||1.
C. Adjusting H and || - ||, we can, to some extent, account for the nature of observation errors.
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Example B: Penalized /; Recovery

Penalized /; recovery of signal = from observations

y=Ax+n
is given by
Zpen(y) € Argmin {[lull1 + A[|H" (Au — y) ||}
where H, || - ||, A > O are construction’s parameters.
& Theorem. Given A, positive integer s, and q € [1, o0], assume that H, || - || satisfy Qq(s, k) with
k< 1/2,andlet A > 2s. Then foralln € R™ and x € R", for 1 < p < q it holds
N 4)\11’ 1 + A r — x°||1
oen(Az +m) —aly < 2 2 &l [ gy o= eln]
1 -2k 2s
In particular, with A = 2s, for 1 < p < q it holds
R 4(25)7 z — 2|1
|Zpen(Az + 1) — al, < |HTn) + 1 .
1 -2k 2s

Note: Penalized /¢; recovery requires a priori knowledge of sparsity level s and does not require any
information on noise.
Note: When \ = 2s, for all z it holds

V(p=0,ne=,:={n:[H'nl| <p}):

|Zpen(Az +n) — x|, < 22 [p + %] ,1<p<q.
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H, || - || satisfy Qq(s, x)
y = Az +n,mn ~ N(0,5%Iy)
x € R™ is s-sparse

Y

1

Prob | |Zreq(Az + 1) — 2|, < C(H, x, |n(1/e))asﬁ} > 1

Prob {||:fpen(Ax + ) — allp < C(H, &, |n(1/e))as%} > 1

1<p<gq
Note: Given direct observations y = x 4+ m of s-dimensional signal x with
n ~ N(0,0715), the expected || - ||,-norm of recovery error in optimal recovery is

1
O(1)os>.
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How it works:
Regular vs. Penalized /1 Recovery

Problem: Given noisy observations of m = n /2 of randomly selected entries in time
series z = (z1, ..., zn) with nearly s-sparse Discrete Cosine Transform (DCT), we
want to recover the time series.

Model: Treating as the signal x underlying observations the DCT of z and assuming
for the sake of definiteness the observation noise to be white Gaussian, our obser-
vation becomes

where A is the m x n submatrix of the matrix F' of Inverse DCT with rows indexed by
the observed entries in z. Applying £1 minimization, we convert y into an estimate z
of x, and take F'z as the estimate of time series z.

Experiment: e m = 256, n = 2m = 512;

e 0 — 0.01;

e near s-sparsity: ||z — z°||1 < 1;
e contrast pairis (H = \/n/mA, || - ||c0);
e parameter p of regular recovery ensures Prob. o 02){|§| > p} = 0.01/n;

e in penalized recovery, A\ = 2s.
1.28
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Top plots: regular ¢1 recovery, bottom plots: penalized ¢; recovery
+: recovery
[to make plots readable, every 8-th entry in time series is displayed]
Note: the actual level of s-goodness of A is at most 24!

0: true signal




How to Verify Validity Conditions for /;-Recovery ?

& Bad news: Given A and s, the Nullspace Property is difficult to verify. Similarly,
when q < oo and k < 1/2, it is difficult to verify whether the condition Qq(s, )
is satisfied by given H, || - ||, same as it is difficult to verify whether the condition is
satisfiable at all.

® Relatively good news: There are natural ensembles of random sensing matrices
for which properly selected H, || - || with overwhelming probability satisfy Q> (s, k)
and thus are s-good.

& Definition. An m x n sensing matrix A satisfies Restricted Isometry Property
RIP (S, k), if

(1 —0)|z)3 < |Az|3 < (1 + &)= Y(z : nnz(z) < k).

& Theorem Let m x n sensing matrix A satisfy RIP (6, 2s) for some § < 1/3 and
positive integer s. Then

: _gm1)2
e The pair <H = /i

Im, || - Hz) satisfies the condition Qo (s, %_5);
e The pair (H = ﬁA, | - [|oo) satisfies the condition Qo (s, %_5).
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& Theorem Given § € (0, %], with properly selected positive ¢ = ¢(6), d = d(06),
f = f(6) for allm < n and all positive integers k such thatoindent
k< m
—cIin(n/m) +d

the probability for a random m x n matrix A with independent N (O, %) entries to
satisfy RIP (4, k) is at least

1 —exp{—fm}.

Similar result holds true for Rademacher matrices — those with i.i.d. entries taking
values +1/4/m with probabilities 0.5.
Note: £ can be “nearly” as large as m !
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Sketch of the proof

& Let A be Gaussian random m x n matrix from Theorem, I C {1,...,n} be fixed k-element index
set,and Ay = [A;; 1 i <m,j € I]. Letus fix a € (0,0.1].
Fact: For fixed u € R with ||u||» = 1 one has
Prob{A : |Aju|3 € [1 —a,1+ a]} < 2e 5%,

[observe that A;u ~ N(O, %Im) and use standard bounds on the tails of x2-distribution]
= Let ™ be a-net on the unit sphere S, in R*. Then

Prob{A:3u € Sy : ||Amu|3 € [1 — 4a,1+ 4a]} < 7 :=2|[ e s
[By Fact, Prob {A : |Aul|3 € [1 —a, 1+ a]Vu € '} > 1 — m. Since the quadratic form f(u) :=

"~

£
u” AT Au is Lipschitz continuous on Sy with constant 2 := 2 max,cg, || Aru||3, we have

f(w)
MiNyes, f(u) > Minger f(u) —2aM > 1 — a — 2aM
M = maXyes, f(u) < maxyer f(u) +2aM <1+ a+2aM 4
and the conclusion follows.]
= V(I,|I| =k) :
Prob{A: (1 —4a)l; 2 ATA; X (1 +4a)[;} >1—-2[1+2/a]" e 5
F

A65:>{

[Comparing volumes, the cardinality of a minimal a-net on Sy, is < F]
= Prob{A: Ais not RIP(4a,k)} < (7)[1 4+ 2/a]" e 5
= Theorem.
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& Bad news: No (series of) explicitly computable (even by a randomized computa-
tion) RIP(0.1, k) “low” (2m < n) m x n matrices with “large” k (namely, k > /m)
are known.

O The natural idea — “generate at random a low m x n matrix and check whether
it satisfies RIP(0.1, k)” with “large” k; if yes, output the matrix” — fails: while typi-
cal random matrices do possess RIP(0.1, k) with “large” k, we do not know how to
verify this property in a computationally efficient fashion.
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¢ Designing/checking RIP matrices is similar to other situations where we do know
that a typical randomly selected object possesses some property, but we neither can
point out an individual object with this property, nor can check efficiently whether a
given object possesses it. Some examples:

e Complexity of Boolean functions [Shannon, 1939]: For a Boolean function f
of n Boolean variables, the minimal number of AND, OR, NOT switches in a circuit
computing the function is upper-bounded by O(l)%, and as n grows, this bound
becomes sharp with overwhelming probability.

However: No individual functions with nonlinear “Boolean complexity” are known...

e Lindenstrauss-Johnson Theorem For a Gaussian “low” m x n matrix A, the im-
age {Ax : x € Bp} of the unit n-dimensional box By, = {z € R" ! ||z|lco < 1}
under the mapping x — Ax with overwhelming, as n — oo, probability is in-between
two similar ellipsoids with the ratio of linear sizes not exceeding 1 + O(1)/m/n.
However: No individual matrices A with AB,, reasonably close to an ellipsoid are
Known...
Note: For every ¢ € (0,1) and every n, one can explicitly point out a polytope P given by
O(1)nIn(1/e) linear inequalities on O(1)n In(1/e) variables such that the projection of P onto the
plane of the first n variables is in-between {z € R" : |[z]]> < 1} and {z € R" : ||| < 1 + ¢}. How-
ever, this “fast polyhedral approximation” of Euclidean ball deals with polytopes P quite different from
boxes...
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& We have seen that RIP-matrices A yield easy-to-satisfy condition Q> (s, k).
Unfortunately, RIP is difficult to verify...

& Good news: Condition Q. (s, k) is fully computationally tractable.
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Condition Qu (s, x): [|zllsg := lllse < [ HT Azl + rs~2||al|; Va € R

& Theorem Let A be an m X n sensing matrix, s be a sparsity level, and x > 0. Whenever H, || - ||
satisfy Qoo (s, k), there exists an m x n matrix H such that

|Col[I, — H'A]||c < 571k, 1 < j < m.
As aresult, H, || - || satisfy Qoo(s, k). Besides this,
12 nlloe < |H 7]l V1 € R™.

In addition, m x n contrast matrix H such that H, || - ||« satisfy Q(s, k) with as small k as possible
can be found as follows: we consider n LP programs

Opt; = min{v: [ATh — €'l|lc < v}, (#1)

where €' is i-th basic orth in R", find optimal solutions Opt;, h; to these problems, and make h;,
1 =1, ...,n, the columns of H; the corresponding value of k is

Kk« = s max Opt;.
Finally, there exists a transparent alternative description of the quantities Opt; (and thus — of k):

Opt; = max{z; : ||z|1 < 1,Az = 0}.
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Let A be anm xn sensing matrix, s be a sparsity level, and x > 0. Whenever H., ||-|| satisfy Qoo (s, ),
there exists an m x n matrix H such that

|Col;[I, — HY A]||oo < 871k, 1 < j < m,
As aresult, H, || - ||« satisfy Q(s, x). Besides this,

12 nlle < |H 7| Vn € R™.

Proof uses Basic fact of Convex Geometry: A norm || - || on RY induces the conjugate norm
Ifll- = max f"h.
hillhll<1
One always has |f'h| < || f[l<||h]| & [|h]| = f_mélfTh thatis, (| - [[«)« =] - [|.
Examples: (| - [l1)« = I - [loo: (Il - [12)+ = Il - [l27 (I loo)s = Il - [l2-
-l =1 llgy 5+ 5 =1.

1 <n
= 3 < |llone < || AT Ax]| + 5~ i|2l|1 Va [by Qoo(s, 1)]
= max {z; — [|[HT Az|| : [|z]s <1} <s7 'k
x . —
<~ MmaxXx min [[e’]Ta: — fTHTAx} S 8_1/4, [Since ||I:ITA£UH = maxf;||f||*<1 fTHTAx]
zl|z[ <1 fERN || f].<1 N

& min max [[ez — ATFIf]Ta:] < sk
Ffl<1 el <1

4

—|le—ATAf|.
& Vi<ndfi e RY : ||et — ATHf||oo < 571k & || fill« < 1.
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Vi <n3fi e RY 1 ||l — ATHfi]|loo < k & || fi]|« < 1.
Leth; = Efz and H = [hl, ceey hn] Then
[In — H'A]yj = [I, — ATH)ji = [¢' — ATh]; = [¢' — ATH fi],
= MaxX; ; |[In — HTA]Z'J'| < m?x mjax |[€Z — ATﬁfz]ﬂ
< max|le — ATH fil|oo < 571k

= [[COllln — HT Allloo < 52w Vi

Further,
|Coli[I, — HT A]||oo < sk Vi
= ||ln — H" Alzlo0 < s~ k121 Ve € R
= ||alloo — | HT Az]loo < 57 1|x]|1 Y € R
= H, || - ||oo satisfy Qoo(s, k)

In addition,

||HT_77¥oo = max; |kl n| = max; |fL Hn| < max; || fill«||H n||
< [1H nll vn.
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... In addition, m x n contrast matrix H such that H, || - || satisfy Q- (s, x) with as small x as possible
can be found as follows: we consider n LP programs

Opt; = mihn {v: |ATH — '] < v}, (#:)

where €' is i-th basic orth in R", find optimal solutions Opt;, h; to these problems, and make h;,
1 =1, ...,n, the columns of H; the corresponding value of k is k. = s max; Opt;.

Proof: By the above reasoning, if H, || - || satisfy Qu(s, k), then¥(i < n)3h; : ||e! — ATh;il|eo < 571k,
and if h;, i < n, satisfy ||e¢ — ATh;||lc < s~ 'k for some k, then H := [h1, ..., ha], || - ||co Satisfy
Qoo(sa Kf) .

... Finally, there exists a transparent alternative description of the quantities Opt; (and thus — of k.);

Opt;, = max{z; : ||z|][1 £ 1, Az = 0}.

Proof:
Opt; = min {t: —t < el — [ATh]; < t,Vj}
AN —p] =0
= maXxy . [)\ — /,L]i : Zz i + Zz i =1 [LP duality]
A>0,u=>0

MaXy {:13@ ATz =0, ||z]|1 < 1}
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lllustration
& k-th Hadamard matrix #;, is n;, x n;, matrix, n, = 2%, with entries +1 given by the recurrence

H H
Ho = [1]; Hit1 = [ 7‘[: —7le<; ]

Note: 7, is symmetric and is proportional to orthogonal matrix: HlHy = nI, = Whenk > 0, the
only eigenvalues of H,, are /ny, and —./n;, with multiplicities ny,/2 each.

o Letk > 1, my = ni/2 =2F 1 andletas, ..., an, be an orthonormal system of eigenvectors of H;,
with eigenvalue /ny. Let Aj, be the m;, x ny, matrix with the rows a1, ..., al, .

Fact: Let s < %\/n_k; = 2k/2-1_ Then the matrix A, is s-good. Moreover, there exists (and can be

efficiently computed) contrast matrix H;, such that (Hy, || - ||co) Satisfies the condition Q. (s, ks =
s/y/k), and ||Col;[Hy]|l2 < /2 + 2/\/n for all .
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& Verifiable Sufficient condition for satisfiability of Q,(s,x): Let m x n matrix H satisfy the

condition

ICol[I, — HT Al og < s 'k, 1< j < ("
Then H, || - ||~ satisfy Qq(s, k).
Proof:

(D) = [T — H" Alz]|s,4 < s?_ ti||zy Va
= [|z|ls,q — [H  Az||s,4 < sq fillw||1 v
= |lzllsq < [1HT Azllsq + s &llz]|1
= [|2]loq < 57 H Azlo + s k|21 Vo
Note: (/) is an explicit system of convex constraints on H
= The sufficient condition (1) for H, || - ||~ to satisfy Q,(s, k) is computationally tractable.

Note: When q = oo, feasibility of (V) is necessary and sufficient for satisfiability of Q. (s, k): (H €
R™%7 || . ||o) satisfies Qoo(s, &) if and only if

|Col;[I, — HY A]||oo < s 1k V5.
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& Let m X n matrix H satisfy the condition

IColi[In — HTAlsq < st 'k, 1< j<m (M

Then H, || - || satisfy Qq(s, k).
The above statement, whatever simple, has an instructive origin. Consider the following problem:
(?) Given a convex function ¢(x) : R* — R and a convex set

X ={x € Conv{fi,...,fn} : Az = 0}
[A c Rmxn]

we want to compute/upper-bound efficiently the quantity
¢+ = max ¢(x).
Example: Verifying the Nullspace Property of matrix A reduces to checking whether the quantity

P« 1= MaXgex [P(z) = [|z||s1],
X = {x € Conv{+tes, feo,..., xe,} : Axr = 0}
[e; . basic orths]

isorisnot< 1/2.
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Ds = m€z§<¢(x), X ={z € Conv{fi,..., fn} : Ax = 0}

e ¢. IS the maximum of a convex function over a bounded polyhedral set and as such is in general
NP-hard to compute. However, we can point out a simple scheme for efficient upper-bounding ¢.:

VH € R"™*™ ;

o maxz{¢(x) : x € Conv{fi,..., fn}, Az = 0}
max.{o([I — H' A]lz) : = € Conv{fi,..., fn}, Az = 0}
max,{¢([I — HT Alz) : z € Conv{fi,..., fn}}
max;<y ¢([I — H' Al f;),

= | ¢« < ¢ := ming [max;<no([I — H A]f;)

and ¢ is efficiently computable (as the optimal value in a convex problem).
e Note: As applied to

o(x) = ||z||s1, X = {x € Conv{tes,...,te,} : Az = 0},
the above bounding scheme results in the verifiable sufficient condition
I(k < 1/2,H) : ||Coli[I — H'Al||s1 <k, 1<j<n
for s-goodness of A. This hint leads to the verifiable sufficient conditions for Q,(s, k).

A
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& Bad news: When m x n sensing matrix A is “essentially non-square”, namely, n > 2m, the above
verifiable sufficient conditions for the validity of Q,(s, k) can be satisfiable only in the range

s < V2m (")
which is much less than the range
s < O(l)—m(g}m)
where random Gaussian/Rademacher m x n sensing matrices satisfy RIP(%, 2s) with overwhelming

probability, thus implying satisfiability of Q2(s, 3).

Note:

A. No series of individual essentially non-square m x n sensing matrices A with m,n — oo which are
provably s-good for s > O(1)+/m are known

B. Fork = 1,2, ... one can easily point out individual 2= x 2% sensing matrices for which condition

Qo (s, 1) is satisfiable whenever s < Y2
C. Whenever A satisfies RIP (6, 2k) and s < 1-9\/k, the pair (H = 5 A, || - ||) satisfies Qoo(s, 3

D. For properly selected C' > O and every m,n, one can point out individual m X n sensing matrix
which is C'\/m-good.
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& Mutual Incoherence. Let A be m x n sensing matrix without zero columns. Mutual Incoherence
of A is the quantity

I7[A]Col;[A
,LL(A) — max ‘CO ZT[ ]CO][ ]|
i#=j  Col; [A]Col;[A]
Observation: The m x n matrix H with columns S:OIJ’[A] , 7 =1,...,n, satisfies
Col [4]Col,[4]
A
Vi |Coli[I, — HY Al < i(A)
1+ p(A)
= H, || - ||oo satisfy Qoo (s, f_ﬁﬁ‘j‘)) for every s. In particular, A is s-good, provided that
2u(A) <L
14 pu(A) s

1.45



HYPOTHESIS TESTING, |

e Preliminaries
o Jests & Risks
e Repeated Observations
e Z2-Point Lower Risk Bound
e Pairwise Tests via Euclidean Separation
e fFrom Pairwise to Multiple Hypothesis Testing



& Hypothesis Testing Problem: Given

e observation space $2 where our observations take values,

e [, families P1, Po,..., P, of probability distributions on €2, and

e an observation w — a realization of random variable with unknown probability distribution P known

L
to belong to one of the families P;: P € |J Py,
(=1
we want to decide to which one of the families P, the distribution P belongs.
Equivalent wording: Given the outlined data, we want to decide on L hypotheses H1, ..., Hy,, with
¢-th hypothesis H, stating that P € P,.

& A test is a function T (-) on 2. The value T (w) of this function at a point w € <2 is a subset of the
set{1,...,L}.

e relation ¢ € T (w) is interpreted as “given observation w, the test accepts the hypothesis H,”

e relation ¢ & T (w) is interpreted as “given observation w, the test rejects the hypothesis H,”

& 7 is called simple, if T (w) is a singleton for every w € 2.
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& For a simple test 7, its risks are defined as follows:
& /-th partial risk of T is the (worst-case) probability to reject £-th hypothesis when it is true:

Risk,(T|H1,...,Hr) = supProb,.p{f & T (w)}
Pep,

& total risk of T is the sum of all partial risks:
Riskiot (T|Hi, ..., H) = Y Risky(T|Hi, ..., H).
1<¢<L

& risk of T is the maximum of all partial risks:

Risk(T|H1, ..., H) = max Risk,(T|H1, ..., Hy).
1<<L
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& Note: What was called test is in fact a deterministic test.
A randomized test is a deterministic function T (w,n) of observation w and independent of w random
variable n ~ P, with once for ever fixed distribution (say, P, = Uniform[0, 1]). The values T (w,n) of
T are subsets of {1, ..., L} (singletons for a simple test).

e Given observation w, we ‘“flip a coin” (draw a realization of ), accept hypotheses Hy, £ € T (w,n),
and reject all other hypotheses.

e Partial risks of randomized test are

RiSk@(T|H1, ceey HL) = gUgPrOb(w,n)prpn{g g T(w, 77)}
SV

Exactly as above, these risks give rise to the total risk and risk of T .
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& Testing from repeated observations. There are situations where an inference can be based on
several observations w1, ..., wg rather than on a single observation. Our related setup is as follows:
& We are given L families Py, ¢ = 1, ..., L, of probability distributions on observation space <2 and a
collection

wl = (w1, ..., wr)
and want to make conclusions on how the distribution of w* ‘is positioned” w.r.t. the families P,,
1 < /¢ < L. Specifically, we are interested in three situations of type:
& A. Stationary K-repeated observations: w1, ..., wx are independently of each other drawn from
a distribution P. Our goal is to decide, given w’, on the hypotheses P € Py, £ =1, ..., L.
Equivalently: Families P, give rise to the families

Pg@’K:{PK:f’x...XB:PEPe}
K

of probability distributions on Q& = Q x ... x Q — direct powers of families P,. Given observation

"~

K
wi € QF, we want to decide on the hypotheses

HY" ol PR epPP® 1<e< L.

)

2.4



& B. Semi-stationary K-repeated observations: “The nature” selects somehow a sequence
P, ..., P of distributions on €2, and then draws, independently across k, observations wy, from these
distributions:

wy ~ P are independent across k < K
Our goal is to decide, given w* = (w1, ...,wrk), on the hypotheses {P, € P;,1 < k < K}, £ =
1,.... L.
Equivalently: Families P, give rise to the families

PE@’K::{PK:]DlX...XPKZP]{;EP&1§k§K}

of probability distributions on Qf = Q x ... x Q — semi-direct powers of K copies of P,. Given

K
observation w® € QX we want to decide on the hypotheses

HP Wl ~ PR epP™ 1<e<L.
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& C. Quasi-stationary K-repeated observations: We observe random sequence w® = (wx, ..., wx)
generated as follows:

There exists a random sequence (1, ..., (x of driving factors such thatforl < k < K
e wy, Is a deterministic function of ¢*¥ = (¢, ..., (i)
e conditional, ¢*—1 given, distribution of w;, always belongs to P;.

Our goal is to decide, given w*, on the underlying ¢.
Equivalently: Families P, of probability distributions on 2, 1 < ¢ < L, give rise to the quasi-direct

powers P of families P,. The family Pi" is comprised of all probability distributions on Q¥ =
Q2 x ... x 2 which can be obtained from P, via the above “driving factors” mechanism.

~"

K
Given observation w® € QX , we want to decide on the hypotheses

H Wl ~ PR epPt 1 <0<
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& Important fact: 2-point lower risk bound. Consider simple pairwise test deciding on two simple
hypotheses on the distribution P of observation w € €2:

H13P=P1,H21P=P2.

Let P1, P> have densities p1, p2> W.r.t. some reference measure I'l on 2. Then the total risk of every
test T deciding on H1, H» admits lower bound as follows:

Riskeot (T|H1, Ha) > / min[p: (@), p2(w)]M(dw).
Q

As a result,

Risk(T|Hi, H2) > - / min[p1(w), pa(w)]N(dw). ()
Q

Note: The bound does not depend on the choice of IN (for example, we can always take N = P1+ P»).
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Risk(T|Hi, H2) > - / min[p1(w), pa(e)]M(dw). (?)
Q

Proof (for deterministic test). Simple test deciding on H1, H>, must accept H1 and reject H> on some
subset 21 of 2 and must reject H, and accept H> on the complement 2, = Q\<2; of this set. We
have

Risky(TIHy Hy) = [ p1(@)(dw) > [ min(py(w), pa(e)]M(de)

Riska(TIH, Ha) = | pa@)N(dw) = | minfpa(w), pa(e)]N(dw)

—Riskiot(TIH, H2) > f minlps (@), pa(e)]N(dw) + [ minfps (w), pa(e)]M(dw)
=ffmin[pl<w>,pz<w>]n<dw> - 0
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& Corollary. Consider L hypotheses Hy . P € Py, ¢ = 1,2, ..., L, on the distribution
P of observation w € 2, let¢ # ¢' and let P, € Py, Py € Py. The risk of any simple
test T deciding on Hq, ..., Hy, can be lower-bounded as

Risk(T|Hy, ... Hy) > %/min [Py(dw), Py(dew)],
Q

where, by convention, the integral in the right hand side is
[ minlpg(w), pp()IN(dw),
Q

with py, py being the densities of Py, Py w.r.t. Il = Py + Py.

Indeed, risk of 7 cannot be less than the risk of the naturally induced by 7 sim-
ple test deciding on two simple hypotheses on the distribution P of the observation
stating, respecively, that P = P, and that P = Py, specifically, the simple test 7,
which, given observation w, accepts the hypothesis P = P, whenever ¢ € 7 (w) and
accepts the hypothesis P = P, otherwise.
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Pairwise Hypothesis Testing via Euclidean Separation

& Situation: Let 2 = R<, and let our observation be

w=z+¢ (+)

where the deterministic vector z is the signal of interest, and £ is random observation
noise with probability density p(-) of the form

p(u) = f(lull2)

where f(-) is a strictly monotonically decreasing function on the nonnegative ray.
Simple example: standard (zero mean, unit covariance) Gaussian noise:

p(u) = (QW)—d/Qe—uTu/Q_

Our goal is to decide on two simple hypotheses on the signal underlying observation,
the first stating that + = 21, and the second stating that z = x2, where z1, z2 are
two given points.

Equivalent wording: We are given two probability distributions, P; and P», on R¢,
with densities p1(v) = p(u — z1) and po(uw) = p(u — 22), and want to decide on
two simple hypotheses H, : P = P;, H> : P = P> on the distribution P of our
observation.
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2
|t =222

& Assuming =t #£ 22, let 26 = ||zt — 22|z, e =

N={w:[w-alo=lw-222} = {w: ¢p(w) =0}, p(w) = e’w — 2’ [z! 4 2]

C

b)) >0 ew)=0 b(w) < 0

Consider test 7 which, given observation w = z= + &, accepts the hypothesis H; : P = P (i.e.,
r = x') when ¢(w)> 0, and accepts the hypothesis H> : P = P> (i.e., x = z°) otherwise. We have

Riski(T|H1, Hy) = [ piw)dw= [ f(ull2)du
w:p(w)<0 ue’u>9
= [ po(w)dw = Riska(T|Hi, H2)
wid(w)>0

Since p(u) is strictly decreasing function of ||u||2, we have min[p1(u), p2(u)] = { z;%j i%ig ’

whence
RiSKl(T|H1, HQ) -+ RiSkQ(T'Hl, HQ)

= [ pwde+ [ po(w)dw) = [ min[pi(u),p2(u)]du
w:p(w)<0 w:p(w)>0 R
= Test T is the minimum risk simple test deciding on Hy, Ho.
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& Extension: Given observation w = x + £ with observation noise & possessing
probability density

p(u) = f(|lull2),
where f(-) is a strictly decreasing function on the nonnegative ray, we want do decide
on two composite hypotheses H1, Ho:

Hy:xze Xy, Ho:x¢e& Xo,

where X7, X5 are nonempty nonintersecting, closed and convex sets, and one of
the sets is bounded.

& Elementary fact: With X1, X> as above, consider the convex minimization problem

Opt = min ! — z2|».

rleX,,x?eX, 2 H

The problem is solvable. Let (z1,x2) be an optimal solution, and let

1 2
r, — X 1
Qb((,U) — eT(.U —C, € = ||331*_ 332*”2’ c = EeT[aji —|— gjf]
* *

Then the stripe {w : —Opt < ¢(w) < Opt} separates X1 and X»:
¢(z') > ¢(x) = Optva! € Xy,
¢(z%) > ¢p(27) = —OptVa® € X>
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& We have associated with two non-intersecting closed convex X1, X», one of the
sets being bounded,
— convex optimization problem
- 1
Opt = min icy, 2ex, 5llzt — 22|
— linear function
(W) = elw — el (ol + 22, e = 5355wl — 2]
where [z1,z2] is an optimal solution to the above problem. While this solution not
necessarily is uniquely defined by X1, X», &(-) is uniquely defined by X1, X>.
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& Given 61 > 0,62 > 0 with 61 + d> = 20pt, ¢(-) specifies simple Euclidean Separation Test T
induced by Xl, XQ, 51, 522

T(w) = { {1}, o(w) > %[52 — 01]

{2}, otherwise
& Fact: Let & ~ p(-), where p(u) = f(||u||2) with strictly decreasing f(t),t > 0. Given observation
w = x + £ the Euclidean Separation Test T decides on the hypotheses Hy : © € X1, Hy : x € X5
with risks satisfying
Risk1 (T |H1, H2) < [ ~v(s)ds, Riska(T|H1, H2) < [ ~v(s)ds
where ~(-) is the univariate marginal density of &, that is, probability density of the scalar random
variable h"¢, where ||h||2 = 1.
O In addition, when 61 = 6o, = Opt, T is the minimum risk test deciding on H1, H>, and
Risk(T|H1, Hz) = fco)opt ~v(s)ds.
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¢(w) = Opt

o o(w) = 2[62 — 61]

& Extension: Under the premise of Fact: the observation is w = x= + £ with £ ~ p(:) = f(]| - ||2),
where
e f: Ry — Ry is strictly decreasing, and
e the hypotheses to be decided upon are H; : x € X1, H> : x € X5 with closed convex
nonintersecting and nonempty Xi, X», one of the sets being bounded,

the risk bounds Risk,(7|H1, H>) < [ v(s)ds, £ = 1,2 for the Euclidean Separation Test stem from
5
the following observation:

Under the circumstances, for every half-space E = {u € R : eTu > 6}, where ||e|]|» = 1 and
d > 0, one has

oo

Prob. ,y1§ € E} < /’y(s)ds.
)

2.15



@)
& Given an even probability density v(-) on the axis such that [ v(s)ds < % when-
5

ever § > 0, let us associate with it the family P‘YZ of all probability distributions P on
R? such that

A: distribution P possesses even density, and

B: whenever e € RY, |le|l2 = 1,and § > 0, we have

Probe.p{¢ : €€ > 6} <T(8) := | 7(s)ds
)

Ey

Prob{E;}<[;°v(s)ds

By the same reasons as in Fact, we have the following

& Proposition. Whenever the distribution P of noise £ in observation w = x + &
belongs to Pgl and X1, X, are non-intersecting closed convex sets, one of the sets
being bounded, the risks of the Euclidean Separation Test T induced by X1, X» and
d1, o can be upper-bounded as

o0
Risk,(T|Hz1, H) < T(8p) 1= /W(S)ds, (=1,2.
O¢
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& Example: Gaussian mixtures. Let n be an d-dimensional Gaussian random vec-

tor with zero mean and covariance matrix © (notation: n ~ A (0, ©)). Let, further,
Z be independent of n positive random variable. Gaussian mixture is the probablllty

distribution of the random vector ¢ = \/Zn. Examples of Gaussian mixtures are:
e Gaussian distribution A'(0, ©) (take Z identically equal to 1),
e multidimensional Student’s ¢-distribution with  degrees of freedom (v/Z has x2-
distribution with v degrees of freedom)

& Immediate Observations:

elLet Z be a random variable taking values in [0,1], letn ~ N(0,©) with © < 1, (i.e., the matrix
1, — © is positive semidefinite) be independent of Z, and let

1
—s?/2
§) = ——e€
Yg(s) o
be the standard (zero mean, unit variance) Gaussian density on the axis. Then the distribution of

the Gaussian mixture £ = v/Zn belongs to the family P2 with ~ given by the distribution P, of Z
according to

1 82
s) = e 2Py(dz 5
vz(s) /z>0\/2—7TZ z(dz)

the distribution of random variable \/Zn, withn ~ N (0, ®), (© < 1, is independent of Z) belongs to
the family P4 .
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From Euclidean Separation to Majority Test

& Let v(+), P2, X1, X be as in Proposition, and assume we have access to semi-
stationary K-repeated observations

wK:{wk:$k+§k11§k§K}

where

e {z;.: 1 < k< K} is adeterministic sequence of signals,

o (.~ P, 1 <k < K, are independent across k noises, and

o {P.,1 <k < K} is adeterministic sequence of distributions from 7?,‘%.
Given w*, we want to decide on the hypotheses

HE 12, € X1,1<k<Kand HY 1z}, € X5,1 <k < K.

Equivalently: The sets X, ¢ = 1,2, give rise to families P, of probability distribu-
tions on 2 = R%; P, is comprised of distributions P of random vectors of the form
x + &, with deterministic x € X, and with the distribution of noise £ belonging to 7?,‘}.
The families Py, in turn, give rise to hypotheses

HE = BN . pPK e pPi 1=1,2,

on the distribution PX of K-repeated observation w® = (wq,...,wx). Given w’*,
we want to decide on the hypotheses H{*, HX.
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wK:{wkZCCk—I—fkilék'SK}
H-f xp € Xy, 1< ELZ K, & ~ P € P,‘yi: independent across &

& Let us use the majority test T[r(”aj defined as follows:
e we build the Euclidean separator of X1, X», thus arriving at the affine function
p(w) =e'w—c [lefl2 = 1]
such that the stripe
{w: —Opt < ¢(w) < Opt}
with

Opt= _ min ijlz' -2,
rleXq,22e X5
separates X1, Xo;
e given (w1, ...,wg ), we compute reals v, = ¢(wy), 1 < k < K, and accept H{*
and reject H4* when the number of nonnegative v}’s is at least K/2, otherwise we
reject H{* and accept HZ .
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& Risk analysis. Assume that H{( takes place, so that {x;. } form some deterministic
sequence of points from X4, and &;. are drawn, independently across k, from some
distributions P, € PEYZ. With {x,} and {P.} fixed, v, are independent across k,
and probability for v to be negative is, by our previous results, < e, := I'(Opt) =
Jopt 7(s)ds, where

Opt= _ min 1zt —z?|>.
CBIEXl,CIZQEXQ

Consequently, the probability to reject H f under the circumstances is

<ep= Y% ([k{)e,’f(l — e ) Kk,
K/2<k<K

By “symmetric”’ reasoning, the probability to reject Hﬁf when the hypothesis is true is
< ex as well. We arrive at

& Proposition. The risk of T,/ can be upper-bounded as

QTR ) < 3 ()G

K/2<k<K
T - 1_ 2
ex = [ ~v(s)ds, Opt = min Hz* —z<||2
Opt rleXy,z?e Xy

Fact: Conclusion remains true in the case of quasi-stationary observations.
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Risk(TR2[H{ HE) < & ()it —e)F
K/2<k<K
oo
ex= [ 7(s)ds,Opt=_ min %||$1—$2||2]
Opt LU1€X1,3326X2

& Quiz: We have used “evident” observation as follows:

Let w1,... wg be independent random variables taking values 0 and 1, and
let the probability for w; to take value 1 be some p; € [0, 1]. Then for every
fixed M the probability of the event “at least M of w1, ..., wg are equal to
1”7 as a function of p1, ..., px IS nondecreasing in every one of p;’'s. (In our
context, w; were the signs of v;).

Why this observation is true?
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From Pairwise to Multiple Hypotheses Testing

& Situation: We are given L families of probability distributions Py, 1 < ¢ < L, on
observation space €2, and observe a realization of random variable w ~ P taking
values in 2. Given w, we want to decide on the L hypotheses

Hy:PePy, 1<t¢<L.

Our ideal goal would be to find a low-risk simple test deciding on the hypotheses.
However: It may happen that the “ ideal goal” is not achievable, for example, when
some pairs of families P, have nonempty intersections. When P, NP, # () for some
¢ # /', there is no way to decide on the hypotheses with risk < 1/2.

But: /mpossibility to decide reliably on all L hypotheses “individually” does not mean
that no meaningful inferences can be done.
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& Example: Consider the 3 colored rectangles on the plane:

and 3 hypotheses, with Hy, 1 < ¢ < 3, stating that our observation is w = x 4 £ with
deterministic “signal” z belonging to ¢-th rectangle and ¢ ~ N (0, o215).

¢ Whatever small o be, no test can decide on the 3 hypotheses with risk < 1/2; e.g.,
there is no way to decide reliably on H{ vs. H>. However, we may hope that when
o Is small, an observation allows us to discard reliably some of the hypotheses. For
example, if H1 Is true, we hopefully can discard H3.

& When handling multiple hypotheses which cannot be reliably decided upon “as
they are,” it makes sense to speak about testing the hypotheses “up to closeness.”
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w~P, Hy: PePy, 1<l L

& Closeness relation C on L hypotheses H4, ..., Hy is defined as some set of pairs

(¢,¢") with 1 < ¢,¢ < L; we interpret the relation (¢,¢') € C as the fact that the
hypotheses H, and H 2 are close to each other.

We always assume that

e C contains all “diagonal pairs” (¢£,£), 1 < ¢ < L (“every hypothesis is close to
itself”)

o (£,0") e Cifandonly if (¢,¢) € C (“closeness is symmetric relation”)

Note: By symmetry of C, the relation (¢, ¢") € C is in fact a property of unordered pair

{0, 0'}.
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& “Up to closeness” risks. Let 7 be a test deciding on Hq, ..., H;; given obser-
vation w, 7 accepts all hypotheses H, with indexes ¢ € 7 (w) and rejects all other
hypotheses.

We say that ¢-th partial C-risk of test T is < ¢, if whenever Hy is true: w ~ P € Py,
the P-probability of the event

T accepts Hy: ¥ € T (w)
and
all hypotheses H, accepted by T are C-close to Hy: (¢£,¢") € CV¥' € T (w)

is at least 1 — e.

& /-th partial C-risk of 7 is the smallest ¢ with the outlined property:

RiskG (T|Hz, ..., Hp)

= sup Prob,.p{ll € T(w)]or[3 € T(w): (£L) &C]}
PePy

& C-risk of T is the largest of the partial C-risks of the test:

RiskC(T|Hq, ..., H;) = max RiskS(T|Hy, ..., Hy).
(TH4 L) max ¢ (TH1 L)
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w~P, Hy: PePy, 1<t L
C : closeness relation

& Multiple Hypothesis Testing via Pairwise Tests. Assume that for every
unordered pair {¢,¢'} with (¢,¢")ZC we are given a simple test 7@,6/} deciding on
Hy vs. Hy via observation w.
Our goal is to “assemble” the tests Tio0rys (¢,0")ZC, into a test 7 deciding on
H4...,Hy, up to closeness C.
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& The construction:
e For (¢,¢") & C, so that £ # ¢', we define function T, (w) as follows:

1, TE A (w) = {E}
Top(w) = { 1, ﬁgjgém = {0}
Note: 7, is a simple test = T, (-) is well defined and takes values +1.
O For (£,¢") € C, we set Tyy(-) = 0.
Note: By construction, we have Tjy(w) = —Tp(w), 1 < £,0 < L.

e The test 7 is as follows: given observation w, we build the L x L matrix
T(w) = [Typ(w)] and accept exactly those of the hypotheses H, for which ¢-th
row in T'(w) Iis nonnegative, that is, all tests Tio ¢y With (¢,0") & C accept Hy, obser-
vation being w.
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Example: e L = 4

o C=1{(1,1),(2,2),(3,3),(4,4),{1,2},{2,3},{3,4}}

Given tests 71 31, 711,41, T{2,41 and observation w

& When 7Ty 3y accepts Hy, T¢q 4y accepts Hy, Ty 41 accepts Hy, we get

0] 0 | 41417

0] 0] 0 |—-1
Tw=|—7T0o7T0 o0

1]+1] 0] 0

— Aggregated test 7 accepts Hq _
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& When 7Ty 3y accepts Hy, T¢q 4y accepts Hy, Ty 4y accepts Ho, we get

0l 0 |4+1]41]

0] 0 0 |+1
TW=\|"—"TroTo0 o

—1/-1] 00 |

— Aggregated test 7 accepts H; and H»
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& Observation: When T accepts some hypothesis H,, all hypotheses accepted by
T are C-close to H,.

Indeed, if £-th row in T'(w) is nonnegative and ¢’ is not C-close to ¢, we have Ty(w) >
O and T%/(w) c {—1, 1}

= Typ(w) =1

= Tpp(w) = —Tpp(w) = -1

= ¢'-th row in T'(w) is not nonnegative

= /" is not accepted.
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& Risk analysis. For (¢,¢") ¢ C, let

€y = RiSkl(ﬁ&g/ﬂHg, Hg/) = §U7I3 PI’OwaP{e ¢ 71{6,6’}(("})}
S
= sup Proby.p{Ty(w) = —1} = sup Proby,~p{Ty/(w) = 1}
Pcph, PeP,
= sup Prob,p{¥' € Typem(w)}
PeP,

= Riska(Tig,ey|He, Hy).
& Proposition. One has

RlSkE(T|H1,...,HL) < €p .= Z €pp! -
(e eC
Indeed, let us fix ¢, and let H, be true. Let P € P, be the distribution of observation w, and let
I ={ <L : ) ¢&C} Ford € I, let E, be the event {w : Ty(w) = —1}. We have
Prob,.p(Er) < ey (by definition of ey) = Probyp( UgIEE[Eg/) < ¢.

When the event E does not take place, we have Ty, (w) = 1forall ¢/ € I
= Typ(w) >0forall ¢/, 1 < ¢ <L

=0 e T(w)

= (by Observation) {£ € T (w)} & {4, ¢) e CVl' € T(w)}.

By definition of partial C-risk, we get

RiskS(T|Hz, ..., Hy) < Prob,.p(E) < «. O
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Testing Multiple Hypotheses via Euclidean Separation

& Situation: We are given L nonempty, closed and bounded convex sets X, C R%,

1 </ < L,and afamily Pff of noise distributions, a closeness C, and semi-stationary
K-repeated observation

wKZ{wkZCEk—I—fk,lSkSK},

so that
e {x;,1 < k < K}, is adeterministic sequence of signals,
o (. ~ P, 1 <k < K, are independent across k noises, and
o {P;,1 <k < K}, is adeterministic sequence of distributions from P.
K we want to decide up to closeness C on L hypotheses
Hgi{xkEXg,lngK}.

Given w
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Given w¥, we want to decide up to closeness C on L hypotheses
Hy:{xp € X;,1 <k <K}

Equivalently: The sets X, C R? along with Pgi specify L families of distributions
Po, 1 < £ < L; specifically, P, is comprised of probability distributions of random
variables x 4 £, where deterministic = belongs to X, and the distribution of random
noise £ belongs to 7?,‘}. Given w’, we want to decide, up to closeness C, on L
hypotheses

Hy: PKepP™ 1<i<L
on the distribution P of observation w¥.

& Standing Assumption: Whenever ¢,¢" are not C-close: (¢,¢")&C, the sets X,
Xy do not intersect.

& Strategy: We intend to assemble pairwise Euclidean separation tests.
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& Building blocks. For (¢,¢") & C, we solve convex optimization problems

Opt,y = min Lu — vlls. P
Wy ueXMeXE/QH 2 (Pyyr)

Note: By Standing Assumption, Opt,, > 0. Optimal solution (us,v«) to (Pyyr)
defines affine functions

qbgel((.U) — 65,&) — Cﬁﬁ’
Ux —Ux

e = Tumurr Cee = 3eqplus + vl
Note: We have ¢,p(-) = —p,(-) forall (¢,¢") & C.
O As we know, whenever 6, > 0,9, > O satisty

QOptw = 6@5/ -+ 5€’€

it holds
V(u € Xy, P ePY): Probe.p{p(u—+€) < L[6pp — 60}
oo

< T (gpr) 3=5f v(s)ds
ol
\V/(’U < Xg/, P e Pg) . PrObep {¢(’U, -+ f) > %[53’6 — (Sge/]}

< T (6pg) == J v(s)ds
J7,
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0.0 (0,0)ZC

Optyy = min  =z|lu — 0 = Opty
PTy uGXz,UGXyQ”u vll2 > PTsy

— [ x — Ux R 1 |
Us, Vs, P (W) = €ppw — cop= —po(w) e = i G = Segpluc + v«]

dpp > 0,000 > 0,20ptyy = dpp + dpe

=

V(ue Xy, P ePY): Probeop {¢(u +¢£) < %[66% - 55@/]} < () = f v(s)ds

5@[/
[e.@)

V(v € Xp, P €PI) ;. Probe.p {p(v+€) > %[56’6 — 6]} < T(80e) := [ y(s)ds
7

M

& Assembling building blocks, case of X' = 1.
e For ¢,¢ with (£,¢") ¢ C we select §,, satisfying (x), thus arriving at pairwise

simple tests

(0}, o (w) > E[6pp — Spp]

Tioey(w) = { {0}, bpp(w) < 560y — S4p]

e Further, we use out general construction to assemble pairwise tests {7y 1 :
(¢,¢") & C} into single-observation test 7 deciding on H1, ..., H,

Note: By (!), the associated with tests Ty, quantities e, satisfy the relations

oo
€pp! < I_(5w) L= f ’Y(S)dS, whence RlSkg(TlHl, ...,HL> < >

2.35
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0,0 (6,0 € C=0ptypy = min_ 1illu—
(6, 0') ¢ Pty ueXg,flveXg/QHU vll2
= 5££/ > 0, 5£/€ > 0, QOpt%/ = 5££/ -+ 5€/£
oo
= T Riskg(T|H1,...,HL) < > T(6pp) {r(é) = [ ~v(s)ds
(e enecC o

& Single-observation case K = 1: optimizing the construction over the “free param-
eters” 6,p, (£,£") & C, of the construction.

¢ A natural model here is as follows: given a loss function WW(u1, ...,uy, ), which is
nonincreasong in every one of its arguments u,, we want to minimize the “aggregated

C-risk” W ({Riskg(T\Hl, o Hp), < L}). This can be safely approximated by the
optimization problem

?gi? {9{(5) =W ({ Z M (6¢r), £ < L}) 2 0p0 > 0,800 + 6o = 20pty, (L,10) & C}

0 (e0)gC
(#)
Note: Assuming ~(-) nonincreasing on R (as is the case, e.g., for Gaussian mix-
©.@)
tures), functionT (6) = [ ~v(s)ds is convex onR_.. Consequently, when WV is convex

5
and is noincreasing in every one of its arguments, ‘R is convex

= (#) is an explicit Convex Programming problem!
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e 5 dark-colored squares: locations of the expectation x of A'(u, 0215) random
vector under 5 hypotheses
e Areas of common (dark areas where the respective hypotheses are accepted
and light) color: by aggregate of Euclidean separation pairwise tests

& Numerical illustration: 5 hypotheses on the expectation p of A'(0, 0215)-random
vector, trivial closeness (H close to H' iff H = H').

e Goal: To minimize the maximum of the 5 partial C-risks.

e Results: At optimum, the maximum of partial risks is 8.45e—4.

With no optimization (i.e., 6, = Opt,y for all £ # ¢') the maximum of partial risks is
1.72e—-3.
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0.0 (0,0)ZC

= Optyy = min_ 2[lu —vl]2 > 0 = Opty,
ueEX, veEXy
Uy Uy qﬁgg/(w) = ez;,w — Cppr = —¢g/g(w)
= — __Ux—Ux 17
e = RS cor = Sejplu+ o]

V(u e Xy, P€PY): Probep{¢p(u+¢) <0} <TF(Opty)
V(ve Xy, PePd): Probep{op(v+¢&) >0} < T(Opty)

= 00
[I_((S) = fq/(s)ds
é

M

& Case of K-repeated observations, K > 1. In the case of semi-stationary K-
repeated observations w* = (wq, ..., wx ), we act as follows:
e For (4,¢") & C, we build majority tests

xy ) 1€}, Card{k < K : ¢pp(wg) >0} > K/2
Ty (W) = { {¢'}, otherwise

[<:> (Seg/ = 55’@ = Optgg/]
e Further, we use out general construction to assemble simple tests

{Tio0ny - (6 07) € C}

into test Tk deciding on H{*, ..., HE via observation w®
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Note: By our results on majority tests, the associated with tests Ty, ,n quantities e
satisfy the relations

cw< Y (0)IM(Opty)IFL — (Ot
K/2<k<K

whence

RiskG (Tx|Hy, ..., H)) < % > (3)Ir(Opty)IF[1 — F(Opty)]K—F,
0 (00N EC K/2<k<K

Note: By Standing Assumption, Opt,, > 0 when (¢,¢") € C = "' (Optyy) < 1/2
= Risks Risk§ (Ty|Hz, ..., H1) go to 0 exponentially fast as K — oo.
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How It Works: Testing Multiple Hypotheses by Euclidean Separation

& L = 5 hypotheses on distribution of individual observation w € R2:
2D Student distribution with parameter v

Hy:w=p+g\v/x, n€ Eyg~N(@, L), x ~ x*[V]
[x?[v] — distribution of £7¢, € ~ N(0, 1,)]

AN
N

& Sets Fy: 5 ellipses

)

& Closeness C: Hy is close to Hy when the ellipses Ey, E, intersect
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& Heavy tails: v = 1, semi-stationary 127-repeated observations:

Sample recovery: true hypothesis 4, accepted: 4
e upper C-risk bound: 0.440 = max[0.242,0.306,0.306,0.069, 0.440]
e empirical C-risk over 500 simulations: 0.206

& Light tails: v = 1000, semi-stationary 127-repeated observations:

Sample recovery: true hypothesis 5, accepted 1 & 5
e upper C-risk bound: 0.320 = max[0.186,0.215,0.262,0.029, 0.320]
e empirical C-risk over 500 simulations: 0.120
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HYPOTHESIS TESTING, Il

e Detector-Based Tests
e Detectors & Detector-Based Pairwise Tests
e Testing “up to Closeness”
e Simple Observation Schemes
— Minimum Risk Detectors
— Near-Optimal Tests
— Sequential Hypothesis Testing
— Measurement Design
e Recovering linear forms in Simple o.s.



Detectors & Detector-Based Pairwise Tests

& Situation: Given two families P, P> of probability distributions on a given obser-
vation space <2 and an observation w ~ P with P known to belong to P1 U P>, we
want to decide whether P € P1 (hypothesis H1) or P € P> (hypothesis H»).

& Detectors. A detectoris a function ¢ : €2 — R. Risks of a detector ¢ w.r.t. P1, P>
are defined as
Riskq[¢|P1,P2] = sup [ e W) P(dw), Risks[¢|P1,Pa] = sup [ e?W) P(dw)
PeP1Q PeP>Q
Risky[¢|P1, Po] = Riska[—¢| P>, P1]
# Simple test 7, associated with detector ¢, given observation w,
e accepts H1 when ¢(w) > 0,
e accepts H, when ¢(w) < 0.

& Immediate observation:

Risk1(Ty|H1, Ho) < Riskq[¢|P1,Po]
Risko(Ty|H1, Hy) < Risko[¢|Py, Po]
Reason: Prob,,p {w : ¥(w) > 0} < [e¥@) P(dw).

3.1
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Elementary Calculus of Detectors

Risky[¢|P1, Po] = sup [ e 9« P(dw), Riska[¢|P1,Po] = sup [ e?w)P(dw)
PeP1Q PeP>Q

& Detectors admit simple “calculus:”
& Renormalization: ¢(-) = ¢.(:-) = ¢(-) —a

{ Risk1[¢a|P1, Po]
Riskas[¢a|P1, P2]

= What matters, is the product

e?Riskq [¢|P1, Po]
e~ “Riska[¢|P1, P2]

[Risk[¢|P1, P2]]? := Riski[¢|P1, Pa]Riska[¢|P1, Po]

of partial risks of a detector. Shifting the detector by constant, we can distribute this
product between factors as we want, e.q., always can make the detector balanced:

Risk[¢|P1, P2] = Risky[¢|P1,P2] = Riska[¢|P1, Po].
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L3 Dletectors are well-suited for passing to multiple observations. For 1 < k <
K, let

e P11, P2 . be families of probability distributions on observation spaces €2,
e ¢;. be detectors on €2;..

¢ Families {7?1,;{,7?27;{}521 give rise to families of product distributions on Q¥ =
Q1 X ... X Qp:

P{(Z{PszlX...XPKZPkEPl,k,1§k§K}a
Pé(:{PszlX...XPK:P]CEPQJQ1§k§K}a

and detectors &1, .., ¢ give rise to detector ¢X* on Q¥

K
o (W1, wg) = Y dp(wp):
k=1

-~

wkK

& Observation: Fory = 1,2, we have

K
Risky [¢™|Pf, PE] = T[ RiskylorP1 x> P2rl- 0
k=1
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(w1, .oy wi) = Zle dr(wr).

wk

@ In the sequel, we refer to families 735 as to direct products of families of distribu-
tions P, over 1 <k < K:

_ K
PE=Pot " = @ Pyp :={PX =P1 x ... x Pg : P, € Pyy,1 <k < K}.

k=1
We can define also quasi-direct products
. K
1:K
Py = ® Py
k=1 |
of the families Py roverl <k<K. By definition, P%’LK is comprised of all distri-

butions PX of random sequences w* = (w....,wg), wi € 2, which can be gener-
ated as follows: in the nature there exists a random sequence (& = (¢q,...,Cx)
of “driving factors” such that for every k£ < K, w; is a deterministic function of
¢k = (¢4, ..., (), and the conditional, ¢¥—1 being fixed, distribution of w; always
belongs to P, .

& /t is immediately seen that for y = 1, 2 it holds

e K
Risk, [¢X P& HE PO = [T Risky gl Prs, Parl.
k=1
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& From pairwise detectors to detectors for unions. Assume that we are given an
observation space <2 along with

e R families R, r = 1, ..., R of “red” probability distributions on €2,

e B families By, b =1, ..., B of “brown” probability distributions on €2,

e detectors ¢,;(-), 1 <r < R, 1 <b<B.

Let us aggregate the red and the brown families as follows

R B
R=|J Ry, B=J B
r=1 b=1

and assemble detectors ¢, into a single detector

P(w) = rpgagggigqﬁrb(w)-

& Observation: We have

Risky [¢|R, B]
Riska[$| R, B]

maerRZbéBRiskl [¢7’b|RT? Bb]a
maxbgBZrSRRGkQ [¢rb|R7“7 Bb] .

IAIA
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& Observation: We have

Ri5k1[¢‘R78] S maXTSRZbSBRiSK1[¢rb|RraBb]a
Riskz[¢|R,B] < maxpy<p) ,.pRiska[¢q| Ry, By].

Indeed,

PeR, = fe—[maxr ming, é,. b(w)]P(dw) — feminr maxb[—gb b(w)]P(dw)

< [e™lr @I pgyy < S, e rd™) Pldw) < 33, Riski [, | R, Byl
= RISK1[¢|T\’, B] < maxr<RZb<BR|sk1[q§rb|Rr,Bb]

PeB, = femaxr m'”b¢rb(w)P(dw) < femaxr brb, (w)P(dw)

< [’ Pldw) <3 Riska[g,p, [Rr, By]
= Riskz[¢|R, B] < maxb<BZT<RR|skg[¢rb|Rr,Bb]
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® Refinement: W.l.0o.g. we can assume that the detectors ¢,; are balanced:
€Erp - — RiSk[¢rb|Rr,Bb] = Risky [¢rb|Rr,Bb] = RiSk2[¢Tb|Rr,Bb].

Consider matrices
€1.1 e €1.B
A ; . E

€R,1 **° €RB
© The maximal eigenvalue 6 of F' is the spectral norm || E||> 5 of E, and the leading
eigenvector [g; f] of F' can be selected to be positive (Perron-Frobenius Theorem).
Note: g = Ef & 6f = Elyg
¢ Let us pass from the detectors ¢, to shifted detectors ., = &,, — In(fp/gr)
and assemble the shifted detectors into the detector
Y(w) = gﬁgaggglgwrb(w)
By previous observation

Risk1(¥|R, B) < max;)_, Riski[yr| Ry, Byl = max, e (fo/9r)
= max;[(Ef)r/g:] =0 = ||E||22

Riska (Y| R, B) < maxy)y  Risko[| Ry, Byl = maxe) . €4(gr/ fb)
= maxy[(E"g)p/fo] = 0 = || El|22

= Partial risks of detector ) on aggregated families R, B are < || E||2 2.
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Detector-Based Tests "Up to Closeness”

& Situation: We are given

e [ families of probability distributions Py, £ = 1, ..., L, on observation space €2,
giving rise to L hypotheses H,, on the distribution P of random observation w € €2:

Hy:PePy, 1<L<L;

e closeness relation C;
e system of balanced detectors

{boo <, (0,0) ¢}
along with upper bounds ¢,,» on detectors’ risks:

[oe %@ P(dw) < e VP € Py

/. / / .
V(£,€ Tl </ ) (6;6) Q C) . { fQ eqbu’(w)P(dw) < €pp VP € Py

e Our goal is to build single-observation test deciding on hypotheses H1, ...

to closeness C.
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& Construction: Let us set

— _¢€’€(w)7 £ > 6/7 (f, 6/) g C _ €es £ > 6/7 (£7 el) g C
¢£€’(w) - O, (e, 6/) g C y € — 17 (é,ﬁl) g C )

thus ensuring that
bopr(:) = —bpy(-), €pp = €pp, 1 <0 <L
Joe @ P(dw) < ey V(P € Py, 1< 6,0 < L)

e Given shifts ayy = —ayy, we specify test 7 as follows: Given observation w, T
accepts all hypotheses H, such that

QZSEE/(CU) > Qppr \V/(fl . (E’ 6/) % C)

and rejects all other hypotheses.
& Proposition. The C-risk of T can be upper-bounded as

RiskC(T|H1, o Hyp) < m<aLx Z epprett!
<Ly myge

3.10



& Optimal shifts: Consider the symmetric nonnegative matrix

L 1, (,,)égc
E = lewxowlip=1, xe = { 0, gu’% fc

and let ¢ = ||E||> > be the spectral norm of E, or, which is the same under the
circumstances, the largest eigenvalue of E. By Perron-Frobenius Theorem, for every
0’ > 0 there exists a positive vector f such that

Ef <6'f;

the same holds true when 8’ = 6, provided the leading eigenvector of E (which
always can selected to be nonnegative) is positive.
Fact: With ayp = In(fy/ fe), the risk bound from Proposition reads

Risk¢(T|Hq,...,Hy) < 6.

Thus, assembling the detectors ¢,y appropriately, one can get a test with C-risk arbi-
trarily close to || E||2 >.
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& Utilizing repeated observations. Assuming K-repeated observations allowed,
we can apply the above construction to
e K-repeated observation w’* = (w1, ...,wx ) in the role of w,
e quasi-direct powers P?’K = Py ® ... ® Py of families P, in the role of these
families, and respective hypotheses H?’K In the role of hypotheses Hy,

e detectors gbg,() (W) = Zle ®4p(wp) In the role of detectors ¢,,,, which allows
to replace ey with €5,
As a result, we get K-observation test 7% such that

RiskC(TE|HS R HPN) < 0

where 60’ can be made arbitrarily close (under favorable circumstances, even equal)
to the quantity

K 1, (0, ¢ cC
O = | 7Xeg/:{ (6,60 ¢

K
{GM’XW} 00=1l|5 5 0, (,,¢)ecC

In particular, in the case when ¢, < 1 whenever (¢,¢") ¢ C, we can ensure that the
C-risk of 7% converges to 0 exponentially fast as K — cc.
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% “Universality” of detector-based tests. Let P,, x = 1,2, be two families of
probability distributions on observation space <2, and let H,, x = 1, 2, be associated
hypotheses on the distribution of an observation.

Assume that there exists a simple deterministic or randomized test T deciding on
Hq, H> with risk < e € (0,1/2). Then there exists a detector ¢ with

Risk[¢|P1, Po] <eq :=21/€e[1l —¢] < 1.

Indeed, let 7 be deterministic, let 2, = {w € Q2 : T(w) = {x}}, x = 1,2, and let

_[3in(l-d/e9), wem
¢@”‘{§Mdu—m,w692

Then

PePée = fQQP(dw) [< €] =
fe_¢(“)P(dw) = e/[1 —€](1 —€)+ /[l —¢€]/e€
= e/l —d+ [VIT=d/e = Vel = d| &

>0
<\/€/[1 —¢€] + [\/[1 —e€]/e — \/€/[1 —e]} e = 2€[1l— €]

P e Py e = le P(dw) [L €] =

fe¢(”>P(dw) = e/[1 —€](1 —€)+ /[l —¢€]/ee’ <2\/€[l — €]
= Risky [6|P1, P2] < 2v/€[1 — €.
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Now let 7 be randomized. Setting P} = {PxUniform[0,1] : P € Py}, x = 1,2, Q1 = Qx[0, 1],
by above there exists a bounded detector ¢ : QT — R such that

V(P EP1): Jq fol e“m(”’s)ds} P(dw)ds < ex = 2+/€[1 — €],

V(P EP): [, e¢+<was>ds} P(dw) < g,

whence, setting ¢(w) = fol o(w, s)ds and applying Jensen’s Inequality,

V(P € P1): [oe @ P(dw) < eq,
V(P € P2): [,e?@P(dw) < eq

& Risk 2,/¢[1 — €] of the detector-based test induced by simple test 7 is “much
worse” than the risk ¢ of 7.

However: When repeated observations are allowed, we can compensate for risk
deterioration ¢ — 2./e[1 — €] by passing in the detector-based test from a single
observation to a moderate number of them.
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. . o o o e @ P(dw) < eV(P e Pr)
w;f {R|sk[¢\771,7?2] = min {e ; ij DI P(dw) < eW(P e 73;) (H

Note:
e The optimization problem specifying risk has constraints convexin (¢, ¢)

e When passing from families P, x = 1, 2, to their convex hulls, the risk of a
detector remains intact.

& Bottom line: /t would be nice to be able to solve (1), thus arriving at the lowest
risk detector-based tests.

But: (!) is an optimization problem with infinite-dimensional decision “vector” and
infinitely many constraints.

= (1) in general is intractable.

Simple observation schemes: A series of special cases where (!) is efficiently
solvable via Convex Optimization.
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Preliminaries from Convex Programming: Saddle Points

& Let X C R™, A C R™ be nonempty sets, and let F'(x, \) be a real-valued function
on X x A. This function gives rise to two optimization problems

Opt(P) = |2f supF(a: N (P)
zeX \eA
Opt(D) = sup inf F(x, >\) (D)
AeNTEX
F(\)
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Opt(P) = mf iupF(ac ) (P)
Opt(D) = sup |§f F(a: A) (D)
AENZTEX

F(\)
Game interpretation: Player | chooses = € X, player Il chooses A € A. With
choices of the players x, A, player | pays to player Il the sum of F'(z, A). What should
the players do to optimize their wealth?
OIf Player | chooses « first, and Player |l knows this choice when choosing A, 1l will
maximize his profit, and the loss of | will be F'(x). To minimize his loss, | should solve
(P), thus ensuring himself loss Opt(P) or less.
OIf Player Il chooses A first, and Player | knows this choice when choosing z, | will
minimize his loss, and the profit of Il will be F(\). To maximize his profit, Il should
solve (D), thus ensuring himself profit Opt(D) or more.
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Opt(P) = mf supF(ac A (P)
X NENA
Opt(D) = Sup inf F(a: >\) (D)
AENTEX
F(\)

Observation: For Player |, second situation seems better, so that it is natural to guess
that his anticipated loss in this situation is < his anticipated loss in the first situation:

Opt(D) =sup inf F(xz,\) < inf sup F(x,\) = Opt(P).
AEN zEX zeX \eA

This indeed is true: assuming Opt(P) < oo (otherwise the inequality is evident),

V(ie>0): Fz.e X :supF(xz,N\) <Opt(P)+e
AEA

= VA€ A:E(QN) = inf F(z,\) < F(ze, ) < OPt(P) +¢

= Opt(D) = supF()\) < Opt(P) + ¢
AEA
= Opt(D) < Opt(P).
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Opt(P) = m)f( supF(a: A (P)
TEX \eA

Opt(D) = sup mfF(x >\) (D)
AEN Z€

F())

& What should the players do when making their choices simultaneously?
A “good case” when we can answer this question — F' has a saddle point.
Definition: We call a point (z«, A«) € X x A\ a saddle point of F', if

F(z, ) > F(xs, ) > F(z,\) V(z € X, X € N).
In game terms, a saddle point is an equilibrium — no one of the players can improve
his wealth, provided the adversary keeps his choice unchanged.
Proposition [Existence and Structure of saddle points]: F' has a saddle point if
and only if both (P) and (D) are solvable with equal optimal values. In this case,
the saddle points of F' are exactly the pairs (x«, A«x), where x« is an optimal solution
to (P), and )\« is an optimal solution to (D).
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Opt(P) = |mc supF(az N (P)
X XeA
Opt(D) = sAu/? mfF(a: )\) (D)

F())
Proof, =: Assume that (x4, A«x) is a saddle point of F', and let us prove that x«
solves (P), A« solves (D), and Opt(P) = Opt(D).
Indeed, we have

F(x, A) 2 F(xx, Ax) > F(24,A) V(z € X, A € N)

whence
)\6

Since Opt(P) > Opt(D), we see that all inequalities in the chain
Opt(P) < F(zx) = F(zx, ) = F(A) < Opt(D)
are equalities. Thus, x4« solves (P), A« solves (D) and Opt(P) = Opt(D).
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Opt(P) = inf gupF(w N (P)

Opt(D) = sup mfF(x >\) (D)
AEN ZE

26
Proof, <. Assume that (P), (D) have optimal solutions x4, Ax and Opt(P) =
Opt(D), and let us prove that (z«, A«) is a saddle point. We have

Opt(P) = F(xs) = sup F(zx, \) > F(zx, M\x)

e ()

Since Opt(P) = Opt(D), all inequalities in (x) are equalities, so that

AEN reX
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Existence of Saddle Points

& Theorem [Sion-Kakutani] Let X C R", A C R™ be nonempty convex closed
sets and F'(x,\) : X x A — R be a continuous function which is convex inx € X
and concave in A € \. Assume that N\ is compact.

(i) "MinMax equals MaxMin:” One has

SadVal := inf max F(xz,\) = sup inf F(x, \)
reX AEN AeN xzeX

Note: SadVal is either real, or —c.

(ii) Assume that there exists X € A such that for every a € R the set

Xo:{x e X :F(x,)\) <a}

is bounded (e.q., since X is boundeq).
Then SadVal is real, and F' possesses a saddle point on X x A.
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Proof of Sion-Kakutani Theorem

MinMax Lemma [von Neumann] Let X ba a nonempty convex compact set and
f1, ..., fnv be continuous convex functions on X . then the quantity

Opt = min max|[f1(z), f2(x), ..., fn(2)]
reX

is the minimum over X of certain convex combination of f;:

Au* € R Z/Lz =1:0pt= min Z s fi(x).
1=1

Note: for every collection of nonnega’uve weights u; summing up to one we have
S fi(x) < max; f;(x) and therefore

min > nifi(xz) < Opt.
i
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Proof of MinMax Lemma: Assuming w.l.0.g. that Opt = O (replace f; with f; — Opt !), consider two
convex sets in R¥:

S={0}, T={yeR¥: Iz e X:y> f(z) = [fi(x);...; fn(2)]}.

From convexity of X and f;’s it follows that 1" is convex. Besides this, 1" clearly possesses a nonempty
interior.

We claim that S = {0} ¢ intT. Indeed, assuming the opposite, T" contains a negative vector,
whence, by definition of T, f;(x) < 0 for some z € X and all 4, so that minx max; f;(x) < 0, while
we are in the case Opt = 0.

By Separation Theorem, the fact that S = {0} ¢ intT #* 0 implies that S and T" can be separated:
there exists A = [\1;...; An] # O such that

0 =max\s<inf ) N\ (%)
seS yey
1

since T' contains all positive vectors with large enough entries, (x) implies that A > 0, and since
f(x) € T forall x € X, (%) says that

Opt =0< > Afi(z) Vo € X ()
Since 0 # A > 0, the weights 7 = X;/ ) . A; are well defined, nonnegative, sum up to 1, and by (!)

we have
Opt=0< > pifiz) Ve X 0
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Proof of Sion-Kakutani Theorem: We should prove that problems

F(x)
Opt(P) = infsupF(z,)\) (P)
reX \eN
Opt(D) = sup inf F(x, >\) (D)
AENZTEX
F(\)

are solvable with equal optimal values.
10, Since X is compact and F(z, \) is continuous on X x A, the function F()\) is
continuous on A. Besides this, the sets

Y={NeN:F(\) >a}
are contained in the sets
Noe={NEN:F(x,\)>a}

and therefore are bounded. Finally, A is closed, so that the continuous function F'(-)
with bounded level sets A% attains it maximum on a closed set A. Thus, (D) is
solvable.
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20 Consider the sets

X(\) = {z € X : F(z,)\) < Opt(D)}.

These are closed convex subsets of a compact set X. Let us prove that every finite
collection of these sets has a nonempty intersection. Indeed, assume that X (\1) N
.NXON) =0, so that

max,;—1.. nF(z, M) > Opt(D) Vz € X

= Mingcxmax; F(z, M) > Opt(D)

by compactness of X and continuity of F'.
By MinMax Lemma, there exist weights p; > 0,3, u; = 1, such that

mln Z i F(, AJ) > Opt(D),

< F(x, Z TRy )
since I is concave in A

= E(Zjﬂj)\j) = :rcnel)rg F(x, ZijAj) > Qﬁei)fg%:MjF(fB, Aj) > Opt(D),

which is impossible.
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30. Since every finite collection of closed convex subsets X ()\) of the compact set
X has a nonempty intersection, all these sets have a nonempty intersection:

Jrx € X 1 F(xs, ) < Opt(D) VA.

Due to Opt(P) > Opt(D), this is possible iff x4 is optimal for (P) and Opt(P) =
Opt(D).
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Simple Observation Schemes

& Simple Observation Scheme is a collection
O = ((Q,N),{pu: n € M}, F),
where
e (€2,1) is a (complete separable metric) observation space 2 with (o-finite o-
additive) reference measure 1,
supp N = €2;
o {p,(-) : p e M}is aparametric family of probability densities, taken w.r.t. T1, on
€2, and
e M is a relatively open convex set in some R"
e p,(w): positive and continuous in p € M,w € 2
e F is a finite-dimensional space of continuous functions on €2 containing con-
stants and such that

INn(pu(-)/pv(-)) € F Vu,v e M
e For ¢ € F, the function

po= 1IN (f e¢(“)pu(w)P(dw)>
Q
is finite and concave in u € M.
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& Example 1: Gaussian o.s.
o (02,MN) = (RY mesy,) is R? with Lebesgue measure,

o {pu(-)=N(p, 1) : p € R},
In(pu(-)/pu(-)) € F,

o /- = {affine functions on €2} = ¢, geaTW+bpu(w)ﬂ(dw)) =aTp+b+ %2 is concave in p.

e Gaussian o.s. is the standard observation model in Signal Processing.

& Example 2: Poisson o.s.
e (£2, 1), is the nonnegative part Zi of integer lattice in R¢ equipped with counting measure,

d o
o {pu(w) = [T 45

i
K€ M = IRLF} is the family of distributions of random vectors with inde-
i=1 L
pendent across ¢ Poisson entries w; ~ Poisson(u;),
In(pu(-)/pv(+)) € F,

e 7 = {affine functions on £2} = ¢ |, QeaTw+bpu(w)l_l(dw)) =b+ > (e — 1)u, is concave in p.

Poisson o.s. arises in Poisson Imaging, including
e Positron Emission Tomography,
e Large binocular Telescope,
e Nanoscale Fluorescent Microscopy.
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& Example 3: Discrete o.s.
e (2,1M) is finite set {1, ..., d} with counting measure,
o {pp(w) = pw, pe M ={u>0:>%_, u,=1}} is the set of non-vanishing

probability distributions on €2,
In(pu(-)/pv(-)) € F,

o /- = {allfunctions on 2} = { In Q’e¢(“)Pu(w)ﬂ(dw)> = 1In (3 ,cq e’ ) is concave in p.

& Example 4: Direct product of simple o.s.’s.
Simple o0.s.’s
O = (0 M) APy () = i € My}, Fp), 1<k < K
give rise to their direct product ®§:1 O,. defined as the o.s.
(@K, N, {p k() pl € ME}, FE),
where

o QX =Qix, ... xQr, M =11 x ... x Ng
K

() ./\/lK = M X .. X MK,p(,ul ..... /M<)<w17 ...,wK) = H p,uk,k(wk)
k=1

o ./TK = {¢(w1, ...,wK) — Zszl ¢k(wk) : Q5k; c }—k;, 1 S k S K}

wk

O Fact: Direct product of simple 0.s.’s is a simple o.s.
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& Example 5: Power of a simple o.s.
When all K 0.s’s in direct product O = ®sz1 O,. are identical to each other:
Op =0 :=((€2,N),{pp(-) i peM}LF), 1<k<K
we can “restrict OK to its diagonal,” arriving at K -th power O5) of O:
OF) = (@K, M), (V) : w e M}, FUO),

K K
pA(LK)(Wla W) = kglpu(wk), FE) = (B (W) = kgl p(wg) ¢ € F}

O Fact: Power of a simple o.s. is a simple o.s.
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| C Joe ?WP(dw) < eV(P e Pr)

P1,P>) = min {e: !
(P P2) = I { Joe?@IP(dw) < V(P € Py) W
& Main Result. Let O = ((€2,1),{pu(-) : n € M}, F) be a simple o.s., and let
My, M»> be two nonempty compact convex subsets of M. These subsets give rise

to two families of probability distributions 1, P> on 2 and two hypotheses on the
distribution P of random observation w € S2:

PX — {P . the density of P is p, with p € MX}, HX ' P € Px, x=1,2.

Consider the function

®(¢; p,v) = 5 [In (Jo e 9@ pu(w)N(dw)) + In (o 9py (w)N(dw) )]
F X [Ml XMQ] — R.
Then

A. ©(¢; u,v) is continuous on its domain, convex in ¢ € F, concave in (u,v) on
M1 X Mo and possesses saddle point (min in ¢, max in (u,v)):

H(Cb* e F, (,u*,u*) e My X MQ) )
P(p; pu*,v*) > P(s; pu*,v*) > P(ds; p,v) V(¢ € F, (,v) € My x M)
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Ja e P(dw)

Jop @) P (d) “

<
Ex(P1,P2) = min<e: -
«(P1,P2) ¢<-),e{ <

eV(P € P1) }
eV(P € P>)

(P, p,v) = % [In (fQ e_¢(‘*’)pﬂ(w)l_l(dw)) + In (fQ e¢(“)py(w)ﬂ(dw))} ;
F x [M1 x Mz] — R.

B. The component ¢, of a saddle point (¢, (u*,v*)) of ® is an optimal solution
to (1), and

5*(7317 PQ) — eXD{¢(¢*, :UJ*7 V*>}
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M

—p(w)
e+(P1,P2) = ggl)n {e: Joe P(dw) E evV(P € P1) }

Jo e?@) P(dw) eV(P € P2)

(P, p,v) = % [In (fQ e_¢(‘*’)pﬂ(w)l_l(dw)) + In (fQ e¢(“)py(w)ﬂ(dw))} ;
F x [M1 x Mz] — R.

C. A saddle point (¢, (1™, v*)) can be found as follows. We solve the optimization
problem

SadVal = max In (/Q \/pu(w)py(w)ﬂ(dw)> :

ueMiy,veMo

which is a solvable convex optimization problem, and take an optimal solution to the
problem as (u*,v*). We then set

6+ (w) = 3In (pe(w) /P (W),

thus getting an optimal detector ¢« € F. For this detector and the associated simple
test Ty,

Risk(Tg,|H1, Ho) < Risk[¢«|P1, P2] = Riskq[¢«|P1, P2] = Riska[¢«|P1, P2]
= ¢, (Py, Py) = eSadVal = [ \/pu*(w)py*(w)l_l(dw).
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Informal explanation of Main Result

A. Question: Assume that we are given two distributions, one with density p(w) > 0, and another
with density ¢(w) > 0, What is the smallest risk detector for the “families” P; = {p} and P> = {q} ?
Answer: We want to solve the problem

min max [ / exp{—¢(w) }p(w)N(dw), / exp{qs(w)}q(w)n(dw)] .
~ Q Q

As we remember, what matters is the product of partial risks; shifting ¢(-) by constant, we can redis-
tribute the product between the factors as we want.

— All we need is to solve the problem

1
min 2 [m ( /Q exp{—¢<w>}p<w>n<dw>) +in ( /Q exp{¢<w>}q<w>ﬂ<dw>)]

The (balanced) optimal solution is just ¢.(w) = %In (p(w)/q(w)), and its risk on the pair {p}, {q}

is | \/p(w)q(w)l_l(dw). The simplest way to see it is represent a candidate solution in the form of
¢«(w) + d(w) and to note that in terms of §(-) the objective to be minimized becomes

o] = 5 |In (| exp(=5)Vptlalin(as) ) +1n ([ ewfs)vptitints )|

We see that ®[d] is convex and even functional of §(-), and thus it attains its minimum when §(-) = 0.
Note: We lose nothing when assuming that we select the best detector from some linear space F of
functions on <2 rather than from the space of all functions on 2, all that matters is for F to contain

In(p(-)/q(-)).
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B. Now let us try to find the minimum risk detector for “massive” families of probability densities
P1={p,(-) :p € M1}, Po ={p,(-) : p € Mz}, where {p,(-),u € M} is a parametric family of
positive probability densities, and M; and M> are given subsets of M.

By the same “redistributing partial risks” argument all we need is to solve the optimization problem

Opt = min %[m?wx'” ( / exp{—as(w)}pu(w)n(dw)) + maxin ( I eXD{¢(w)}pu(w)ﬂ(dw))]

e Let us look at all pairs p,(-), p,(-) with u € My and v € M> and at the optimal for these pairs

detectors ¢, (w) = %ln(pu(w)/py(w)) and their risks | v/ Pu(w)py (w)M(dw). These risks clearly
lower-bound Opt.
= The quantity

opt= max in( [ Vantan)) 0
lower-bounds Opt.

e We now can make an educated guess that Opt is equal to Opt, and the optimal detector for the
“worst” pair i € M1, v € M> — one which is an optimal solution to (1) — is an optimal solution to the
problem of interest.

& Simplicity of the observation scheme in question and compactness and convexity of M1 and M>
turn out to be the conditions which make our educated guess true, and make the problem of computing
the optimal detector convex and thus computationally tractable!
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Implementation

& Gaussian o.s. P, = {N(u, 1) : p € M}, x =1,2:
e Problem max,c i, vem, IN (f \/pﬂ(w)py(w)ﬂ(dw)) reads

max |~ - vl3
——|lp—v
peM, ,veM, 38 H 2

e The optimal balanced detector and its risk are given by

¢(w) = S —viw—c
(u*,v*) € Argmin ||u —v||5
neM,,veM,
c=zlw — v [ + v
e(P1,P2) = exp {—M}

Note: We are in the “signal plus noise” model of observations with noise ~ N'(0, I;). The test 7, is
nothing but the pairwise Euclidean separation test associated with X, = M, , x = 1, 2.
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d
& Poisson o.s. P, = {(X) Poisson(u;) : p = [p1;...; pa]l € My}, x = 1,2:

=1
e Problem max,c i, vem, IN (f \/pu(w)py(w)n(dw)) reads

,LLEMl,I/GMQ

d
Mmax [_%Z(\//TZ_\/Z)2]
=1

7

-~

> Wivi=gm5v]
e The optimal balanced detector and its risk are given by

b(w) = 130 [In(ut/vh)w + vf — pfl,

MGMl ve M,

(P P2) = exp {1 (Vii - )}

(u*,v*) € Argmax ) . [‘/,uqut 2/% —%

1/7;]
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é Discrete o.s.

Py={pe M}, M CAj={peR% Y w =1,u>0},
x=1,2

e Problem max,,c i, vem, IN (f \/pu(w)py(w)l_l(dw)) reads

max Z\/m

,LLEM]_,VGMQ

e The optimal balanced detector and its risk are given by

5. (@) = Iin(uiji),weQ={1,.d}
(u*,v*) € Argmin > /e
peM, ,veM,
ex(P1,P2) = > VMV
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& Direct product of simple o.s.’s. Let

Or = (%, M), {pp e () T e € My}, Fie), 1 < k < K,
be simple o0.ss, and M, , C My, x = 1,2, be nonempty convex compact sets. Consider the simple
0.S.

K
(5, N5) {pu : o™ € MF},FF) = (X) Oy
k=1

along with two compact convex sets
My =M1 X ..xX Mg, x=1,2.
¢ Question: What is the problem

max In </ \/puK(wK)p,/K(wK)rlK(dwK))
OK

pe M, vEeM,

responsible for the smallest risk detector for the families of distributions PfK ), éK ) associated in OK

with the sets M1, Mo ?
O Answer: This is the separable problem

L \/ Me(d
{ukeMlTyngzjk}le Zk‘Zl n /k pMk;k(wk)ka,k(wk) k( wk)
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= Minimum risk balanced detector for PfK ), PéK ) can be chosen as

Qbf(bdl, XS] WK) — Zf:l ¢*,k(wk)7
G i(wr) = 50 (p k(W) /puy (W)

(ug,vy) € Argmax In (fQ \/puk,k(wk)pw,k(wk)nk(dwk))]
€M v € Moy, '

and

K
e*(PfK),PéK)) = H ex(P1ies Pok),
k=1
where P, are the families of distributions associated in Oy, with M, , x = 1, 2.
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& Remark: The families of distributions P;EK) are direct products of the families P, ;, overk = 1, ... K.

From Detector Calculus, extending 73>(<K) to families PY" of quasi-direct products of families Py ks
k=1,..., K, we still have

K
Risk[¢X [PFH, PSR < TT ex(Pr Pa),s
k=1

g

-~

—.€x

whence also ex = &, (PK, PE) < e (PO, P < ex

K

= 5*(77?’[{,73?’1() = H ex(P1,ies Pok).
k=1
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& Power of a simple o.s. Let

O = ((Qa |_|), {p,u(') Y S M}af)
be a simple o.s., and M, C M, x = 1,2, be nonempty convex compact sets. Consider the K-th
power of O, that is, the simple o.s.

K
0 = (@, 1), (o, cerion) = TL puian) 1 € MY, 7O ).
k=1
O Question: What is the problem

max In (/ \/png)(wK)pl(/K)(wK)rlK(dwK))
QK

MGMl,I/EMQ

responsible for the smallest risk detector for the families of distributions Pf associated in O with
the sets M, x = 1,2 ?
O Answer: This is the separable problem

MaXe M, veM, Zle In (/Q \/pu(wk)py(wk)ﬂ(dwk)>

A\ e

Kin( [} v/mGm@)N(d)

= Minimum risk balanced detector for P{*, P2 can be chosen as
$ (w1, .y wr) = Ty $uwn) With 6. (1) = 31 (P () /1 (@)

[(,u*, v*) € Argmax In (fQ \/pu(w)p,/(w)l_l(dw))]

peM,,veM,

and
E*(Pf(a 735{) — [E*(Pla PQ)]Ka
where Py, are the families of distributions associated in O with M, x = 1, 2.
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# Remark: The families of distributions P)* are direct powers PEH of the families P,. From Detector
Calculus, extending 735 to families Pff’K of quasi-direct powers of families P,,, we still have

RiSk[gbiK)\Pi@’K,P?’K] §l€*(7317732)]}i7

—=l€x

whence also ex = e, (PX, PE) < e (PO, P < ex

= &, (POR PIRY = [en(Pr, P)]".
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Near-Optimality of Minimum Risk Detector-Based Tests
in Simple Observation Schemes

& Proposition A. Let
0= ((Qa I—I)a{pu - S M}7~7_—)
be a simple o.s., and M, C M, x = 1,2, be nonempty convex compact sets, giving rise to families
of distributions
Py = {P : P has density p,(-) w.r.t. M withp € M}, x = 1,2,
hypotheses
H,:PcP,x=1,2,

on the distribution of a random observation w € 2, and minimum risk detector ¢. for P1, Po.

Assume that in the nature there exists a simple single-observation test, deterministic or randomized,
T with

Risk(T|H1, Hz) < e < 1/2.
Then the risk of the simple test T4 accepting H1 when ¢.(w) > 0 and accepting Ho otherwise “is

comparable” to e:
RiSK(%JHl,HQ) <eqp = 2v/e(1l—¢€) < 1.
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Proof. From what we called “universality” of detector-based tests, there exists a detector ¢ with
Risk[¢|P1, P2] < e4, and Risk[¢«|P1, P2] can be only less than Risk[¢|P1, P2]. O
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&% Proposition B. Let O = ((€2,M),{p, : n € M}, F) be a simple o.s., and M, C M, x = 1,2, be
nonempty convex compact sets, giving rise to families of distributions

Py =A{P : P has density p,(-) w.r.t. M withp € M}, x = 1,2
their direct powers

POR ={Px..xP:PecPt,x=12 K=1,2,..
hypotheses Hf - P e PS’K ,x = 1,2, K = 1,2,... on the distribution P of random K -repeated
observation w® = (w1, ..wr) € QE, and minimum risk detector ¢, for P1, P->.

Assume that in the nature there positive integer K. and a simple K .-observation test, deterministic or
randomized, Ty capable to decide on the hypotheses H-, x = 1,2, with risk < e < 1/2. Then the

test T, i deciding on HE, x = 1,2, by accepting H{ whenever U (w’) := 37 | ¢u(wy) > 0
and accepting H% otherwise, satisfies

2
1_ |n(4(1—e))K*'

In(1/e)
Moreover, this risk bound remains true when the hypotheses ij are extended to H?’K stating that
the distribution P of w’ belongs to the quasi-direct K -th power PE’K of Py, x = 1,2. Note that
K./K.— 2 as e — +0.

Risk(T.|H{, HY) < e VK > K.
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Proof. As we know, K,-th power O(X+) of @ is simple o.s. along with ©, and ¢§K*) is the minimum risk
detector for the families P?’K*, x = 1, 2, the risk of this detector being [, (P, Pg)]K*. By Proposition
A as applied to ©%) in the role of ©, we have

[e.(P1, P2)]" < 2¢/e(1 — €) = e.(P1,P2) < [2/e(1 — O]VE < 1.
By Detector Calculus, it follows that for K = 1,2, ... it holds

Risk[pUO|PEK PEE] < [24/e(1 — )] K/ K

and the right hand side is < ¢ whenever K > K,. 0
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Near-Optimality of Detector-Based Up to Closeness Testing
in Simple Observation Schemes

& Situation: We are given a simple o.s.

O = ((2,M),{pu : p € M}, F)
and a collection of nonempty convex compact subsets M, 1 < ¢ < L giving rise to
e Families P, = {P : P admits density p,, u € My w.rt. N}, £ = 1,..., L, along with quasi-direct
powers Py of P, and hypotheses H,>" : P € P;>" on the distribution P of K-repeated observation
wh = (w1, ..., wK),
e minimum-risk balanced single-observation detectors ¢, (w) for P, P, along with their risks
e(Po,Pp), 1 <t < ¥ <L,and K-repeated versions

K
dro (W) = pur(wr)

k=1
of ¢y such that
Risk[x 0| HEK | HEK] < [e.(Pr, Po)]™ .

3.49



& Assume that in addition to the above data, we are given a closeness relation C on {1,...,L}.
Applying Calculus of Detectors, for every positive integer K, setting

srary {5 D2 ]

QK = O, (&E’) c C .

2,2

we can assemble the outlined data, in a computationally efficient fashion, into a K-observation test
T K deciding on Hf”K, 1 < ¢ < L, with C-risk upper-bounded as follows:

RiskC (TE|HS", ..., HO™) < 0k

(»c > 1 can be selected to be as close to 1 as we want).
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& Proposition. In the just described situation, assume that for some e < 1/2 and K., in the nature
there exists a K.-observation test T, deterministic or randomized, deciding on the hypotheses

HP™ WK = (w1, ...,wk.) is an i.i.d. sample drawn from a P € P,
¢=1,..., L, withC-risk < e. Then the test TX with
14 1In(cL)/In(1/¢) %
L1—In(4(1—e)/In(1/e)|

~
—1 as e—~+40

decides on H"™, £ = 1, ..., L, with C-risk < ¢ as well.

K >2
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Proof. e Let us fix £, ¢’ such that (4,¢") ¢ C, and let us convert T into a simple K.-observation test
T deciding on H, ", H""* as follows: whenever ¢ € T(w"), T accepts H,""* and rejects H """,
otherwise the test accepts H,""* and rejects H,"". It is immediately seen that

Risk(T|H™, HY ™) < e.

Indeed, let PX- = P x ... x P be the distribution of w’®-. Whenever P%- obeys HE’K*, 7 must accept
the hypothesis with P%--probability > 1 — ¢, whence
Risky (T|H ™ HY ™) < e.

If PX- obeys H, """, the PX--probability of the event “T” accepts H. " and rejects H,""*"" is < ¢, since
H" HY"™ are not C-close to each other

= P%--probability to reject HEQ’K* isatleast 1 — e

= Risko(T|H>™ HO™) < e
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H" H;"™ can be decided upon by a simple test with risk < ¢

o HY™ HY™ can be decided upon with risk < e < 1/2
= a*(Pf’K*,Pf’K*) < 24/e(1 —¢€) < 1 (Calculus of Detectors)

1/K, _ _ .
= ex(Pp, Pp) < [2 e(1l — e)] < 1 (since O is a simple 0.s.)
:|K/K*

;»ng[z e(1—e) L
— RiskC(TE|IHSH .., HO®) < 56 < e when

. 14 1In(scL)/In(1/¢)
K/K" 2 21 —In(4(1 —¢€))/In(1/e)
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Role of convexity

& In the above results, convexity of M1 and M> plays the critical role.

lllustration: Consider the situation of Gaussian o.s. with d-dimensional observation, M; = {0} and
— [case a)] M> — the complement of the centered at the origin || - ||>-ball of radius R

— [case b)] M> — the half-space at the distance R from the origin.

a) b)
O Here is the dependence of the optimal risk on R when d = 1000 :
d= 100 :
R 1 2 4 8 16

Risk,case a) || 4.9e—1 | 4.4e—1 | 3.0e—1|4.1e—1| 6.4e—6
Risk, caseb) || 3.1e—1 | 1.6e—1 | 2.3e—2 | 3.2e—5 | 6.7e—16

d = 1000 :
R 1 2 4 8 16

Risk, case a) || 5.0e—1 | 4.8e—1 | 4.3e—1|2.4e—1| 5.5e-3

Risk, case b) || 3.2e—1 | 1.6e—1 | 2.3e—2 | 3.2e—5| 6.7e—16
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How it works: lllustration 0
Comparison with Euclidean Separation

& Recall testing, via repeated observations, L. = 5 hypotheses
Hy:pe Ey
on location p of 2D Student random vector with parameter v:

w=p4+g\/v/x, g~N(,1IL), x ~ x?*[V]
[x?[v] — distribution of £7¢, € ~ N (0, 1,))]

3
Q

& Closeness C: H, is close to H, when the ellipses E,, E, intersect

& Sets E,: 5 ellipses
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% As v — oo, the distribution of w approaches the Gaussian distribution N'(u, I).
& The I|m|t|n% case v = oo can be treated by testing multiple hypotheses up to
t

closeness, with pairwise repeated-observation tests yielded by
either

(a) Euclidean separation
or

(b) detectors for convex hypotheses in Gaussian o.s.
& On close inspection, both options result in tests of similar structure:
(I) We define quantities ®;;, 1 < i < 5 < L as follows:
— when H; is close to H; (i.e., E; N E; = (), we set &;; = 0;
— when H, is not close to H; (i.e., E; N E; = (), we

o set ¢ij(w) = [zij — yi]" [w - %} » (@i, i) = argminees [l —y|l2
e assemble ¢;;(wi), k < K, into ®;; according to

1 ,¢i(wr) > 0foratleast K/2 values of k
—1 | otherwise

for (b) cblj = 1 ’ Zk‘ Qb;jj(wk) >0

—1 |, otherwise

for (a): ®;; =

() Forj < i, we set ®;; = —d;, thus arriving at a skew-symmetric matrix ® = [P;;].
O We accept exactly those hypotheses H, for which £-th row in ® is nonnegative.
& Comparing (a) and (b), K = 127 semi-stationary observations:

(@) (b)
upper risk bound 0.320 | 0.230
empirical risk over 500 simulations | 0.120 | 0.078

3.56



How it works: lllustration |
Predicting Outcome of Elections via Opinion Polls

Situation: L candidates are running for office, with just one to be elected, and every
voter has already decided whom to vote for in the forthcoming elections. We want to
predict elections’ outcome via Opinion poll where K randomly selected voters reveal
their choices. How large should be K in order to predict the winner with a given con-
fidence?

Model: Assume that K voters to be interviewed are drawn from the population uni-
formly and independently of each other. Denoting by u, the fraction of voters intend-
ing to vote for candidate #/ in the entire population, we get a probability distribution
1+ on the L-element set of candidates.

Note: Outcomes of K interviews form K -element i.i.d. sample w*¢ drawn from .

& Given small “winning margin” § > 0 and assuming that the distribution p of vot-
ers’ preferences is not a “4-tie” — the difference between the largest and the second
largest entries in w is at least 6 — predicting the winner can be modeled as deciding
on L convex hypotheses

Hg NS Pg L= {p c AL L pp > o+ maxj#gpj}, ({=1,...,L
[Ap ={peRL : ¥yp = 1}]
in Discrete o.s. via stationary K-repeated observation.
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Hy:pePy = {pG Ag Zng(S—Fman#gpj}, {=1,.. L

& Our machinery applies as follows:
e We solve L(L — 1) /2 convex optimization problems
€ij = MaxXuy {Xiv/iivs; - € Piv € P}, 1<i<j< L.
with optimal solutions %7, v* giving rise to detectors
¢ij(w) = 1 In (,LL]/V ), we={1,2,...,L}
We set also
€ji = €5, ¢5i(-) = —¢;;(-), 1 <i<j<m, € =0, ¢;;(-) =0,e <m

e We build the symmetric matrix £ = [ K} The Perron-Frobenius eigenvector

t)14,5<L

f of E gives rise to the detectors

i (W) = SIL i (wr) + IN(Fi/ 1)
and the test which accepts H, if and only if qﬁgj )(wK) > 0 forall j = £.
The risk of this test does not exceed the spectral norm of E.

& Given 6 and upper bound e on the risk of predicting elections’ outcome, we can
specify the smallest size K of Opinion poll resulting in prediction of required quality.
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& Results, confidence level 1 — ¢ = 0.95:

winning margin ¢
10% 5% 2.5% 1%
L=2|166Vv597|664Vv 2,394 2,657Vv 9,584 | 16,607 Vv 59,912
L=4|166Vv 815|664V 3,272 2,657V 13,098 | 16,607 v 81,882
L =8|166Vv984 | 664Vv3949 | 2,657V 15,809 |16,694Vv 98,811
e upper bounds on poll sizes are given by our machinery
e |ower bounds on poll sizes stem from lower bounding of pairwise risks

& USA Presidential Elections-2016:

Actual Poll size, Poll size,
State .
margin lower bound upper bound
Georgia 5.1% 638 2,301
Wisconsin 0.77% 28,008 101,043
Pennsylvania | 0.72% 32,030 115,555
Michigan 0.23% 313,864 1,132,333

Note: the total number of Michigan voters participated in Presidential Elections-2016
was 4,799,284
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Variation: Comparative Drug Study

& Situation: We want to carry out a clinical study aimed at comparing the effects of

two drugs, A and B. The effect of a drug on a particular patient is categorical with

1 mutually exclusive values, say, ternary: “positive effect,” “no effect,” or “negative

effect.”

The study is organized as follows: in a single trial we

— draw trial’'s subject at random, from the uniform distribution on the pool of animals
(or people) participating in the study

— flip a coin, with probability o for heads and g for tails, to decide which drug, A or
B, to administer.

After the subject is administered the drug, we record the effect.
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Model: Let us associate with k-th member of the pool 2u-dimensional vector z* as
follows:
— the first 1 entries encode the effect on the member of drug A: when it is
v € {1,..., u}, we write 1 in position . and 0 in other positions of the first half of =*
— the last u entries encode the effect of drug B: when it is ¢, we write 1 in position
1+ ¢ and 0 in the remaining positions of the second half of z*.
Example: With ternary effect,
— x = [1;0; 0;0; 0; 1] encodes ’positive effect of drug A, negative effect of drug B”
—x = [0; 1;0;1; 0; 0] encodes “no effect of drug A, positive effect of drug B”
—x = [1;0; 1,0; 0; 1] is illegitimate
Let = be the average of the vectors {z*},. taken over the pool of all candidates.
Note: = encodes the probabilities p;;, of possible outcomes “administered drug U &
{A, B}, observed effect . € {1, ..., u}”of a single trial:

PA, — &L, PB, — B:U/,L—i-b

= The distribution p of outcomes of a single trial is linearly parameterized by the
(unknown in advance) vector x known to belong to the convex set

% %

2u .

At={zecRL: Y ==> =z,4.,=1}
=1 =1
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... the distribution p of outcomes of a single trial is linearly parameterized by the (unknown in advance)
vector « known to belong to the convex compact set
2u .
A“:{xER_i_M. 72133L: tL:l:Ij'u_H:l}

= Various questions about relative performance of the drugs, like
Which of the drugs have more chances to have positive effect?
reduce to testing convex hypotheses in Discrete o.s.
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Example 1: Assume that the effect is ternary:

. = 1= positive effect; . = 2= no effect; . = 3= negative effect

and we want to decide via K experiments on the hypotheses
e the chances for A to have positive effect are at least by margin 6 > 0 larger than those for B
e the chances for A to have positive effect are smaller than those for B

Equivalently: Given stationary K -repeated observation w* with components w;,
taking values (U,.) € {A, B} x {1,2,3}, and the distribution p affinely parameter-
ized by © € A3, decide on the hypotheses
Hy:peP(Xy), Hg :pe P(Xp)
where
P(X) =A{p(z) 1z € X}

and
ax,, U=A

p(w)UL:{ 537-1— U—=RB 7XA:{37€A3:3712374+5},XB:{CC€A32561§£C4}.
pwtes
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Numerical results: With ternary effect, the number K of observations needed to
decide 0.95-reliably on the hypotheses
e The chances to get an outcome from Z with drug A are at least by margin 6 larger
than the chances to get an outcome from [J with drug B
e The chances to get an outcome from I with drug A are smaller than the chances
to get an outcome from [ with drug B
are independent of proper and nonempty subsets 7, 7 of the set
{"positive effect,” "no effect,” "negative effect”}

of outcomes of a single trial and is as follows:

5 [050]025[0.15] 0.10 | 0.05 5 050]025]0.15] 0.10 | 0.05
K| 87 | 375 | 591 | 2,388 9,578 | [ K| 117 | 501 | 788 | 3,185 | 12,771
a=053=05 a=0.75,8 = 0.25
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Note: When trials using different drugs require different amounts of resources
(money, time, clinical facilities, etc.), one could use easy-to-compute dependency

of K on o = 1 — 3 to optimize our study under constraints on how reliable and how
“costly” it should be.

0.50 Cost(B) =1 Cost(B) =2 Cost(B) = 3 Cost(B) = 4 Cost(B) =5
0.50/87/87 0.58/127/91 0.63/163/96 0.66/197/96 0.68/229/104
Cost(B) =6 Cost(B) =7 Cost(B) =8 Cost(B) =9 Cost(B) = 10
0.72/260/104 0.72/291/104 0.72/322/117 0.72/351/117 0.76/380/117
0.25 Cost(B) =1 Cost(B) =2 Cost(B) =3 Cost(B) =4 Cost(B) =5
0.50/375/375 0.59/547/391 0.63/700/412 0.67/845/412 0.68/983/447
Cost(B) =6 Cost(B) =7 Cost(B) =8 Cost(B) =9 Cost(B) = 10
0.72/1118/447 0.72/1252/447 0.73/1378/501 0.75/1503/501 0.77/1628/501
0.13 Cost(B) =1 Cost(B) =2 Cost(B) =3 Cost(B) =4 Cost(B) =5
0.50/1525/1525 | 0.50/2225/1589 | 0.64/2849/1676 | 0.67/3436/1676 | 0.69/3995/1816
Cost(B) =6 Cost(B) =7 Cost(B) = 8 Cost(B) =9 Cost(B) = 10
0.71/4540/1816 | 0.73/5085/1816 | 0.74/5596/2035 | 0.75/6105/2035 | 0.76/6614 /2035
0.06 Cost(B) =1 Cost(B) =2 Cost(B) =3 Cost(B) =4 Cost(B) =5
0.50/6127/6127 | 0.59/8935/6382 | 0.63/11446/6733 | 0.67/13803/6733 | 0.69/16047 /7294
Cost(B) =6 Cost(B) =7 Cost(B) =8 Cost(B) =9 Cost(B) =10
0.71/18235/7294 | 0.72/20423/7294 | 0.74/22468/8170 | 0.75/24510/8170 | 0.76/26553/8170
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How it Works: lllustration Il
Selecting the Best in a Family of Estimates

&% Problem:
e We are given a simple o.s. O = ((€2,1M),{p, : n € M}, F) and have access to stationary K-
repeated observations
Wi ~ pA(m*)()a k= 1., K,
of unknown signal z.. known to belong to a given convex compact set X C R".
[z — A(x): affine mapping such that A(X) c M].

e We are given M candidate estimates z; € R", 1 < ¢ < M, of x,, anorm || - || on R”, and a
reliability tolerance ¢ € (0, 1)
e Ideal Goal: Use observations w1, ...,wg to identify (1 — €)-reliably the || - ||-closest to x. point

among x1i, ..., .
e Actual Goal: Givena > 1, 5> 0andagridl” = {rg >r1 > ... > ry > 0}, use observations
w1, ..., wg to identify (1 — e)-reliably a point x; .~y such that

|24 — iyl < ap(as) + B
p(x) :==min{r:r e, r>min; |z — x|}
p(x) is grid approximation of min; ||z — x;||

Note: We select rq large enough to ensure that X C U{x : ||z — x;|| < ro}, rnv to be small enough, and I" to be dense
enough. For example, we can set T = {10'°[0.9] *,0 < s < 438}, resulting in ry < 1071°. In our application this

439-point grid approximation of R for all practical purposes is as good as R itself.
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& Proposed solution: Use testing hypotheses up to closeness.

Recall the recipe for deciding via i.i.d. observations w; ~ P on L convex hypothe-
ses Hy: P € Py in simple o.s. up to closeness C:

A. For / < /' such that ¢,7" are not C-close to each other, compute the opti-
mal single-observation detector ¢, for Py, P, and its risk ¢,,. Set ey = €y and
Gpre(-) = —dgp ().

For ¢, ¢/ C-close to each other, set €/ = 0.

B. If some of ¢/, are equal to 1, terminate — our machinery does not work. Other-
wise look at symmetric L x L matrices E i = [eﬁ,]w and find the smallest K such
that

|Ekllo2 <€ [€ : desired C-risk of would-be test]

With the resulting K, the detectors ¢, can be assembled in K -observation test 7/
deciding on H1q, ..., Hy, up to closeness C with risk < e.

Test 7% works as follows:
e find Perron-Frobenius eigenvector f of Ex.
e Given w’*, for £, ¢ not C-close to each other, compute the quantities ¢/}, = Zle dor(wi) +In(fe/ for)

e accept all hypotheses Hy, if any, such that gbﬁ, > 0 for all ¢ not C-close to Z.
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Goal: Givena > 1,8>0andagridl” = {ro > r1 > ... > ry > 0}, use observations wi, ..., wx to
identify (1 — €)-reliably a point z;(,«y such that

|24 — iyl < ap(as) + B
| p(z) :=min{r:reC,r>min; |z — x|} |

Construction:
e We look at M (N + 1) hypotheses

Hij L WE pA(x)(-) for some x € Xij L= {ZC e X . ||CB — CCZH < Tj}.

and discard those which are empty: X;; = 0. We end up with a list of L < M (N 4 1) hypotheses
{H@'j 11] € I}
e We define closeness C = C, 3: ij C-close toi'j’ iff

| <a(rj+r)+8 a= 5"

@i — @i
e We apply the above recipe to build K-observation test 7% deciding on H;;, ij € Z, up to closeness
C. If the recipe fails to work, reject (a, 3). Otherwise, given w’, we apply 7.
— If TH (w™) # 0, the test accepts some hypotheses H;;. We select among them the one, H;_ ;. , with
the largest j, and claim that z;, is the desired point: ||z. — x; || < ap(x.) + B.

— If TE(w™) = 0, we can do whatever we want, e.g., return z; as the closest to =, point among x;.
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& Fact: /n the situation in question, whenever («, 3) is not rejected, the resulting
inference wi* — i, = i+(w!) meets the design specifications:

(33* < X,wk ~ pA(:c*)() independent across k < K)
= Prob{|lz. —z; x|l < aplzs) + B8 =21 —¢

Indeed, let % be the index of the closest to z.. point among x;:

e — i |l < p(xs) = 750

Then H,, ;. is true, and since the C-risk of 7% is < ¢, the stemming from z.. probability of the event
“T% accepts H;,;,, and every other hypothesis accepted by 7 is C-close to H;,;.”

S
is > 1 — e. When this event takes place, j. > ji, whence r;, < r;, = p(z.), and H; , is C-close to
Hi%j%, whence

a_

1
——lry. i 8 < (@ — Do) +
= 2. = @ul] < s = @l + o — 2]l < (a = Dp(@) + 8 + p(a) = ap(a.) + 5 a

i, — il <
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& Fact: /n the situation in question, assume that for some e € (0,1/2), a,b > 0 and
positive integer Kx in the nature there exists an inference w** — i, (w’*) such that

(:U* S X, W pA(a:*) independent across k:)
= Prob{||x« — azi*(w;{*)ﬂ <ap(zsx) +b}>1—¢€

Then the pair (a« = 2a + 3,8 = 2b) is not rejected by the above construction, and
the number of observations K required by it to infer from w* index 7(w**) such that

(QU* c X, W pA(x*) independent across k)

is comparable to K.: K < Ceil (21?_'?5%%?:;}%;?1(}6/;)K*> .
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Indeed, let H;; : ||z« — x;|| < rjand Hyj - ||z« — x¢|| < 75 be not C, g-close to each other.
Claim: H;; and H;; can be decided upon via K. observations with risk < .
Here is K.-observation test 7 deciding on H;; vs. H;j with risk < e:

Given w, apply the inference w"™ — i.(w’*) and check whether ||z; — z; (]| < (a +
1)r; + b. Ifitis the case, accept H;;, otherwise accept H ..

Let us prove that the risk of 7 is < €. Indeed, let the event & : ||z, —x; (,«)|| < ap(z.) + b take place
(it happens with probability > 1 — €). Then

— if H;; is true, we have ||z. — x;|| < r;, whence p(z.) < r; and thus ||z. — x; (|| < ar; + b. Red
relations imply that ||z; — x; (x| < (a 4+ 1)r; + b, thus T accepts H;;. Thus, when £ takes place
and H;; is true, T accepts H;;.

— if H;; s true, we, same as above, have ||zy — x; ()| < (@ + 1)r; + b. Assuming that 7 rejects
H;j; we have also ||z; — z; ()| < (a+ 1)r; + b, implying that ||z; — ;|| < (@ + 1)[r; + 73] + 20,
which is not the case since H;; and H;; are not Co,43 2p-Close to each other.

Bottom line: When £ takes place, T makes no errors, so that the risk of T is < e. ]

= Whenever H;;, H;; are not C, z-close to each other, we have €;; ;j < [2y/€(1 — e)]V/E < 1
= TX with announced K is well defined and has C,, s-risk < e. O
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& Numerical illustration: Given noisy observation

w= Ax + o€, £ ~N(0,I,)

of the “discretized primitive” Az of a signal z = [z!;...; 2] € R™:

1 J
[Az]; == > 2% 1<j<mn,
N e=1
fori = 1, ..., Kk we have built Least Squares polynomial, of order i— 1, approximations
x; of x:

z; = argmingc v, [|Az — w||3

[Xz' = {:E = [wl; ceey xn] . restriction of polynomial of degree < i — 1 onthe grid {s/n,1 < s < n}}]

and now want to use K additional observations to identify the nearly closest to x, in
the norm

1 :
lull == > ||
n .—
1=1
on R™, among the points z;, 1 < i < k.
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& Experiment [e = 0.01,n = 128,0 = 0.01,xk =5,a = 3, 8 = 0.05]

2 T T T T T T 0.3
025

02

% i 015
L i 01t
005F

1 Il Il | 1 1

0 20 40 60 80 100 120 140 0

o

I I I I 1 I
0 20 40 60 80 100 120 140

Left: x+« and x;. Right: the primitive of x.

i 1 2 3 4 5
[z — ;]| || 0.56348 | 0.33947 | 0.23342 | 0.16313 | 0.16885

distances from z. to z;

e Computation yielded K = 3. But

— with K = 3, in sample of 1000 simulations, not a single case of wrong identification of the exactly
closest to x. point was observed, i.e., we always got ||z — x;(,)|| = p(z+), in spite of the theore-
tical guarantee as poor as ||z« — x| < 3p(zs) + 0.05

— the same was true when K = 3 was replaced with K = 1;

— replacing K = 3 with K = 1 and increasing o from 0.01 to 0.05, the procedure started to make
imperfect conclusions. However, the exactly closest to z. point x4 was identified correctly in as
many as 961 of 1000 simulations, and the empirical mean E{||z. — x;¢,)|| — p(x«) } was as small
as 0.0024.
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How it Works: lllustration lll
Recovering Linear-Fractional Function of a Signal

& Problem: An unknown signal = known to belong to a given convex compact set
X C R™is observed according to

w= Ax + o, £ ~N(0,1;)

Our goal is to recover the value at « of a linear-fractional functional F'(z) = f1z/e! 2,
withelz > 0, z € X.

& lllustration: We are given noisy measurements of voltages V; at some nodes 1
and currents I;; in some arcs (i,7) of an electric circuit, and want to recover the
resistance of a particular arc (z,7):
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Circuit with 8 nodes and 11 arcs

i

input node (# 1)

\/ =s Output node (# 8)

x = [voltages at nodes; currents in arcs]

Ax = [observable voltages; observable currents]

e  Currents are measured in blue arcs only

e \oltages are measured in magenta nodes only

° We want to recover resistance of red arc

conservation of current, except for nodes ##1,8

zero voltage at node #1, nonnegative currents

current in red arc at least 1, total of currents at most 33
Ohm Law, resistances of arcs between 1 and 10

X :

3.75



& Strategy: Given L,

e splitthe range A = [min,cx F'(x), max,cx F(z)] into L consecutive bins A,
of length §;, = length(A)/L,

e define the convex compact sets

Xp={xe X F(x)e Ay}, My={Ax :zx € Xy}, 1 <L<L

w

i
2D projections of X and X7y, ..., Xg

e decide on L hypotheses H, : P = N (u,c2I), u € M, on the distribution P of
observation w = Az + o€ up to closeness C “Hy is close to Hy iff |6 — ¢/| < 17
e estimate I'(x) by the center of masses of all accepted bins.

& Fact: For the resulting test T, with probability > 1 — RiskC(T|H1, ..., H;) the
estimation error does not exceed dy..
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& Implementation and results: Given target risk e and L, we selected the largest o
for which Risk¢(T|H71, ..., Hy) is < e.
e This is what we get in our lllustration for e = 0.01: A = [1, 10]

L 38 16 32

o1, 9/8x~1.13|9/16 ~0.56|9/32 x~ 0.28

o 0.024 0.010 0.005
Topt/T < 1.31 1.31 1.33

o 0.031 0.013 0.006
oopt/0 < 1.01 1.06 1.08

e oopt — the largest o for which “in the nature” there exists a test deciding on
Hq,...,Hy, with C-risk < 0.01

e Red data: Risks ¢, of pairwise tests are bounded via risks of optimal detectors, C-risk of 7T is
bounded by

L .
[eoer - X(e,E’)¢C]£,£/=1‘ ‘2,2 ’

e Brown data: Risks ¢y, of pairwise tests are bounded via error function, C-risk of 7 is bounded by

meax E Eppr.

0:(0,0)gC
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lllustration Ill Revisited
Recovering N-Convex Functionals

& Fact: The construction used to recover linear-fractional function can be extended
to recovering N -convex functionals.

& Definition: Let X C R"™ be a convex compact set, ' . X — R be a continuous

function, and N be a positive integer. We say that F' is N -convex, if for every real a
the sets

X2 ={zeX:F(z)>a}, XS ={ze X :F(z) <a}

can be represented as the unions of at most N convex compact sets.

Examples: A. Fractional-linear function F(z) = Zg% with positive on X denomina-
tor is 1-convex:

(zeX: F(w)ia} —(rE X e(x)— ad(az)iO}
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B. If F, is Ny-convex on X, x = 1,2, then max[Fy, F»] and min[Fy, F>] are
max[N1 + No, NlNQ] -convex on X :

3.79

a,> N
, 2 = . > — X a
I X;é _ {5’5 cX Fx(x) - a} UN=1 U’ZX , X = 1,2[U,V: convex]
\ X\~ = {x € X : FX(CL’) <a}= Uyél Vu,x
.
{z € X : max[Fi(z), Fo(z)] > a} = [ U Uﬁ,ll U [ U U15L,2]
,LLSNl V§N2
{z € X : max[F1(z), F2(z)] < a} = U [V;zl M VVC,LQ]
\ p<N1,v<N,




C. Conditional quantile. Let a probabilistic vector 0 < p € R"™ represent probability
distribution on finite subset S = {s1 < s < ... < sy} of the real axis.
Regularized a-quantile go[p] is defined as follows:
— we pass from p to the probability distribution P in A = [s1, sn] by assigning prob-
ability mass p1 to s1 and uniformly spreading the probability masses p;, ¢« > 1, over
the segments [s;_1, s;]
— ga[p] is the usual a-quantile of P:

galp] = min{s € A : Prob¢ p{§ < s} > a}
Fact: Let X = {«x(t,s) : t € T,s € S} be a convex compact set comprised
of nonvanishing probability distributions on 2D grid T x S, lett € T, and let

2 (s) = <25 s« s\ be the conditional, given t, probability distribution on
108) = 5 o2 (i)

S induced by x € X. Then
fa,t(x) — qoz[513|t(')]

is 1-convex function of x € X.
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& Problem of interest: Given
e convex compact set X C R",
e N-convex functional F' : X — R,
e a collection X;, ¢ =1, ..., J, of convex compact subsets of X,

e stationary K -repeated observations w1, ..., wg Stemming, via simple o.s.,

J
from unknown signal z € |J X},
j=1

we want to recover F'(x).

Strategy: Given L, we

e Split the range A = [min,cx F'(x), max,cx F(x)] into L consecutive bins A, of length §;, =
length(A)/L,

e Observe that by N-convexity of F' every one of the sets {x € U‘jjlej . F'(z) € Ay} is the union of
at most N2.J convex compact sets Y.

Indeed, {z € X; : F(z)a < F(z) < B} =[{reX;: F(z) >a}n{zr e X;: F(x) < B} is the
intersection of two unions of IV convex sets each, and thus is the union of at most N2 convex sets.

e Associate with the nonempty Y’s the hypotheses “observation stems from a signal from Y*”

e Define closeness C on the resulting collection of hypotheses Hi, ..., H;, £ < N2JL, by claiming H,
and H, C-close iff both hypotheses stem from the same or from two consecutive bins A,

e Use our machinery for testing multiple convex hypotheses in simple o.s. to build a test Tk deciding
on Hq, ..., H, up to closeness C via K-repeated observation.
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e Apply the test Tx to observations wq, ..., wx and take as the estimate of F'(x) the
center of masses of all bins associated with the hypotheses accepted by the test.

& Same as in the above fractional-linear example, it is immediately seen that

e The probability for the recovery error to be > §;, is upper-bounded by the C-risk of
T

In addition, with our estimate, the number of observations K required to ensure re-
covery error < &y, with a given reliability 1 — €, e < 1, is within logarithmic in N, J, L
factor off the “ideal” number of observations needed to achieve, with reliability 1 — e,
recovery error oy, /2.
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Sequential Hypothesis Testing

& Motivating example: Opinion polls. Recall the elections’ story:
e Population-wide elections with L candidates are to be held.
e Preferences of a voter are represented by L-dimensional basic orth with 1 in posi-
tion £ meaning voting for candidate #/.
Equivalently: Preference w of a voter is a vertex in the L-dimensional probabilistic
simplex

Ap={peRl:p>0,"yp =1}
e The average 1 = [u1;...; ny] of preferences of all voters “encodes” election’s
outcome: uy is the fraction of voters supporting ¢-th candidate, and the winner corre-
sponds to the largest entry in © (assumed to be uniquely defined).
Note: .. is a probabilistic vector: 1. € Aj. We think of i as of a probability distribu-
tion on the L-element set Q2 = Ext(A ) of vertices of Aj.
e Our goal is to design opinion poll — to select K voters at random from the uniform
distribution on the voters’ population and to observe their preferences, in order to
predict, with reliability 1 — ¢, election’s outcome.

& Poll’'s model is drawing stationary K-repeated observation w® = (w1, ...,wx),
wy. € €2, from distribution .
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& We assume that the elections never end with “near tie,” that is, the fraction of votes
for the winner is at least by a known margin 4 larger than the fraction of votes for every
no-winner, and introduce L hypotheses on the distribution x from which wq, ..., wg
are drawn:

Hgi,LLEPg:{/,LEALI,UJgZ/,LE/—F(S,Vf/#:f},e:1,...,L

Our goal is to specify K in a way which allows to decide on H1, ..., Hj via stationary
K -repeated observations with risk < e.

& We are in the case of Discrete o0.s., and can use our machinery to build a near-
optimal K-observation test deciding on Hq, ..., Hy, up to trivial closeness C “H, is
close to H iff ¢ = ¢” and then select the smallest K for which the C-risk of this test
is < e.
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& lllustration L = 2: In this case 2 is two-point set of basic orths in R2, the

minimum risk single-observation detector is
1 1+9
* = — In
Pe(w) = (1 —5
and Risk[¢«|P1, Po] = 1 — 52

o : In(1/¢) _ 1
= K = Cail (ln(l/(1_52))) = 52 In(1/¢).

6 | 0.3162 | 0.1000 | 0.0316 | 0.0100 |
KVK|16Vv57|166Vv597 1,660V 5,989 16,607V 59,912 |
K lower bound on optimal poll size

Poll sizes, e = 0.05

)[wl—wQ]:Q—ﬂR
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§ | 03162 | 0.1000 | 0.0316 | 0.0100 |
KV K |16V57|166V597 | 1,660V 5,989 | 16,607 V59,912 |
K. lower bound on optimal poll size

Bad news: Required size of opinion poll grows rapidly as “winning margin” de-
creases.
& Question: Can we do better?

& Partial remedy: Let us pass to sequential tests, where we attempt to make con-
clusion before all K respondents required by the worst-case-oriented analysis are
interviewed.

Hope: If elections are about to be “landslide” (i.e., in the unknown to us actual dis-
tribution u« of voters’ preferences the winner beats all other candidates by margin
dx > 0), the winner hopefully can be identified after a relatively small number of
interviews.
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& Strategy. We select a number S of attempts and associate with attempt s number
K (s) of observations, K(1) < ... < K(S).

s-th attempt to make inference is made when K (s) observations are collected. When
it happens, we apply to the collected so far observation w () = (w1, ..., wy(,)) a
test 75 which, depending on w(s),

— either accepts exactly one of the hypotheses H+, ..., Hy, in which case we ter-
minate,

— or claims that information collected so far does not allow to make an inference,
in which case we pass to collecting more observations (when s < S) or terminate
(when s = S).

& Specifications: We want the overall procedure to be

e conclusive: an inference should be made in one of the S attempts (thus, when at-
tempt S is reached, making inference becomes a must);

e reliable: whenever the true distribution p+« underlying observations obeys one of our
L hypotheses, the u«-probability for this hypothesis to be eventually accepted should
be > 1 — ¢, where e € (0, 1) is a given in advance risk bound.
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& An implementation:

e We select somehow the number of attempts S and set 6; = §/° so that 61 > d» > ... > dg = 6.
Besides this, we split risk bound e into S parts €s: €5 > 0, s < S & Zle €s = €;

e For s < S, we define 2L hypotheses

HS, = Hy:peP5,_ 1 :={pu€Ar:p>0ds+ mMaXepz e}
“weak hypothesis”

{pePs, ={neAr:pu>ds+ mMaxXpxe o} C P
“strong hypothesis”

1 <¢< L,andassign H5, ; and H3, with color ¢, 1 < /¢ < L.

s
HZE

e For s = S we introduce L hypotheses Hy = Hy, £ = 1, ..., L, with H assigned color £.
e For s < S, we introduce closeness relation Cs on the collection of hypotheses HY, ..., H5; as follows:
e the only hypotheses close to a strong hypothesis I3, are the hypotheses H3, and H3, , of the
same color;
e the only hypotheses close to a weak hypothesis H5, , are all weak hypotheses and the strong
hypothesis H», of the same color as Hoy_ ;.
e For s = S, the C,-closeness is trivial: Hy = H, is Cs-close to H; = H, if and only if £ = ¢'.
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3.89

[weak green]
[strong green]
[weak red]
[strong red]
[weak blue]
[strong blue]

&

A

3-candidate hypotheses in probabilistic simplex A3

M
M;
M>
M3
M3
M3

dark green + light green: candidate A wins with margin > §g

dark green: candidate A wins with margin > §; > dg

dark red + pink: candidate B wins with margin > §g

dark red: candidate B wins with margin > §s; > dg

dark blue + light blue: candidate C wins with margin > ég

dark blue: candidate C wins with margin > §; > dg

H3, | :p€ M, [weak hypothesis]

weak hypothesis H3,  is Cs-close to itself, to all other weak hypotheses
and to strong hypothesis H3, of the same color as H3, |
H3, : pn € M [strong hypothesis]

strong hypotfwesis H3, is S-close only to itself and to weak hypothesis

S S
H3, . of the same color as H3,



e Note: We are in the case of stationary repeated observations in Discrete o.s., the hypotheses H?
are of the form “i.i.d. observations w1, w>, ... are drawn from distribution p € M with nonempty closed
convex sets M: C Ay,”and sets M7, M:, with (4,4") € Cs do not intersect

= the risks of the minimum-risk pairwise detectors for P?, P2, (4, ') € Cs, are < 1

— we can efficiently find out the smallest K = K (s) for which our machinery produces atest 7 = 7;
deciding, via stationary K (s)-repeated observations, on the hypotheses {H:}; with Cs-risk < es.

e It is easily seen that K(1) < K(2) < ... < K(S — 1). In addition, discarding all attempts
s < S with K(s) < K(S) and renumbering the remaining attempts, we may assume w.l.o.g. that
K(1) < K(2) <..<K(S).

& Our inference routine works as follows: we observe wy, £ = 1,2,..., K(S)
(i.e., carry interviews with one by one randomly selected voters), and perform s-th
attempt to make conclusion when K (s) observations are acquired (K (s) interviews
are completed).

At s-th attempt, we apply the test 75 to observation w¢ (), If the test does accept
some of the hypotheses H JS and all accepted hypotheses have the same color /,
we accept ¢-th of our original hypotheses H1, ..., Hy, (i.e., predict that /-th candidate
will be the winner) and terminate, otherwise we proceed to next observations (i.e.,
next interviews) (when s < S) or claim the winner to be, say, the first candidate and
terminate (when s = 5).
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& Facts:

e The risk of the outlined sequential hypothesis testing procedure is < e: whenever
the distribution u« underlying observations obeys hypothesis H, for some ¢ < L,
the s«-probability of the event “H, is the only accepted hypothesis” is at least

1 —e.

e The worst-case volume of observations K (S) is within logarithmic factor from the
minimal number of observations allowing to decide on the hypotheses H1, ..., Hy,
with risk < e.

e Whenever the distribution 1« underlying observations obeys strong hypothesis
H3, for some ¢ and s (“distribution 1.« of voters’ preferences corresponds to win-
ning margin at least és”), the conclusion, with p.«-probability > 1 — e, will be made
in course of the first s attempts (i.e., in course of the first K (s) interviews).

Informally: In landslide elections, the winner will be predicted reliably after a small
number of interviews.
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How it Works: 2-Candidate Elections

& Setup:

e # of candidates L. = 2

o#5g=10"5/4

e Range of # of attempts 5.1 <5< 8

& Numerical Results:

S 1 2 4 5 6 8
0 =0g || 0.5623 | 0.3162 | 0.1000 | 0.0562 | 0.0316 | 0.0100
K 25 88 287 917 9206 92098
K(S) 25 152 1594 5056 16005 | 160118

Volume K of non-sequential test, number of attempts s and worst-case volume

K (S) of sequential test as functions of winning margin 6 = d5. Risk ¢ is set to 0.01.

Note: Worst-case volume of sequential test is essentially worse than the volume of

non-sequential test.

But: When drawing the true distribution .« of voters’ preferences at random from the
uniform distribution on the set of 1’'s with winning margin > 0.01, the typical size of
observations used by Sequential test with S = 8 prior to termination is < K (.S):

Empirical Volume of Sequential test

| median | mean | 60% | 65% | 75% | 80% | 85% | 90% | 95% |

| 177

Column "X%": empirical X%-quantile of test’s volume. Data over 1,000 experiments.
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100% |
(0182 | 177 | 397 | 617 | 1223 | 1829 | 8766 | 87911 | 160118 |



Measurement Design

& Observation: In our Hypothesis Testing setup, observation scheme is our “envi-
ronment” and is completely out of our control. However, there are situations where
the observation scheme is under our partial control.
& Example: Opinion Poll revisited. In our original Opinion Poll problem, a particu-
lar voter was represented by basic orth w = [0;...; 0; 1; 0: ...; 0] € RL, with entry 1
in position £ meaning that the voter prefers candidate ¢ to all other candidates. Our
goal was to predict the winner by observing preferences of respondents selected at
random from uniform distribution on voters’ population.
However: Imagine we can split voters in I non-intersecting groups (say, according to
age, education, gender, income, occupation,...) in such a way that we have certain a
priori knowledge of the distribution of preferences within the groups. In this situation,
our poll can be organized as follows:

e We assign the groups with nonnegative weights ¢; summing up to 1

e To organize an interview, we first select at random one of the groups, with prob-
ability qg; to select group 7, and then select a respondent from i-th group at random,
from uniform distribution on the group.
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e We assign the groups with nonnegative weights ¢; summing up to 1

e To organize an interview, we first select at random one of the groups, with probability ¢; to select
group ¢, and then select a respondent from i-th group at random, from uniform distribution on the
group.
Note: When g; is equal to the fraction 6; of group 7 in the entire population, the above
policy reduces to the initial one. It can make sense, however, to use q; different from
0;, with ¢; < 6, if a priori information about preferences of voters from ¢-th group is
rich, and q; > 6, if this information is poor. Hopefully, this will allow us to make more
reliable predictions with the same total number of interviews.
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& The model of outlined situation is as follows:

e We characterize distribution of preferences within group 7 by vector u* € Ay. for 1 < ¢ < L, ¢-th
entry in p* is the fraction of voters in group i voting for candidate ¢;

Note: The population-wide distribution of voters’ preferences is u = Zle O; .

e A priori information on distribution of preferences of voters from group 7 is modeled as the inclusion
' € M?, for some known subset M* C A, which we assume to be nonempty convex compact
set.

e Output of particular interview is pair (i, j), where ¢ € {1, ..., I} is selected at random according to
probability distribution ¢, and j is the candidate preferred by respondent selected from group ¢ at
random, according to uniform distribution on the group.

= Qur observation (outcome of an interview) becomes

w:=(0,0)eQQ={1,...,1} x{1,...,L}, Prob{w = (4,7)} = p(i,7) = qz-,u;.
The hypotheses to be decided upon are
ut € MVi,

Hlq] : p € Pula) i= { {pij = qipsihecr [Z 9#] > 5+ [Z 9#1 V(0 0)
1 /¢ i 4

l

»y -

Hylq), ¢ = 1,..., L, states that the “signal” i = [u';...; u!] underlying distribution
p of observations w induces population-wide distribution >, 6; " of votes resulting in
electing candidate ¢ with winning margin > 4.
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7

' € MVi,
Helg] : p € Pelg] = { {pij = aips}rooer [Z W] -0 [Z 9”"“1 e
i ¢ i 4

\

& Note: Hypotheses Hy[q] are of the form

Hylgl = {p = Alqlii : ji ;= [p}; ...; ul] € MY,
[A[Q]ﬁ]z'j — %;/J{;-,
where M¥f, ¢ = 1,..., L, are nonempty nonintersecting convex compact subsets in
Ap X ... XAf

-~

I
Note: Opinion Poll with K interviews corresponds to stationary K-repeated obser-

vation in Discrete o.s. with (I L)-element observation space 2

= @Given K, we can use our machinery to design a near-optimal detector-based
test Ti deciding via stationary K -repeated observation (i.e., via the outcomes of
K interviews) on hypotheses Hylql, ¢ = 1,...,L up to trivial closeness “H|[q]

is close to Hplq] iff ¢ = ¢'.” This test will predict the winner with reliability
1 — Risk(Tx[H1ldgl, ..., Hr[q])-
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Hylg) = {p = Alglii : ji := [pt;...; pt] € MY,
[A[Q]ﬁ]z'j — %M}

0, £=1/

& By our theory, setting xyp = { Y. , we have

. L
Risk(Tic| Halgl, . Hela)) < exla) := ||[efilalxee] s |
€gp — max v/ [Alql il Alg] vy
ee[g] omax 3 VIAldAl AL

1 L
et MmaxXx i i. Z
ﬁeM‘«’,ﬁeM"’Zq Z V Hi"s
1=1 =1
(g;7i7)

Note: ©(q; ji, V) is linear in gq.
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& Let us carry out Measurement Design — optimization of e i [q] in q.
& Main observation: ¢, [¢q] = (W (q)), where

o (Q) =| [(Qﬁg/)KX€€/]££/:l 2.2 is efficiently computable convex and entrywise
nondecreasing function on the space of nonnegative L. x L matrices

e W(q) is matrix-valued function with efficiently computable convex in ¢ and non-
negative entries

Wop(q) = Max e mlzem? ®(q; i, V)

= Optimal selection of q;’s reduces to solving explicit convex problem

min {T(W(@) :q¢ = lg1:101] 2 0, =y ¢; = 1}
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How it Works: Measurement Design in Election Polls

& Setup:

e Opinion Poll problem with L candidates and winning margin § = 0.05
e Reliability tolerance ¢ = 0.01

e A priori information on voters’ preferences in groups:

t={pte Ap pb—u; < ph <pl+u;, <L}

e p': radomly selected probabilistic vector e w;: uncertainty level

& Sample of results:

Group sizes 0

L1 Uncertainty levels u Kini dopt Kopt
212 9 = [0.50; 0.50] 1210 [0.44; 0.56] 1194
u = [0.03; 1.00]
2|2 [0.50; 0.50] 2699 [0.00; 1.00] 1948
[0.02; 1.00]
313 0.33:0.33; 0.33] 3177 [0.00: 0.46: 0.54] 5776
[0.02: 0.03: 1.00]
5[4 [ [0.25:0.25: 0.25: 0.25] || 2556 || [0.00:0.13:0.32: 0.55] | 2056
[0.02;0.02;0.03; 1.00]
5[4 ([ [0.25:0.25:0.25;0.25] || 4788 |[ [0.25:0.25: 0.25: 0.25] | 4788
[1.00; 1.00; 1.00; 1.00]

Effect of measurement design. Kjn; and K¢ are the poll sizes required for
0.99-reliable prediction of the winner when ¢; = 6; and ¢ = dopt: respectively.
Note: Uncertainty= 1.00 < No a priori information
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& In numerous situations, we do have partial control of observation scheme and thus
can look for optimal Measurement Design.

However: the situations where optimal Measurement Design can be found efficiently,
like in design of Election Polls, are rare.

Additional examples of these rare situations are Poisson o.s. and Gaussian o.s. with
time control.
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& Poisson o.s. with time control. Typical models where Poisson o.s. arises are as
follows:

e “in the nature” there exists a “signal” x known to belong to some convex compact
set C R"
For example, in Positron Emission Tomography, x is (discretized) density of radioactive tracer admin-
istered to patient

e We observe random vector w € R™ with independent entries w; ~ Poisson(a;-r:p),
and want to make inferences on x.
For example, in PET, tracer disintegrates, and every disintegration act results in pair of gamma-quants
flying in opposite directions along a randomly oriented line passing through disintegration point. This
line is registered when two detector cells are (nearly) simultaneously hit:

Positron emission and PET scanner
positron-electron annihilation

Positron-emitting
radionuclide

N

@ Positron

Electron

(\0\’

511 keV 511 keV
gamma ray

amma ra
Annihilation : ¥

Gamma ray
detectors
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The data acquired in PET study are the numbers w; of lines registered in bins (pairs
of detector cells) i = 1, ..., m over a time horizon T', and

w; ~ Poisson(T Z?:1 Pi;T;)

[ pij: probability for line emanated from voxel 5 = 1,...,n

!n 1<m,j<n
to cross pairi = 1, ..., m of detector cells

W:> A=T[pz'j}
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w = {w; ~ Poisson([Az];)}.

1<m

e In some situations, the sensing matrix A can be partially controlled:
A = Alq] := Diag{q} A«
e A.: given m x n matrix; e g € Q: vector of control parameters.

For example, in a full body PET scan the position of the patient w.r.t. the scanner is updated several
times to cover the entire body.

The data acquired in position « form subvector w* in the entire observation w = [w?; ...; w!]:

w! ~ Poisson([t,A'z)i;, 1 <i<m=m/I
[ A" . given matrices; t, : duration of study in position ¢ }

implying that w = Poisson(Diag{q}A.) with properly selected A. and g of the form

q:[tl, i b t}
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Hj : w; ~ Poisson([A[g]z];)are independent across i < m and z € X,
A = Alq] := Diag{q}A.

e A.: given m x n matrix; e g € Q: control parameters.
e Let our goal be to decide, up to a given closeness C, on L hypotheses on the
distribution of Poisson observation w:

H} : w ~ Poisson([A[g]z]1) X ... x Poisson([A[q]z]m) & = € X,

Xy: given convex compact sets, 1 < /¢ < L.
& By our theory, the (upper bound on the) C-risk of near-optimal test deciding on Hg,

¢=1,.. L,ise(q) = H[exp{Opt%/(q)}Xw]églzl‘ 50 where

w={ 0 $REE optut) = max -5, (VIARIT - VIATRE)

ueX,,veXy
e As in Opinion Polls, e(q) = "'(WV(q)), where
o 1(Q) = || [exp{Que}xer]; p—1 |22 is @ convex entrywise nondecreasing function of Q € RY*F
o [W()]w = exp {u@@iéxf, S a (\/[A*u]i[A*v]i — 1A - %[A*v]i) } is efficiently computable

and convex in q
= Assuming the set Q C RZ' of allowed controls q convex, optimizing e(q) over
q € Q Is an explicitly given convex optimization problem.
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& An efficiently solvable Measurement Design problem in Gaussian o.s.

w = Alqlz + &, £ ~ N (0, In)

[o Alq] partially controlled sensing matrix; e g € Q: control parameters.]
IS the one where
Alql = Diag{\/q1, .-, /qm } A« & Q C Rﬁ is a convex compact set
In this case, minimizing O-risk of test deciding up to closeness C on L hypotheses
H} »w~N(Alglz, Im), z € Xy, 1 <L<L
associated with nonempty convex compact sets X, reduces to solving convex prob-
lem

min,co M(W(q))
where

Q) = [l [exp{Qur/8}xerlp <1 ll2,2
IS convex entrywise nondecreasing function of L x L matrix 2, and

v = ma —||A — )3
W@l = _max [=lAlgl(u - v)[3]
— - T AT My
= — min — A, Dia Ax(u —
eI (u—v)TATDiag{g}Ax(u — )

is efficiently computable convex function of ¢ € Q.
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# lllustration. In some applications, “the physics” beyond Gaussian 0.s. w = Ax—+¢&
is as follows. There are m sensors measuring analogous vector-valued continuous
time signal x(t) (nearly constant on the observation horizon). The output of sensor
1 1S
w; = ﬁ In,laf 2 () + B;(t)]dt
K A\, . continuous time interval on which sensor #i is on
e B;(t) : "Brownian motion” 1. [\ Bi(t)dt ~ N(0,|A[Y),
[ Bi(t)dt, [, Bi(t)dt are independent when AN A’ =

® Brownian motions B;(t) are independent across ¢

e When all sensors work in parallel for unit time, we arrive at the standard Gaussian 0.s. w = A,z +¢&,
£ ~ N(07 Im)
e When sensors work on consecutive segments Ay, ..., A, of durations ¢; = |A;|, we arrive at

w; = a;f’:*w 4 q{l/zgi, & ~ N (0, 1) are independent across 4

Rescaling observations: w; — ./q;w;, we arrive at partially controlled o.s.

w = Diag{\/q1, ..., V/am}Asx + &, € ~ N (O, I,)

A natural selection of Q is, e.g., @ = {¢ > 0 : ). ¢; = m} — setting the overall “time budget” to the
same value as in the case of sensors working for unit time in paralel.
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Recovering Linear Functionals in Simple o.s.

& Situation: Given are:
e Simple 0.s. O = ((2,M),{py : p € M}, F)
e Convex compact set X C R"™ and affine mapping = — A(xz) : X — M
e Linear function g 2 on R"

Given observation

W ~PA(x)

stemming from unknown signal = known to belong to X, we want to recover ¢ z.
& Given reliability tolerance ¢ € (0, 1), we quantify performance of a candidate esti-

mate g(-) : 2 — R by its e-risk
Riske[g| X] = min {p : Probuep 4 {|§(w) — ng| > ,0} < eVzx € X} :

& We intend to build, in a computationally efficient manner, a provably near-optimal
in terms of its e-risk estimate of the form

g(w) = ¢(w) +
with ¢ € F.
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& Construction: Let us set

d(p; 1) = In (Ewwpﬂ {exp{cb(w)}})

Recall that @ is continuous real-valued convex-concave function on F x M.
Main observation: Lety € F and o > 0. Then for x,y € X one has

In (Probunp ) {(w) > g7 + p}) < P(/a; Ae)) - £HEE (a)
N (Probump ., {0(w) < g7y — p}) < d(—v/a; Ay)) — £=L4 (b)
As a result, for every ¢ € F and o > 0, setting
Wi(a,) = mMaxgex |a®(y/o; Ax)) — gTz 4+ aln(2/q)],
W_(a, ) = maxyex |a®(—p/a; A(y) + g7y + aln(2/0)],
o= 5|V (,9) = Wy(e9)],
for the estimate ¢p(w) = ¥ (w) + » we have

Riske[o(-)|X] < % V(oY) + U (a, )
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& Starting point is the following completely trivial and really useful observation:

For a random variable w ~ P, real-valued functrion f(w) and o« > O it
always holds

Proby, p{f(w) > a} < Ey.p{exp{f(w)/a}}exp{—a/a}
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®(¢; 1) = In (Eunyp, {exp{p(w)}})
Claim: Forevery ¢ € F,a > 0and all z,y € X one has

In (Probu~p,., {#(w) > g"z + p}) < ®(P/a; Alx)) = £EE2 (a)
In (Probump,, {¥(w) < g7y — p}) < D(—y/a; A(y)) — =224 (b)

Indeed,

exp{P($/a; A())} = Burpiy {x0{(w)/0}} = Bunp, {exp{E0 20} b exp{e'zte}

> Probu,,, {¢(w) > g7z 4 p} exp{L2} = (a);

exp{P(=1/a; AY))} = Bunpy, {eXP{=1(w)/a}} = Eunp,, {exp{=22EC =2} exp(=rte}
> Probuy,, {1(w) < g™y — p} exp{=22F2} = (b).
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N (Probump,, {#(w) > g’z + p}) < ®(y/a; A(@)) — 2L (a)
In (Probu~p,, {¥(w) < g'y — p}) < P(—y/a; A(y)) — L4 (b)
Claim: For every ¢ € F and a > 0, setting

Vi(a,9) = maxeex [ad(w/a; A)) — ¢To + aln(2/e)],
Wo(o,$) = maxyex [ad(—w/a; A(p) + g7y + aln(2/e)]
& = % [W_(Oé, ¢) o \U+(Oé, '¢)]
we have
Risk [1/() + 5|X] < 3 W (0, 9) + W (a, )] (+)

Indeed, giveny € F,a>0,z€ X, letVy =V (a,9y), ¥V = % [W4 4+ W_]. We have

Probu~p,., {w(w) + k> glz4+ W} = Proby,, {w(w) > glz + \IJ+}
< exp{P(¢/a; A(z)) — (Wi +g"2)/a} [by (a)]
< exp{®P(p/a; A(2)) — (aP(p/a; A(z)) — g'z+ aIn(2/e) + g'z) /a} = ¢/2

and

Probuep,, {¥(w) + k < gTz — W} = Proby.y,, {¥(w) < g7z — Ww_}
< exp{P(—¢/a; A(z)) — (W_ — g'z)/a} [by (b)]
< exp{P(—y/a; A(z)) — (aP(—v/a; A(2)) + g'z+ aIn(2/e) — g'z) /a} = €¢/2

and (x) follows.
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& Result: We have justified the first claim in the following
Theorem [Ju&N’'09] In the situation in question, consider convex (due to convexity-
concavity of ) optimization problem

Opt = a>wg{w(a,@ = % [w+(a,¢) + \U_(oz,@b)” .

A feasible solution a, v to this problem gives rise to estimate ¢(w) = ¢ (w) + > such
that

Riske[o| X] < W(a,w).

and the right hand side in this bound can be made arbitrarily close to Opt.

In addition, when ¢ < 1/2, Opt is within moderate factor of the minimax optimal
e-risk
RiskOpt.[X] = |Ar(n; Riske[g]| X],
(-

specifically, 2/
2In(2/¢

ln(4e(%—e))
Note: The “Gaussian 0.s.” version of this result is due to D. Donoho (1994).
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Note: The above scheme is applicable to every simple o.s., in particular, to K-th
degree of simple 0.s. O = ((€2,1),{py : p € M}, F), that is, to the case where
instead of estimation via single observation w we speak about estimating via station-
ary K -repeated observation wf = (w1, ...,wx) With w1, ..., wx supplied by O.

In terms of O, our Main Observation reads:

Lety € F,a > 0, and ¥ (wh) = K | y(wy). Then for x,y € X one has

i {WF @) > o+ p}) < Ko (p/a; Az)) — L (a)

In ProwaNpA( )

_ T

In{ Proby i i {PF (W) < gTy - p}) < Ke(—y/a; Ay)) — =24 (b)
Yy

As a result, for every 1 € F and o > 0, setting

Wi(a,9) = maxgex |[Kad(p/o; Az)) — gTz +aln(2/6)],
W_(a,9) = maxyex |Kad(—p/a; A(y)) + g7y +ain(2/e)],
= 3|V () - Vi(ap)],
for the estimate p(wi) = S8 (wg) + » we have
Riske[¢()|X] < 3 |W (o, 9) + V(o)
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Example: Gaussian o.s. Here F = {¢(w) = 9o + ¥ w}; on a close inspection,
we lose nothing when setting ¢)g = O.

= d(Y,pn) = In (CnfewTw—(w—M)T(w—M)/de> — {wT’u + %¢T¢}

[ Wi(a,w) = max[vTA(z) - gTa| + [K%+a|n(z/e)]
— reX b

w_(a9) = max[gTy - vTAW)] + K%L +aln(2/e)]

= The optimization problem mmw 5 [\U_|_(a, V) + V_(a, w)] responsible for good
estimates admits analytical e//m/r;at/on of a and results in the optimization problem

min {é max T A(x) — gTz| + 3 > Max 9Ty —wTAW)| + \/2K|n(2/€)||¢||2}

in v -variable only.
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Numerical lllustration

Covering story: At the North-bound part of a highway leaving Atlanta there at n + 1 crossings
where cars traveling North enter/exit the highway.
e Arrivals of cars traveling North and entering the highway at crossing# 5,7 =0,1,...,n — 1,
form Poisson process with (unknown) parameter x; < 1; the arrival processes are mutually
independent
e A car on a highway traveling North and approaching a crossing exits the highway at this crossing
with given probability p
e Fori = 1,...,n, we observe the total number w; of cars traveling North and exiting the highway
at crossing # i on time horizon [0, T'| and want to recover x; for a particular value of j.
Model: Observation w = [w1;...;wy] is collection of independent of each other Poisson random
variables; the vector of their Poisson parameters is T"Ax, with

) , _
p(1 —p) p
A=| p(1-p)* | p(Q-p) p
| p(1 — T p( = p) 2 | p(1 = p) 3 nr |

= Qur problem is to recover linear form of signal
reX={rcR":0<z;<1,0<j<n}
observed via Poisson o.s.

3.115



05 ! ! I I I I T I I
o—o—6—6—6—66—6—6—0—0——0——9
0.45 |
O: upper bounds on minimax risks
04 - +: empirical risks |
. --: lower bounds on minimax risks
0.35
0.3
0.25
0.2
0.15
0.1
0.05 .
O | | | | | | | | |
0 2 4 6 8 10 12 14 16 18 20

en=20ep=1/3eec=0.01
red: T' = 500 blue: T = 2000 cyan: 7" = 8000
Risks of recovering =; vs. j
Note: empirical risks are at most by 5% worse than lower bounds on minimax optimal 0.01-risks
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Intermezzo: Bounding probabilities of deviations

& Situation: ¢ is real-valued random variable.

© Question: Givene € (0,1) andb € R, how to certify that Prob{¢ > b} <€ ?

O An answer: Assume we have at our disposal upper bound ® on moment-
generating function:

n(E{e*}) < d(s) eRU{oo}, s€R
e Forevery o > O and every real b, the random variable (§ —b) /a is > 0 when& > b

(E-b)ja) =21 ,£20 —blaffet/ay — E {a(é-b)/a
— e(&-0)/ {20 ' otherwise ~ © [oE{es/) E{e /}ZProb{gzb}

= In (Prob{¢ > b}) < P(1/a) —b/a

= Existence of a« > 0 such that a®(1/a) — b+ aln(1/e) < 0 is sufficient for
Prob{¢ > a} <e=

Relation OL'IB [aP(1/a) — b+ aIn(1l/e)] < 0 is sufficient for Prob{¢ > b} to be
< €.
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O Relation Olér;% [aP(1/a) — b+ aIn(1l/e)] < 0 is sufficient for Prob{& > b} to be
< e.

O By “symmetric” reasoning,

Relation Olér;% [aP(—1/a) + b+ aln(l/e)] < 0 is sufficient for Prob{¢ < b} to be
< e.

Note: When ®(s) is convex, the function a®(s/«) is convex in the domain {(s, «) :
a> 0}

= When & is convex, verification of the above sufficient conditions reduces to solving
univariate convex minimization problems.

Byproduct of our reasoning:

n (Prob{€ > b}) < inf [(3) ~ 7]
n (Prob{€ < b}) < inf [®(—7) + 1)
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lllustration I: Let &€ ~ A (u, 02). In this case E {esf } = exp{us %252}
= In (E{esg}) D(s) i=su+ < 28 =

t>0= In(Prob{¢>pn+ts}) < inf [w+"2272 yip+to]] = -4
Y

t>0= In(Prob{{ <pu—to}) < ir;g[ v+ 572+ y[p —to]] = -5
Y

lllustration II: Let £ ~ Poisson(u). In this case

1=0
= In (E{eé}) = &(s) 1= ple’ — 1] =

t>1= In(Prob{{ > tu})
O0<t<1= In(Prob{{ <tu})

e ! = exp{ule” — 1]}

Lg}; [exp{ule” — 1]} —~ytp] = —pl[l +tIn(t) — ]

<
< ;r;g lexp{ule™ — 1]} + ~ytp] = —p[1 4+ tIn(1/t) — ]
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Back to agenda: Recovering Linear Form on Union of Convex Sets

& Situation: Given are:
e Simple o.s. O = ((2,M),{pu : p € M}, F)
e Convex compact sets X; C R", 4 < I, and affine mappings = — A;(x) : X; — M
e Linear function ¢ = on R

Given stationary K -repeated observation w’ = (w1, ...,wx), with

Wg ~ PA(g) 1 S kS K,

stemming from unknown signal = known to belong to X; with some unknown i < I,
we want to recover g% x.
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& Construction:
A. Given “reliability tolerance” 0 < e < 1,for 1 <4,5 < I, let

Pij(a, p2,y) = sKa[Po(d/o;Ai(x)) + Po(—¢/a; Aj(y)] + 297 [y — x] + aIn(21 /¢) :
{a>0,¢p € F} x [X; x X;] =R,
Wij(aa (b) — er)?ax ¢Zj(a7¢ &£ y) % [W’i,+(a7¢) + wj,—(aa(b)] : {Oé > O} X F — Ra
T YEX;
where
V(o) = max [Ka®o(@/a; Al(z)) — gz +ain(2I/e)] : {a > 0,9 € F} =R,
Wy _(a,9p) = max [KCXCDO( V/a; Ag(z)) + gtz + aln(2[/e)} {a>0,v € F} - R

and o (¢; 1) = In (Jo e*pu(w)N(dw))
Comment: It is easy to verify that whenever o;; > 0, ¢;; € F, setting

pij = Wijlous dij) = 5 | Wi (g, di5) + WV (aij, 63;)]
wij = 5 |Wj_(aij, di) — Wi 4 (), ¢z'j)]
gij (W) = Y1 ¢ii(wp) + 545

we ensure that "
ZCEXZ,(,U NpA( y = Prob{g;;(w ) > gt ZC—|-pw

} <
€ Xk ~ ) = Prob{g;(wK) < Ty~ pij} <

£
21
€
21
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B. For 1 < 4,5 < I, we find feasible near-optimal solutions «;;, ¢;; to (convex by
their origin) optimization problems
Opt;; = min V.. (o, ),
Py a>0,pEF (% 9)
and set

pij = Wii(uj, dii), »ij = 5 W, _(aij, ¢i) — Vi1 (s ¢ij)}
gij (W) =S8 L ¢ii(wg) + 25
Given observation w’, we set

G = [g;;(w™)]i<r, 7 = maxg;;(w™), ¢; = min g;;(w™)
§<I J i
and take the quantity
SO — in . .
g(w™) = [m_ln p; + max c]]
U J

N |+~

as the estimate of g7 z.
# Proposition: e-risk of the estimate g does not exceed p = max; ; p;;, i.e., when-
ever! < I andx € X,, the pfe(w)-probability of the event |gl'z — G(w™)| > pis < e.
Note that p can be made arbitrarily close to Opt(K) = max; ; Opt;;.
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Sketch of the proof: Let w’ ~ pfe(x). From comment to A it follows that the
P’y (y7Probability of the event

Vi 3 g0 < gzt prj & gi < g1 — py [9i5 = 9ij(w™)]

is at least 1 — e.
When this event takes place, we have

e all entries in £-th row of G = [g;;] by magenta inequalities are < gtz + p,

e all entries in ¢-to column of G, by red inequalities, are > gL'z — p

e r; = Maxg;;, ¢; = Min g;; (by definition of r; and c;)

] 1

= flz—p<mingy <minr; <ry<glaz+p= floeminr—p minr + p

and similarly f¥'z € [maxc; — p, maxc; + p] O
J J
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Near-Optimality: Lete € (0,1/2) and Ky be a positive integer, and let Risk} (K«)
be the minimax optimal e-risk, the number of observations being K. (that is, the
infimum, over all Borel K.-observation estimates, of e-risks of the estimates) Then

for every integer K satisfying
21In(21/¢)
> %
IN([4e(1 —€)]~1)

one has

Opt(K) < RiskI(Kx).
In addition, assuming that every 1, j there exists r;; € X; N X; such that Ai(fij) =
A;(z;;) one has

2In(21 /€)

f2 = O = e — a1 D)

RiskX(Ky).
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Sketch of the proof [first claim only]: Since Opt(X) = maxOpt,;;(K), all we need to
2Y]
verify is that when
2In(21/¢)

In([4e(1 — o)1)
we have Opt;;(K) < Risk?(K) for every 1, j.

K, (*)

e Recall that Opt;;(K) = a>ior’1q1;€f [\l!z-j(a, D) = r)??xX P;;(a, ¢; x,y) | and by its origin, P;; is
convex in a, ¢ and concave in x, y, whence
Opt;;(K) = max Inf ®;i(a, ¢; x,y)

reX,,yeX; a>0,0cF

\(? m3><{ g'ly—=al:z € X,y € Xj, | [ /Pa)(w)pa (o (@M (dw)]* > 2—}
(1) given by straightforward computation,
Assuming, on the contrary to what should be proved, that Opt;;(K) > Riski(K,), we can find
T € X;, y € X, such that with u = A;(z), v = A;(z) it holds

27y — 7] > Risk} (K.) & [f \/p#(w)py(w)”(dw)} > 57 ()

By first relation in (!), two simple hypotheses stating that the distributions of w”- is p/t, resp., p/* can
be decided upon with risk < €, whence by elementary results about Hellinger afflnlty,

K.
2/e(T = ) > [ /pl (WFIpE-(WIME () = [ [ V/pu(@)p, (@IN(dw)]

This combines with () to imply the inequality opposite to (!), which is a desired contradiction. ]
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Toy lllustration: Recovering Origin-Destination Traffics

& Covering story: Nodes in the network represent five villages (magenta dots) and crossing with no
population (cyan dot), and arcs represent road segments.

e There are two states of the road net:
— normal: some normal traveling times in all segments,
— abnormal: normal traveling times in magenta segments and much larger than normal traveling

times in blue segments.

e There are L = 7 origin-destination pairs, ¢-th with its own traffic «,. The travelers know normal and
abnormal traveling times of the arcs and the state of the network and select the fastest routs
between their origins and destinations. As a result, the total traffic in arc v is >, A%z, where x €

{normal,abnormal} is the state of the network.
e We do not know network’s state and traffics in origin-destination pairs. All we know are
— the number L of origin-destination pairs and an upper bound 7" on the total traffic > _, x,
— the sensing matrices AX = [A?y%]yer,egL, where x € {normal,abnormal}, and I' is the set of

M = 29 arcs where we measure traffic.
e Given noisy measurements of traffics in the arcs of I : y, = [AXz], 4 o0&, with independent across
~ noises &, ~ N (0, 1) and known o, we want to recover origin-destination traffics x,, ¢ < L.
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# Model: The unknown signal z lives in X = {z e R} : Y, x, < T}. We set X' = X? = X and

A1 (z) — ghormal,, Ao () — gabnormal .

= The problem of recovering x, for a particular ¢ is covered by the Gaussian case of our setup, and
we can use the above machinery to recover x,’s one by one.

| - ||oo recovery errors computed upper

o mean | median | maximal || bound on 0.01 risk
273 |1 0.478 | 0.480 | 0.994 0.665
2= [10.119 | 0.112 | 0.224 0.166
2—7 | 0.030 | 0.028 | 0.066 0.042
2—2 | 0.008 | 0.007 | 0.017 0.011
2—+1 1 0.002 | 0.001 | 0.005 0.003

Numerical results over 100 simulations

e Pay attention to clear “numerical consistency.”
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Note: For every o, our estimate is a “nonlinear aggregation” of 4 estimates which are
affine in observations. In the reported instance, this estimate is consistent.
In contrast: In the same instance, even in the noiseless case, the worst-case recov-
ery error for every affine estimate of x, is > 0.25.
Explanation: We are observing in Gaussian noise either Ax, or Bz, with unknown x
belonging to the known signal set X = {x € Rz_ Yy vxp < T}. We do know A and
B, but do not know from which one of the matrices A, B the observation comes. In
this situation, the ultimate obstacle for high-accuracy recovering ¢ = in the low-noise
case is
— for our estimate — the fact that g£ = — g%y is not identically zero on the intersection
of X x X and the linear subspace £ = {[z;y] : Az = By} of pairs (x, y) of "non-
distinguishable signals.” In the reported instance, this obstacle is absent — the only
common point of L and X x X Is the origin.
— for an affine estimate — the fact that the vector [g; —g] is not orthogonal to L.
In the reported instance this obstacle is present — the vector [e>; —e»>] is far from
being orthogonal to L.
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Another lllustration
& SetUp: Given J = 100 points z; € R?° and stationary K-repeated observation

wh = (Wi wK), wi ~ N (Az, I20)

of one of the points (we do not know which onel!), we want to recover the first entry of the point.
e A: randomly generated matrix
e c = 0.01.

Note: we are in the situation where X; = {x;} are singletons.
® Results:

25 ! | T _

- T
150 e EII*T
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+|E|QT:
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Recovery error vs. K, data over 20 randomly generated collections {z;}}99
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HYPOTHESIS TESTING, Il

e Beyond simple observation schemes



& Goal: fo extend our detector-based hypothesis testing machinery beyond the
scope of simple 0.S.’s

& Starting point: “Executive Summary” of what happened with simple o.s.’s.

0. Basic problem of interest: Given two families 771 and P> of probability distribu-
tions on observation space <2 and an observation w ~ P € 1 U Py, we want to
decide on the hypothesis H1 . P € P vs. the alternative P € P».

1. Basic tool: A family 7 of candidate detectors ¢(-) : €2 — R. Associated tests 7
were of the form

5(w) > 0 = accept Hq, reject H>
<0 = accept Hy, reject H{ ’

and we upper-bounded the risk of 7 by the risk of detector ¢

Risk[¢[P1, Pa] = max [sup B, plexn{—6(w)}}, sup B, plexp{o(w)}}]
PePq PcPy
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Basic tool: A family F of candidate detectors ¢(-) : Q2 — R...

2. In simple o.s.’'s we dealt with the families F of candidate detectors were in fact
comprised of affine functions of w.

Indeed, this was the case with Gaussian and Poisson o0.s.s, but seemingly was not the case with
Discrete o.s. —there 2 = {1, ...,d} and F was comprised of whatever functions of w € €.
However: When encoding the points 1,2, ...,d € Q2 with the standard basic orths e, ..., eq in R —
when identifying €2 with the set of vertices of d-dimensional probabilistic simplex — every function on
2 becomes affine function of w € 2!/

Note: When the families F associated with simple 0.s.’s in question are comprised of affine functions
of w € €2, so are the families associated with direct products/direct powers of these simple 0.s.’s!
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3. The key element of our setup was convex-concave function ®(h; 1) : R* x M —
R. Our families P1 = { Py : p € M1}, P> ={P, : np € Mo} of a parametric family
of distributions { P, : p € M} on €2, and ® was linked to this family by the relation

In (EWPM {ehTw}) — & (h: ). 0

We dealt with the situation when M, M> were convex compact subsets of M, and
(I) allowed us to pose the problem of finding minimum risk affine detector ¢(w) =
h!'w 4+ k as the convex-concave saddle point problem

SadVal = mhin ,LLE]\?I,aI/éMQ % [D(—h; p) + P(h;v)], (*)
and the risk of affine detector stemming from the h-component of a saddle point was
exp{SadVal}.

e An additional reasoning demonstrated that in the case of simple o.s., this construc-
tion yields minimum risk detectors.
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& In the forthcoming extension, we
e Siill stick to detector-based tests and detectors affine in w

e Relax the assumption that P1 = {P, : v € M1}, Po ={P, : v € My} for convex
compact sets M1, M» and parametric family P = {P, : v € M} such that

In (EWNPV {ehT“’}) —d(h: ). 0

for a known to us convex-concave function ®(h; v).

Instead, we assume that

e we are given a convex-concave function ®(h;v) : R4 x M — R

e P; and P, are sub-families of a family P of distributions on R%, and every P ¢ P
can be assigned (perhaps in many ways!) a value of parameterv € M in such a way
that

Vh :In (EWNP {ehTWD <d(h;v). (1)

e Py, x = 1,2, can be associated with convex compact sets M, in such a way that

In (E {ehT‘UD < (D(h; V) Vhandsomerv e My, P € P1
o — | ®(h;v)Vhandsomev e Mo, P € P

4.4



We assume that

e We are given a convex-concave function ®(h;v) : R x M — R

e P; and P> are sub-families of a family P of distributions on R?, and every P € P can be assigned (perhaps in many
ways!) a value of parameter v € M in such a way that

Vh:In (Buwp {€"¢}) <o(h;v). (1)
e P,, x = 1,2, can be associated with convex compact sets M, in such a way that

W ®(h;v)Vhand somerv € My, P e P:
In (EWNP {e }> < { d(h;v)Vhand some v € My, P € P»

& With this extension, the convex-concave saddle point problem
1
SadVal =min  max  — [®(—h; P(h;v)], *
L MGMWEMQQ[ (—h;p) + ®(h;v)] (%)

still supplies “presumably good” affine detector with risk < exp{SadVal}.

Bad news: the resulting tests not necessarily are near-optimal

Good news: Our new setup covers situations going far beyond simple o0.s.s, e.g., the
case of sub-Gaussian distributions, where the “parameter” . = (u, ©) € R? x S%
of a distribution P satisfies

1
In <Ew~ P{e”‘}}) < hlu + 5hT@th.
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Setup

& Given an observation space 2 = R?, consider a triple 7, M, &, where

e H is a nonempty closed convex set in €2 symmetric w.r.t. the origin,

e M is a compact convex set in some R",

e d(h; ) : Hx M — Ris a continuous function convex in h € H and concave in
© e M.

& H, M, D specify a family S[H, M, ®] of probability distributions on €2. A prob-
ability distribution P belongs to the family iff there exists i € M such that

In (/Q ehT“’P(dw)) < &(h: w) Vh € H (%)

We refer to . ensuring (x) as to parameter of distribution P.

e Warning: A distribution P may have many different parameters!

O We refer to triple H, M, d satisfying the above requirements as to regular data,
and to S[H, M, ®] — as to the simple family of distributions induced by these data.
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& Example 1: Gaussian and sub-Gaussian distributions. When

o M = {(u,©)} C R? x intS9 is a convex compact set such that © - 0 for all
(u,®@) € M,

o H =RY,

o ®(h;u,®) = hTu+ SnTOh,
S = S[H, M, ®] contains all probability distributions P which are sub-Gaussian with
parameters (u, ©), meaning that

hTw T L7
In (/Qe P(dw)) < hu+ SnTOh vh, (1)

and, in addition, the “parameter” (u, ©) belongs to M.
Note: Whenever P is sub-Gaussian with parameters (u, ©), u is the expectation of
P.

Note: NV (u,®) € S whenever (u,®) € M; for P = N (u,®), (1) is an identity.
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& Example 2: Poisson distributions. When

o M C IR{EIZ_ is a convex compact set,

o H =RY,

o d(h;p) =S4 4 p(ehi—1),
S = S[H, M, P] contains distributions of all d-dimensional random vectors w; with
independent across i entries w; ~ Poisson(u;) such that u = [u1; ...; pgl € M.

& Example 3: Discrete distributions. When

e M= {peR:: ;1 >0,5;pu; = 1} is the probabilistic simplex in RY,

o H = RY,

o O(h;p) = In (X peh),
S = S[H, M, D] contains all discrete distributions supported on the vertices of the
probabilistic simplex.
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& Example 4: Distributions with bounded support. Let X C R? be a nonempty
convex compact set with support function ¢ x (-):

dx(y) = maxylz: RY — R,
reX
When M = X, H = R? and

(i) = W+ [ox(h) + x (~h)]2 (2)

S = S[H, M, P] contains all probability distributions supported on X, and for such
a distribution P, n = [y wP(dw) is a parameter of P.

e Note: When GG, 0 € G, is a convex compact set, the conclusion in Example 4
remains valid when function (2) is replaced with the smaller function

S(hi ) = min [u (h - 9) + S[6x(h — 9) +éx (g — W + 6x(9)]
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& Fact: Simple families of probability distributions admit “calculus.”
& [summation] For 1 < ¢ < L, let Ay be reals, and let H,, My, ®, be regular data
with common observation space: H, C 2 = R<. Setting

H={heR: \ph € Hy,1 <L< L}, M=MqXx..x M,
D(h; p1, oy o) = Sk g Po(Aeh; ),
we get regular data with the following property:

Whenever random vectors & ~ Py € S[Hy, My, Pyl, 1 < £ < L, are in-
dependent across ¢, the distribution P of the random vector & = Zngl A&y
belongs to S[H, M, ®]. Denoting by u, parameters of Py, u = [u1; ...; i ]
can be taken as parameter of P.
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& [direct product] For 1 < ¢ < L, let H,, My, P, be regular data with observation
spaces 2, = R%. Setting

H=H{X..xH, CQL=RUT-FdL M = M{ x ... x My,
D(h1, e hpi 1y s pp) = gy Prlhes 1),
we get regular data with the following property:

Whenever P, € S[Hy, My, 4], 1 < ¢ < L, the direct product distribution
P = P; X ... X Py, belongs to S[H, M, ®]. Denoting by u, parameters of
Py, uw = [p1; ...; up] can be taken as parameter of P.
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& [marginal distribution] Let #, M, ® be regular data with observation space R¢,
and let w — Aw + a : R? — Q = R?. Setting

H=1{heR: ATh e H}, ®(h;u) = hla+ P(ATh; p),

we get regular data #H, M, ® with the following property:

Whenever ¢ ~ P € S[H, M, ®], the distribution P of the random variable
w = A¢ + a belongs to the simple family S[H, M, ®], and parameter of P
is a parameter of P as well.
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& Main observation: When deciding on simple families of distributions, affine tests
and their risks can be efficiently computed via Convex Programming:

O Theorem. Let Hy, My, Py, x = 1,2, be two collections of regular data with
compact M1, M- and H{ = Ho =: H, and let

l . .
W(h’) — maX,LL1€M1,,LL2€M2 5 [Cbl(_hr /le) + CDQ(ha UZ)] H—R

& (i ,112)
Then WV s efficiently computable convex function, and for every h € H, setting

1
¢(w) = hlw + 5 [max,u1€./\/llq>1(_h; :ul) _ maX,LLQEMQCDQ(h; :UQ)})

7

-~

y

one has
Risk[¢|P1,Po] < exp{W(h)} [Py = S[H, My, Pyl]
In particular, if convex-concave function ®(h; uq, ) possesses a saddle point
h, (13, %) onH x (M1 x Mby), the affine detector
px(w) = hlw + 3 |D1(—ha; p}) — Po(ha; 13)]
admits risk bound
Risk[¢«|P1, P2] < exp{®(hs; p7, u5)}
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Indeed, let h € H. Selecting u] € Argmax ®1(—h; 1), u5 € Argmax ®o(h; puo),
p1EM1 poeEMo
we have

PPy = S[H, My, d1]= 3y € My : E,,_p {e—hTw} < e®1(—hip)

= E,_.p {e—¢(w)} < e®P1(-hiu)—k — gW(h) = Riskq [¢|P1, Po] < eV ().
Similarly,
P € Py = S[H, Moy, o]= 3o € Mo : Ep {ehTw} < e®2(hip2)

= E,.p {e¢(w)} < e®2(hinp)tr — V(M= Risky[¢|P1, Po] < eV (),
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& Numerical lllustration. Given observation

w= Az + cADiag {\/Z1, ..., /Tn} & [§ ~ N(O, In.)]

of an unknown signal = known to belong to a given convex compact set M C R++,
we want to decide on two hypotheses H, : =z € Xy, x = 1, 2, with risk 0.01.

Xy : convex compact subsets of X.

Novelty: Noise intensity depends on the signal!

e Introducing regular data #, = R", M, = X,

2
Dy (h, 1) = T Ap+ 7 — W' [ADiag{u}A]h [x=1,2]

distribution of observations under H belongs to S[H, My, P].
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¢ An affine detector for families P,, of distributions obeying H,, x = 1, 2, is given by
the saddle point of the function

1

S(h; p1, p2) = 5

O Data: n = 16, 0 = 0.1, target risk 0.01,
e A = UDiag{0.010¢-1/15 4 < 16}V with random orthogonal U, V,

2
o _
W (s — uq] + o hTADlag{,ul + ,UQ}ATh

0.001 <z1 <6
_ 16 . =<1 =
OXl—{fL’ER "~ 0.001 gxigl,iZQ}
20 <z <1
B 16 . ST S
.XQ—{wGR '0.001§$i§1ai22}

O Results:

0 = 0.1= Risk[¢«|P1, P2] = 0.4346= 6-repeated observation

6 = 0.01= Risk[¢«|P1,P2] = 0.9201=- 56-repeated observation

e Safe “Gaussian o.s. approximation” of the above observation scheme requires 37-repeated obser-
vations to handle § = 0.1 and 3685-repeated observation to handle § = 0.01.
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% Sub-Gaussian case. For y = 1,2, let U, C 2 = R%and V, C int S_be convex
compact sets. Setting

1
My = Uy X Vy, D(h;u,®) =hlu+ 5hTeh CH X My — R,
the regular data H = R?, M., ® specify the families

Py = S[RY, Uy x Vy, ®]
of sub-Gaussian distributions with parameters from U, x V.

& Saddle point problem responsible for design of affine detector for P, P> reads

1
SadVal = min max = |hf(us —u1) + hT[@1—|—@2]h

hERd 16[1 261/2 2
©1€V1,006Vs

e Saddle point (h«; (u],u5, ©7, ©%)) does exist and satisfies
= [©] + O3] ui — u3],
SadVal = —Z[uj — u3][©] + O3] *[uj — u3] = — Al [uf — u3]
e The associated affine detector and its risk are

¢« (w) = h [W - —[Ul + UQH [u — UQ]T[@* + O3]~ ! [W - —[u1 + uz]]
Risk(¢«|P1, P2)
< exp{SadVal} = exp{—2[u} — u3][©} + O3] '[u} — u3]}
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O Note: In the symmetric case V1 = Vo (h«; (u7,u5, ©7,07%)) can be selected
to have ©7 = ©3 =: ©.. In this case, the affine detector we end up with is the
minimum risk detector for P1, P->.
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What is “affine?” Quadratic Lifting

& We have developed a technique for building “presumably good” affine detectors for
simple families of distributions.

But: Given observation ( ~ P, we can subject it to nonlinear transformation
¢ — w =1((), e.q., to quadratic lifting

¢ w=(¢¢¢h)

and treat as our observation w rather than the “true” observation (.

Note: Affine in w detectors are nonlinear in C.

Example: Detectors affine in the quadratic lifting w = (¢, ¢¢1) of ¢ are exactly the

quadratic functions of (.

& We can try to apply our machinery for building affine detectors to nonlinear trans-

formations of true observations, thus arriving at nonlinear detectors.

e Bottleneck: To apply the outlined strategy to a pair P1, P> of families of distri-

butions of interest, we need to cover the families PQ' of distributions of w = ¥ ({)

induced by distributions P € P, of ¢, x = 1,2, by simple families of distributions.

e What is ahead: Simple “coverings” of quadratic lifts of (sub)Gaussian distributions.
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& Situation: Given are:
e a compact nonempty set U C R"
e an affine mapping v — A(u) = A[u; 1] : R"* — R4
e a convex compact set V C int 89 .
e The above data specify families of probability distributions of random observations

w=(¢, ¢, ¢ = A(u) + € € RY, (%)

specifically,
— the family G of all distributions of w induced by deterministic « € U and
Gaussian noise £ ~ N (0,© € V)
— the family SG of all distributions of w induced by deterministic v € U and
sub-Gaussian, with parameters (0, © € V) noise &
¢ Goal: To cover G (SG) by a simple family of distributions.
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Gaussian case

& Proposition. Given the above data U, A(u) = Alu; 1],V, let us select
ev€(0,1)
e a computationally tractable convex compact set
ZCczt={ZeS"t: 220,241,041 =1}
such that [u; 1][u; 1] € ZVu e U

e A matrix ®, € S% and § € [0, 2] such that

Vi@ey):. 0 <0,& ||@1/2@;1/2 — Il <6 [|| - || is the spectral norm]

Let us set

B = [ 0 ..flo, 1 ] e RUtDx(+D) M=V x Z H={(h,H) e R x S?: —4yO;1 < H <O 1}

5(24+0)||©:°HO. |12
Saz(h, H;©,2) = —FInDet(I — ;7 HOY?) + JTr([© - ©.JH)+5 2 2

[|| - ||l — Frobenius norm]

+1Tr <ZBT ” f h ] + [H,h]” [©;1 — H] " [H, h] B) T H X M =R

Then H, M, ® 4 z is efficiently computable regular data, and G C S[H, M, P 4 z].
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Sub-Gaussian case

& Proposition. Given the above data U, A(u) = Alu; 1],V, let us select
o v,7T € (0,1) withy < ~7T
e a computationally tractable convex compact set

zczt={zeS"t":Z2>0,Z11 11 =1}

such that [u; 1][u; 1]Y € ZVu e U
e A matrix ®4 € S% and § € [0, 2] such that

VO V) @=<0,&||eV2e, 1% 1<

Let us set
B = 0. ..flo, 1| € RADx(+1) 9y = f(h, H) € RY x 8% : —yO 1 < H < ~vO 1}
HT={(h,H,G) ERIxSIxS%: ~4TO ! <H<G=~+t0;1,0<G}, M=2Z
Paz(h,H;Z) = min { — LinDet(I — ©?Gel?)
G:(h,H,G)eHT

—I—%Tr (ZBT H f{i } + [H, h]* [@*—1—(?]_1 [H,h]} B)} HXM—=R

ThenH, M, ® 4 z is efficiently computable regular data, and SG C S[H, M, P 4 z].
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& How to specify Z. To apply the above construction, one should specify a computationally tractable
convex compact set

ZCcz2zt={2eS8"":Z%0,Znj1n41 =1}

the smaller the better, such that w € U — [u; 1][u; 1]T € Z
e The ideal selection is

Z = Z[U] = Conv{[u; 1][u; 1]* : v € U}

However: Z[U] usually is computationally intractable.
Important exception:

Q-0,U={u:v"Qu<1}=Z[Ul={Ze€ 2t: ) Z;Q; <1}
i,j=1
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O “Simple” case: When U is given by quadratic inequalities:
U={uecR": [u;1]7Qsu;1] < q,, 1 <5< S}

we can set

Z={2e€8" 1 Z =0, Zny1041=1,Tr(QsZ) < g5, 1 < s < S}, (%)
e Warning: (x) can yield very conservative outer approximation of Z[U]. This conservatism with luck
can be reduced by passing from the original description of U to an equivalent one, with emphasis on
eliminating/updating linear constraints. For example,
e a constraint of the form |a”u — ¢| < r should be replaced with (a”u — ¢)? < 72
Note: every linear constraint in the description of U can be written as o — a”« > 0 and augmented
by redundant constraint a’« > 3, with appropriately selected 3. The resulting pair of constraints is
equivalent to |a’u — ¢| < r with ¢ = %[Oz + Bl and r = %[a — .
e It could make sense to write the linear constraints in the description of U in the form o — a’uv > 0
and add to these constraints their pairwise products.
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Quadratic Lifting — Does it Pay?

& Situation: Let for x = 2, 1 be given
e convex compact sets U, C R"x
o affine mappings uy — Ay (uy) : R — RY
e convex compact sets V) C intS%.
These data define families G, of Gaussian distributions:

gx — {N(AX(U’X)7 @X) . Uy c Ux, ex - Vx}
& Our machinery offers two types of detectors for G1, Go:
& Affine detector ¢4 yielded by the solution to the saddle point problem

1 1
SadVal4 = r}g@ max = |h' [Az(u2) — A1 (u1)] + 5hT[@l + &s]h

with Risk(¢a1t|G1,G2) < exp{SadValgs}
& Quadratic detector ¢ yielded by the solution to the saddle point problem

1
SadValjg = min max= (P4, z (—h,—H;©1) + P4, z(h, H; ©2)]
(h,H)EH 1 2

with Risk(¢it|G1, G2) < exp{SadValjx}

4.25



& Fact: Assume that the sets V, contain =-largest elements. Then with proper

selection of the “design parameters” Z,, @53‘) participating in the construction of
Dy, .z, X =12, passing from affine to quadratic detectors helps:

SadValirr < SadValasr
¢ Numerical illustration:
U1 =Ul={uecR?:u >p 1<i<12}, U =Uf = —Ul, A; = Ay € R¥*13;
oV, = {0\ = oZlg}

Jo o1 | oo || unrestricted Handh | H=0 | h=0
0.5 2 | 2 0.31 0.31 1.00
0.5 1 4 0.24 0.39 0.62
0.01 || 1 4 0.41 1.00 0.41

Risk of quadratic detector ¢(¢) = h' ¢ + 3¢ HC 4 »
& We see that e when deciding on families of Gaussian distributions with common covariance

matrix and expectations varying in associated with the families convex sets, passing from affine to
quadratic detectors does not help.

e in general, both affine and purely quadratic components in a quadratic detector are useful.

e when deciding on families of Gaussian distributions in the case where distributions from different
families can have close expectations, affine detectors are useless, while the quadratic ones are not.
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lllustration: Simple Change Point Detection

200 250 200

# 20

#15

Frames from a noisy “movie”
When the picture starts to change?
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& Model: We observe one by one vectors (“vectorized” 2D images)

Wt — T +€t7

e ;. deterministic image

o & ~ N(0,021,): independent across ¢ observation noises.

Note: We know a range [o, 7] of o, but perhaps do not know o exactly.
e We know that 1 = x5 and want to check whether x1 = ... = zj (“no change”)
or there is a change.
& Goal: Given an upper bound € > 0 on the probability of false alarm, we want to
design a sequential change detection routine capable to detect change, if any.
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& Approach:
e Pass from observations wy, 1 < t < K, to observations

Gt=wt—wy =2t —T1+&& €1, 2<t< K

Yt nt
e Test hypothesis Hg : yo» = ... = yx = 0 vs. alternative
K
J HL, H. tyo= ... =yr_1 =0, ||yxll2 > p
k=2

via our machinery for testing
magenta hypothesis Hg
VS.
brown hypotheses H5, , ..., Hf.
via quadratic liftings CtCtT of observations (; up to closeness
C: all brown hypotheses are close to each other and are not close to the magenta hypothesis
e We intend to find the smallest p for which the C-risk of the resulting inference is < e,
and utilize this inference in change point detection.
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How It Works

& Setup: dimy = 2562 = 65536, = 10,5°/0° =2, K = 9, ¢ = 0.01
& Inference: Attime ¢t = 2, ..., K, compute

2
1¢el5 + 366.9548.

b+((r) = —2.7138°° ¢

0« ((t) < 0 =  conclude that the change took place and terminate
?«((t) > 0 =  conclude that there was no change so far and proceed
to the next image, if any

& Note:
e When magenta hypothesis Hq holds true, the probability not to claim change
on time horizon 2, ..., K is at least 0.99.
e When a brown hypothesis H ]g holds true, the change at time < K is detected
with probability at least 0.99, provided p > p« = 2716.6 (average per pixel energy
in y;. at least by 12% larger than &2)
e No test can 0.99-reliably decide via (1, ..., on HL vs. Howhen p/p« < 0.965.
e In the movie, the change takes place at time 3 and is detected at time 4.
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ESTIMATING SIGNALS IN GAUSSIAN O.S.
AND BEYOND

e Problem of interest
e Developing tools
e (Conic Programming
e Conic Duality
e Optimizing linear estimates
e Ellitopic case
e Spectratopic case
e Near-optimality of linear estimates
e Beyond linearity: polyhedral estimates



& Situation: “In the nature” there exists a signal = known to belong to a given convex
compact set X C R™. We observe corrupted by noise affine image of the signal
(“indirect observations”):

w=Az+ £ R™

e A: given m X n sensing matrix
e &: N(0,021) observation noise

& Goal: To recover the image Bx of z under a given linear mapping
e B: given v x n matrix.

#® Risk of a candidate estimate z(-) : 2 — RY is defined as

ATl ] - 2
Risk2[z]|X] = sup \/Eg {IIB:L’ — z(Az + §)||2}

= Risk2? is the worst-case, over x € X, expected || - |3 recovery error.
& With this worst-case quantification of risk, the “golden standard” is the minimax
risk

Risk20pt[X] = inf Risk2[Z|X],
xr

inf being taken over all estimates — all (measurable) functions z(-) : R™ — RY. .
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& Building the minimax-optimal estimate in a “closed analytical form” seemingly is
beyond our abilities even in the simplest case

Recover x known to belongto X = [—-1,1] € R

from observationw = x + &, £ ~ N (0, c2)
e The precise form of minimax-optimal estimate is unknown. However, in our toy situ-
ation it can be efficiently approximated to high accuracy by passing from the segment
X to a fine finite grid X in X, thus arriving at the problem

i - 2
:’c\(-r)r:]IEIRrLR s \/EﬁNN(OﬂQ) {(:c(w) — ) }
which can be solved numerically within a desired accuracy after appropriate dis-

cretization in w.
e We can easily build minimum risk /inear estimate z;(w) = hw. We have

?E%%((Rlsk2[a;h|)(])2 = maxEe_x(0,02) {(h[a: +¢] — x)Q} = (1 — h)? 4+ h?%2.

Minimizing over h, we arrive at the minimum risk linear estimate

1
14 o2

C/U\Lin(w) = w [RiSKQ[fc\Lin|X] =

o
\ 1—|—02



Recover x known to belongto X = [-1,1] € R
from observation w = =z + &, € ~ N (0, 02)

e Passing from a whatever estimate z(-) to its projected version
Ty(w) = argmin |z(w) — ]
ueX
reduces pointwise recovery error and thus reduces Risk2. In particular, we can
improve the minimum risk linear estimate by passing to its projected version

"

-1 ,w< —[1407]
ZLinpr(w) = < 1_|°_‘}02 Jw| <14 o2
1 ,w>1+02

\

e Maximum Likelihood estimate z,;(w) obtained by maximizing n(x — w) =

2
le exp{—(xz_;g) } over x € X is just the projected version of the simplest un-

biased linear estimate Ty in(w):

-1 ,w< -1
m(w) =9 w w1, Zyin(w) = w.
l, w>1
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Recover x known to belongto X = [—-1,1] € R

from observation w = = + &, £ ~ N (0, 5°)

& Here are the performances of our estimates:

[6=1.00[6=050]c=0.10] 0 =0.05 |

Risk2[z [ jn]X] || 1.00000 | 0.50000 | 0.10000 | 0.05000
Risk2[z| jn|X] || 0.70711 | 0.44721 | 0.09950 | 0.04994
Risk2[Z inprlX] || 0.53743 | 0.39549 | 0.09913 | 0.04989
Risk2[zy |[X] || 0.71838 | 0.47073 | 0.10000 | 0.05000

RISk2Opt 0.44608 | 0.33526 | 0.09259 | 0.04859

& Comments, A. As 0 — 40, the ratios of 2-risks of our estimates to the minimax optimal 2-risk
approach 1. This “asymptotic optimality” takes place in the general recovery problem

w=Az+¢ 77 =77 Bz |z X,{~N(0,0%I)] (%)

provided that A is invertible and int X #= (). However, in typical multivariate applications, in order
for a simple estimate, like the ML or the “plug-in” w — BA~'w one, to be minimax optimal within a
reasonable factor, like 2 or 10, the level of noise should be impractically low.

Comments, B. In our toy univariate example we in fact were recovering linear form of the signal
underlying observations. It is known (Donoho 1994) that when B in (x) is a row vector and X is
a convex compact set, the (efficiently computable) minimum risk affine estimate is Risk2-minimax
optimal within absolute constant factor like 1.2. This is the Risk2-version of already known to us
results on near minimax optimality, in terms of e-risk, of properly built efficiently computable affine
estimate of a linear form of a signal observed via simple o.s.
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& Agenda: Under appropriate assumptions on X, we shall show that
A. One can build, in a computationally efficient fashion, (nearly) the best, in terms
of Risk2, estimate in the family of linear estimates

7(w) =7y(w) = H'w [H € R™*V]

B. The resulting linear estimate is nearly minimax optimal — optimal among all
estimates, linear and nonlinear alike.

C. Under appropriate assumptions on a norm || - || and a family ‘P of distributions
of observation noise, the results of A, B can be extended to the situation where
— the recovery error is measured in norm || - ||,
— distribution P of observation noise is known to belong to P,
— the 2-risk

Risk2[#[¥] = sup JEg |Ba — #(Az + 0€)|3)
is replaced with (|| - ||, P)-risk

RISKHH,p[iﬂX] = SuUp sup EgNP{HBLU o /x\(ALU + €>||}
reX PeP
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What makes signal recovery difficult for analysis?

w= Az +£7?? =77 ¥(w) = Bx (%)

& What makes (x) difficult for the synthesis of (near) optimal estimates and their risk analysis, is the
“interplay” of several different geometries — those of the matrices A, B, the set X', and the norm || - ||.
e |t is easily seen that one of these geometries can be “nearly standardized,” specifically, by appro-
priate updating other components of the data, we can assume that A is square diagonal matrix with
diagonal entries A1 > Xo> > ... > A\, > 0. Observe that entries of x corresponding to small A;, if any,
are suppressed by multiplication by A, so that the attempt to recover them from observations leads
to amplifying the noise, the more significant the smaller are \;. In principle, this phenomenon, in the
case of ill-conditioned A, prevents good recovery of x and Bx. However, it may happen that

e “difficult to recover” entries in x are a priori small due to the geometry of X', and/or

e these entries are suppressed by multiplication by B, and/or

e changes in Bx stemming from recovery errors in difficult to recover entries of x are suppressed

by the norm || - || quantifying the overall recovery error.
& We see that achievable risks in (x) indeed depend on interplay between geometries of A, B, X,
| - ||. In simple cases, like the diagonal one (A, B are diagonal, &, || - || are “diagonal-representable,’

eg. X = {z: ||Cx|, < 1}, |[u|]| = ||Du||» with diagonal C, D) this interplay is amenable to ana-
lytical investigation resulting in “closed analytic form” descriptive results on what are the near-optimal
estimates and their risks. However, in general, as a matter of fact, analytical investigation of (x) and
related descriptive results are out of question.
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w=Ax+£7? =77 2(w) ~ Br (%)

& Surprisingly, () allows for nice operational results — under not too restrictive as-
sumptions on X and || - ||, assumptions incomparably weaker than the above “di-
agonal representability,” we can point out efficiently computable estimates which are
provably near-optimal in terms of RiskH,H. As a matter of fact, these “good estimates’
are linear:

7(w) = H' w.
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Why linear estimates?

& As it was announced, a “nearly optimal” linear estimate can be built in a computa-
tionally efficient fashion.

& In contrast,

e Exactly minimax optimal estimate is unknown even in the simplest case when
the observation is w = = + £ with € ~ N (0,02) and z € X = [—1, 1]

e The “magic wand” of Statistics — the Maximum Likelihood estimate — is known
to be optimal in the “noise goes to 0” asymptotics and can be disastrously bad
before this asymptotics starts.
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o —{a:E]R”:a: —|—€_22n12<1}

e A=Diag{l/e,...,1/e, 1}, Zn}w]’\/(_o o21,), B = I,

=  MLE: zq(w) = A—l -argmin, <1 lw — u2
When o < 1, 02n > O(1), and € < O(o), the risk of MLE is O(1), while the risk of
the linear estimate z(w) = wn is O(o) <€ O(1).
Note: As ¢ — 0O, the ML estimate regains optimality, but this happens the later the
larger is n.
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Developing Tools, Optimization
“Structure-Revealing” Representation of Convex Problem: Conic
Programming

& When passing from a Linear Programming program

mxi” {cTac . Ar —b > O}
to a convex one, the traditional wisdom is to replace linear inequality constraints

a?w —b; >0
with nonlinear ones:
g;(x) >0 [g; are concave]

& There exists, however, another way to introduce nonlinearity, namely, to replace
the coordinate-wise vector inequality

yZz@y—zERﬁ}:{uERm:uiZOW} [y, z € R™]
with another vector inequality
y>K 2 y—z2z€K ly, z € R™]

where K is a regular cone (i.e., closed, pointed and convex cone with a nonempty
interior) in R™,
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y>kzey—zeK ly, z € R™]
K: closed, pointed and convex cone in R" with a nonempty interior.
Requirements on K ensure that >y obeys the usual rules for inequalities:
e >y is a partial order:

x >K xVr [reflexivity]
(zr>ky&y>kx)=x=y [antisymmetry]
(r >k y,y >k 2) = x >k z [transitivity]

e >y IS compatible with linear operations: the validity of >k inequality is preserved when we
multiply both sides by the same nonnegative real and add to it another valid >x-inequality;

e in a sequence of >k-inequalities, one can pass to limits:
{ai >K bi, i 1,2,... &ai —>a&bi —>b}:>a ZKb

e one can define the strict version >k of >k:

a>kbe a—0beintK.

Arithmetics of >k and >k inequalities is completely similar to the arithmetics of the usual
coordinate-wise > and >.
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& LP problem:

mmin{chc:Aa;—bzo}@min{cT:c:Aac—be]Rfﬁ}

x

& General Conic problem:

mxin{cTa::A:z:—bZKO}(:)min{ch:Aa:—beK}

X

e (A,b) — data of conic problem
e K - structure of conic problem

& Note: Every convex problem admits equivalent conic reformulation
& Note: With conic formulation, convexity is “built in”; with the standard MP formula-
tion convexity should be kept in mind as an additional property.

& (??) A general convex cone has no more structure than a general convex function.
Why conic reformulation is “structure-revealing”?

& (!!) As a matter of fact, just 3 types of cones allow to represent an extremely wide
spectrum (“essentially all’) of convex problems!
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mxin{ch:Am—szO}@)min{ch:Aaz—beK}

X

& Three Magic Families of cones:

e LP: Nonnegative orthants IR%Z; — direct products of m nonnegative rays

Ry = {s € R:s > 0} giving rise to Linear Programming programs

T . T
msln{c xiay;xr—bp>0,1 ngq}.
e CQP: Direct products of Lorentz cones
_ 1/2. .. . .
LZ_DI_ ={u e RP:up> (Zﬁ.’:% u,?) / } giving rise to Conic Quadratic programs
min {cTa: || Apz — byl|o < cha: —dy,1 <1< q} :

e SDP: Direct products of Semidefinite cones
S = {M € SP: M = 0} giving rise to Semidefinite programs

min {ch Amin(AL(@)) > 0,1 << q}.

@Af@)io
where SP is the space of p x p real symmetric matrices, A,(x) € SP are affine
in x and Amin (S) is the minimal eigenvalue of S € SP.
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What can be reduced to LP/COQP/SDP ?
Calculus of Conic programs

& Let IC be a family of regular cones closed w.r.t. taking direct products.

& Definition: e A KC-representation of a set X C R™ is a representation
X={zeR":Jue R :Ax 4+ Bu—b e K} (*)

where K € K.

e X is called K-representable, if X admits a KC-r.

© Note: Minimizing a linear objective ¢! x over a K-representable set X reduces to

a conic program on a cone from IC.

Indeed, given (x), problem mi)rg ¢!’z is equivalent to
xre

Opt = ming {CT:I: cAe+ Bu —b € K}
& Definition: e A KC-representation of a function f : R — R U {400} is a K-
representation of the epigraph of f:
Epi{f} == {(z,t) :t> f(2)}
= {z,t: v :Pr+pt+Qu—-—qeK}, Kek
e f is called K-representable, if f admits a iC-r.
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¢ Note:
e A level set of a KC-r. function is IC-r.:
Epi{f} = {(z,¢):¢> f(z)}
= {z,t:3Jv: Pxr+pt+ Qu—q € K}
= {z: f(x) <ct={x:TF: Px+ Qu—[q—cp] € K}
e Minimization of a KC-r. function f over a K-r. set X reduces to a conic program on
a cone from IC:

reX & Ju:Axr+ Bu—be Ky N
t>f(z) & Fv:Pr+pt+Qu—qgeKy
mina:EXf(w)
¢

min {t: [Ax + Bu — b, Px + pt + Qv — q] EKXXKf}
t?‘/E?u),U \ . - 4
ex
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& Investigating “expressive abilities” of generic Magic conic problems reduces to an-
swering the question
What are LP/COP /SDP-r. functions/sets?

& “Built-in” restriction is Convexity: A C-representable set/function must be con-
Vex.

& Good news: Convexity, essentially, is the only restriction: for all practical pur-
poses, all convex sets/functions arising in applications are SDP-r. Quite rich families
of convex functions/sets are LP /CQP-r.

 Note: Nonnegative orthants are direct products of (1-dimensional) Lorentz cones,
and Lorentz cones are intersections of semidefinite cones and properly selected lin-
ear subspaces = LP C COP C SDP.
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& Let IC be a family of regular cones closed w.r.t. taking direct products and passing
from a cone K fto its dual cone

Ki={)\:()\§ >0V e K}
Note: K is regular cone provided K is so, and

(K*)* =K

& Fact: K-representable sets/functions admit fully algorithmic calculus: all basic
convexity-preserving operations with functions/sets, as applied to K -r. operands, pro-
duce K-r. results, and the resulting IKC-r.’s are readily given by K-r.’s of the operands.
“Calculus rules” are independent of what IC is.
= Starting with “raw materials” (characteristic for KC elementary K-r. sets/functions)
and applying calculus rules, we can recognize K -representability and get explicit K-
r.’s of sets/functions of interest.
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& Basics of “calculus of C-representability”:

& [Sets:] If X4, ..., X}, are K-r. sets, so are their
e Intersections,
e direct products,
e Images under affine mappings,
e Inverse images under affine mappings.
#& [Functions:] If f1, ..., fi are K-r. functions, so are their
e linear combinations with nonnegative coefficients,
e Superpositions with affine mappings.
Moreover, if F, f1, ..., fi. are K-r. functions, so is the superposition F ( f1(x), ..., fr.(x))

provided that F' is monotonically nondecreasing in its arguments.

& More advanced convexity-preserving operations preserve K-representability under
(pretty mild!) regularity conditions. This includes

e for sets: taking conic hulls and convex hulls of (finite) unions and passing from a
set to its recessive cone, or polar, or support function

e for functions: partial minimization, projective transformation, and taking Fenchel
dual.

& Note: Calculus rules are simple and algorithmic
= Calculus can be run on a compiler [used in cvx].
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IIIustration

minclz + dly
y > O Aa: + By < < b
7 P Z
2y, Y5> y3 + 3y2 Ya . <elz+ 4y1y2y3 + 5y3y5
x1 — T2 | T3 + X2
3+ a0 | T2 — x4 | T5 — 6 <0
x5 —6 | Tg+x7 | —T8 | —
—I8 5
1 x> T3 T4 Ty |
> e I7 X8 X9
Det r3 7 T10 T11 12 > 1
T4 T8 T11 13 T14
| s T9 X12 T14 15 | )
r1 T2 X3
T4 rs Te6
Sum of 2 largest singular values of x7 T X9 is<6
10 r11 12
r13 T4 15
[§)
. 1—> ol ﬁz+1]sZ<o <s<6
Y mocos(ig) — > szIn(qu) <1,3<¢<73

the blue part of the problem is in LP

the blue-magenta part of the problem is in COP and can

be approximated, in a polynomial time fashion, by LP

the entire problem is in SDP

and the reductions to LP/CQOP /SDP are “fully algorithmic.”
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Conic Duality

& Conic Programming admits nice Duality Theory completely similar to LP Duality.
Primal problem:

ma/jn{ch:{Aw_b ZK O}

Rx = r
= [passing to primal slack £ = Ax — b]
mgin{eTg €€ [E—b]ﬂK} (P)

e: Al'e 4+ RT f = ¢ for some f
L={Au: Ru= 0}

Dual problem:

T, . AT T, —
rrg}gx{b y:A'y+ R z—c,yZK*O}

& myax{bTy y e Ky, 3z ATy + Rz = c}
myax {bTy Ly € [L1 4+ €] ﬂK*J (D)

[K«: cone dual to K]
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Note:

e the dual problem is conic along with primal
e the duality is completely symmetric

Note: Cones from Magic Families are self-dual, so that the dual of a Linear/Conic
Quadratic/Semidefinite program is of exactly the same type.
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Derivation of the Dual Problem

& Primal problem:

Opt(P) = miny {cTa: " R —
& Goal: find a systematic way to bound Opt(P) from below.
& Simple observation: When y; € K, the scalar inequality y! A;xz > yl'b; is a
consequence of the constraint A;x — b; € K". If z is a vector of the same dimension
as r, the scalar inequality =X Rz > z1'r is a consequence of the constraint Rz = r.
= Whenever y; € K. for all i and =z is a vector of the same dimension as r, the
scalar linear inequality

> Al y; + RE2) e > S by 4+ vtz
is a consequence of the constraints in (P)
= Whenevery; € K. for all i and z is a vector of the same dimension as r such that
i Alyi+ Rz =,

the quantity °; bT y; + rT 2 is a lower bound on Opt(P).
e The Dual problem

T T yZEKZ/ka/LSm
Opt(D) = rTylz_’aZx %:bz- Y, + 1z ;A?yi—l—RTz:c (D)

is just the problem of maximizing this lower bound on Opt(P).
5.21
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& Definition: A conic problem

Az —b; €KY, i <m
minl{clz: Ax <b (C)

€T
Rx =r

is called strictly feasible, if there exists a feasible solution z where all conic and <
constraints are satisfied strictly:

AT — b, €intK' Vi & AT < b,

and is called essentially strictly feasible, if there exists a feasible solution x where all
non-polyhedral constraints are satisfied strictly:

A,z —b; € intK' Vi.
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& Conic Programming Duality Theorem. Consider a conic problem
B i
Opt(P):mx”f]{CTx A'LCU bZEK,ZSm}(P)

Rx=r
along with its dual

Opt(D) = nyﬂi?zx Yibiy;+ 1tz ZAzTyi + R, = ¢ (D)
1

Then:

& [Symmetry]| Duality is symmetric: the dual problem is conic, and its dual is (equiv-
alent to) the primal problem;

& [Weak duality] One has Opt(D) < Opt(P);

& [Strong duality] Let one of the problems be essentially strictly feasible and
bounded. Then the other problem is solvable, and

Opt(D) = Opt(P).

In particular, if both problems are essentially strictly feasible, both are solvable with
equal optimal values.

5.23



v — h. 1
mxin{ch: A;x bZEK,sz} (P)

Rx =r
™
T T _ . yZEK;Lkasz
. Y N - D
mZ?x{Zzbzyz‘l'?“ z i ATy, + RT2 = ¢ (D)

Conic Programming Optimality Conditions:

Let both (P) and (D) be essentially strictly feasible. Then a pair (x, [{y;},z]) of
primal and dual feasible solutions is comprised of optimal solutions to the respective
problems if and only if

e [Zero Duality Gap]
DualityGap(z, [{y;},2]) = cla — [Z;bly; +r12] =0
Indeed,DualityGap(z, [{yi}, 2]) = [¢' — Opt(P)] + [Opt(D) — [Zib;-ryi + r1'2]]

>0

>0

and if and only if

e [Complementary Slackness]
[A;z —b]Ty; =0,i<m
Indeed, 37, [Aiw — bl yy = [, Alyile — 32, by = [c = R 2] @ — 37,00y = ¢l — [0, b]ys + r72]

TV TV
>0 =cTe—rTz

= DualityGap(z, [{v:}, z])
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& Conic Duality, same as the LP one, is

e fully algorithmic: to write down the dual, given the primal, is a purely mechanical
process

e fully symmetric: the dual problem “remembers” the primal one

O Cf. Lagrange Duality:

mxin {f(x):g9;(x) <0,i=1,...m} (P)

U

r;\Zag L(y) (D)

!L(y) = min {f(fv) + Zyz-gi(fv)}]

e Dual “exists in the nature”, but is given implicitly; its objective, typically, is not
available in a closed form

e Duality is asymmetric: given L(-), we, typically, cannot recover f and g;...
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Developing Tools, Optimization
Schur Complement Lemma

‘ T

3 ‘ 7 with R - O is positive semidefinite if

& Lemma: Symmetric block matrix

and only if the matrix P — STR=1S is so.
PIST L o
S| R |~

Proof:

in[ul Pu + 2ul'STv 4 v1' Ru]

U
= min [mvin[uTPu + 2ul'8Ty 4+ v Ro] }

O < m
u

achieved wheﬂrfu = —R1Su
= minul [P — STR—ls] wu.

U
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Optimizing Linear Estimates

& Situation: “In the nature” there exists a signal = known to belong to a given convex
compact set X C R™. We observe corrupted by noise affine image of the signal:

w=Arx+ 0 Q=R"

e A: given m X n sensing matrix e £: random noise
& Goal: To recover the image Bx of x

e B: given v x n matrix.
& Risk of a candidate estimate z(-) : 2 — RY is

, JU - 2
Risk2[z|X] = sup \/Ef {IIBx — &(Az + 06)||5}

& Assumption on noise: & is zero mean with unit covariance matrix.

= The risk of a linear estimate z r;(w) = H1w (H: contrast matrix) is given by
(Risk2[zu|X])? = maxE¢{|[B - H" Alz — o H'¢][3}

max {II[B — H" Alz||5 + o”Ee{Tr(H"¢€TH)} |

o?Tr(HTH) + max Tr([B — H Alz2'[BT — ATH)).

w(H)
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(Risk2[z | X])? = o Tr(HTH) + W(H), W(H) = max Tr([B — HT Alza [BT — ATH]).

O Note: W is convex = building the minimum risk linear estimate reduces to solving
convex minimization problem

Opt = min W(H) +o*Tr(H"H)|. (%)

But: Convex function W is given implicitly and can be difficult to compute, making
(*) difficult as well.
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Opt = miny [JQTr(HTH) + \U(H)]

V(H) = max Tr([B — HL Alaal [BT — AT H))

O Fact: Basically, the only cases when (x) is known to be easy are those when

e X is given as a convex hull of finite set of moderate cardinality

e X is an ellipsoid.
X Is a box = computing W is NP-hard...
& When W is difficult to compute, we can to replace W in the design problem ()
with an efficiently computable convex upper bound W+ (H).
We are about to consider a family of sets X — ellitopes — for which reasonably tight
bounds W of desired type are available.

()
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& A basic ellitope is a set ) ¢ RY given as

y:{QERNIHtET:yTSkyStk,kJSK}

where
e S;. = O are positive semidefinite matrices with ;. S;. = O
e 7 is a convex compact subset of K-dimensional nonnegative orthant R-’_ﬁ such
that
e 7 contains some positive vectors
e 7 is monotone: if 0 <t' <tandt e T,thent € T as well.

& An ellitope X is linear image of a basic ellitope:
Xz{xGRn:EIyGRN,tETZQU:Fy, yTSkygtk,kgK}

e [is a given n x N matrix,

& Note: Every ellitope is a symmetric w.r.t. the origin convex compact set.
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Examples of basic ellitopes:
A. Ellipsoid centered at the origin
(K =1,T =[0;1])
B. (Bounded) intersection of K ellispoids/elliptic cylinders centered at the origin
(T={teRX:0<t, <1, k<K)}
C.Box {xr e R": -1 < x; <1}
(T={teR":0< ¢ < 1,k§K=n},xTSka:=:v%)
D. lp-ball X = {z € R" : ||z||p < 1} withp > 2
(T ={t eRY :[t]l,o <1}, el Spx = :L'%, k< K =n)

& Ellitopes admit fully algorithmic calculus: it X;, 1 < ¢ < I, are ellitopes, so are their
e intersection N; &
e direct product X7 x ... X X
e arithmetic sum X7 + ... + A
e linear images { Az : x € X}
e inverse linear images {y : Ay € &} under linear embedding A
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& Observation: Let

X={z:3teT,y) a="Fy y' Sy <ty k< K} ()
be an ellitope. Given a quadratic form ! Wx, W € S™, we have

k=1

OT (A) = rtn%Z( tI'\ support function of T
c

K
max Wz < min {ng(A) A>0, 3 ASi - FTWF}
Xr

Indeed, we have

A>0,FTWF 2> MSkyz € X=30 €T,y) ty!'Spy <ty Vk < K,z = Fy

=3t eT,y)  aTWax =yl FIWFy <>, MeyT Sy < D70 Mt < ¢ (N)
=z Wz < ¢7’(>\).
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X={z:3teT,y) z="Fy y' Sy <ty k< K} ()

& Corollary: Let X be the ellitope (x). Then the function

V(H) = max Tr((B — HL A)za! (BT — ATH))
max I [(BY — ATH)(B — H ' A)x

can be upper-bounded as

V(H) <WV(H) = mAin {¢T(>\) A >0,FT[BT — ATH]|[B — HTA)F < ZAkSk}
k
[Schur Complement Lemmal]

= min {qu(A) A >0, [ [Biikl;\z%%]? % FT[BT]: AT H] ] - 0}

The function W (H) is real-valued and convex, and is efficiently computable whenever
o7 IS SO, that is, whenever T is computationally tractable.
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& Bottom line: Given matrices A € R™*"™, B € RY*"™ and an ellitope

X={z:3teT,y) z="Fy, y Sy <ty k< K} ()
contained in R™, consider the convex optimization problem

A >0,
Opt =min< ¢7(\) +o?Tr(HTH) : [ S, \S FT[BT — ATH] }
#) { = I L= )
[d7(A) = maxwer ATt]

Assuming the noise & in observation w = Ax + oc& zero mean with unit covariance
matrix, the risk of the linear estimate z () induced by the optimal solution H to
the problem (this solution clearly exists provided o > Q) satisfies the risk bound

Risk2[z . |X] < vOpt.

& Note: We shall see eventually that in the case of ¢ ~ N (0O, I,,), Opt is “nearly”
the same as the ideal minimax risk

Risk20pt = iAnf) Risk2[z|X],

T

where inf is taken w.r.t. all, not necessarily linear, estimates z(-).
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How It Works: Inverse Heat Equation

& Situation: Square plate is heated at time 0 and is rest to cool; the temperature at
the plate’s boundary is kept all the time to be O.

Given given noisy measurements, taken along m points, of plate’s temperature at
time ¢1, we want to recover distribution of temperature at a giventime tg, 0 < tg < t1.
& The model: The temperature field «.(¢; p, ¢) evolves according to Heat Equation

5, . _ | 92 H2 .
mu(t’p7 Q) T [8]92 —I_ 6(]2] U(t,p, Q>7 t Z 07 (p7 Q) S S
ot:time oS ={(p,q),—1 <p,q<1}:theplate

with boundary conditions w(¢; p, q)|(p )eds =0

@ It is convenient to represent u(t; p, g) by its expansion

u(t;p, @) = g vke()orp(P)de(q), (%)

b (s) = cos(woj_15),woj—1 = (i —1/2)1 k=2i—1
FA2IT sin(wois), woy = im I — o

Note: ¢, (s) are harmonic oscillations vanishing at s = +1.
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u(t;p,q) = Xk epe()dp(P)de(q), (%)
(5) = cos(wpj_18),wpi—1 =G —1/2)r k=2i—1
Pr(s) = sin(wo;8), wo; = 7 kL= 2i
Note:

® {¢10(p,q) = ¢r(p)Pr(q) } 1 ¢ form an orthonormal basis in L>(S)
e ¢1.0(-) meet the boundary conditions

e in terms of the coefficients x;,(t), the Heat Equation becomes

d w202
%xke(t) = —[w? + wilzpe(t) = zpe(t) = e~ Wi twilty, (0).

¢ We select integer discretization parameter N and
e restrict (x) totermswith 1 < k, / < 2N — 1
e discretize the spatial variable (p, ¢) to reside in the grid

_ _ _ J -

Note: Restricting functions ¢k%(-, ), 1 <k ¢<2N —1ongrid Gy, we get orthog-
onal basis in R(2ZV-1)x(2N—-1)
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& We arrive at the model as follows:
e The signal = underlying observation is

v = {op = zpe(t), 1 < k, £ < 2N — 1} € RGN-Dx(N-1)
e The observation is

[A(2)]y = ZQN o dllts=tolg, (py,))be(0()) The
o (pz(,/),pj(y)) € S, 1 < v < m: measurement points

e We want to recover the restriction B(x) of u(tg; p, q) to some grid, say, square grid

2 J
GK:{(Ti:——].,Tj:—

resulting in
2N-—1

B =Y )y &k (rdoe(r)an
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e We assume that the initial distribution of temperatures [u(0O; pi,pj)]%yz_ll satisfies

|ul|> < R, for some given R, implying that = resides in the ellitope, namely, the

ellipsoid
2
< RQ}

Y — {{xke} c R2N-1)x(2N-1) . Z [e[w,§+w§]toxk£
.

5.38



u(t; pi,py) = Sy ee” WEHll=tolg, () gy(p))ang
[A@)]y = S2N 1 ayelrtellatol g, (5, ) be(p50,))2re
& Bad news: Contributions of high frequency (with large w? + w3) signal compo-

nents z, to A(x) decrease exponentially fast with high decay rate as t; — tg grows

= High frequency components x;, are impossible to recover from observations at
time t1, unless t1 is very small.

>
= {{xke} DY, [e[w’%+wg]toxke] < RQ}

[B(2)]ij = Xjp=1 ok (ridde(ri)aps

& Good news: High frequency components x, of x € X are very small, provided
to Is not too small

= There is no necessity to recover well high frequency components of signal from
observations!
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& Numerical results N = 32, m = 125, K = 6,t; = 0.01,t; = 0.02, 0 = 0.001, R = 15
O Minimax risk of optimal linear estimate: 0.1707

63 x 63 grid Ge3z and m = 125 measurement points

b
bl = 2.13 |Ib—0bllo = 0.15 [b—bll2 = 7.99
Ibllc = 0.43 | |[b—bll.c = 0.03 b—bllec = 1.80
Sample results
o left: b= B(x)
e center:  sample optimal linear recovery b = HTw of b = B(z)
e right: naive recovery b = B(%), Z: Least Squares solution to A(z) = w
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How It Works: Denoising & Deblurring Images

e A grayscale image can be thought of as 2D m x n array [z;;]o<i<m, With entries
0<j<n

(pixels’ intensities) in [0, 255]
e Taking picture can be modeled as observing noisy convolution

wij = Z KpgZi—pj—qT&j 0<i<m+pu—1,0<7<n+rv-—1
O<p<p, (+)
. *
m;:ac

\Q§q<y
[57;]' ~ N (O, 02) independent across z’,j]

of the image and a given blurring kernel [kpq) o<p<,-
0<g<v
Note: In (x), z;; = O outside of the actual range {0 <i < m,0 < j < n} of4,j.

Note: “Centering” image — subtracting from x;; entries in = the midpoint S of the
range [0, 255] of pixels’ intensities and updating w; ; accordingly, the images become
2D arrays from the box

Xoo = {:1: c R™M™X™ |$Zj| < S},

and the recovery problem falls into our framework.
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T Rk*xxF+E?7 =>T?r R

Bad news: Linear dimensions mn of typical images are in the range of 10°-10°, making straightfor-
ward design of linear estimates w — z = H'w intractable—linear dimensions of contrast matrices
should be in the range of 1019-10%2,

Good news: Extending x and k to M := [m + u] x N := [n + v] arrays =T, T by adding zero
entries to x, «, and passing to 2D Discrete Fourier Transforms x = FzT, 6 = Fx™ of these arrays,
observation scheme becomes extremely simple:

( =Fw=0ex+VMNon
[e : entrywise product; n : (complex-valued) white Gaussian noise with unit covariance matrix]

Note: DFT multiplies || - |2 by vV M N = when the recovery error is measured in || - |2, recovering x
from w is equivalent to recovering x from ¢
Besides this, when a priori information on x translates into simple constraints on x, like

> Brslxrs|> < B and/or |xrs| < yrs Vr,s, 0 <7 < M,0< s <N (")

r,s

frequency representations x of signals of interest become points of a simple (complexified) ellitope,
and sensing matrix A becomes (complex-valued) diagonal

= Working in frequency domain, we lose nothing when looking for linear estimates with diagonal
(complex-valued) contrast matrices.

Moreover, when the number of constraints (!) is small, designing the best linear estimate with diago-
nal contrast matrix reduces to solving a low-dimensional convex problem and takes few seconds even
when M N is in the range of millions.
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... in frequency domain recovery problem becomes ( = 6 e x + VM Non ?7? =77 ¥ = x, and easy-
to-utilize a priori information on x are constraints of the form

> Brslxes|> < B and/or |xrs| < yrs Vr,s, 0 <7 < M,0 < s <N 0
Note: Our “built in” box constraint ||z|cc < L does not translate into a simple con-
straint on x; the best simple (conservative!) frequency domain version of this con-
straint is the bound

Ixll2 < VMN - v/mnL (E)

on the || - [[>-norm of x.
Similarly, the standard in Image Reconstruction bounds

TV(x) =) |wiqp1;— i | + D |wijp1 — x4l <U
N N

on Total Variation of x do not translate into simple constraints on .

e However: we can impose on Y, in addition to (E), empirical upper bounds on
Ix||lco @and || x||2 by inspecting a “representative library” of images.

e Warning: When the blur is present (i.e., k is not a -function), the recovery problem
can easily become ill-posed, since convolution can “kill” some frequencies (formally:
some of the entries in 6 can be very small).
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Blurred noisy observations (top) and recoveries (bottom) of 1200 x 1600 image, ill-posed case
[with bound on signal’'s energy]

oc=1.992 o = 0.498 o =0.031
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Blurred noisy observations (top) and recoveries (bottom) of 1200 x 1600 image, ill-posed case
[with rudimentary form of Total Variation constraints]

oc=1.992 o = 0.498 o =0.031
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Blurred noisy observations (top) and recoveries (bottom) of 1200 x 1600 image, well-posed case

oc=31.88 o= 7.969 o = 0.498
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Byproduct on Semidefinite Relaxation

& Theorem Let C be a symmetric n x n matrix and X be an ellitope:
X={zeR":3teT,y):z=Fyyl Sy <t Vk <K}
Then the efficiently computable quantity
Opt = miny {¢7(A\) : A > 0, FTCF < 5, A, S |
b7 (N) = maxyer AT
is a tight upper bound on

Opt, = maxz! Cx
reX

namely,
Opt, < Opt < 3In(v/3K)Opt,.

Note: Opt, is difficult to compute within 4% accuracy when X is as simple as the
unit box in R™.
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& Let X be given by quadratic inequalities:

X={zeR": HNeT al'Se <t k<K}£0
[7 : nonempty convex compact set]

We have
Opt, = max T Cx<Opt := miny{p7(\) : A >0, C < X1 M5} <O - Opt,
X
What can be said about tightness factor © ?

Facts:

A. Assuming K = 1 and Slater condition: z1'S1z < t for some z and some t € T,
onecanset© = 1.

[famous S-Lemmalj

B. Assuming that z1'Sjz = 22, k < K = dimz, T = [0; 1]%, and C is Laplacian
of a graph (i.e., off-diagonal entries in C' are nonpositive and all row sums are zero),
one canset© = 1.1382...

[IMAXCUT Theorem of Goemans and Williamson, 1995]

Note: Laplacian of a graph always is > O
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X={zeR":3HteT: xSz <ty k< K}#0
[T : nonempty convex compact set]

= Opt, = m%(x:cTCxSOpt = miny{¢7(A) : A>0,C 2>, MSi}<© - Opt,
TrTe

C. Assuming that C = O and all matrices S). are diagonal, one can set © = 7§ =
1.5708...

[5 Theorem, Nesterov, 1998]

D. Assuming X is an ellitope (i.e., S, = 0,>21. S = 0 and T contains a positive
vector), one can set © = 3In(v/3K)
Note: In the case of D, © indeed can be as large as O(In(K))

N
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& A byproduct of Theorem is the following useful fact:
Theorem [upper-bounding of operator norms] Let || - || be a norm on RN such that
the unit ball X of the norm is an ellitope:

X = {z: ol <1} ={z:3teT,y) o= Py,y’ Sy < ty,k < K}
Forexample, || - ||z = || - |lp with2 < p < ¢
Let, further, || - || be a norm on RM such that the unit ball Bsx of the norm || - ||«
conjugate to || - || is an ellitope:
B. = {ueR": uwlv<1V(w,|v|<D)}={u:3F(r eR,2) :u=Qz, 2" Rz < rp, £ < L}
Forexample, || - | = || - [l with1 < r < 2.

Then the efficiently computable quantity

. _ S R | 2QTCP
C € RM*N]
is a convex in C' upper bound on the operator norm
I g = Max{[|Cz : x|l < 1}
of the mapping x — C'z, and this bound is reasonably tight:
1N s < OPEC) < 3IN(VIE + IDICI s II
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Indeed, the operator norm in question is the maximum of a quadratic form over an

ellitope:
||| = max {uTz LU € B*}
-
1C o= = Max {uTC’a: rx e X,u € B*}
=
IOl o) = 5, 12X, il CT}C][xnd

= 2 max [y;z]7

\QTCP] .
2 [yrzlew &5

prctq

where W is the basic ellitope given by
T
y Sy < tp, k< K
{[y zl:3A[t;r] €T xR : TRgz<7“g,€<L :
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What is inside

& In the above results on tightness of semidefinite relaxation, we speak about tight-
ness of the Semidefinite Relaxation upper bound on the maximum of a quadratic form
over an ellitope:

Opt, = max {:UTCCC ; acTSk:U <tr, k< K,te€ T} (%)
x,t

& Fact: Semidefinite relaxation admits an alternative description as follows:

Let us associate with (x) another optimization problem where instead of deterministic
candidate solutions (x,t) we are looking for random solutions (&, 1) satisfying the
constraints at average:

e Immediate observation: Property of a random solution (€, ) to be feasible for (1)
depends solely on the matrix Q = E{¢¢!'} and the vectort = E{r}, so that

_ - Tr(S5pQ) <t
Opt™ = foxs {Tr(c@ Q== g,t S Tk } (#)
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Optt = rgax{Tr(CQ): grgsg%)eg;k } (#)
Note: (#) is not a conic problem, the obstacle being the constraint t € 7. We can

easily make this constraint conic.
olet 7Tt = {[t 1] € RETL 1 ¢+ € T}, and let T € RET! be the set of nonnegative multiples of

vectors from 7+

plane - = 0 in (¢, T7)-space

Sets 7, 7+ and cone T

e T is a regular cone (since 7 is a convex compact set with a nonempty interior)
o7 ={t:[t;1] € T}
e The cone T, dualto Tis {[y; s] € RETL 1 s> o1 (—y)}

Indeed, {[y; s] € T.} < {y’t+ st > 0V[t; 7] € T}

s {ylt+s>0Vt:[t;1]1 e T} & s> —yltvte T}

& s > maxer[—y]'t

& {s>o7(—y)}
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Opt, = max {a:TC:c 3t eT) 2l S < tk} (%)

x,t

_ CTr(SpQ) <t

Opt™ = max)Tr(CQ): o 51 eT
[T« = {ly;s] : s > ¢7(—y)}]

& Note: (#) is strictly feasible and bounded, and the problem

(#)

Opt = m)\in {¢T(A) A>0,C < ZAkSk}
k

specifying Semidefinite relaxation upper bound on Opt is nothing but the conic dual
to (#) = OptT = Opt.

e (#) suggests the following recipe for quantifying the conservatism of the upper
bound Opt on Opt,:

— Find an optimal solution Q«, t« to (#) and treat Q+« = O as the covariance matrix
of random vector £ (many options!)

— Random solutions (&, t«) satisfy (x) “at average.” Try to “correct” them to get fea-
sible solutions to (x) and look how “costly” this correction is in terms of the objective.
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Q>0,teT

For example, in Goemans-Williamson MAXCUT and in Nesterov’'s /2 Theorems,
where =X Cz is maximized over the unit box

Opt‘|‘ — r??atx {TI’(CQ) : Tr(SkQ) < g } (#)

X={|z]loo <1} ={zeR": 3t T :=[0,1]": 22 < t}, k < n},
thatis, T = {[t; 7] : 0 <t} <7, k < n}, (#) reads
o~ CQpe <1, E<n
Opt™ = rg?tx{Tr(CQ) Q= 0} (#)

one selects € ~ N (0, Q«) and “corrects” £ according to £ — sign[£].
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Opt.

max {xTCx At eT) 2!l Spx <tk < K} (*)

x,t
_ Tr(SpQ) <ty, k< K
Optt = r%atx{Tr(CQ) O-0teT } (#)

& This is how the above recipe works in the general ellitopic case:
A. Let (Q«,t*) be an optimal solution to (#). Set

O = Q?cql? = upuT

(U is orthogonal, D is diagonal).

B. Let £ = Qi/QUC with Rademacher random ¢ (¢; take values 1 with probability
1/2 and are independent across ), so that

T 1/2 T TAL/2v _ 1/2 T 71T 1/2_
E{{7 } = E{Qy " UCC U Qi "} = UE{CIC U = Qx.
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Note that

5.57

G 1/20Q1/2_UDUT7 5= 1/2 U¢

ehoe

E{¢!S,¢}

A |

cTUTQ:2cQi?lu¢ = ¢(T'D¢
Tr(D) = Tr(Q+/?CQi/?) = Tr(CQs)
Opt,

E{cTUTQ1/?S,Qx"?U¢}
Tr(UTQY?s,Qt )
Tr(QY25,Q4?) = Tr(SpQx)

k< K



¢foe Opt (a)
E{¢!S9,€} ti, k<K (b)

C. Since S, = 0 and ¢ is “light-tail” (it comes from Rademacher random vector),
simple bounds on probabilities of large deviations combine with (b) to imply that

vamull

V(y >0,k < K):
Prob{¢ : €1'S,¢ > vti} < O(1) exp{—0(1)~}

— with 7« = O(1) In(K + 1), there exists a realization ¢ of ¢ such that £7'5,.€ <

= (&% = £//7x, t*) is feasible for

Opt, = max {a:TC:c At ET) i al Sz < tk} (%)

x,t

= Opt, > ELCE /v« = Opt /v« (look at (a)!)
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& “Simple bounds on probabilities of large deviations” stem from the following
Mini-Lemma: Let P be positive semidefinite N x N matrix with trace < 1 and ¢ be
N -dimensional Rademacher random vector. Then

E {exp {CTPC/?)}} < /3.

® Mini-Lemma =- bounds: We have
Ts1e = (T UT QY %5,Q4 U ¢
t P
and Tr(P;) = Tr(Q+/°S,Q4/ ) /t; = Tr(S3Qs) /i< 1
= [Mini-Lemma] E {exp {CTP;CC/3?} <43
= Prob{¢!'P.¢ > 3p} < +/3e 7
= Prob{eT'Sp¢ > 1} = Prob{¢TPy¢ > v}< v3e /3,
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Proof of Mini-Lemma: Let P = }_; aififiT be the eigenvalue decomposition of P,
so that £/ f; = 1, 0; > 0, and 3_; o; < 1. The function

f(o1, ..., O‘N) = kK {e%Z'LUZCTfoZTC}

is convex on the simplex {o > 0,3, 0, < 1} and thus attains it maximum over the
simplex at a vertex, implying that for some h = f;, /' h = 1, it holds

E{e3¢ P¢) < B{e3(" 0%
Let £ ~ N (0O, 1) be independent of (. We have
Ec {exp{3(h7¢)2}} = B¢ {E¢ {exp{[/2/3n7¢I¢}}]

= E; ﬁ E¢ {eXD{\/%ShSCS }} []

¢ H cosh(,/2/3 §h5)} <E£{ exp{§2h2/3}}
5{exp{§2/3}} V3

E
E
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Extensions

& So far, we have considered a problem of recovering Bx from observation

w=Ax+ £ € R™

where
e = is unknown signal known to belong to a given basic ellitope

X={zeR":FeT: : a!Sww<tk<K}

Note: Assuming signal set X’ basic ellitope rather than ellitope is w.l.o.g.: when X = F'Y with basic
ellitope ), we lose nothing when assuming that the signal is y rather than x = F'y and replacing A,
B with AF, BF.

e A c R"™™and B € RV*"™ are given matrices

e &£ ~ N(0,021,,) is observation noise

e (squared) risk of a candidate estimate is the worst-case, over x € X, expected
squared || - ||o-norm of recovery error:

(Risk2[2|X])? = sup E {|| Bz — #(Az + €)|3}
reX
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& We are about to extend our results to the situation where

e Noise £ not necessary is zero mean Gaussian; we allow the distribution P of
noise to be unknown in advance and to depend on signal .
O Assumption: We are given a convex compact set Il C int Sﬁf; such that the
variance matrix of P admits an upper bound from I:

PeP[n] = {P :3Q € N : Var[P] := E._p{¢e’} < Q}
e We measure recovering error in a given norm || - ||, not necessarily the Euclidean

one, and define risk of a candidate estimate z(-) as

RiSKH,||’|—|[/$\|X]:SUD sup ngp{HBx_/x\(Ax_l'g)“}
reX PecP[M]

¢ Assumption: The unit ball B« of the norm conjugate to || - || is an ellitope:
|u|| = max k!,
he By
Bi={h:3(yeRM,reR) :h=Fy, y' Ry <r VL < L}
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X={zxeR":3tecT 'Sz <t Vk < K}
w=Ax+ €77 =2??25(w) = H'w =~ Bzr

Building Presumably Good Linear Estimate

& We have
RISKHHH[C/C\H|X] = Sup sup EgNP{HBCU_HT[Ax"I_g]H}
! zeX PcP[M]
< sup sup Be p{|[B - HT Az]|| + ||H €|}
xeX PeP[N]

INA

®(H) + WnH],
®(H) = max||[B — H' Al«|,

Wn(H) = sup Ee p{|[H ¢}
pPep[n]
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Next,

whence

& (H)

5.64

IA

Bi={u= My :y eV}
y={y:3r€R:yTng§rgV€§L}

1 T
_ gT — . 1T §[B — H A] .
max ||[B — H" Alz| [u;:gﬁea[sz(xx[u x] T AT | [ 2]
FT[B HT A]
max o ‘ 2 ;
e V7 [ I[BT — ATH|Fy | ly: z]

[semidefinite relaxation; note that Y x X’ is an ellitope]
A>0,u >0,

@) = min{orO) +on() [ Numf |3FTHTA-BI]

S[ATH — BT F | > MeSk

A) = max \Tt — max u?!
¢T( ) teT 7¢R(M) rege ner

}



X={zeR":3IHeT: x2Sz <tyk<K}
Bi={u=My:yecY)LY={y:IreR:y'Ry <r, V4 <L}
w=Ax+ ¢ = zg(w) = H'w ~ Bx
Y
Risk).,n[zx|X] < ®(H) + Wn(H),

A>0,p >0,
o) = min {6700 + on() ST L CEEL R P }
S[ATH — BTIM | > AeSk -
Wn(H) = sup Eeop{[|[H ]I}
PeP[n]

& Lemma: One has

x>0
Wn(H) < Wn(H) = min {rn(@) + or(50) o [ X R | ZMTHT ] “ 0 }
A SHM | ©
() = maxTr(QO).
Qell
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Lemma:

2]l = maxy {z" My :Ir e R : y' Ry < ry, £ < L}
M(©) = max Tr(QO).
Qen
g
x>0
Wn(H) < Wn(H) := min Tn(©) 4+ ¢r(3) : [ 2pral | M H" ] .
O, il — 0
THM S
Indeed, let (2, ©) be feasible for the problem specifying W, and let VVar[P] < @Q € M. We have
|H7e| = max[—uTH"¢] = max{~y" MTHTE] < max [y [, saRuly + §7O¢]
ye

= e {yT[Eg %zRe]y -|- ety "Ry <y, 5 <L} < JEDS {3 sure+ £70¢}
< ¢R(%) +£70¢ = dr(x) + Tr(0[gg")).
Taking expectation in &, we get
Ecop {||H"¢||} < ¢r(30) + Tr(©Var[P]) < ¢r(5) + Mn(O).
and the conclusion of Lemma follows.
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lllustration: When ||- || = || - ||p, p € [1, 2], Lemma implies that whenever Var[P] <
(2, one has

Eep {I1H¢p} < ||[lICol[QY2H])

2i i |Col [ 2HT 2|
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& Summary: Consider convex optimization problem

Opt =, min _ {67(0) +0r00) + rG) +T1(O) : A2 0,02 0,52

ZeﬂeRe %MT[HTA—B] “ 0 ZE%ERE‘%MTHT .0
S[ATH —BYIM | Y, MiSk — | zHM | © -

[I‘n(@) = maxgen Tr(@Q)]

The problem is solvable, and the H-component H of its optimal solution yields linear
estimate

rh, (w) = H*Tw
such that
RiSkH-H,I‘I[fHJX] < Opt.
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Fact: In the case of zero mean Gaussian observation noise, the estimate zy,_ is
near-optimal:

& Theorem: We have

Risk).| nlZ,|X] < Opt < O(1)y/In(2K) In(2L)RiskOpt . 1 [X],

where
e O(1) is a positive absolute constant,

e K and L are “sizes” of the ellitopes

X {x:3teT z!Spe<tpk<K},
Be = MY, YV={y:IreR: y'Ry <rpt <L},
° RiSkODt”,”,H[X] = inf sup sup EﬁNN(O,Q) {HCE — f(Aw + 5)”} is the mini-

(1) QeNze
max optimal risk taken w.r.t. Gauss:an zero mean observation noises with covariance

matrices from I'l.
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Variation: Recovery of partially stochastic signals

& So far, we have considered the problem of recovering the image Bx of unknown
deterministic signal x known to belong to a given signal set X’ from noisy observations

w= Ax + &

of linear image of the signal.

In some applications, it makes sense to consider similar problem when the signal has
a stochastic component.
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Example: Kalman'’s Filter. Consider linear dynamical system

y1 = €0
Yt+1 — Ptyt +ut+Ct7 , t = 1727°"7T
wt = Crys + &
y+ € R": states
ug: controls

wt € R™: observations

(+: random “process noise”
& random observation noise
P, C;: known matrices.

What we want is to recover from observations w1, ..., wp linear image

z = Rly1; s yr41]

of the state trajectory, e.g., yr (*filtering”) or yp 1 (*forecast”).

Note: In the classical Kalman Filter,

— (p, ..., ¢ are independent of each other zero mean Gaussian

— &1, ..., &7 are independent of each other and of (¢'s zero mean Gaussian
— u1, ..., wp are deterministic and known (reduces to the case when u; = 0)
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y1 = Co, Yi+1 = Pyt +wi + &, wr = Cryr + &
(w1, .., wr) 27 =77 2 = Rly1, ..., y7+1]

e When modeling the situation as an estimation problem, we can use state equation
to express the states y; as known linear functions of controls u; and process noises
(t+, thus arriving at the model

w=Alu; ]+ £7?7? =772 = Blu; (]
[w=[wi;...;wr],u = [u1;...;ur], ¢ = [Co; .. Cr]s € = [€15 -5 €]
e When quantifying the performance of a candidate estimate z(w), it makes sense
to look at risk of the form

Risk[z] = sup E¢ o {l|Blu; {] — 2(Afu; ¢] + &)}

where U is the set of possible realizations of w.

5.72



Situation: We observe noisy linear image

w = Alu; ¢ +§ = Agu + As¢ + ¢

of “signal” x = [u; (] with deterministic component u and stochastic component (.
We assume that
e v IS “uncertain-but-bounded” — is known to belong to a given set U/
e ¢ and ¢ have partially known distributions, specifically, for given Q. > 0, Q¢ = O
it holds

Var[¢] = E{¢¢1} < Qg, Var[(] = E{¢¢T} 2 Q¢

Given matrix B = [B,, Bs| and a norm || - || on the image space of B, we want to
recover Blu; (] = Bgu-+ Bs(, quantifying the recovery errorin ||-||. The performance
of a candidate estimate z(-) is quantified by

Risk[z] = 525 ]itép Ee.qop {lIBlu; ¢l — z(Alw; ¢] 4+ I}
[P : probability distributions such that Ej.q.p {€€7} < Q¢, Ee.qop {¢CT} < Q¢

Goal: To build “presumably good” linear estimate zZ 7 (w) = H' w.
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w=Agu—+ A+ €& u cU & Var[¢] < Q¢ & Var[¢] < Q¢

77 77
zr(w) := H'w ~ Byu + By(
Assumption: U/ is a basic ellitope, and the unit ball of the norm || - ||« dual to || - || is

an ellitope:

U={u:3TteT: ul'Su<ty k< K}
{fvi|v]« <1} ={v:IreR,w:v=Mww! Rw < ry, £ <L}

e For a candidate linear estimate 2y (w) = H'w, u € U, and a distribution P of [¢; (] satisfying the
bounds on the matrices of second moments of £ and ¢ we have

Efcqmr {||Bau + B¢ — HT [Aqu + A +€])|}
< ||Bg — HT Aglu|| + Ee.qmp {IIHTE(|} + Eeqmr {1I[Bs — HTAC|| )

As we know,

_ R, | 2MT[B;— HT A7]
ceU = ||[By— HTA < min A : Zew 2 d
U | [Ba alul| < min {Gb”r( ) + or(v) [ 1[BT — ATH] | D x AkSk

. o}
%MTHT ‘ Ze prelte

o _ _ G | 2[BT — ATH|M
Var[¢] = Q¢ = E¢ {H[Bs H AS]CH} < M@é%{Tr(GQf) + or(n) : [ sMT[Bs — HTAJ] | ] > HeRy =9

1
Varl¢] = Q¢ = E; {||HT§||} < M@é% {T"(GQg) + or(p) : [ G | HM ] - o}
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szdu+AS(+§&uE{u:EItET:uTSkugtk,kgK}&Var[g] ng&Var[C]jQC
27 |77

zr(w) := H'w ~ Bgu + B
vl <1}={v:IreR,w:v=Mww Rw<ry, £ <L}

Bottom line: In the situation at hand, consider the convex optimization problem

Opt = min {¢T(>\) + or(W) + or(p) + o) + Tr(QeG) + Tr(Q:G’) :

w.p! GG

Z[BI — ATH] | > Sk |~
[ G | iHM ]iO,[ a' | 3B —ATHIM | o

AzauzauzmszJ Zﬂmyw%m@'>o}

M H! | Ze pelie

DB AT SR | ©

The problem is efficiently solvable, and the H-component H of its optimal solution
gives rise to linear estimate Z 7 (w) = H} w such that

Risk[zf,] < Opt.
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How it works

e System: Discretized pendulum &z = —z — kx:
Tiq1 0.9990 0.0951 |[ @ 0.0048
Vig1 [ 00190 09039 || v | T (ut +Ct)| gggsy |» 1 =t <128
wr = x¢t+ &
[ 5] ~ N1, 6~ N(0,005%), & ~ A(0,0.08%), fuf < 0.1
sample trajectory and forecasts in (x, u)-plane errors/mean errors/error bounds
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Recovery under uncertain-but-bounded noise

& So far, we have considered recovering Bx, x € X, from observation

w= Ax + &
affected by random noise &£&. We are about to consider the case when £ is “uncertain-
but-bounded:” all we know is that
EEH

with a given convex and compact set .
& In the case in question, natural definition of risk of a candidate estimate z(-) is
Riskqy 1 [2()|X] = sup ||Bz —z(Az + &)
reX,teH

& Observation: Signal recovery under uncertain-but-bounded noise reduces to the
situation where there is no observation noise at all.

Indeed, let us treat as the signal the pair z = [x;£] € Z := X x H and replace A
with A = [A, I] and B with B = [B, 0], so that

w = Alx; €] & Bz = Blx; €],
thus reducing signal recovery to recovering Bz, z € Z, from noiseless observation
Az.
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& Let us focus on the problem of recovering the image Bx € R¥ of unknown signal
x € R™ known to belong to signal set X C R"™ via observation

w= Ax € R™,

Given norm || - || on R, we quantify the performance of an estimate z(-) : R™ — R”
by its || - ||-risk

reX
& Observation: Assuming that X is computationally tractable convex compact set

and || - || is computationally tractable, it is easy to build an efficiently computable
optimal within factor 2 nonlinear estimate:

Given w, let us solve the convex feasibility problem
Find y € Y[w] ' ={y e X : Ay = w}.

and take, as z(w), the vector By, where y is (any) solution to the feasibility
problem.

Note: When w stems from a signal z € X, the set Y [w] contains x
= z(-) is well defined
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r € X,w=Ax = z(w) = By
ly € V[w] ={y € ¥ : Ay = w}]
& Performance analysis: Let

R = max{3|Bly =]l :y z€X, Aly - 2] =0}

= 3||Blys — 24|l [ys, 24 € X, Alys — 24] = O]
Claim A: For every estimate z(-) it holds Risk | [z|X] > A.
Indeed, the observation w = Ay« = Az« stems from both y« and z., whence the
| - ||-risk of every estimate is at least %Ily* — z¢|| = K.

Claim B: One has RiskH_H[:ﬂX] < 2%R.
Indeed, let w = Az with x € X, and let 2(w) = By with y € Y[w]. Then both =,y
belong to V[w]

= 3||Blz — 7]|| < %.
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% We have built optimal, within factor 2, estimate. How to upper-bound its || - ||-risk?
& Observation: Let X and the unit ball B, of the norm || - ||« conjugate to || - || be
ellitopes:

X xZPy:yEyZZ{y:HtGT:yTSkygtk,kgK}}
B, UZQUZUEVZZ{UZEITERZUTngrg,égL}}

Then the || - [|-risk of the optimal, within factor 2, efficiently computable nonlinear

estimate z(-) cam be tightly lower- and upper-bounded as follows.

e Assuming KerA N X # {0} (otherwise the risk is zero), the set Xy = {x € X : Az = 0} is an
ellitope:

Xy = {xZFw,wEWZZ{w:EItETZwTTkwgtk,k:gK}}
Indeed, setting £ = {y : APy = 0}, the set

Va={yecE :RHeT :y' Sy <tp,k <K}
is a basic ellitope in some RY = X4 = {Py : y € Y4} is an ellitope.

=R = max {I||Blz' —2"]|| : Alz’ — 2"] = 0} = max||Bz| = max | BFw||
' x"eX rEX, weW
IBE | — - [l - lw: norm with the unit ball W]
= R < Opt < 3In(v/3[K + L])R, with Opt given by
A>0,u>0
Opt = miny,  ¢7(\) + dr(p) © [ X, meRe | 3Q"BF

=0
SFIBTQ | Yo MTh | —
2PL_ -, and Risk | [#]x] < 2% < 20pt.

=- The optimal || - ||-riskis > %R > 3In(V/3lK+L
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& In fact, under mild assumptions a /inear estimate is near-optimal:

Theorem. Consider the problem of recovering Bz in || - ||, = € X, via observation
w = Ax. Let the signal set X and the unit ball B« of the norm conjugate to || - || be
ellitopes:

X = {a;:Py:yEyZZ{y:EItET:yTSkyStk,kgK}}

B. = {u=Qz:z€Z={IrcR:2z"Riz<ry, £ < L}}

Then the linear estimate z(w) = Hlw yielded by the H-component of optimal solu-
tion to the efficiently solvable optimization problem

: Ze too Ry ‘ 4
O = m T + A2 > 2 N

IS near-optimal:
Risk|.[Zz,|X] < Opt < O(1) In(K + L)Riski | [X],
where
Riskﬁ,H[X] = :%re]; Risk, . [z]X],
inf being taken over all estimates, linear and nonlinear alike, is the minimax optimal
risk.
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From Ellitopes to Spectratopes

& Fact: All our results extend from ellitopes — sets of the form

{yeRN : It eT,z:y=Pz, 2182 <tk <K}
Sk = 0,5, S, =0 (E)
7 C RE : monotone convex compact, 7 (]intRE # 0
which played the roles of signal sets, ranges of bounded noise, and unit balls of the
norms conjugate to the norms || - || in which the recovering error is measured, to a
wider family — spectratopes

basic spectratope: Y = {y e RN : It e T, Sg ly] S tglg,, k < K}

spectratope: Z={z= Py,y €V}
Sklyl = >, y;8%, 8" € 8% . linear mapings with values in S* ] (S)
y#0=>",57[y] # 0 [equivalent to Y being bounded]
T as in (F)
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Note:
e Every ellitope is a spectratope.
It suffices to verify that basic ellitope X = {z : 3t € T : 27 S,z < t;, k < K} is a basic spectratope.

Indeed, representing S, = > _:* | frif., we have
X = xERn:HtET:xTSkxgtk,kgK}
= {2eR": Mty >0,1 <k <K 1<i<r}: Dty teil €T [fha)? 2 tul1V(k < K,i < rk)}
e Denoting by || - |2 2 the spectral norm, matrix box

2
X
Y= (o RV ollaa < 1) = (o € R |t S0

and its symmetric version
X={zxecS": —In<ac=<IL)={zxeS":z°<1I,}
are spectratopes =- access to matrix boxes as signal sets and nuclear norm as the
recovery norm
e Spectratopes admit the same fully algorithmic calculus as ellitopes
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basic spectratope: Y ={y e RN : 3t e T, S,% ly] 2 tglg,, k < K}

spectratope: Z={z= Py,y €V}
Sklyl = >_,y;8", 8% € S% : linear mapings with values in S% (S)
y# 0= > S?[y] # 0 [equivalent to Y being bounded]
T € RE monotone convex compact set intersecting int R’

& Modifications of the results when passing from ellitopes to spectratopes are as
follows:

A. The “size” K of an ellitope (E) (logs of these sizes participate in our tightness
factors) in the case of spectratope (S) becomes D = ;. d;.
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B. Semidefinite relaxation bound for the quantity
Opt, = max {yTBy 3 eT,z:y= Pz S7[z] X tply, k< K}
Yy

— max {zTéz e T,S2[2] < tily, k < K} B=rprTBP

z,t

is as follows. We associate with Sy[z] = 32, z; 5%, S* € S, two linear mappings:

Q> S[Q]:89M= = 8% S[Q] =3, 3Qi[SMSH + SHSH] =37, Qi SMSH
A Si[A] 8% — Sdim= . [S;;[/\]Lj = LTr(A[SFSH 4 Shigki]) = Tr(ASkSH)

Note: e S2[z] = Si[227]
e the mappings S;, and S} are conjugates of each other w.r.t. to the Frobenius inner proaduct:

Tr(Sk[QIA) = Tr(QSiIAD Y(Q € S9M= A € §%)

Selecting Ay, = 0, k < K, such that ", S [Ax] = B, for
ZEZ:{ZIHtETZS%[Z] < tily, k < K}
we have

3t € T : S2[z] < tplyVk = 2TBz < 2T [Zk Sg[/\k]} z =, 2T SHAelz = >, Tr(S; [Nl [227])

= ¥ TrASklz2T]) = 50, TrARS2L]) < 3o e Tr(AD < dr(AIAD),
6r(0) = maxt™x, AN = [Tr(AL); .. Tr(Ax)]

.| Opt, < Opt:= min {ng(/\[/\]) ‘A= 0,k<K,B < stg[Ak]}
A={A k<K}
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& Theorem. Semidefinite relaxation bound

Opt 1= | { AAD i Ap = 0.k < K,B < 5*/\}
pti= _min oA Az 0k S K B2} SN

on the quantity

Opt, max,, {yTBy 3t €T, 21y =Pz, S2] < tyly k< K}

max, ¢ {ZTEZ te T, S]%[Z] = tkldka k< K}

is tight:
Opt, < Opt <2 In(Qdek)Opt*.

Note: Proof follows the one for the ellitopic case.
But: The role of elementary Mini-Lemma in the spectratopic case is played by the
following fundamental matrix concentration result:
Noncommutative Khintchine Inequality [Lust-Picard 1986, Pisier 1998, Buchholz
2001] Let A; € S%, 1 < i < N, be deterministic matrices such that
SAT = I,
and let ¢ be N-dimensional N'(0O, I,) or Rademacher random vector. Then for all
s > 0 it holds
Prob {[| ; ¢iAjll22 > s} < 2dexp{—s2/2}.
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C. Assuming that the signal set X and the unit ball B, of the norm conjugate to || - ||
spectratopes:

X = {zeR":3teT:S¢x] L typly, k< K}
B = MY, Y={yeRN :3reR:RZ[y] <rl, <L}

and that the distribution of noise in observation w = Ax + £ belongs to P[], the
problem responsible for building presumably good linear estimate of Bx via w reads

Opt= min, _ {qu(/\[A]) + 6R(AITD) + o (AT + T (©)

N ={Nr = Otk<r, ¥ ={T¢ = O}, V' = {7} = Ols<s
[ >R[] | GMTIHTA-B] | }

S[ATH —BYIM | Y, SN
> Ry | gMTHT
THM |6
n(©) = maxTr(©Q), ¢c(h) = maxg’h
Qerll geG

=~ 0

Selz] =3, aSklz] = >, 2:SH = S [A] = [Tr(skp/\ksm)}m <n
Rely] = 30, uiRY = Ri[Te] = | Tr(RP Y (R)]
A{U, ..., U]} = [Tr(Us); ...; Tr(UY]

p,q<N

The risk RiskH,H,p[ﬂ][fH*W] of the linear estimate 27, (w) = HL'w yielded by the
H-component of optimal solution to the problem does not exceed Opt.
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X = {zeR':3teT:S2x] 2 tply, k< K}

B. = MY, Y={yeRY :IreR:RNy] < rels, £ <L}
D. Near-optimality statement reads as follows:
The || - ||-risk of the just defined presumably good linear estimate x r;, is within mod-

erate factor of minimax optimal Gaussian risk:

Risk|.| p[Z7,1X] < Opt < O(1)y/In(2D) In(2F)RiskOpt) | i [¥]

where
D=)> dy, F=) f
k 4
are the spectratopic sizes of X and B, and

RiskOpt X] = inf sup max E Bx — z(A
SkOPYy) pim[¥] = 1nf sup maxFexro,0) I B — #(Az + O}

is the Gaussian minimax optimal risk, i.e., the minimax risk associated with zero
mean Gaussian noises with covariance matrices from I.
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Proof of Near-Optimality: Executive Sketch

Preliminaries, 1. We shall use the following important

Anderson’s Lemma. Let f : RN — R be an even nonnegative summable function
such that the sets {u : f(u) > t} are convex for allt > 0, and let X be a symmetric
w.r.t. the origin closed convex subset of R™. Then the function

N
/X+T€f(u)du [e € RYY]

is nonincreasing in T > 0. As a result, if W € SY, || - || is a norm onR¥ andY is an
v X N matrix, one has

N
Prob, o) {lIYn +ell = r} > Prob{[|Yn| > r} V(e € R, r > 0).
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Preliminaries, 2. By simple saddle point argument, the optimal value Opt in the
problem specifying the presumably good linear estimate is as if the distribution of
noise were zero mean with appropriately selected covariance matrix Q« € I.

From now on we restrict the observation noise to be N' (0, Q).
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Preliminaries, 3. The crucial role in the proof is played by the following
Main Lemma. Let the unit ball B« of the norm conjugate to norm || - || on R¥ be a
spectratope:

Bi=MY,Y={yeR" :3Ir e R: R}yl < rely, ¢ < L},
letY be an S x v matrix, andn ~ N (0, X) with0 < X € S5. Then the upper bound

( )

={T, = O0}y<r
Vs (Y) = min{ ¢pr(A\[T]) + Tr(ZO) : [ zﬂzg[w] E 1yTyT >
T,0 " =0
\ s5YM | © /
on the quantity By {||Y ||} is tight:

B, vox {1V} < ws(Y) <0Q)/In@PE, o= {IYInll}, F =Y f
Besides this, for every 6 € (0, 1) it holds

Prob,, nr(0,x) {Y nll > \/In(ZF/é)wZ(Y)} > 1-—0(1)d.

Proof of Main Lemma heavily utilizes Conic Duality.
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Step 1: All we need is to upper-bound Opt in terms of the minimax optimal risk

RiSkOptH.H [/Y] = Il:]\f SU)I% E&NN(O,Q*) {HBCIZ — 53\(14:13 -+ £)||} .
r x€&
Technically it is easier to upper-bound Opt in terms of the minimax e-risk Riske:
Riske = infmin {p 2 Probear0,0.0) Il Br —2(Az + &) > p} < eVz € X}
T Y
In the proof we use once for ever fixed ¢, namely, e =

Note: Risk; < 8Risk||,H[X] =- upper-bounding Opt in terms of Risk; automatically
8 8

ool

implies upper-bounding of Opt in terms of Risk| ;.
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Step 2: Let W € S" . Consider the Bayesian version of our estimation problem, where the observation
IS

w=An+¢
£~ N(0,Q.),n ~N(0,W) are independent of each other
Fact [well known]: Since [w;n] is zero mean Gaussian, the conditional, given w, expectation
E,, {Bn} of Bn is a linear function H' w of w.
Given this fact, Anderson’s Lemma, and Main Lemma, we, with moderate effort, arrive at the following

& Intermediate Conclusion: Given W = O and setting

_ ( T ={T¢ = 0}e<s
W(H) = min{ er(A[T]) 4+ Tr(Q.©) : [ > RylTe | sMTHT ] .
| sHM | © -
[ T ={T, = O}<r
(W, H) = minq érA[T]) +Tr(WO) : SRl | ZMT[B-HTA ]
2 ~[BT — ATH|M | S -

for an appropriate absolute constant O(1) > 0 and every estimate z(-) we have

0(1) inf [®(W,H) + W (H)] } >

JIn(2F) H

Ny

Probie;1a(0,Q.)xA (0, {IIBU —z(An+ 9| >
where F' =), f, is the spectratopic size of B..
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X:{CCE]R”:EMET:S%[CE]jtkfdk,kSK}

For appropriate positive absolute constant O(1), for every W € S’ and every estimate z(-) one has

PrODiey-no0)toany {181~ EAn+ Ol 2 LU BV M + W] 23 ()
Concluding steps: Consider the parametric family of convex sets
W] ={W €85 1 FteT : S[W] < setply, k < K} [Sk[W] =2 i, Wi;Ski Gk
where » € (0, 1], and the parametric family of convex-concave saddle point problems
Opt(x) = sup |nf ([P (W,H) + V(H)| . (s5.)
WeWlx] H

Note: When W € W|[x]'and n ~ N (0, W), the vector n/+/> “belongs to X at average:”
It €T :Vk <K tetply, = SlW] =) Eyponom{nini}S¥SY = B,y (D miniSMS¥} = Eynowy {SE 1}

e It is not difficult to verify that for every >« € (0, 1]:

a. The convex-concave saddle point problem (x,,) has a solution (W [»], H|[])
b. Opt(sx) > />Opt(1)

c. Opt(1) = Opt (miracle stemming from Conic Duality)

d. As » \ O, Prob, o wpin € X} rapidly goes to 0:

PrObr]NN(OW ){77 Q X} < QGXD{ 1}Zk dk
(stems from Noncommutative Khmtchme Inequallty)

e By b, c and (!), for every estimate  and every x € (0, 1] we have
Probie.1~ar(0,Q.) <N (0,W ) {HB?? —z(An+ &) > \/f%\/_Opt} L
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For every estimate z and every » € (0, 1] we have

- O(1) 1
Probie,,1~A7(0,Q.) xA'(0,W ) {IIBn —z(An+&)| > In(QF)\/?rOpt} > 2 )
and as » \, 0, Prob, o.wpg)in € X'} rapidly goes to O:
1
Prob, nowppin € X} < 2€XD{—Z}D, (1

where D = ), dj, is the spectratopic size of X.
These facts easily combine to yield the target upper bound

Opt < 0(1)+v/In(2D) In(2F)Risks

on Opt in terms of Riska:.

Indeed, with sz = O(l)/gln(QD) probability for n ~ N (0, W |]) to be outside of X' is < 1/8 by (!!)
= invoking (1),

. 0(1) 1 1 1
Probye. 1~ NS |1Bn —z(A > Opt&neX;>———=—
[€:m]~A(0,Q.) XN (0, W] ]){II n—x(An+&)| > In(2F)\/; p n } iTE &
R
— Risk: > R. [
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Beyond linearity: Polyhedral estimates

& As before, our problem of interest is: given noisy observation

w=Ax + £ cR™ €&~ Py,

of unknown signal x known to belong to a given convex compact signal set X C R",
we want to recover Bz € R” in a given norm || - ||.

We have seen that under reasonable assumptions on problem’s data, efficiently com-
putable via convex Programming linear in w estimates are near-optimal.

However: There are meaningful situations which go beyond the scope of “reason-
able assumptions,” moreover, situations where linear estimation is provably far from
being near-optimal.
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Example: Let X = {x € R" : ||z||]1 < 1} be the unit ¢1-ball, observations be direct:

w:$‘|‘0777 UNN(OJn),

and we want to recover Bx = z in Euclidean norm. For a linear estimate H7w,
worst-case expected squared recovery error is

maxE, o) {|1H' (@ +on) —zll2} = max|[Row[I — H]||5 + o*Tr(H" H)

Its minimum over n X n matrices H is achieved at the scalar matrix H = hlI,, with

_ 1
h = g | and equals

2 02n

lin — 02n _I_ 1'
When o2n > 1, this squared risk is at least 1/2.

Risk
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e Now consider the estimate as follows: given w, we estimate x by the optimal solu-
tion z(w) to the convex optimization problem

Opt(w) = min{flw —ylloc 1y € X}.
Observe that when w = = + on withx € X, setting z = z(w) we have
Opt(w) < [lw — zlleo = oIl R
= |z = Z|loo <l — wllo + |w — Z]|og < 20||n][oo

Opt(w) < ||z — w||o
= |z —Z||3 < ||z — Z]|oo |z — Z||1 < 4070
————

<2
= Risk?[z] := maxex E {||z — Z(Az + on) |3} < 40E, nr0.1) {70}

Itis easily seen that . ar(0.1,,) {lInllec} < 24/In(2n), whence
2

Risk2[z] < 80v/In(2n) & Risk2, = 02(;—7; -

= When o is small and o?n is of order of 1, an appropriate nonlinear estimate
significantly outperforms the best linear one — for the former, squared risk is nearly
O(o), and for the latter it is O(1).
& What is ahead: nonlinear polyhedral estimates with the “scope of near-optimality”
strictly wider than the one for linear estimates.
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Polyhedral Estimate: Motivation

& To motivate Polyhedral Estimate, let us start with the problem where

w= Axyx + &, € ~N(0,In)

with unknown x4« known to belong to a convex compact signal set X C R™, and we
want to recover Bz in norm || - ||. Let us once for ever fix reliability tolerance e < 1.

& The simplest inference we can make from observation is: _
Let us select somehow in advance N vectors h; € R"™. Then with confidence 1 — ¢
xs belongs to the “confidence box”

B = {|h!'[w — Az]| < p;,i < N} pi = oy/2In(2N/e) |42

Indeed, with 6; := h! [w — Az.] = och!¢ one has Prob{|&;| < p;Vi} >1-25". exp{—zpjz} >1—e.

Acting as if B were summarising all information on x4 contained in w, we could select
apointx € X N B, take it as estimate of x«, and recover Bx. by Bz.

Note: Assuming z. € B, all we know with our "as if” isthat z. € B, x € Band z, € X,z € X, or,
which is the same,

1 1
A = 5[:{;*—~] € Xs 1= 5[)(-.9(] & |h]AA| < pi,i < N,
= all we can say about the recovery error is that with probability > 1 — e, it holds
|Bz. — BZ|| = 2||BA|| < R := max{2||Bz|| : z € Xs, |hl Az| < p;,1 <i < N}.
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& Choosing in advance h; € R™, i < N, and given w = Ax, + o€, take, as estimate of Bzx., vector
Bx withx € X N B, where the “confidence box” BB is given by

B={z:|hlw— Az]| < p; := o/2In(2N/e) | hi||2, i < N},
thus ensuring that

|Bz. — BZ|| <% := max{2||Bz|| : z € Xs, |h] Az| < p;;1 < i< N}
z

with confidence 1 — e.

Small modification: with probability 1 — € the set B N X contains x. and thus is
nonempty; however, it can be empty with positive probability.

= It is better to replace the rule for selecting x with

T € Argmin {max|hiT[w — Ax]|/p; i x € X}
X 1

which is always well defined and results in x € B N X provided x« € B and thus
preserves the risk bound

|Bxx — Bz|| < 97 with confidence 1 — ¢
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lllustration: When X = {x e R" : ||z||; < 1}and A = B = I, selecting N = n
and taking as h; the standard basic orths, we arrive at the recovery
w +— Argmin ||z — w|/co
reX
and

R = mzax{znznz 2l <1 & [|z]loo < 0y/2 In(2n/e)}§ 2\/0\/2 In(2n/¢)
zé;(s

where the concluding inequality is due to ||z|3 < ||2]|1]|2co-
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e To say that hlw estimates h! Az, within accuracy 0.1 is the same as to say that
10hT'w estimates 10h1 Az, within accuracy 1. It is technically convenient to scale
h; to make p; = 1, that is, to ensure that

|hill2 < [oy/2In(2N/€)] 7.

With this convention, setting H = [h1, ..., h ], our recovering routine becomes

w & € Argmin [|[H  [w — Az]||co — & = Bz
reX

and the formula for SR becomes

R =max{2||Bz|2: 2z € X & |[H" Az|jc < 1}

5.102



XCR"&w=Az+ R £~ P,withee X 77 =77? z(w)~ Bx RV

Polyhedral Estimate: Construction. Generic polyhedral estimate stems from the
above motivation and is as follows:
The estimate is specified by m x N contrast matrix H and is given by

w i T(w) € Argmin [|[H [w — Ay]||c = Zg(w) = Bz (w)

yekX

Risk Analysis. In what follows, it is convenient to quantify the performance of a
candidate estimate z(-) by its e-risk rather the worst-case, over x € X, expected
error. Specifically, given reliability tolerance ¢ € (0, 1), we define (e, || - ||)-risk of a
candidate estimate z(-) : R™ — R" as the worst case, over x € X, width of “|| - || —
(1 — ¢)-confidence interval:”

Risk, 1.1 [Z(-)|X] = min {p . Probep, {||Z(Az + €) — Bz|| > p} < eVa € x}
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XCR'"&w=Az+ R £~ Pwithee X 77 =77? z(w)~ Bx RV

Immediate observation: Given reliability tolerance ¢ € (0, 1), assume that contrast
matrix H satisfies

Probep {|H €lloc <1} > 1—eVz € X (N

LetXS:%[X—X] = {%[az—aﬁ’] Lo, 7 € X} and

R = max; {2]| Bz : z € Xs, [|HT Az||oc < 1]
For the polyhedral estimate x ;; associated with the contrast matrix H we have
RiSke,||-||[EU\H|X] <’A.
Indeed, letus fix z € X, andlet £ = {¢ : ||HT¢|| < 1}, sothat P,{€} > 1 — €. For £ € &, setting
x=2(Ax + &), we have x = Bz withx € ArgEr;in F(y) ;= ||H'[Az 4+ ¢ — Ay]||~
Yy

We have x € X and F(z) < ||HT¢||eo < 1since & c &
—zrzecXand F'(z) <1
= 2> F(2) + F(Z) = |H €||oo + ||H" Alz — 7] + H"€||o0 > |HT Alz — 7]l
= for z = [z — 7] € Asitholds [|[HT Az|ls < 1 = ||Bz — || = ||Bz — BZ|| = 2||z|| < .
= when z € X and £ € £ (which happens with P,-probability at least 1 — ¢) it holds
|z — Az + &)|| <R
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Probe p {|H ¢lloo <1} >1—eVz e X ("
= Zr(w) = Bz(w), T(w) € Argmin ||H! [w — Ax]||co :
reX

RiSKe,||-||[3A5H|X] <R = maxX; {QHBZH Lz € A, ||HTAZ||OO < 1}. (*)

Questions to be addressed:
A. How to define a set H., the wider the better, of contrast matrices H satisfying (!)
B. How to upper-bound $R efficiently
Note: Optimization problem in () is a difficult problem of maximizing convex
function over a convex set.
C. How to optimize, to the largest extent possible, R over H € H.
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A. How to define a set H. of contrast matrices H satisfying

Probep, {||H €lloc <1} >1—€?
Answering Question A. In the sequel, we restrict ourselves with 3 observation
schemes:
A.l. Sub-Gaussian case: For every x € X, the distribution P, of observation noise
is sub-Gaussian with parameters (0, o21y):

o2

E¢p,{exp{h’€}} < EhTh Vh.

Given positive integer N and setting

mc(h) = Y¢|hll2 where 9 = o\/2In(2N/e),
He = HY = {H e R™*N @ 15(Colj[H]) <1,1<j < N}

we ensure that for every H € H. and every (0, o2 I,,)-sub-Gaussian ¢ it holds

Prob{||H ¢|lec <1} > 1 —e.

Note: 7~ (h) decreases as O(o) as o — +0
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A.ll. Discrete case: X is a convex compact subset of the probabilistic simplex A,, =
{x € R" : x > 0, ,x; = 1}, A is column-stochastic matrix, and observation w
stemming from signal x € X' is

1 K
— g Z Ck
k=1
with independent across k < K random vectors (., each taking values e; with prob-

abilities [Ax];, 1 = 1,....,m, e; being the basic orths in R™.
Setting

mp(h) :2\/19D maxgex Y;[Az];h? + 2293)||h||2, with 9p '”(QTN/G)
He = HD = {H ¢ RM*N WD(Col [H]) < 1,7 <m},

we ensure that for every H € H. and every x € X, for the zero mean i.i.d. random
noise £, = w — Ax, with the above w, it holds

Prob{||[H ¢:]lcc <1} > 1 —e.
Note: 7 (h) decreases as O(1/vK) as K grows
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Note: The crucial role in the justification of the above bounds on probabilities of large
deviations of histograms from true distributions is played by the fundamental
Bernstein Inequality: Let X, ..., Xy be independent zero mean random variables

with variations o%, ..., 0%, such that | X;| < M < oo for all i and some M. Then for
everyt > 0 one has

3 T
Prob X; 2ty < expq— ’
i=1 2 (S 07 + 3Mt]
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A.lll. Poisson case: X is a convex compact subset of the nonnegative orthant R"; ,
A is entrywise nonnegative, and the observation w stemming from x € X is random
vector with independent across i entries w; ~ Poisson([Ax];).

In the Poisson case we set

wp(h) = 2,/9p max,ex Y[Ax];h? + $0% k]2, with 9p = In(2N/e),
He =HE == {H e R™*N : 7p(Colj[H]) < 1,1 <j < N}

thus ensuring that for every H € H. and every x € X, for the zero mean random
noise £&; = w — Ax, with the above w, it holds

Prob{||[H ¢s]lcc <1} > 1 —e.

Note: In all 3 cases, the set H. of “legitimate” in our context m x N contrast matrices
Is of the form

He = {H € R™*N : n(Col;(H)) < 1,5 < M}

where 7 (-) is norm of the form

w(h) = \/a ma};Zyih% + 8||h||12,} [Y" C R: convex compact set]
yey <

with « > 0O, 8 > 0 logarithmically depending on N/e.
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Risk, .1 [Zg]X] < RIH] = max; {2]| Bz : 2 € Xs, [|HT Az||oo < 1}
B. How to upper-bound R[H] ? C. How to optimize R[H] over H ?

Answering Questions B, C, Version |
& The reference case for what follows is the one of || - || = || - ||co- In this case R[H]
is easy to compute by solving v convex optimization problems

el H]

max; {[Bz],: 2z € Xs, [|[HT Az||oo < 1}
max. 1 |[Bz]y| : z € &s, ||HT Az||oo < 1},

¢ =1, ...,v, and taking the maximum of their optimal values as %%[H].
& Assume that we restrict H to be an m x N matrix with a given N > v satisfying,
for a given norm = (-), the constraints

7(Coli[H]) <1,1<j <N. (+)
It turns out that under constraints (x) on H, it is easy to minimize simultaneously all
so[H], ¢ < v, over H.
Note: In the observation schemes we are considering, the design restriction H € H.
on a candidate contrast matrix H indeed is given by constraints (x) with appropriate
norm 7 !
5.110



s[H] = max. {[Bz]i: z € Xs,||[H T Az|joo < 1}, £ =1,...,v
|H € RV r(Colj[H]) <1,1<j <N &N >v]

Optimizing ¢,[H] over H
& Given a vector b € R™ and a norm = (-) on R™, consider convex-concave saddle
point problem

Opt[t] = inf max{o(g,x) = [b— ATg]"z +n(9)} (SP)
geER™ xcXs

Claim: (SP) has a saddle point. This saddle point induces vector h = h[b] € R™

with w(h) = 1 such that max, {|bTz| : x € Xs, |RT Az| < 1} < Opt[b]. In addition,

for any matrix G = [¢1, ..., gM] € R™*M withr(¢7) < 1,1 < j < M, one has

max; {[b7z| : z € &, | GT Az||oo < 1}

Corollary: Let H be the m x v matrix with the columns hy = h[By], where B}
is £-th row of B, 1 < £ < v. Then n(Col;[H]) < 1, 5 < v, and H minimizes
simultaneously all quantities ¢y[H], ¢ < v, overm x N contrast matrices H satisfying
n(Col;[H]) < 1,1 <j < N. The resulting value of s, is Opt[By], £ < v.
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Building ~: The convex-concave saddle point problem

Opt[t] = inf max{¢(g,2) := [b— Agl"w +n(g)} (SP)

induces primal and dual problems

MaXzexg |iNfyern (b7 — [Az]Tg + 7(g)]]
max, [bTa: s x € Xs, 0(Ax) < 1}

Opt(P) = infyern [¢(g) i = Maxyexs #(g, x)] (P)
= infyer [7(g) + MaXzex[b — ATg] ],
Opt(D) = maXgexas [Q(g) = inf ern Qb(g?w)] (D)

where 6(-) is the norm conjugate to «(-) (we have used the evident fact that
inf,crm[f1g + m(g)] is either —co or O depending on whether 6(f) > 1 or
0(f) < 1). Since X5 is compact, we have Opt(P) = Opt(D) = Opt[b] by
the Sion-Kakutani theorem. Besides this, (D) is solvable (this is evident) and (P)
is solvable as well, since ¢(g) is continuous due to the compactness of Xs, and
#(g) > m(g), so that ¢(-) has bounded level sets. Let g be an optimal solution to
(P). We select h = h[b] € R™ in such a way that

g=7(g)h & n(h) = 1.
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& The construction just outlined basically resolves the question of how to build the
“legitimate” contrast matrix leading to the best, in terms of its risk bound, polyhedral
estimate, provided that the recovery normis || - ||co-

& In fact, this construction has other consequences. Let us make the following as-
sumptions:

A1. The recovery normis || - || = || - ||~ with somer € [1, o0]

A.2. We have at our disposal a sequence v = {~v; > 0,1 <i<wv}andp € [1, ]
such that the image of Xs under the mapping x — Bx is contained in the “scaled
|- llp-ball”

Y ={y € R : ||Diag{~}y|lp, < 1}.
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Observation: Let B} be ¢-th row in B, 1 < ¢ < v. Under assumptions A.1-2, let
e € (0,1) and a positive real N > v be given, and let =(-) be a norm on R™ such
that

V(h: n(h) <1,z € X):Prob{|hl¢,] <1} >1—¢/N.
Let, next, an m x N matrix H and positive reals ¢y, 1 < ¢ < v, satisfy the relations

(a) w(Col;[H]) <1,1<j5<N;
() maxg{Bla: x € X, |H  Az|loo <1} < ¢, 1 <t <.
¢ 14

Then the quantity
R[H] = max {2||Bz|| : z € &, | HT Az||oc < 1}

can be upper-bounded as follows:
RIH] < W(s) :=2maxy {|[[vr/v1; i v/ e 2 0]y <1, 0 < v < s, 1 <L <0}

implying that
RiSke,H-H [W|X] < W(s).

Function W is nondecreasing on the nonnegative orthant and is easy to compute.
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Note: We know how to make all ¢, as small as possible under the restriction
m(Colj[H]) <1,1<j < N;

we should select as H the m x N matrix with the columns h[By], 1 < ¢ < v, and,

say, zero columns with indexes > v, resulting in

— e i . nT T
s = Opt[B := inf max{é(g,2) := Bfw—g" Az +(9)}

where B} is ¢-th row of B.

Note: There is no reason to use N > v; N = v already results in the best legitimate
contrast.

Note: An attractive feature of the contrast design we have just developed is that it
Is completely independent of the entities participating in Assumptions A.1-2 — these
entities affect theoretical risk bounds of the resulting polyhedral estimate, but not the
estimate itselr.

Near-optimality. Unfortunately, for the proposed polyhedral estimate no really gen-
eral results on near-optimality are known.
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However: There are important special cases where near-optimality can be justified,
most notably,
Simple diagonal case (one of the typical cases considered in the traditional Nonparametric Statistics),

where

o X ={x cR": | Dz|, <1}, where D = Diag{/’, £ = 1,2, ...,n},

ol -|[=| |rwithl <p<r<oo,

em=v=mn,A=Diag{{* ¢ =1,..,n}, B=Diag{¢ ",/ =1,...,n},
with

B>a>0,6>0& (B—a)r<1
e We are in Sub-Gaussian case: &, is (0, o°1,,)-sub-Gaussian, x € X.
Assuming that o, €, n are in the range 0 < /In(2n/e)o < 1 and n is large enough:

n > 019(_;“““/” [Ve = ov/2In(2n/¢€)]
(here and what follows ¢ and C' depend solely on «, 3, d, r, p) our design results in

H = [o] ' I, with ¢ = /2 In(2n/€)

| _ S4+1/p—1
Risk, ., (741X < C 0", o =" +a ++5 Jipl/p =

while the minimax optimal (e, || - ||)-risk is > co®.
= the risk of our polyhedral estimate is within logarithmic inn /e factor of the minimax
optimal risk.
Not so good news: The above near-optimality result is obtained by the traditional for
classical Non-Parametric Statistics analytical closed form risk analysis, this is where
heavy structural restrictions on X', A, and B come from.
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Paying debts for Version I: Proofs

& Observation to be verified: Let BZ be ¢(-throw in B, 1 < ¢ < v. Under assumptions
At [l-[[=1-ll- A2: BXsC)Y={y:|Diag{y}yll, <1}
lete € (0,1) and a positive real N > v be given, and let =(-) be a norm on R™ such that

V(h: w(h) <1,z € X) : Prob{|h’¢,| <1} > 1 —¢/N.
Let, next, an m x N matrix H and positive reals ¢y, 1 < ¢ < v, satisfy the relations

(a) w(Col;[H]) <1,1<j<N;
(b) max.{Blz: z € Xs, |H Az|lc <1} <, 1 <t <.

Then the quantity
R[H] = max {2||Bz|| : z € Xs, |H Azl < 1}
can be upper-bounded as follows:
RIH] < W(s) :=2max, {[|[vi/71; s vu/wlllr : o], £ 1,0 < v <y, 1 <L < v
implying that
Riske . [wr|X] < W(s).
Function W is nondecreasing on the nonnegative orthant and is easy to compute.
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Proof. Let z € Xs and |[HT AzZ||.c < 1. Setting y = Bz, we have y € Y due to z € Xs and A.2.
Thus, ||Diag{~}y|l, < 1. Besides this, by (b) relations z € Xs and ||H? Az||~ < 1 combine with the

symmetry of Xs to imply that |y,| = |B/z| < s, £ < v. Taking into account that || - || = || - || by A.1,
we see that
R[H] max. {2||Bz||, : z € Xs, ||[HT Az|joc < 1}

Al

2maxy {||yllr : |ye|l < s, < v & ||Diag{v}y|l, < 1}
2maxy {|[[vi/y1; s vu/llr i vl £ 1,0 < vp < 5, € < v} = W(s),

as claimed. It is evident that W is nondecreasing on the nonnegative orthant, and it is easy to verify
that W is efficiently computable. ]
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& Claim to be verified: Given a vector b € R™ and a norm «(-) on R™, consider convex-concave
saddle point problem

Opt[b] = inf |n(g) + max[b — ATg]'z (SP)
geR™ TEXg
(SP) has a saddle point. The g-component g of a saddle point induces vector h = h[b] given by
g=m(gh&m(h) =1
such that
max {|b"z| : z € Xs, |h" Az| < 1} < Opt[b].
In addition, for any matrix G = [g?, ..., gM] € R™M withw(g7) < 1,1 < j < M, one has

max, {|bTz| 1 z € Xs, [|GT Az||oo < 1} max, {bTz : x € X, [|GT Az||o < 1}

; Opt[b].
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Proof, Step 1: Building h. The induced by the convex-concave saddle point problem
Opt[b] = inf max{¢(g,z) := [b— A"gl 'z +n(g)} (SP)

geER™ zeXg

primal and dual problems are

Opt(P) = infyern [¢(g) 1= MaXzexs #(g, )] (P)
= infyern |m(g) + MaXzexs[b — ATg] x|,
Opt(D) = maXgexas [Q(Q) = i ern Qb(g?w)] (D)

MaXzexg |iNfgern (b7 — [Az]Tg + 7(g)]]
max, [bTa: . x € Xs, 0(Ax) < 1}

where 6(-) is the norm conjugate to w(-) (we have used the evident fact that inf,cr-[f1g + 7(g)]
is either —oo or 0 depending on whether 6(f) > 1 or 6(f) < 1). Since Xs is compact, we have
Opt(P) = Opt(D) = Opt[b] by the Sion-Kakutani theorem. Besides this, (D) is solvable (this
is evident) and (P) is solvable as well, since ¢(g) is continuous due to the compactness of X5, and
#(g) > m(g), so that ¢(-) has bounded level sets. Let g be an optimal solution to (P). h is the vector
given by

g =7m(g)h & w(h) = 1.
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Opt[b]

infoern [$(g) = Maxeeng ¢(g,2) 1= [b— ATg]Tz + x(g)| (P)
infgern |7(9) + Maxeexglb — ATg) ] ,

MaXeexg |6(g) = infyern ¢(g, )]

Maxzexg |INfgerm [bTa: — [Az]Tg + W(g)H

max, [bTz: z € As, 0(Az) < 1] (D)

where 6(-) is the norm conjugate to = (-).

Proof, Step 2. To justify Claim we are proving, it remains to verify the following

Fact: When g = w(g)h, m(h) = 1, is an optimal solution (which does exist) to (P), one has
max, {|bTz| : z € Xs, [hT Az| < 1} < Opt[b],

and for any matrix G = [¢%, ..., g™] € R™M withn(¢?) < 1,1 < j < M, one has

max {|b'z| 1 z € Xs, |G Az||s < 1} = max {b'z : z € Xs, ||G" Az||oc < 1} > Opt][b].

(1)

(2)

Justifying Fact: Let x be a feasible solution to the optimization problem in (1). Replacing, if necessary,
x with —x, we can assume that |b'z| = bT'z. We now have

bTz| = bTa = [gTAz — n(@)] + [b— A" gl"z 4+ n(g) < Opt[b] + [7(g)hT Az — 7 ()]

<3(3)=0Opt)

< Opt[b] + 7(g) |h' Az| —7(g) < Opt[b],

<1

as claimed in (1). The equality in (2) is due to the symmetry of Xs w.r.t. the origin. To verify the
inequality in (2), let z be an optimal solution to (D), so that z € Xs and 6(Az) < 1, implying, due to
the fact that the columns of G are of «(-)-norm < 1, that x is a feasible solution to the optimization

problem in (2). As a result, the second quantity in (2) is at least b’z = Opt[b], and (2) follows.
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Risk, .| [Zx|X] < R[H] = max. {2||Bz| : z € Xs, ||[HT Az||oo < 1}
B. How to upper-bound R[H] ? C. How to optimize SR[H] over H ?
Answering Questions B, C, Version Il

& Our second approach to B, C resembles what we did when building linear esti-
mates — it is based on a kind of semidefinite relaxation

& Definition. Given a nonempty convex compact set Yy € RY, we say thatY is
compatible with' Y, if Y = {(V, 1)} is a closed convex cone contained in Sj_l\f x Ry
and such that

—V(V,7) € Y : maxX,cy yl'Vy <t

— relations (V,7) € Y and ™ > v imply that (V,7') € Y

— Y contains a pair (V,7) withV = 0.

e We say that a cone Y compatible with )V is sharp, if the only pair (V,0) € Y is with
V =0.

Example: When Y = {y € R" : ||y||o < 1}, the cone

Y={(V,7): VeSS,V <1l,}

is the largest cone compatible with ), and this cone is sharp.
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Fact: When Lin()) = RY, every cone compatible with ) is sharp

Fact: When'Y is compatible with a shift of ¥, Y is compatible with Ys = 5[V — V]
Indeed, )s; remains intact when shifting ), so that we can assume that Y is compatible with ). When
(V,7) € Yandy,y € Y, we have 2(y — ¢)"V(y —y) + 3 (v + y’)TX(y +vy) = Z[y"Vy +

>0
W)TVYI<t=2—-y)Vy—-y)<1,y,¥y €Y. []
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& The role of compatibility in our context stems from the following

Observation: Assume that we have at our disposal cones X and V compatible,
respectively, with Xs and with the unit ball B« = {v € R" : ||u||x < 1} of the norm
| - ||« conjugate to the norm || - || in which we measure the recovery error. Given
contrast matrix H = [h1, ho, ..., hy] satisfying

Probep {|H €llooc <1} > 1 —eVz € X (N
let

AERY, (Up) e X, (V1) €V
it

Opt(H) = min 4y Nj+4u+T
j B! | ATHDiag{\}H'" A+ U

A (U ), (Vi)
Opt(H) is an efficiently computable upper bound on the quantity
R = max {2||Bz|| : z € &, |[HT Az|loc < 1} (#)

and thus. due to (!)— upper bound on the (e, || - ||)-risk of the polyhedral estimate
T H() on X.
When X and 'V are sharp, the optimization problem specifying Opt(H ) is solvable.
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Situation: X is compatible with Xs, V is compatible with B., H = [h1, ..., hn],
AeRY, (Up) e X, (V,7) eV
Opt(H) = min 43 N +ap+T: V| B . (%)
AN || IBT [ ATHDIag{\JHTA+ U | =

R = max {2||Bz|| : z € Xs, ||[H Az|| < 1} (#)
Claim: R < Opt(H)

Immediate reason: When \ > 0, the bunch of two-sided linear inequalities ||H” Az||-. < 1 in (#)
implies, by taking weighted sum of their squares, that 2" A" HDiag{\} H' Az < ). \; on the feasible

set of (#). The rest is readily given by the semidefinite constraint in (x).
Formal proof: Let \, (U, 1), (V,7) be a feasible solution to () and z be a feasible solution to (#).
Setting w = 2z, we have w € 2Xs and ||H? Aw|| < 2. Let u € B.. By the semidefinite constraint in
(*) we have

u'Bw < u'Vu + wl ATHDiag(\) HT Aw + w'Uw = v'Vu + 37 j (b Aw)? +wUw

<4

§7—|—42j)\j—|—4,u. -

Taking supremum over u € B., we get 2|[Bz|| < 7+ 4> ;. A; + 4p for every feasible solution z to

(#) =R<7+4> A+ 4p. Since A, (U, ), (V,7) is an arbitrary feasible solution to (x), we get
R < Opt(H). ]
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HeR™N ¥z € X : Probgup{||H ¢||loc <1} >1—€ @)
X is compatible with Xs, V is compatible with B,
AERY, (Up) e X, (V,T)EV

= Opt(H) = min 4y N tap+Te V| 3B ()
AU, (Vo) ! BT | ATHDiag{\}HTA+U =
= zy(w) = BArgmin||H'[Az — w]||~
reX
U

RiSKGJH.“ [ZL‘\H|X] < ODt(H)

& What is ahead:
In sub-Gaussian/Discrete/Poisson o.s., to enforce (!) we impose on the columns h; of H the restric-
tion 7(h;) < 1, with adjusted to N, ¢, and the o.s. norm m, thus defining the set
H={H = [h1,....,hny] e RN 1 7(h;) < 1,7 < N}

of “legitimate” contrasts. What matters are not the contrasts H € H per se, but the conic set

H, ={(G,p): IAN>0,h1,...hy : G = Zj AjhthT,w(hj) < 1V, Zj A < p}
of pairs (A" [ Diag{A}H" A, >~ X)) we can get from H € H and A > 0 and thus can use in (x).
& Questions to be addressed:
I. How to build a tight inner approximation of (usually difficult to handle) set H. by something appro-
priate for optimizing Opt(H) over H (which now becomes optimization over (G, u)) ?
Il. How to build cones X, V, the larger the better, compatible with Xs, B, ?
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Question: Given a norm 7 on R™ and positive integer N, how to build a tight inner approximation of
the conic set
H,={(G,pn) :3XN>0,h1,....hxy 1 G =3}, Ajhihi, m(h;) < 1V5, >N <}

by something appropriate for subsequent optimization over this something?
Fact: The norm = (-) associated with sub-Gaussian/Discrete/Poisson case is of spe-
cial form:

w2(h) = 0([n)?), 0(u) = maxz"u, [[hy;...ihm]]® = [h3;h3; . hip], (1)
where Z is a convex compact subset of Riﬁ with a nonempty interior.
Assumption: From now on we assume that «(-) is given by (1), and that N > m.
Observation: When the columns h; of an m x N matrix H satisfy w(h;) < 1, and
A > 0, p satisfy 3°; Aj < p, we have

0 (Da{X \shih]}) < i (+)

where Dg{G} € R™ is the diagonal of a matrix G € S™.
Indeed, 6(-) clearly is convex and homogeneous of degree 1, whence under the premise of Observa-
tion one has

0(DG{Y, Akl H) = 02 A lhal?) < S0, M0(ITP) < [5,0] [m]ax#(hj)] <
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Observation: Given norm «(-) such that
72(h) = 0([h]?), 6(uv) = max z'u (%)

ZEZCRZ_Z

and setting

H. = {(G,p) : X > 0,h1,..., Ay : G =Y _Nhyhl, w(hy) <15, A < p}
J J
we have
(G,p) € Hi = G = 0& 0(Dg{G}) < u
Fact: Observation can be “nearly inverted:” one has

H:={(G,p) : G = 0,x0(Dg{G}) < p} CH. C{(G,p) : G = 0,0(Dg{G}) < pu},

where

— » = 1 when =« is proportional to || - |2, and

— 2 = 4In(4m?) for a general norm = of the form (x).

Thus, H is a reasonably tight computationally tractable (provided Z is so) inner approximation of H.,.
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Illustration I:

m(2) = [Izll2 = 7°(2) = [|[2)*|l1 = 0(u) = Zmax[uz,o] max z'u.
z€[0,1]™

Here the claim reads
If G € ST}, then we can find a representation G = 3. A\jh;h; with w(h;) = ||hjll2 < 1 and A\; > 0

such that Zj A < 0(Dg(@)) = Tr(G).
This indeed is true and \;, h; are given by eigenvalue decomposition of G.
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Illustration Il:

7(2) = [|2]|oc = 7T2(2) = ||[2)?]|00 = O0(u) = max[miaXuZ-,O] max u.

2>0 Z z<1

Here the claim reads

IfG € S}, then we can find a representation G =} Ajhihi with w(h;) = [|hjllc <1 and X; > 0
such that 3. \j < >»max; Gj;, where = 4In(4m?).

The construc’uon is as follows. Assume w.l.0.g. that max; G;; = 1.

e Set G = FFT, sothat (a): the rows in F are of Euclidean norm < 1

e Let U be once for ever fixed orthogonal m x m matrix such that (b): |U;;| < 1/2/m (such a matrix
does exist)
e With Rademacher random y, we have G = HXH;F, H, := FDiag{x}U. From (a-b) it is easily

seen that the probability for H, to have magnitudes of all entries < o = \/»/m is at least 1 /2
Indeed, ij-th entry in H,, is Zk Firx1Uk;, and the typical value of the square of this entry is

E {1, FaxilUn)?} =3, F2 @/ mo PR <o
<2/m
— We can rapidly find, in a randomized fashion, i such that # H” = G and the magnitudes of entries
in A do not exceed o
= Denoting by h; the columns of A/« and setting \; = o2, 7 < m, we have
||hj||oo S 1 &G = Ej )\jhjh? & Zj )\j = ma2 = x = »xMaX; Gii,
as required.
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Claim: Relations

H. = {(G,p) : A > 0,h1, ... hy : G =Y. Njhihl, w(hy) < 1V5, 3N < p}

2 =0 ‘= max zl
) (w) zeZCR’;Z “

imply that

H:={(G,pn) 1 G=0,%x0(Dg{G}) < p} CH. C{(G,p) : G = 0,0(DI{G}) < pu}  (x)
Proof. The right inclusion in (x) has been proved. Let us prove the left inclusion. By homogeneity it
suffices to prove that when G = O satisties 6(Dg{G}) < 1, we can represent Gas G = } _; Ajhihi
with A > 0 satisfying
Z Aj < s
J

Case of 7(-) = al| - |[o: Here Z = {[a?; ...; @?]}, 6(u) = a® ) u;, and on the close inspection we
should prove that when G = 0 and Tr(G) < 1, we have G = } . A\jhshi, with A > 0, X7, A = 1,

and ||h;||2 < 1 for all j — the fact readily given by eigenvalue decomposition of G.
General case: Since G > 0, we have G = Q2 with some @ € S™. Setting o; = G;;, we have

1>60(0) & ZQ%:O'Z'
J
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GQES"&G=Q*& ) Q) =o;witho(c) <1
J

e Let U be m x m orthonormal matrix with magnitudes of entries not exceeding v = /2/m (matrices
of this type do exist). For a random Rademacher vector y, setting Q, = @Diag{x}U, we get

Q- gg =G.
On the other hand, [Q.]i; = >, QirxeUs;, whence

E {[Q]3} =D QaU; < (2/m)) Q7 = 20i/m.
/=1 /=1

It is easily seen that when v > 1, we have for every 1, j:
Prob {[Q,l;; > 2voi/m} < 2exp{—v/2}.

— Setting v = 2In(4m?) = /2, the probability for x to ensure [QX]% < 2v0;/m for all i,j is at
least 1/2 , , ,
= 3Qz = la1, - gnl: G = QzQ%L =Y, ¢;q; and [¢;]* < Tlo = 7°(q;) < 210(0) < 77

=G = Zj )\jhjh? with hj = 1/%% and )\j = 2—73
:>G=Zj>\jhjh]TWith7T(hj)§1and)\20,2j)\j:2’7=%. []
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Compatibility of closed convex cone Y = {(U,7)} C Sﬂf x R with convex compact set Y ¢ RY
means that

oy Uy<7V(yed,(Ur)eY)

e (U, 7)eY:U=0

e (Un)eY,7>7r=(UT)eY.

How to build cone U, the wider the better, compatible with a given convex compact set) ?

& We know two sources of cones compatible with ):

— cones coming from semidefinite relaxation on ellitopes/spectratopes
— cones coming from absolute norms.
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Compatibility via ellitopes/spectratopes

Fact: Let ) be a convex compact subset of an ellitope:
YVCcZ={zeRN:3(teT,z): 2= Pz, Sz <ty k< K}
[Sk = 0,5k S > O]
Then the cone

Y ={(U,7)€SY xRy :3IA>0: PLUP <Y NSk, d7(N) 1= rpEaTxtTA <7}
k

is compatible with ).
When Y is a subset of spectratope:

YVCZ={zeRY:3(teT,z): 2= Pz, SZ[x] <tk1d k< KV,
[S[x] = . 1a3]SkJ Ski e Sdk]
the cone

Y ={(U,7) e S xRy : I{NA, = 0} : PIUP 2 3, SE[A], o7 (AA]) < 7}
[StIA],, = Tr(sMASH), AT = Tr(A)
is compatible with ).

This is readily given by what we know on semidefinite relaxation on ellitopes/spectratopes.
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Compatibility via absolute norms

& Preliminaries: absolute norms. A norm || - || on R¥ is called absolute, if it
depends solely on the magnitudes of entries of a vector:

Iz]] = llabs[z]]], abs[[z1;...;z2x]] = [lz1]; -, [2nv]].

Examples: The /s norms || - ||s, are absolute; similarly, the block ¢s-norm

1=t 2500 = M0 s 122 s i 125 sl s [, 81, 85 € [1,00]]
IS absolute.
Facts:
e An absolute norm ||-|| is monotone in the magnitudes of entries: ifabs[z] < abs[z],
then ||z|| < |[2||.

e The norm ||yl|« = Tﬂél y!'x conjugate to an absolute norm || - || is absolute as
x| <

well.
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Observation: An absolute norm p(-) on RY can be ‘lifted” to an absolute norm
pT () onSY by setting

pT(X) =p([p(COh[X]);p(Colz[X]); ---:p(C0|N[X])]>, X esh.

pT indeed is an absolute norm, and
pT(zzl) = p?(z) vz € RY.

Example: When p(-) is £--norm on RY, pT(-) is £» norm on SV,
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& We say that an absolute norm r(-) fits an absolute norm p(-) on R¥,

p(z) < 1= r([z]?) <1.

Example: When p(-) = || - ||s, s € [1, o0], the norm
— || ) ||17 1<s<2
M)_{HﬂyzSZQ
fits p(-).

Fact: Let p be an absolute norm on RY, let absolute norm r(-) fit p(-), and let
Y C By = {z € RY : p(x) < 1}. Then the set

y .
Y = {(U,’T) C SJ_\F] X Ry : I(W € S™ w EIR{]_X) ; U = W+ Diag{w} }

IWI| 4+ 7e(w) < 7

where pT* is the norm on SY conjugate to pt, and r«(-) is the norm on RN conju-
gate tor(-), is compatible with' ).
Besides this, pT*(-) < ¢t (-), where q(-) is the norm conjugate to p(-).
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Fact: Let p be an absolute norm on RY, let absolute norm r(-) fit p(-), and let
Y CB,:={zeR" :plx) <1}
Then the set

b {(U’ﬂ e SN xRy : I(W € ", w e RY): U W +Diag{u} }

[Wlp+ + ri(w) <7

where pT* is the norm on SN conjugate to p™, and r.(-) is the norm on R~ conjugate to r(-), is
compatible with' Y. Besides this, p7*(-) < q*(-), where q(-) is the norm conjugate to p(-).

Indeed, let (U, 7) € Y,sothat U < W + Diag{w} withw > 0 and |W ||+ + r«(w) < 7. Fory € Y
we have p(y) < 1dueto Y C By, whence

y"Uy = Tr(Ulyy"]) < Tr(Wlyy']) + Tr(Diag{w}yy?) < p™*(W)pT(yy") + w'[y]?
< pt* (W) p? () +re(w) r([y]?), < pT*(W) + ri(w) < 7
1

< <1

= MaXyey y Uy < T.
Besides this, when U, V' € S", denoting U; and V; the columns of U and V/, we have

Tr(UV) =3, U/V; <57 p(U)a(V;) < [p(U1); .. p(UN)] [a(Va)s s g(Viv)]
< p([p(U1); ..; p(UN)Da([g(V1); -..; a(V)]) = pT(U)gT (V)

= [V]lp+« = max Tr(UV) < qt (V). ]
U:pt(U)<1
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Example: Let p(-) = || - ||s with s € [1, oc]. In this case

— we can take r(z) = ||z||5, s = max[s/2, 1], resulting in

. { 0o, 1<s<?2
S

re(w) = lwllz,, 5. = £ = Lo

51
—pT()is || - [ls. on 8%, 5. = =5

and we conclude that the cone
Y, ={(U,7)eSY xRy :I(w>0,W): U W + Diag{w}, [|[W|s. + |[w|s. <7}

is compatible with any subset of the unit Z; ball.
Note: It is easily seen that when s € [2, o], the expression for Y provably simplifies to

-2

Y. ={(U,7) €8Y xRy : 3(w > 0) : U < Diag{w}, |lwl|-, <}

In the case in question Y is an ellitope, and Y happens to be exactly the cone compatible with this
ellitope, as given by our “ellitopic” construction.

Note: In our context, the larger is a cone compatible with the set ) in question (for us, this is either
Xs, or B.), the better. The “ideal” choice would be

Y=Y.]={U0,7):U=0,7> m%)xyTUy}-
yec
This ideal cone is typically intractable computationally, this is why we have developed techniques for

building tractable approximations of this cone from inside.
However: WhenY = {y ¢ R¥ : ||y||> < 1}, the cone

Yo={(U,7):0=U <X 7lyn}
is exactly the same as the “ideal” cone Y .[)].
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Ellitopic case, Signal-Independent White Gaussian Noise

& Assume that

e the 0.s. is Gaussian: w = Ax + o¢, € ~ N (0, I,,,)

e the signal set X and the unit ball 5. of the norm conjugate to the one used to measure the recovery
error are ellitopes:

X {reR":3teT : 2'Sx <ty k<K}
B. {fueR™:3I(r e R,2) iu= Mz, 2" Rz < rp, £ < L}
In this case, our compatibility-based recipe for building presumably good polyhedral estimate com-

bines with the machinery for building cones compatible with ellitopes to result in the polyhedral esti-
mate zy yielded by the optimal solution to the convex optimization problem

©=0,Uz0,A>0,p2>0,
. U | iB
= 2 20%T ; 2 =0
Opt @r,r(]f,lp,u{ [CbT(A) + or(p) + 0 I’(@)] %BT ‘ AT@A+ Zk oSk ] — Y, }
MTUM < 3, Ry
w=/2In(2m/e), ¢pz(v) = m%XI/TZ.
AS

The m x m contrast matrix H is given by the ©-component ©.. of an optimal solution to the problem:

the columns h; of H are the eigenvectors of ©, normalized to satisfy ||h,||> = (»0)~1, and
RiSKG,H,’|[§H|X] < Opt.

Proposition: Assume that e < 1/8. Then the resulting estimate is near-optimal:

Opt < O(1)/In(2K) In(2L)RiskOpt: < 0(1)sv/In(2K) In(2L)RiskOpt,,

where RiskOpt, is the infimum, over all possible estimates, of (e, || - ||)-risks of the estimates on X.
Note: Similar result holds true in the case when X and B, are spectratopes.
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How It Works

& Setup:

e Unknown signal z is restriction of function h(t) of continuous time on the n-element equidistant grid
on [0, 4], with the magnitude of h known to be < 1

e We want to recover the result of “numerical double-integration” of h — the vector Bz with

E._. . .
Bij:{ 82[@ i+ 1] zi;

e We observe in Gaussian noise N (0, o°1,,) the restriction of = onto m randomly selected points of
the grid; this selection specifies A.

e The recovery error is measured in || - ||2.

& We are in the case when the signal set X is the unit box:

X={zeR":22<1,1<i<n}

Note that our X’ and B, are ellitopes, so that we can build efficiently
— the provably near-optimal linear estimate Lin,
— the polyhedral estimate Polyl,
— the provably near-optimal polyhedral estimate Polyll,
with Polyl, Polyll yielded by the first, resp. the second of our techniques for designing polyhedral
estimates.
& In the experiments to be reported, n = 64, m = 32, and e = 0.1.
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Recovery errors for Lin (left column), Polyl (right column), and Polyll (middle column)
Horizontal lines: solid — upper bound on Riskg 1., of Polyll dotted — upper bound on Risk,., of Lin.

Data over 20 simulations per each value of o
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How It Works (continued)
Denoising and Deblurring Images

e Grayscale m x n image is m x n array with entries in the range [0,255]. Subtracting from the
entries R = 127.5, we represent the image by matrix x € R™*" with entries in the range [— R, R].

e Let us look how Polyhedral Estimate works when recovering images = € R"*™ from their blurred
noisy observation

w=kKk*xx+ &

with p x g kernel x and White Gaussian observation noise: entries of ¢ are ~ N (0, ¢2) and indepen-
dent of each other.
e Same as with linear estimates, we pass to frequency domain, where the observation becomes

(=0ex+mn
x: DFT of 2T; 6: DFT of xT; n: complex-valued white Gaussian noise; e : entrywise product
zT, kT [m 4+ p— 1] x [n + ¢q — 1] arrays obtained from z, by adding zero rows and columns

and a priori information on y reduces to a small number of (empirically identified) simple constraints
of the form

0 < |xrs| < yrsVr, s & Za(k)\xr8| < alk Zﬁ(k)b@s\Q < B(k)\/’mn, k< K

r,s

By both theoretical and computational reasons, we use the S|mﬁlest possible — proportional to the unit
— contrast matrix, resulting in extremely S|mple (nothing more than Bisection!) recovery routine

3(\: argmin max |C7"s - rers| Za(k)’erl < a(k)mna \/Z B§§)|XT8’2 < B(k)vmn, k<K, |er| < W’rsvras
X r,s
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(=0ex+n

& In our implementation, constraints

Za(k)|er| S a(k)mn7 Zﬁ(k)bﬁ“s S B(k)\/ mn, k S K7 0 S |X7'3| S Trs VT’S (*)

express upper bounds on the /41, ¢> and 4., norms of the Fourier fransform of an image = and its
first order finite difference derivatives. These bounds come from analysing a small library of “real life”
images.

Note: When the blur operator is ill-conditioned (some entries in 6 are nearly zeros, which is the case
in all experiments to follow), the recovery is sensitive (but not too sensitive) to the bounds in (x). This
is what happens when the right hand sides in (%), as given by the library, are multiplied by a common
factor ~:

100 200 300 400 500 600 700 100 200 300 400 500 600 700 100 200 300 400 500 600 700 100 200 300 400 500 600 700 100 200 300 400 500 600 700

True image v+ = 0.5 v=1 ~v =10 ~ = 100 ~ = 1000

Conditioning of blur: Card{i : |0;] < 10~*max; |6;] = 10~*} = 4364 (1.1% of the total of mn = 367500 entries in 6)
& A real life option (not used in the experiments to follow) is to tune v manually.
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& Alternative to the recovery routine
OrsXrs| : Zoz(k)|xrs| < Oé(k)mna \/Z ﬁ£§)|er‘2 < 5(k)‘v mn, k < K, |xrs| < vrs VT, 5}

(A)

Y = argmin { max |Crs —

X r,8

is what in Compressed Sensing was called Regular recovery:

X arg)';n'n {”XHl . ZT’S IXrs| © |Crs — OrsXrs| < P} [X'rs { [1 P/6|TCsrs|]Crs7 Crs| > p
e p: || - [[so-norm of the DFT 7 of observation noise is < p with probability close to 1.

Note: || - |[:-minimization is irrelevant here: the constraint imposes individual lower bounds on magnitudes of x;.s, making
irrelevant which absolute norm of x is minimized under this constraint.

& Note: (A) does not require knowledge of noise’s intensity o, but does require knowledge of “empirical constants” in
right hand sides of the constraints. In contrast, (B) does not require knowledge of “empirical constants,” but does require
knowledge of o to specify p.

& In our experiments, with “properly selected” empirical constants and o known, both recoveries were of the same quality.

0, Grs] < p
.8 (B)

Note: Underestimating the actual noise intensity by factor like 2-3 “kills” (B):
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Observation, o =6.400 Recovery
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True image Observation, o =6.400 Recovery
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True image Observation, o =6.400 Recovery
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Observation, o =6.400 Recovery
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True image Observation, o =6.400 Recovery
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True image Observation, o =6.400 Recovery

L

50 50 50
100 100 100
150 150 150
200 [EEE. 200 200
250 | 250 250
300 | 300 300
350 § S50 350
400 | 400 400
450 450 450
500 ‘ 500 500
100 200 300 400 500 600 700 100 200 300 400 500 600 700 100 200 300 400 500 600 700

True image Observation, o =0.128 Recovery

L

50 50 50

100 100 100

150 150 150

200 RN 200 200 |

250

250 250

300

300 8 300 [

350

350 § 350

400

400 § 400

450

450 8 450

500

500 500

100 200 300 400 500 600 700 100 200 300 400 500 600 700

5.165



100 B

200

300

400

500

600

700

True image

200 400 600 800 1000

Observa’uon o —6 400

100

200

300

400

500

600

700

200 400 600 800 1000

Recovery

100

200

300

400

500

600

700

200 400 600

800

1000

5.166

100 B

200

300

400

500

600

700

True image
Y/ ¥ T T

Y e N B

200 400 600 800 1000

Observa’uon o —O 128

100
200
300
400
500
600

700

200 400 600 800 1000

Recovery

100
200
300
400
500
600

700

200 400 600

800

1000




20}t
40 4

60 Fi

100 :
120
140
160

180

80 [ 48

201

60 |

100 [

120 ¢

140

80

Observation, 0 =6.400

40

160 [

180 |

50 100 150 200 250

20

a0 8

100 [
120 |
140
160

180

60 [

80 [ .

5.167

20

40 |

60

80 |
100
120 |
140 |
160 |

180

201

40 ¢

60

80

100 F°
120
140 |
160 |

180

20

40 |-+

60

100 ¥

120

140

160

180

80 [

AU
il !

200

250




5.168

True image Observation, o =6.400 Recovery
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True image Observation, o =6.400 Recovery
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True image Observation, o =6.400 Recovery
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Observation, c = 0.128
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700 |-0of. There were doors all 'round the hall, bt hole; she knelt down and looked along the pas-]
they were all locked; and when Alice had been  sage into the loveliest garden you ever saw.
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ESTIMATING SIGNALS IN MONOTONE

GENERALIZED LINEAR MODELS

Generalized Linear Model
Developing tools
e \Variational inequalities with monotone operators
Sample Average Approximation estimate
Stochastic Approximation estimate
lllustrations
Variation: Multi-State Spatio- Temporal Processes



What the story is about

& Ultimate Goal: To recover unknown signal x € R™ from observations

Wt = (w1, wK)

given by

Generalized Linear Model: w;, = (yg, n), where

—wi, k=1,..., K, arei.i.d.

— the common distribution P of regressors n,, is independent of signal x

— the joint distribution of /abel ;. € R™ and regressor n;. € R™*™ depends solely

on signal x, and

o (-) : R™ — R™: known link function e E;, {-}: conditional, given 7, expectation over y;

e We assume that a priori information on signal = reduces to x € X, for a given
convex compact set X C R".
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{ (ks ) br<ic 10.0., Epp {yp} = (), s € X 77 =772
Examples of GLM’s:

Linear model: (s) = s. Assuming additive signal- and regressor-independent
noise, the problem becomes to recover signal x from observations (y.,n) , k < K,
where regressors 7. are i.i.d. with independent of x distribution,

Y = "7;{96 + &k,

and &, k < K, are independent of n;. i.i.d. zero mean observation noises.
& Linear model admits “special treatment” which was our previous subject.
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0.2

0.1

logit (left) and probit (right) link functions
Logit model (Logistic regression): m = 1, ¢/(s) = exp{s}/(1 + exp{s}), ni. €
R™ 1 < k < K, are i.i.d.. Given n, y;. takes value 1 with probability @D(n%w) and
value 0 with complementary probability.
Probit model: Exactly as Logistic Regression, but with the cdf of the standard Gaus-

sian distribution in the role of link: 1/ (s) = P (s) = \/%7 ]S exp{—t2/2}dt.
— 0

& Both Logit and Probit models are widely used in Regression Analysis with binary
dependent variables.
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Signal Recovery in GLM

The standard signal recovery in GLM model is given by Maximum Likelihood (ML).

& Assuming the conditional, signal x and regressor n given, distribution of the label
y to have density p(y,n’'z) w.rt. some reference measure, the conditional by the
sequence of regressors log-likelihood of the sequence of labels as a function of can-

didate signal z is ¥_, In(p(yx,n} 2)). The ML estimate z of the signal underlying
observations is obtained by maximizing log-likelihood in z € X.

e /n Linear model with Gaussian noise the ML estimate is given by Least Squares:
I , K T 12
Tr € Argmin — Nz
am > e lluk —mp 2[5
e /n Logit model the ML estimate is

T € Arzger)](’]in Zi{:l [In (1 + exp{nlzz}> — ykngz]

e /n Probit modelthe ML estimate is

A L ® (1 2)
= Arz%r;ln Zkzl [— In <1 — CD(??%@) — Y In <1 ~ CDI(cngz))

In all these cases likelihood maximization (which we convert to minimizing minus
log-likelihood) happens to be convex, and thus efficiently solvable, problem.
6.4




However: Minimizing minus log-likelihood in GLM can be a nonconvex problem. For
example, this happens when the link function 1/ (s) = exp{s}/(1 4+ exp{s}) in Logit
model is replaced with +(s) = 5 + = atan(s):

atan (solid) and logit (dotted) links v

—a1= —a1=
-10 = o = 10 -10 -5 o = 10

In(+) (left) and In(1 — 2) (right) for atan (solid) and logit (dotted) links
[with binary labels, In(v), In(1 — +») must be concave to make log-likelihood concave]

b oo b b
]
I R S TR
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{Cyr, i) Fo<rc 14.0., By {yp} = (nja), x € X 27 =771

Common wisdom is to recover x by minimizing minus log-likelihood by Newton
method and to hope for the better.

With non-concave log-likelihood, this approach can falil...

Question: Can we do better?

Answer: Yes! Under monotonicity assumption on the link function, there exists an
alternative to Maximum Likelihood computationally efficient signal recovery with prov-
ably reasonably good performance.

& Monotonicity assumption, in nutshell, requires from (-) : R™ — R™ to be
monotone:

(W(s) —(s'),s—s') >0 Vs, s € R™

Motivation: Recovering signal x from noisy observations hardly can be easier than
recovering w = n’ x from noiseless observation

y = ¥(w). ()

Monotonicity of v is, basically, the weakest general-type structural assumption which
ensures computational tractability of the square system of nonlinear equations (x).
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Executive Summary on Variational Inequalities with Monotone Operators

Definition: Let X c RY be a closed convex set and G : X — R be a vector field.
(G is called monotone on X, if

(Gy) -G,y —y) >0Vy,y € X. (%)
If (x) can be strengthened to
(Gy) —GW)y—v) > aly -5 Yy, ¥ € X, [ > 0]

G Is called strongly monotone, with modulus «, on X.

Examples:
A. Univariate (N = 1) monotone vector fields on closed convex subset X of R are exactly non-
decreasing real-valued functions on X.
B. If f: X — Ris convex differentiable on X, the gradient field G(xz) = V f(x) of fis
monotone on X. The same holds true for (any) subgradient field of convex function f : X — R,
provided that subdifferential of f at every point x € X is nonempty.
C.Let X =U x V,and f(u,v) be differentiable on X convex in u € U and concave inv € V
function. Then the vector field
G(u,v) = [Vuf(u,v); =V f(u,v)]
is monotone on X. The same holds true when smoothness of f is weakened to Lipschitz continuity,
and V., V, are replaced with respective partial sub- and supergradients.
6.7



Fact: Let G : X — RY be continuously differentiable vector field on a closed convex
subset X, int X # 0, of RV. G is monotone on X iff the symmeterized Jacobian

J[Gl(z) =3 [aG(“) + [29G@"
Is positive semidefinite for all x € X. G is strongly monotone with modulus o > O on
X iff S|G)(x) = aly, x € X.

Variational Inequality VI(G, X)) associated with closed convex set X and a mono-
tone on X vector field G reads

findze € X : (G(2),z2—2«) > 0Vz e X (%)

Vectors z«. € X satisfying (x) are called weak solutions to VI(G,X). A strong
solution to VI(G, X)) is a point z« € X such that

(G(zx),z — z+) > 0Vz € X.

® A strong solution is a weak one, since by monotonicity (G(z),z — z«) > (G(2x), 2 — z+), 2,2+ € X.
The inverse is true provided that GG is continuous on X .

Note: If 2« € X is a zero of G(-): G(z«) = 0, then z. clearly is a strong solution

to VI(G, X). Strong solution is a “substitution” of zero of GG - it can exist when G

does not vanish at any point of X, And a weak solution is a “substitution” of a strong

one: for a monotone (G, weak solution does exist whenever X is convex compact set.

When G is monotone and continuous on X, weak and strong solutions are the same.
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X C R™: closed and convex G : X — R™: monotone on X
Weak solution to VI(G, X):  z. € X suchthat (G(2),z — z«) > 0Vz € X
Strong solution to VI(G, X): 2z, € X suchthat (G(z.),z — 24) > 0Vz € X

Facts:

e Weak solutions to VI(G, X ) form a closed convex subset of X ; this set is nonempty,
provided X is bounded.

e When G is a subgradient field of continuous convex function f : X — R, weak
solutions to VI(G, X) are exactly the minimizers of f on X. More generally, when
(& is the monotone vector field associated with continuous convex-concave

f(u,v) : X =U xV — R, the weak solutions to VI(G, X)) are exactly the saddle
points of fon U x V.
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Fact: Approximating weak solutions to Monotone Variational Inequalities is compu-

tationally tractable task — all basic algorithms of convex minimization admit “VI ver-

sions.”

Let us define inaccuracy Res(z|G, X)) of a candidate solution z € X to the VI
findze € X : (G(2),2 —24) > 0Vz € X

as

ReS(Z’G,X) = SUD<G(y>>Z — y>7
yeX

so that Res(z|G, X) > 0 and Res(z|G, X) = 0 iff z is a weak solution to VI(G, X).
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Fact: Approximating weak solutions to Monotone Variational Inequalities is computationally tractable
task — all basic algorithms of convex minimization admit “VI versions”

For example, assuming that
— X is closed convex set contained in a given || - ||2-ball of radius R and containing
ball of a given radius » > 0,
— G is monotone on X and ||G(x)|l2 <V, z € X, for some known V,
forevery e € (0,V R), a solution z € X with Res(z|G, X < ¢€) can be found
e by Ellipsoid method — in O(1)N?In (" . £ 4 1) jterations, with the computational effort per
iteration dominated by the necessity
(a) to check whether a point belongs to X, and if not - to separate the point from X by a linear
form,
(b) to compute the value of G at a point of X, and
(c) to perform, on the top of (a), (b), O(IN?) additional arithmetic operations
e by Subgradient Descent — in O (1)L jterations, with computational effort per iteration dominated

€2

by the necessity to compute metric projection of a point onto X and the value of G at a point;
e by Mirror Prox — in O(l)LTRQ iterations, provided G is Lipschits continuous, with constant L, on X,

with the same iteration complexity as for Subgradient Descent.
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Strongly Monotone Variational Inequalities

findz, € X : (G(2),z2—2+) >0Vz e X (VI(G, X))

Fact: Let G be strongly monotone, with modulus o« > 0, on convex compact set X.
Then the weak solution z« to VI(G, X) is unique, and for every z € X it holds

(a) oz — =] < (G(2), = — 2

(b) «aflz — 2«||5 < 4Res(z|G, X)
Indeed, setting z; = z. + t(z — z.), for 0 < ¢t < 1 we have

(G(2), 2 — 2) > allz = a3+ (G(20), = — )

by strong monotonicity, and (G(z1), z — 1) = (G (21), 2t — 2z«) > 0.
= (G(2),z — z1) > al|lz — z]|3Vt € (0, 1)
= [t — 40] (a).
Next, by (a) applied to z1 in the role of z, (G(21), 21 — z:) > ¢z — 25
= Res(2]G, X) > (G(2), 2 — 23) = (G(z1), 23 — 2) > 512 — 23
= (b).
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{Cyr, i) he<ic 10, By {ye} = v(nfz), x € X 77 =774

Main Observation: Under (slightly strengthened, see below) Monotonicity Assump-
tion

) IS continuous and monotone on R™”
the signal x underlying observations in GLM is the unique weak solution to a Varia-
tional Inequality V1(G, X') with strongly monotone on X vector field G.
Indeed, given GLM, let P be the distribution of regressors 7., and let

F(z) = Epop{ny(n’ 2)}
Observe that for fixed n € R*"*™, 2z +— Fy(z) = n(nl2) is a vector field on R
and this field is monotone and continuous along with :

2,2 € RY = (pp(n" 2)—np(n'2),2—2") = (w(n" 2) = (" 2),n" z—n"2') > 0.
Under mild regularity assumptions, monotonicity and continuity are preserved when
taking expectation w.r.t. n. Assuming from now on that

— the distribution P of n has finite moments of all orders, and

— ¢ (-) : R™ — R™ is monotone, continuous, and with polynomial growth at infinity,
the vector field F' is well defined, continuous, and monotone.

6.13



{Cyr, i) Fro<ic 14.0., By {yn} = (njz), z€ X 77 =772
F(z) = Epop{ny(n'2)}

Let us make
Assumption A: The monotone vector field F' is strongly monotone, with modulus
a>0,onX.
It is immediately seen that a simple sufficient condition for Assumption A is strong monotonicity of
on bounded subsets of R™ plus positive definiteness of the second order moment matrix E, . p{nn’}
plus compactness of X'.
Observe that
A: Underlying observations signal x is zero of continuous and monotone vector field
G(z) =F(z) — F(x) : X — R
under Assumption A, GG is strongly monotone, with modulus o« > 0, on X.
B. For every fixed z € X and every k, observation (yi,n;) induces unbiased esti-
mate
Gypone (2) = mp (0} 2) — miyg.
of G(z).
Indeed,
By, {ny(n7z) —ny} = Eper {nv(n"2) — By, {y} } = Epep {np(n72) — np(nTa) } = F(2) — F(x)
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{Cyrs i) Jr<ic 1ide, By {un} = v (njx), c € X 77 =771
F(z) = E,.p{ny(n’z)} : strongly monotone with modulus o > 0 on X, G(z) = F(z) — F(x)
.« is the unique weak solution to VI(G, X)
B : Observable vector fields G, ,,.(z) = mptp(nf2) — iy
are unbiased estimates of vector field G(z)

Conclusion: We can recover x via solving VI(G, X') by an algorithm capable to work
with unbiased stochastic estimates of G(-) instead of the actual values of G.
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{Cyr, i) bo<ic 1.0, By {ye} = v(nlz), z e X 77 =772
F(z) = E,.p{ny(n’z)} : strongly monotone with modulus o > 0 on X, G(z) = F(z) — F(x)
: x is the unique weak solution to VI(G, X)
B : Observable vector fields G, ., (2) = metp(n}2) — nrys
are unbiased estimates of vector field G(z)

& There are two basic approaches to solving “stochastic” monotone VI:
Sample Average Approximation: Approximate the “vector field of interest” G(x) by
its empirical approximation

Gk (z) = %Zle M (M 2) — MY

which is monotone along with 1, find a weak solution T(w®) to VI(G i, X) and
take x as the SAA estimate of x.
Stochastic Approximation: Run stochastic analogy of the simplest First Order al-
gorithm for solving deterministic monotone VI's — the Stochastic Approximation
2 = PI’O_]X [zk—l — ’ykGyk,nk(zk_l)} , k = 1, 2, cee K
e Projx[z] = argmin,cy ||y — z||2: metric projection onto X

e zo € X (arbitrary) deterministic starting point
e ~ > 0: deterministic stepsizes
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Sample Average Approximation Estimate

wh = {wk = (ykank)}kgl{ Li.d., E|77k{yk} = 1#(77,2;%), reX 7 =77
F(2) = E,wp{nyY(nt2z)} : strongly monotone with modulus a > O on X, G(z2) = F(z) — F(x)
= Gur(2) = 230 [ 2) — myr] © Europr {Gur(2)} = G(2)
= fSAAO*‘JK) cX: <Gwr\'(z),z — fSAA(‘*}K» >0Vze X

& There exists rather sophisticated theoretical performance analysis of SAA recov-
ery, resulting, under mild assumptions, in tight non-asymptotic upper bounds on the
recovery error E{||z(w?) — z||3}.

& Assume that the link function v (which we have assumed to be a continuous mono-
tone vector field on R™) is the gradient field of a (automatically convex) continuously
differentiable function W:

W(s) = VW (s).
Note: The assumption definitely holds true when ¢ is univariate, as in Logit and Pro-
bit models.
Observation: When ¢ = VW, the SAA G_k(z) is the gradient field of a continu-
ously differentiable convex function as well:
G k(2) = V5 |G, k(2) = £2I0, (Winfz) — 2Tnu]
= The SAA estimate saa(w*) minimizes G_x (z) over X.
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Examples:
T . .
Linear model v'(s) = s = Vs%5". In this case, the SAA estimate reduces to Least

Squares:
1 K
~ K H T 2
x w ) € Ar mln—§ — N 2
SAA( ) ngX 3K kleykj Mg ”2
Note: For linear model with regressor- and signal-independent Gaussian noise:

yp =npr+ &, L<k<K
[noises &, ~ N(0, 02T) are independent of regressors and of each other]

the SAA estimate is the same as the ML one.
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Logit model /(s) = exp{s}/(1 + exp{s}). The SAA estimate is

1 K
~ K ——
zsaa(w™) € Argmin sz

1 _ [In(2 + exp{ni2}) — yii 2]

and happens to be the same as the ML estimate.
Probit model ¢/(s) = ®(s) = Probg ar0.1)1€ < s}. Here
Tsaa(wi) € Argmin IS [ F)P(nf2) + (2m) M2 exp{—(nl2)?/2} — yuni =]
(@) € Argmin 2370 [yen (= @(12)) /(i) — In(1 = S0 2) ]

ByA(”'?lz@
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Note: In the above GLM'’s, finding ML estimates happened to be efficiently solvable
convex problems. It is not so in general.

Example: y,. = atan(nz) + 3£, with i.i.d. regressors 1, ~ N(0, 1) and independent of regressors
i.i.d. noises &, ~ N (0, 1). With X = [-20, 20], K = 20, this is what can happen:

30

25
20 \
15 b / |
N
10 B
5 /
o+ 4

-5 I I
-20 -15 -10 -5 o 5 10 15 20

e Magenta curve: graph of the objective Wga A to be minimized on X" to get the SAA estimate
e Blue curve: graph of the objective W, to be minimized on X to get the ML estimate
e Abscissae of vertical segments:
— green: true signal =~ 1.4047
— magenta: zga a~ 0.8910 — minimizer of Wga A
— blue: local minimizer ~ 0.4300 of W, ; the global minimizer of W), on X' is ?B\I\/IL = —20
Note: With one-dimensional signal, the ML estimate can be computed by ’“brute
force.” With multidimensional signal, potential nonconvexity of minus log-likelihood
can result in severe computational difficulties. For the SAA estimate, computational
tractability is “built in.”
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Stochastic Approximation Estimate

Rk — PrOjX [Zk’—l — 'YkGyk,m(Zk:—ln ) k= 17 27 crey K
e Projy[z] = argmin,cy ||y — z||2: metric projection onto X
e zo € X (arbitrary) deterministic starting point
e ~ > 0: deterministic stepsizes

& The basic performance analysis for the SA estimate is as follows. Let us augment
Assumption A with

Assumption B: For some M < oo and for every signal x € X, denoting by P, the
common distribution of observations w;, = (yi,nr), k < K, stemming from signal x,
one has

B, m~p {Imyll3} < M2 vz € X.
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{Cyrs i) ~ Potper lid, By {ye} = ¥ (npe), 2 € X772 772
A: F(z) =E,.p{nv(nTz)} : strongly monotone with modulus « > 0 on X, G(z) = F(z) — F(x)
B: E(y,n)wPI{HnyH%} < M2 Ve e X

Gyn(2) =9 (n'2) —ny
2z = Projy [zk—1 — %Gy (zk-1)], 1 <k < K

Simple standard fact: Under Assumptions A, B and with stepsizes
o 1
(k4 Do’

whatever be signal x € X underlying observations w;, = (yi,ny), for the SA iterates
2y, it holds

Vi 1<k<K, (%)

AM2
E eopr{llzr — I3} < ez LS k< K

[Pk: distribution of observation w® = (w1, ...,wy), the signal being z]

Good news: Typically, the O(1/k)-rate of convergence established in (!) is the best
rate allowed by Statistics.
Another good news: Error bound (') is non-asymptotic and is governed by the true
modulus of strong monotonicity o of F' and the true "magnitude of uncertainty” M .
Not so good news: To ensure (!), we need to use stepsizes (x) with o lower-
bounding the true modulus of strong monotonicity of F' on X. QOverestimating this
modulus could completely destroy (1).
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F(z) =E,.p {nw(nTz)} X > R"& (F(z2) — F(2),z—2") > a|lz — z’H% & G(z) = F(z) — F(x) =
(G(2),z—x) > allz—z|?, 2 € X (a)

Gyn(2) =mv("y) =y & Epp, {Gyn(2)} =G(2), 2 € X 0

wi, = (yr, k) ~ P iid. E, {yr} = ¢(nji x) (c)

Egym~p, {HU’!/H%} <M, wexX (d)

Proof of Standard Fact:
e Claim: from (b)-(d) it follows that

V(z,z € X) 1 |[F(2)|| < M & Egy ) p{|Gyq(2)]5 < 4M? (e)

Indeed, denoting by P the distribution of regressors (it is independent of the signal), we have

V(e € X) : M2 2 Bqyep, {IImyll3} = Eoer {Ei{lingl3}} = Eyer{lInE, {1315} = Eqep {Ine(n"2)13}
Jensen’%equality

. { IF(lle = [Egr{mp (7 Hlz < Eger{lnw (7 2ll2} < v/Eyer{lmb (723} < M
By Gun(I3} = By myer Ao (072 = nyl13} < 2 [Eyer{lnw (I8} + Eqyny~rAllnyl3}] < 4012

e Let us fix signal z € X underlying observations w;, = (y, z;). Observe that by construction z; is
a deterministic function of w* = (w1, ...,wx): 2 = Zx(wF). Setting Dy(w*) = L[| Zp(wF) — z[|3, we
have
Dp(w®) < 2[Zk—1(w*1) — 2] — Gy (Zr—1 (W 1))II3
= Dip_1(w* 1) — %Gy (Zr—1(WF 1)), Zp—1 (WP 1) — @) + 272Gy (Zi—1 (WP )13
Taking expectation and invoking (b), (a), (e) and the fact that (y., n.) ~ P, are independent across
k, we get

di, i = E_ . pr {Dk(wk)} < dp—1 — VeB i pr {(G(Zk:—l(wk_l)), Zp—1 (1) — fl?)} + 272 M?
< (1 = 20)dp—1 + 2y; M>.
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Dy (w*) = 31 Zk(w*) — 2|13, di := Eopr { De(wh) } < (1 — 20m)dp_1 +272M2, 1 <k < K 0
— 1 :
Yk = G+ Da
e Let us prove by induction in & that with S = Q(i‘f fork=0,1,..., K it holds
S
d, < ———
] (%)

Base k = 0: Let D be ||-||2-diameter of X and z1. € X be such that ||z —2_||2 = D. Invoking (e) and strong monotonicity,
with modulus «, of F' on X, we have

2M D?  2M?
aD? < (F(z4) —F(z.),24 —2)<2MD =D < =" = dp < > <
(8 (8

implying (*o).

Step k — 1 = k: Assuming k > 1 and (x4_1) true, note that 2a-y; = 25 < 1. Invoking (!) and (x;_1), we get
1

2 18 2M? 1 2 S 1 1 S
dpy < [1 - ——| = =S |=(1-—— — | =—|1l-F —| < —.
k_[ k—|—1]k‘+(k+1)2a2 [k?( k—|—1>+(k¢+1)2} k-|—1[ k+k—|—1]_k—|—1

Induction is complete.
e Since d, = %Ewkwpf {||Zk(w’“) — :z:Hg}, (*) reads
4M?

Burrs {11209 = all3} < Go s
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How It Works

Experiment: We consider four univariate link functions:
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Logit, y €e£0{7 %} Linear, y € R Hinge, v € R Ramp, y € R
D(8) = TTexpts] P(s) =s ¥ (s) = max(s, 0] Y(s) = min[1, max|0, s]]
Prob;,{y = 1} = (n7z) y ~N(p(n'z),1) y ~ N(@(n'z),1) y ~ N(@(n'z),1)

e In all four cases, X = {z € R100 : ||z||> < 1}, ni ~ N(0, I100)

Note: When we know in advance the common distribution P of regressors n;, the
vector field

F(2) = Epop {mp(n”2)}
becomes known. In addition, when P = N (0O, I,,), F' becomes extremely simple:
I

: sw(ts)e_SQ/st
|2

F(z) = W(l|zll2) ) W(t) = %/_O;
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n~N(0,In) = F(z) = V(|[z[2)

x||2
Logit Linear Hinge Ramp
Functions W for our four cases
10'
100 F ]
l _\ |
10 F ‘5
10-2? \
1073 ' ' ' : :
[0} 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Modulae of strong monotonicity of vector fields F'(-) on {z : ||z]|o < R} vs. R
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Logit Linear Hinge Ramp
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0.1 @) 0.1 Bl Q1
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Average || - ||2-recovery errors for SA (o) and SAA (+4) estimates vs K = 500, 2000, 8000, 32000
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’Single-Observation” Case

# Situation: We observe deterministic sequence of regressors {n;, € R"*"}, g
and sequence of random labels y® = {y;. € R™} <. The labels y1,...,yx are
independent of each other with distributions P, ;. parameterized by unknown signal
r e X C R" and

Ey~p, Wk} = v(ntz), z e X.

Our goal is to recover z given {n; }r<x and y**.

Note: In fact we have a single-observation GLM with deterministic regressor n*¢,
random label y**, and link function ¥ given by

Y1 P(u1)

WK: [7717'“777K] ERnxva yK: :
Y(uk)

] e R™ w8 ([ur; ...;uk]) = { ] : RME K

YK

Indeed, we clearly have

Eykop, x.xp, 0 ) =" (0"]72), 2 € X
= We can apply our machinery!
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& Situation (reworded): We are given
e a deterministic regressor matrix n ¢ R”* M
e a convex compact signal set X C R”
e a random observation ("label”) v ¢ R with distribution P, parameterized
by signal z € X in such a way that

E,.p, {y} = ¢(n'z)
for a given link function ¢(-) : RM — rM
Given y and n, we want to recover x.
Note: Under the circumstances the vector field

F(z) =né(n'z) i R — R"

becomes fully observable!

Assumptions:

A’: The vector field ¢(-) : RM — RM js continuous and monotone, so that F(-) is
continuous and monotone on R™; in addition, F' is strongly monotone, with modulus
a>0,onX.

B’: For some o < oo it holds

Eyp. {Ilnly — (" |3} < 0? ¥z € &
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Eyp{yt = ¢(n'2) &z € X & Eyop {|Inly — o(n'2)]I5} < o°Vz e X

& Under the circumstances, the SAA estimate zsaa(y) of signal x underlying obser-
vation y is the weak solution of VI(Gy, X') with

Gy(2) = no(n'2) —ny

Proposition Under Assumptions A’, B’ one has

Eyp, {[Zsaa(y) — 2[5} < 0?/a® Vo € X
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Gy(z) = np(nt'z) — ny : a-strongly monotone on X

Proof of Proposition: Let x be the signal underlying observation, y be a realization
of the observation, and let £ = Zsaa(y), so that z is a weak and therefore a strong,
by A’, solution to VI(Gy, X). It suffices to verify that

|2 — 2 < oY gly — oG] Iz (")
A

Setting G(z) = F'(z) — F'(x), we have

Gy(2) =F(2) —ny = F(2) — F(z) + [F(z) — ny] = G(2) —nly — ¢(n"2)] = G(2) — A;
z solves VI(G, X) = 0 < (Gy(z),z — ) = (G(z),z —z) — (D, x — x) =

—<G(EID,Q§—@ §_<A7x_® (a)
G(z) = 0= (G(z),x —x) =0 (b)
so that
by (a), (b)

allz —z|3 <(G(z) — G(=),z —?E?(I)S —(A,z — ) < ||All2]|2 —5%2
= (!
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Example: Assume that

e ¢ is continuous and strongly monotone, with modulus 5« > 0, on the entire R,

e n X M regressor 7 is a realization of random matrix H with independent of each
other N (0, 1) entries,

oy = ¢(nl'z) + & where &€ ~ NV(0,\21,;) is independent of 7,

o M > n.

In this case, with probability rapidly approaching 1 as M — oo,

— F(2) = no(nt'2) is strongly monotone, with modulus o = O(1) M, on R™,

—Eyop, {Inly — 6T D3} = Benroner,y {3} < 02 := 0(1)N\2Mn

= Modulo rapidly going to 0 as M > O(1)n grows probability of getting “pathologi-

cal’n, we have

2 2
o A“n
< 0(1 .
- (>%2M

E{l|Zsaa(y) — 23} < —
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lllustration: Image reconstruction from blurred noisy observation
y = [exa]/? + ot

»: nonnegative 2D kernel, |[>1]|1 =1  *: 2D convolution
x: 2D image to be recovered [[]}/2:  entrywise square root
¢ white Gaussian noise o’ 1.2 2 0.075+/ ||z
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Observation y

50 |
100
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200 |

- y 250 T
50 100 150 200 250 50 100 150 200 250

SAA recovery SAA recovery
X': nonnegative part of TV ball X': nonnegative orthant
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lllustration: Tale of Two Retailers

& Tale: There are two competing retailers, U and V', selling red herrings.

e A retaller creates “selling capacity” z € Ry (e.g., rents some areas, summing up to
z, In several stores).

e Denoting by u and v the selling capacities of U and V', the daily expected losses
(minus profits) of the retailers are

U(u,v) = pu — #H_CD, V(u,v) = qu — ﬁD,

e D: money volume of total daily demand e ¢ > 0O: total selling capacity of other retailers
e p, q. daily expences to support unit selling capacity for U and for V

Rationale: we assume that the actual demand D is split between U, V

and other retailers proportionally to their selling capacities.

e We assume that the actual capacities (ux, vx) € R%r form Nash Equilibrium, mean-

ing that

— when V' selects capacity v«, U has no incentive to deviate from selection wx:
U(u,v«) > U(ux,vs) Vu € Ry

— when U selects capacity ux, V' has no incentive to deviate from selection vs.:
V(usx,v) > V(ux, vs) Vo € Ry



& Goal: Given in advance

— D, ¢, and closed, convex and bounded set X known to contain “parameter of
interest” 8 := [p; q]

— K i.i.d. unbiased observations y;., 1 < k < K, of (ux, vx)

we want to recover £.

Note: Observation noise can come, e.g., from the fact that the selling capacities of

U and V are distributed among many locations, and we measure the capacities in K
locations selected at random from the uniform distribution.
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Executive Summary on Convex Nash Equilibria

& Situation: There are m players, i-th selecting x; € X; #= (.
e Losses of players are known functions f;(xq, ..., zm) ofthe vector x = [x1;...; zm] €
X = X1 X ... x Xy of their selections.
e Nash equilibria are points x* € X such that no one of the players has incentive to
replace his choice with another one, provided that the remaining players stick to their
choices. In other words, «* € X is a Nash equilibrium iff
V(i,z; € X;5) @ fi(xd, ...,x;-k_l,:ci,x;‘_l_l, @y ) > fi(x*).

& Nash equilibrium problem is called convex, if

e all X; are nonempty closed convex sets

o for every i, f;(x) is convex in z; and jointly concave in the collection {x; : j 7= i}
of all remaining z;’s

e > . f;(x) is convex
Example: The standard convex-concave saddle point problem

Min,ecy MaX,ey ¢(u, v)

on closed convex domains U, V' can be thought of as Nash equilibrium problem with
loss ¢(u,v) of the player selecting v and loss —¢(u, v) of the player selecting v.
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Fact: Consider convex Nash Equilibrium problem with continuously differentiable
losses f;(x) and let us associate with it the vector field

F(x) = 8—901f1(x)'8—:102f2(x)'°"'%fm(x) X = R

This vector field is monotone, and the weak (or, which is the same since F' is contin-
uous, strong) solutions to VI(F, X') are exactly the Nash equilibria.



Fact: When c > O, the function - +‘§ = 1 — ngjrc of nonnegative s, t is concave
in s and convex int
= In Tale of Two Retailers, losses of players U, V
u (¥
U(u,v) :pu_u—l—v—l—cD’ V(u,v) :qv_u—l—v—l—cD
are convex in the choices of the players and concave in the choices of their adver-

saries, while the sum of these losses

u -+ v
u+v—+4+c

pu—+qu—D

IS convex In u, v
= Nash equilibrium in Tale is weak=strong solution to VI(G g, Ri) with monotone
(in fact, strongly monotone) on R operator

v+ c u -+ c
| (u+ v+ c)? (u+ v+ c)?
G(;;,v)
Note: Field GG is not potential — this is not the gradient field of a function!

Gp(u,v) = D| +8. 18 = Ip; ql]

7
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| v+ c . u—+c
Glu,v) = (u—l—v—l—c)QD’ (u—l—fu—l—c)2D
Fact: The strongly anti-monotone vector field —G is one-to one smooth mapping of

Rﬁ_ onto the domain

N={[p;q]: 0<p<6,p?/0 <q< /0p} [0 = D/c]

with smooth anti-monotone inverse mapping ¢(p, q) given by explicit formula:

T 1 _l_ + 2 _I_ 0 — C
[p; gl € N, ¢(p,q) = p:;q [ 2(p+q) \/4(p+q) p—gq ]
ptq [1 T 2(P+Q) + \/4(p+q)2 + pq] €

=¢(p,q) € R3 & [p; q) + G(¢(p,q)) = 0.

In words: For [p;q] € M, o(p,q) is the vector of selections of U and V', the cost
coefficients for supporting capacities being p for U and q forV'.

Bottom line: In Tale of Two Retailers, given compact convex subset X C 'l known to
contain the vector 8 = [p; ¢] of parameters to be recovered, identifying p, ¢ reduces
to recovering signal 8 € X in GLM where

e the link function is the monotone vector field ¢ = —¢ : M — R?

e the regressors 7, £ < K, are the unit 2 x 2 matrices

e the labels are —y;, € R?, where y;, are i.i.d. unbiased observations of [u; v] = ¢(B).
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How It Works

& Setup: D =100,c =1

e Selling capacities of U and V' are (randomly) distributed over n = 400 locations
and are observed at K = 40 randomly selected locations.

e Relative recovery errors, data over 1000 simulations:

error mean | median | max
18— Bll2/l|B]l2 | 0.073] 0.063 [ 0.314

several curves in 1 (left) and their ¢-images in IRi;r (right)

Note: Similar Tale can be told about any number M of retailers.
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Variation: Multi-State Spatio-Temporal Processes
[Ongoing joint research with Anatoli Juditsky, Yao Xie, and Liyan Xie, arXiv:2003.12935]

& Motivation: Discrete time modeling of interconnected self-exciting processes

e A realization of inhomogeneous Poisson process is an increasing sequence of positive reals
t1 < to < ... interpreted as times at which certain events (e.g., earthquakes or calls to a service
center) happen. The process is characterized by intensity function \(t) > 0, namely, as follows:
e What happens in time window [¢, t 4+ h] is independent of what happened prior to time ¢, and in this
window, the probability for happening

— exactly one eventis \(t)h + o(h)

— no eventis 1 — A(t)h + o(h)

— more than one eventis o(h).

In many respects we can think about Poisson process as about the limit, as » — 40, of discrete
time processes with realizations which are random sequences {¢; € {0, 1}, ¢« > 1} with independent
entries &; and probability of £, = 1 equal to A(zh)h. These discrete time processes are, basically,
what we get, for small h, from realizations of Poisson process when splitting the time domain ¢ > 0
into consecutive segments A; of duration h and setting £, = 0 or §; = 1 depending on whether in a
realization there were no, or there were, events in “time cell” A;.
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e A Hawkes, or self-exciting, process, can informally be thought of as a generalization of Poisson
process where the intensity A(¢) (which in Poisson process is deterministic function of t) becomes
random, and an event at time 7 increases \(t) for ¢t > 7 by some u(t — 7).

& What follows is motivated by the desire to get a simple “computation-friendly” discrete time model
of a self-exciting process by splitting continuous time into short consecutive windows (“cells’) and
neglecting the chances for more than one event to occur in a cell.

e In addition, we consider several interacting processes of this type.
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& Consider situation as follows:
e There are K locations. At time instant ¢ (time is discrete!) location k£ can be at one
of M + 1 states, enumerated 0,1, ..., M; w;;. € {0, 1, ..., M} stands for the state of
location k£ at time ¢t. We call state O the ground state, and states p > 1 — evenis [of
type] p
e Locations influence each other: location ¢ at state ¢ at time = contributes to the
probability of event p in location k£ at time ¢ > .
We assume that the conditional on the “history of the process” prior to time t (i.e., on
the array w'=t = {w, . : 7 <t — 1,1 < k < K}) probability m;[p|lwi—1] of event p
at location k at time t is

mlplw! 1] = Probi-1{wiy = P} = Brp + Ls>1 o<k Brp(P; wi—s0)
e “birthrate” 3;,,,: component of 7. [p|wt—1] independent of the history
° ﬁgg(p, q): contribution of the event “location ¢ at time ¢ — s was in state ¢” to the
(conditional on the history) probability of event p at location £ at time ¢.
Clearly, the conditional on w?~* probability of ground state at time ¢ at location k is 1—21]9”:1 ik [p|lwt 1]
& We observe the process on time horizon t < N, and our goal is to recover from
our observation w!¥ the collection 3 = {Brp, Bi,(p, q) } of parameters of our process.
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mlplw! 1] = Prob i-1{wy =} = Brp+ D D Biu(p wi—sp)
s>1 /<K
® We assume once for ever that the process has finite memory: (;,(p,q) = O
whenever s > d, where d > 1 is some known “memory depth.”
= What matters as far as the behavior of the process on time horizont = 1,2,..., N
is concerned, is the array {w . : —d+1 <7< N,1 <k <K}
O From now on we slightly modify our previous notation and set

wi={w:7<r<t,1<k<K},
wtzwt_d_'_l:{wrk:—d+1§r§t,l§k§K},
B={Bkp: Bjpy(p,q) 11 <k A< K, 1<s5<d1<p<MO0<qg< M}
Assigning components of 3 serial numbers, we treat S as a column vector, and set
v = dimg.
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& It is convenient to encode the collection of states of locations k, 1 < k < K, at

time ¢t by K M-dimensional block vector w;, with K blocks of dimension M each.

Vector w; is defined as follows:

— when at time ¢ in location k event p takes place, the k-th block in @y is the p-th
basic orth in RM

— when at time ¢ location & is in the ground state 0, the k-th block in @w; is zero.

For example, with K = 3 and M = 2,

wy = [0;1;1;0;0;0]
encodes the fact that at time ¢
— at location 1, event 2 takes place — [0; 1] is the second basic orth in RM = R2

— at location 2, event 1 takes place — [1; 0] is the first basic orth in RM = R2
— location 3 is in the ground state 0 — [0: 0] is the zero in RM = R2

e Note that not every Boolean K M -dimensional vector w can encode observed
states of locations at time t; to be “legitimate,” every one of M-dimensional blocks
iIn & must have at most one nonzero entry.
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o Our model says that the conditional, given w*=1 = w'" +1, probability ;. [p|w! 1]
of event p at time t at location k is

_ d K
miklple’ ] = Proby i {wg = p} = Brp + D 1D e Bre(Prwi—s0)
This is the same as to say that
The conditional, given w'—1, expectation of the Boolean vector w; is the

K M -dimensional vector with entries m.[plwi™1], 1 <k < K,1 <p < M.
& We arrive at the model where

— our observation at time ¢ is the vector w; € R¥M: this vector is Boolean, with at
most one entry equal to 1 in every one of the K blocks of dimension M comprising
Wt

— we have E|wt_1{wt} — nT(wa:;)ﬁ for readily given functions n(-) defined on the
set Qary = {wgp € {0,1,....M} : 1 <k < K,1 <s <d}andtaking values in
the space of v x K M-matrices.

Note: Our model is close to the GLM model with identity link function, regressors
n(wfjé), and labels y; = wy, the difference being in inter-dependence and non-
stationarity of the regressors.

= We can try to recover 3 by the techniques we have developed for GLM's.

Note: Inter-dependence of regressors makes it difficult to use SA, but the SAA ap-
proach still can be tried!
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e our observation at time ¢ is the vector w; € R%M; this vector is Boolean, with at most one entry
equal to 1 in every one of the K blocks of dimension M comprising w;

o we have E,—{w:} = nT(w!=7)B for readily given functions n(-) defined on the set of arrays
{ws € {0,1,.... M} :1 < k< K,1<s <d} andtaking values in the space of v x K M-matrices.
- Assumption: We are given a convex compact set X C RY which contains the
vector 5 of parameters of the observed process and is such that

For every x € X and every wjf:; c Qurn M-dimensional blocks in the KM -
dimensional vector nT(wjf:C]l')a; are nonnegative with sum of entries < 1:

Thp + Y aey Y opeg MiNo<gen 23, (p,q) 2 0V(1 <p< M, 1<k < K) (a)
Ve e X : M d %

{ D p=1 [xk:p + D a1 D r—1 MaXo<q<m x3,(p, Q)] <1V(1<E<LK) (b
Motivation: p-th entry in an M-dimensional block, associated with location &, of
nT(wfjcll)ﬁ is conditional, w!~1 given, probability for event p to take place in this
location at time t = these entries must be nonnegative, and their sum over p =
1,..., M should be < 1.
= We lose nothing when restricting our attention with candidate parameter vectors «
for which blocks in nT(w:f:;)x, for all wf:é e Qi1 M, are nonnegative with the sum
of entries < 1.
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E|wt—1{wt} — nT(wz:;)B
peX

& According to our methodology, the SAA recovery 3 of 3 from observations w? is
a solution to the variational inequality

find z« € X 1 (G n(2),2 —24) > 0Vz EX VI(G ~, X)

given by X and the affine monotone vector field
1 N
Cun(@) = 5 3 [l =dn (@i=w = n(wi3)w].
Note: G ~(-) is the gradient field of the quadratic function:
1 N
Con(@) = Vadn (@), @uv(@) = 55 3 In" (wiZpe — @il

— Our estimate 3 is nothing but the Least Squares estimate:

B=pBswY) e Argen)gin P, v(z). (LS)
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Gov(x) = % Ei\le [n(wﬁj&)nT(w;ﬁ:é)x — n(w;;:;)wt} B : solution to VI(G,~, X)
Towards Performance Analysis

# Observation: Consider, along with the observable vector field G, n(-), the

unobservable vector field

_ 1| & _ _ _ _
Cun(@) = | X nwimn @i = n(wiZpn” (=8
Note: G n(z) — G n(x) is independent of x and G _n(8) = O

N Gt ‘
= G v(B) =G n(B) — G n(B) = — 237 ,%d){% DB — @
=1 &
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1 gt )
Cun(B) = 5 3 e ) [ wlZ)s - @
= e

Fact: Denoting by Elws the conditional, w® being fixed, expectation, we have

B\ i-1{&} = n(w"DEi-1{G} =0

Indeed, Ei—1{wt} = 17 (wi_1)B.
Fact: HCtHoo < 1.
Indeed, the entries in nT(wfjcll)ﬁ are probabilities, and the entries in w; are zeros

and ones.
Fact: It is easily seen that n(ngll) is Boolean matrix with at most one nonzero in

every row

= [[&t]loo < |Ctlloo < 1.
Corollary: Typical value of ||G,_n(8)||~ is of order of 1/v/N:

Prob{||G v (B)llcc > v/VN} < 2vexp{—~°/2} ¥y > 0.
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Claim: Prob{||Guv(8)|ls > v/VN} < 2vexp{—+2/2} Vv > 0.Indeed, let us fix i < v. Given
a > 0, let us prove by induction in ¢ that

Eujeo {exp{}_ _ oléili}} < expfa®/2} (1)

Base ¢t = 0 is evident.
Step t — t 4+ 1: assuming (I;) takes place, we have

Ewt+1|w° {Zi—iz_ll a[gt]l} — Ewt|w0 { [Zi:l Oé[ft]z] E|wt {eXp{a[ft-l-l]i}}

S Bupr { [z eléldd] exp{a?/2}} < exp{a?(t +1)/2}
(a) (b)

e (b) is given by (1)

e (a) is given by the following Well known fact: Let ( be zero mean random variable taking values in

[—a, a]. Then E{exp{(}} < exp{a?/2}.

Note: The conditional, w! given, distribution of «[£;+1]; is zero mean and is supported on [—a, a],

and thus obeys the premise of the Well known fact.

e (I;) = Claim: By (Iy) we have for d

Delta > 0 and o > 0O:

042
Prob{%zil[gt]i > A}<E {exp{%Zila[ft]i}} exp{-aA} < exp{o — aA}

=> [optimizing in o] Prob{+ > | [&]; > A} < exp{-NA2/2}

= Prob{+ >>/L;[&)i > v/VN} < exp{—+?/2}

Applying the same reasoning to —¢&; in the role of &, we get Prob{+ S &) < —y/VN} <
exp{—~</2}, and Claim follows from the union bound.
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Proof of Well known fact: Let ¢ be zero mean random variable supported on [—«, a]. For every ~
we have

E{e‘} = E{e‘ — (¢} < max [ — vs] = max [e* — ya, e + 7q]

—a<ls<a

where the concluding equality is due to the convexity of e* — ysin s.

Setting v = exp{o‘};zxp{_“} we get

E{e‘} < cosh(a) < exp{a?®/2},
(to arrive at the concludlng mequallty, compare coefficients of the power series for cosh(s) and

exp{s?/2} and note that (2k>, <5 k=1,2,.). []
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N N
1 _ _ 1 1y
G () = N Z U(wf_cll)nT(wf_;) L = N Z ﬂ(wf_é)wt
t=1 t=1

\ \ 7

Al"] alw?]
Fact: Typical value of |G~ ()|« is of order of 1/v/N':

Prob{||Gu+(8) ]l > v/V N} < 2vexp{—~?/2} ¥y > 0.

& We can use Fact to design online upper bound on the recovering error.
e Given v x v matrix A = 0, let us set

Vp[A] = max {s: el Az > 8||a:||12)} [1 <p < o0]

For example, 9¥>[A] is the minimal eigenvalue of A.
e Observation: A = 0 = 27 Az > 1 [9,[A]||z]2 4 9. [A]]|z]2] > /O, [A10,[A]||ln]|.-
e Fact: The Least Squares recovery B = B(w™) satisfies the bound

1BW™) = Bllp < |G (B) oo/ /01 [Alw™N ]9, [A[w™]].

As a result, the recovery error admits online probabilistic bound: for every ¢ € (0, 1) one has

- V2In(2v/e)
Prob — Bllp <
ro {\5 Bl VN1 [A[wN]]9,[Alw™]]

Vp € [1,00]} <e.
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Fact: Prob{||G.(8)]|c > v/VN} < 2vexp{—v2/2} Vv > 0.
—=Prob{||Gus(8)|le < V/2IN(2v/e)/N} > 1 —¢ ()

Claim: The Least Squares recovery 3 = B(w?) satisfies the bound

1B@™) = Blly < G (B)lo/ ) 1 LALN 10, [ALW]]. ()

As a result, the recovery error admits online probabilistic bound: for every e € (0, 1) one has

V2In(2v/e)
prob{m Bl < e AL T, AT

Proof: The probabilistic bound foIIows from (1) in view of ().
To demonstrate (1), let us fix w” and set 8 = B(w), A = A[w"], G(-) = G.~(-), A = 5 — B.
o G( ) is affine = G(B) = G(B) + AA

o ﬁ is weak=strong solution to VI(G, X) = (G(ﬁ) B8 — 5) >0
= (G(B) + AA,—A) >0

= VA Al AL Al < (A, AA) < (G(B), &) < IG(B) ool Al
= O1[A]G Al A1l Allp < NIG(B) llocl| A1 (]

Vp € [1,00]} < e
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Op[A] = max {s: z’ Az > s||z||2 Ve } = min,{z" Az : ||z, = 1}

How to compute ¢,[A] ?
Given v x v matrix A > 0, the computation of 9,[A] is easy in the trivial case of degenerate A (in
which case 9¥,[A] = 0).
When A > 0, computing ¥,[A] is easy when
A.p = 00: Vso[A] = Min, {zT Az : ||z]|ec = 1} = Mini<s<, Ming {z7Az @ ||2]|0 < 1,25 = 1}
B. p = 2: ¥2[A] is the minimal eigenvalue of A.
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C. When 1 < p < 2, computing ¥,[A] exactly seems to be difficult. However, when 1 < p < 2, 9,[A]
admits efficiently computable lower bound tight within the factor 7.

Indeed, 9,[A] is the largest p such that the ellipsoid {x : 2/ Az < 1} is contained in the unit ball
{z : ||z||, < 1} of || - ||,- Passing to the polars, this is the same as to say that ¥,[A] is the largest p
such that the ellipsoid {y : y" A=1y < p~1} contains the unit ball of the norm || - ||, ¢ = p/(p — 1),
conjugate to || - ||,- The bottom line is that

1
maxy. <1 ¥L A"ty

Up [A] =

When p € [1,2), we have q € (2, co] = computing the maximum of the quadratic form y* A~y over
Y ={y : ||lyllq £ 1} admits semidefinite relaxation:

mE%/XyTA_ly < max {Tr(A7'X) : X = 0, |[[X1,1; X222, Xulllg2 < 1} (%)
IS

By a version of Nesterov’s /2 Theorem, semidefinite relaxation, as applied to upper-bounding max-
imum of a positive semidefinite quadratic form over a set given by convex constraints on the squares
of variables, as is the case in (x), is tight within the factor 7 /2

= The quantity

1
maxy { Tr(A-1X) : X = 0,[|[X1,1; X2,2, .; Xulllg2 < 1}

is an efficiently computable tight within the factor = /2 lower bound on §,[A].
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Maximum Likelihood Recovery

& Consider spatio-temporal process with K locations, M + 1 states (ground state 0
and events 1, 2, ..., M) and memory depth d and assume that the vector of parame-
ters of this process

B=1{Brp Biu(0.0) 1 1<k (<K 1<s5<d1<p<MO<q<M}eR”

is known to belong to a given convex compact set X C R such that for some ¢ > 0
and all x € X one has

Zpp + Y01 Yplg Mino<g<nr 27, (p, ) V1 <k <K, 1<p< M (a)
K |y 4 L SR maxocgem 25 (p )| VIS ES K (D)

S
1 —g¢

AVARVAN
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& Assume that the conditional, w?—! given, random states w;;. of locations & at time
t are independent across k.

= The conditional, w'~1 given, minus log-likelihood of collection of states w; =
{wy, 1 1 <k < K}attimetis> ',y (w1 3),

R (e D B T CT)
Wik ’ —1In (1_212\4:1[77T(w§:d)5]kp) ,wip = 0

= Maximizing the conditional, given w°, likelihood of observation w
the Maximum Likelihood estimate

. _ 1l N K _
B (™) e Argenggm W n(z) = Nztzlzkzzlwitk(wt 1 x) (ML)
X

N we arrive at

& Note: Optimization problem in (M L) is convex and therefore efficiently solvable!
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—~ ] 1 N K -
BaL@™) € ArgminWon(@) = =3 B v (W) (ML)

# Solving convex optimization problem in (M L) is equivalent to solving VI(G n, X')
with

G v (z) = VWV _n(2).

O Note: G n(-) is monotone vector field on X.
O Note: On a closer inspection, typical value of G_n(8) is of order of 1 /+/N

Prob{||G,~(8)llcc > ¥©/VN} < 2vexp{—7/2} ¥y > 0,

with © (which was just 1 for the LS recovery) depending on s.
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How It Works: Recovering Network Structure

e K = 5 locations, M = 2 events, memory depth d = 8

e It is known in advance that state ¢ € {0, 1,2} in location ¢ contributes to the prob-
ability of event p € {1,2} in location k at a later time only when ¢ > p

e Interacting locations — neighbors in the network: k,¢ are not adjacent =
Big(pa q) =0

e Note: When recovering the parameters of the process, we do not know the under-
lying network and act as if all pairs of locations were interacting.

e Our ultimate goal is to recover the network underlying the process we observe.
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e Restrictions on X’:
— nonnegativity of all components of 3 & 37,(p,q) = 0 whenp > ¢
— natural restriction )| {ﬁkp + 3 K maxocgem B, (0, q)} <1,k<K
— B¢,(p, q) should be nonincreasing and convex in s.
= the dimension of 5 is 610
e Time horizon N = 60,000 (not as large as it looks — we need to recover 610
parameters!)
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& Quality of recovery:

- =1

- =11l

- = 1l

18 = BmLl

0.9612(19.3%)

0.0600(15.5%)

0.0145(27.0%)

|18 — Brs]|

1.0272(20.7%)

0.0642(16.6%)

0.0145(26.9%)

& Network recovery:

k

In parentheses: || — 3] in percents of || ||

1

2

3

4

5

0.066

0.044

0.047

0.003

0.005

0.042

0.049

0.056

0.009

0.005

0.044

0.040

0.056

0.045

0.048

0.000

0.002

0.048

0.060

0.043

O P WN =

0.003

0.007

0.047

0.044

0.059

>

Uniform norms of collections of recovered interaction coefficients for locations k, ¢

& Recovering frequency of events:

location

event #1

event #2

1

0.058/0.058/0.059

0.043/0.043/0.042

2

0.060,/0.059/0.060

0.042/0.042/0.041

3

0.079/0.079/0.078

0.050/0.048/0.051

4

0.059/0.059,/0.060

0.042/0.041/0.040

5

0.061/0.062/0.061

0.042/0.041/0.041

blue: in observations red: in simulations with 3 < 8),_ cyan: in simulations with 3 < B\LS
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& Given w™N andt, the most natural error measure for a candidate estimate 3(w®)
is the prediction error

A||.||[B|75] = InT Wiz DB - Al

— deviation of the vector of probabilities of various events in various locations at time
¢ as predicted by 3 from the vector of true, under our model, probabilities.

e Here is the statistics of prediction error in our experiment:

recovery -T=1T-T: [-T=1-12 [-T=1T" T
3 0.1339(5.54%) | 0.0545(6.60%) | 0.0370(8.23%)
LS 0.0315(5.84%) | 0.0127(7.01%) | 0.0083(10.1%)
B 0.1396(5.78%) | 0.0502(6.09%) | 0.0387(8.61%)
ML 0.0298(5.52%) | 0.0120(6.60%) | 0.0077(9.48%)

red: max A [8]t]
t<N

red, %: max A [8]t]/ max ||nT (w!Z2)A]
t<N t<N

cyan: % D en AU [B¢]  cyan, %: _Zth A Blt)/ > ien I (i) 8

6.61




0.05 -

—2¢=3,p=1qg=1|k=2/¢=3p=1,q=2|k=2/¢=3,p=2,q="2

Sample of recoveries of 37,(p, q) vs. s
blue: 8 red: Bpm cyan: BiLs
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& Self-Exciting:

location || frequency of pairs of events at consecutive times

1 0.0190/0.0186/0.0191/0.0102

2 0.0189/0.0191/0.0183/0.0103

3 [ 0.0282/0.0266/0.0277/0.0167

4 0.0181/0.0178/0.0179/0.0102

5 0.0199/0.0194/0.0198/0.0107

blue: observation
red: simulation with g < BML

cyan: simulation with 8 < B, s
green: frequency of pairs for events independent across time
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Extension: Nonlinear Link

é Letusidentify K x M array {y, : 1 <k < K,1 <p < M} with K M-dimensional
block vector with k-th block being [yr1; yio; -.-; yias]- With this interpretation, K x M
array ¢(z) = {¢pp(2) : 1 <k < K,1 < p < M} of functions depending on K M-
dimensional vector z becomes a vector field

¢(2) 1 REM — REM

&% Assume that we are given
A. Vector field ¢(z) = {¢g,(2)} : REM — REM and convex compact domain
Z c REM gych that

e ¢ Is continuous and monotone on Z,

oVz € Z: dpp(2) > 0Vk,p & Y011 pp(2) < 1.
B. Memory depth d and function n({w,;}) defined on the set 2 ;55 of arrays {w,;. €
{0,1,.... M} :1<s<d,1<k< K} andtaking values in the space of v x (K M)
matrices
C. A convex compact set X € R” such that n! ({w;,})z € Zforallz € X.
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% Assume that we are given
A. Vector field ¢(2) = {prp(2)} : REM — REM and convex compact domain Z ¢ REM such that

e ¢ Is continuous and monotone on Z,

oVz € Z: ¢up(2) > 0Vh,p& 00 drp(2) < 1.
B. Memory depth d and function n({w}) defined on the set 245, of arrays {wy, € {0, 1,..., M} :
1 <s<d,1<k< K} andtaking values in the space of v x (K M) matrices
C. A convex compact set X € R such that n’ ({wy.})x € Z forallz € X.
& Given g € X and w9d+1 e Q245 0, We can associate with the above data random
process evolving on time horizont = 1,2, ..., N as follows:

e the state of the process in spatio-temporal cell tk is wy, € {0,1,..., M}

e the conditional, w!~1 given, probability to have w,;, = p € {1,...,M} is
Srp (N (Wi 1)B),

e the conditional, w?~! given, probability to have w;;, = 0 is

1 - ZM 1§bkp (UT(wg:;)ﬁ) :

p:

Note: So far we have dealt with ¢(z) = z and specific structure of n(-) and £.
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& In the situation in question,
e The role of observable vector field G v (z) (which used to be the gradient field of
a convex quadratic function) is played by the monotone vector field

N
Gux(@ =5 3 [1el= Do (0" =) —n(ei=Da)

where w; € REM is our encoding of the collection {w,; : 1 < k < K} by Boolean
vector

e The role of unobservable vector field G n(x) is played by the monotone vector
field

N
() =+ 3 [ (17 @imDe) — nef=potr” @D

for which g is a zero. As before, Gy () — G_n(-) is constant.
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e Asbefore, G, v(8) = G n(B) =G, v(B) = LI n(wiZy) [n" (WZ B — @]
is martingale-difference of typical magnitude of order of 1/v/N:

Prob {||GwN(ﬁ)||oo > WG/W} < 2vexp{—+2/2} Vv > 0

©: the maximal, over Wf:clz € Qui s and @ < v, £1-norm of i-th row in n(wf:clz).
o Recommended recovery, as before, is the solution to VI(G, v, X))
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THE END

THANK YOU AND TAKE CARE!



